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Abstract

Birational rowmotion is a discrete dynamical system on the set of all positive
real-valued functions on a finite poset, which is a birational lift of combinatorial
rowmotion on order ideals. It is known that combinatorial rowmotion for a minus-
cule poset has order equal to the Coxeter number, and exhibits the file homomesy
phenomenon for refined order ideal cardinality statistics. In this paper we generalize
these results to the birational setting. Moreover, as a generalization of birational
promotion on a product of two chains, we introduce birational Coxeter-motion on
minuscule posets, and prove that it enjoys periodicity and file homomesy.

Mathematics Subject Classifications: 05E18, 06A11

1 Introduction

Rowmotion (at the combinatorial level) is a bijection R on the set J(P) of order ideals
of a finite poset P, which assigns to I € J(P) the order ideal R(I) generated by the
minimal elements of the complement P\ I. The map R can be also described in terms of
toggles. For each v € P, let t, : J(P) — J(P) be the map given by
Tu{v} ifv¢gland IU{v}e J(P),
to(I) =< I\ {v} ifveland I\ {v}eJ(P), (1)
1 otherwise,

and call it the toggle at v. Then the rowmotion map R is expressed as the composition

R=t,0ty0---0t,,, (2)
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where (vy,v9,...,vy) is any linear extension of P, i.e., a list of all the elements of P
such that v; < v; in P implies ¢ < j. This rowmotion has been studied from several
perspectives and under various names. See [18] and [19] for the history and references.
Rowmotion exhibits nice properties such as periodicity and homomesy on special
posets including root posets (see [11, 1]) and minuscule posets (see [15, 16]). In gen-
eral, given a set S and a bijection f : S — S, we say that a statistic § : S — R is
homomesic with respect to f if there exists a constant C' such that for any (f)-orbit T’

ﬁZQ(x) =C.

We refer the reader to [14] for the homomesy phenomenon. For a minuscule poset P and
a simple root a € II, we put

P*={veP:c(v)=al, (3)

where ¢ : P — Il is the coloring of P with color set II, the set of simple roots. This subset
P“ is called the file corresponding to «. (See Section 3 for the definition of minuscule
posets and related terminology.)

If P is a minuscule poset, then the associated rowmotion map R has the following
properties:

Theorem 1. Let P be a minuscule poset associated to a minuscule weight X of a simple
Lie algebra g. Then we have

(a) (periodicity, Rush—Shi [15, Thoerem 1.4]) The rowmotion map R has finite order
equal to the Cozeter number h of g.

(b) (file homomesy, Rush-Wang [16, Theorem 1.2]) For each simple root o € 11, the
refined order ideal cardinality #(I N P%) is homomesic with respect to R. More
precisely, for any I € J(P), we have

>

" 4 (RN N P?) = (Y, ),

S
i

where @" is the fundamental coweight corresponding to .

One motivation of this paper is to lift the results in the above theorem to the birational
level.

Einstein—Propp [4] introduced birational rowmotion by lifting the notion of toggles
from the combinatorial level to the piecewise-linear level, and then to the birational level.
Given a finite poset P, let P = P LI {/1\, 6} be the poset obtained from P by adjoining an
extra maximum element 1 and an extra minimum element 0. For positive real numbers
A and B, we put

KAP(P)={F:P =Ry | F(1) = A, F(0) = B},
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where R denotes the set of positive real numbers. For v € P, we define the birational
toggle 748 : KAB(P) — KAB(P) at v by

v

1 . Zweﬁ,w<v F(w)
(rMPF) (2) = { F(0) 3.ep, oo Y/ F(2)
F(z) otherwise,

if x =0,

(4)

where the symbol z > y means that x covers y, i.e., x > y and there is no element z such
that z > 2 > y. It is clear that 7% is an involution. (See Equation (12) for a definition of
piecewise-linear toggles.) Then we define birational rowmotion p™P . K4P(P) — KAB(P)
by

P =T o 0T, o)
where (vy,...,vy) is a linear extension of P. It can be shown that the definition of p*?

is independent of the choice of linear extension. Since rowmotion is defined by toggling
from top to bottom, we have a recursive formula for the values of the birational rowmotion

map:
1 Zwéﬁ,w@u F(w)

(V) Ycpne I/ (p2BF) ()

We omit the superscrip and simply write IC(P), 7, and p when there is no confusion.
For birational rowmotion on a product of two chains, periodicity and (multiplicative)
file homomesy are obtained by Grinberg—Roby [7] and Einstein-Propp [4], Musiker—Roby
[9] respectively. In this paper we generalize their results from products of two chains (type
A minuscule posets) to arbitrary minuscule posets.
For a minuscule poset and a simple root « € II, we define

Oo(F) =[] Fv) (7)

vePe

(PMPF) (v) = - (6)

t A,B

for F € K4B(P). Our main results for birational rowmotion are summarized as follows:

Theorem 2. Let P be the minuscule poset associated to a minuscule weight A of a finite
dimensional simple Lie algebra g. Let p = p™P be the birational rowmotion map. Then
we have

(a) (periodicity) The map p has finite order equal to the Cozeter number h of g.
(b) (reciprocity) For any v € P and F € KAB(P), we have

AB

(™F) ) = £ (8)

where vk : P — {1,2,... h — 1} is the rank function of the graded poset P and
L : P — P is the canonical involutive anti-automorphism of P (see Proposition 11).
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(c) (file homomesy) For a simple root o, we have

h—1
H (I)a(,OkF) _ Ah(wv,—woA>Bh<wV,>\> (9)

k=0

for any F € K4B(P), where wy is the longest element of the Weyl group W of g,
and w" is the fundamental coweight corresponding to c.

Part (a) of this theorem is established in [6, 7] except for the type E; minuscule poset.
In this paper we provide a way to settle the E; case by using a computer. For a type
A minuscule poset, Part (b) is obtained in [7, Theorem 32]. Our proof of Part (b) is
based on a case-by-case analysis (with a help of computer in types Fgs and E;). Part
(c) in type A follows from Einstein—Propp [4, Theorems 5.3 and 6.6] and Musiker—Roby
[9, Theorem 2.16]. We will give an almost uniform proof to Part (¢). Also we can use
tropicalization (or ultradiscretization) to deduce the results for piecewise-linear rowmotion
as well as combinatorial rowmotion in Theorem 1 (see Section 2).

Another aim of this paper is to introduce and study birational Coxeter-motion on
minuscule posets, which is regarded as a generalization of birational promotion on a
product of two chains (see [4, Definition 4.3]). For a simple root a € II, we define
odB L KAB(P) — KAP(P) as the composition

ot =11 =7, (10)

’UEPa

which is independent of the order of composition. Then a Coxeter-motion map is a
product of all the 64f’s in any order. Our results for birational Coxeter-motion are
stated as follows:

Theorem 3. Let P be a minuscule poset. Let v = v*B be a birational Cozeter-motion
map. Then we have

(a) (periodicity) The map v has finite order equal to the Cozeter number h.

(b) (file homomesy) For each simple root o € 11, we have

h—1
H o (,.ku) _ Ah(wv,fwoz\)Bh(wV,)\). (11)
k=0

If P is a type A minuscule poset and 7 is the birational promotion map (a special case
of birational Coxeter-motion maps), then there is an explicitly defined “recombination
map” R such that Rp = 1R (see [4, Theorem 6.2]), which, together with Theorem 2 (a),
implies Part (a) of the above theorem. We prove Part (a) for arbitrary minuscule posets by
showing that any birational Coxeter-motion map is conjugate to the birational rowmotion
map in the birational toggle group (Theorem 15 below). By applying tropicalization to
Part (a), we obtain the periodicity of piecewise-linear Coxeter-motion, which is proved
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in [5, Theorem 1.12] via quiver representation. Part (b) in type A is obtained in [4,
Theorem 5.3].

Hopkins [8] obtains another example of homomesy for the birational rowmotion for a
wider class of posets including minuscule posets.

Theorem 4. (Hopkins [8, Theorem 4.43]) Let P be a minuscule poset and p = p™ the
birational rowmotion map. For F € KAB(P), we define

_ F(z)
U(F) = g S P

Then we have

h—1 #P

U(pFF) = (é) .
k];[O (V") =5

Via tropicalization, this theorem reduces to the homomesy phenomenon of the an-
tichain cardinality statistic, which was proved in [16, Theorem 1.4]. In a forthcoming
paper [10], we use explicit formulas for iterations of the birational rowmotion map to
give refinements of Theorem 4. Our refinement in type A provides a birational lift of the
homomesy given in [13, Proof of Theorem 27].

The remaining of this paper is organized as follows. We collect some general facts
concerning birational rowmotion in Section 2, and give a definition and properties of
minuscule posets in Section 3. In Sections 4 to 6 we give a proof of our main theorems.
The periodicity in Theorem 2 (a) and Theorem 3 (a) is proved in Section 4, and the
reciprocity in Theorem 2 (b) is verified in Section 5. In Section 6, after investigating local
properties around a file, we complete the proof of file homomesy in Theorem 2 (¢) and
Theorem 3 (b).

2 Generalities on rowmotion

In this section, we explain how combinatorial and birational rowmotion are related and
give some general facts about birational rowmotion.
2.1 Combinatorial, piecewise-linear and birational rowmotion

We begin by recalling the definition of piecewise-linear toggles and rowmotion. Given a
finite poset P and real numbers a, b, we put

PPy = {f: P = R: f(1) = a, £(0) = b},

where P = P U {1,0}. We define the piecewise-linear toggles 1200 : P (P) — Pab(P)
at v € P by the formulas

(£ ) (v) = max{f(w) :w € P,w<v}+min{f(z):z€P, 2>v} — f(v),

g - R 12
(1) (0) = win{f(w) s w € P w0} +max{[(2) 2 € P20}~ fa),
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and (Ef“bf) (z) = f(x) for  # v. For an order ideal I € J(P), let x7 be the character-
istic functions defined by

4 0 ifUEIorvza, _ 1 ifvelorvza,
X7 (v) = . e X7 (v) = : A
1 ifveP\lorv=1, 0 ifveP\ITorv=1.

Then it follows from definitions (1) and (12) that the toggle £’ is a piecewise-linear lift
of the combinatorial toggle t, in the following sense:

G0 =X BO0G) = X (13)
The piecewise-linear rowmotion map R : Pub(P) — Pab(P) is defined by
E:I:,(z,b — E)I:l,a,b 0---0 Ezl:]\,fa,b’

where (vy,...,vy) is a linear extension of P.

A rational function F(Xy, -+, X,,) € Q(Xy,- -+, X,,) is called subtraction-free if F is
expressed as a ratio F' = G/H of two polynomials G(X, -+, X,,) and H(Xq, -+, X,,) €
Z| Xy, ..., X,] with nonnegative integer coefficients. By using

lim elog(e®® + e¥¢) = max{a, b}, limoslog(ea/8 + €¥¢) = min{a, b},
e——

e—40
we can see that, if F'(Xq, ..., X,,) is subtraction-free, then for any real numbers x1, ..., x,,
€ R the limits
fran, - m) = 61_i)r1r_L10e€logF(e“"“/e, e ,exm/g)
exist and fT(xy,...,2,) (vesp. f~(x1,...,2,)) is the piecewise-linear function in z1, .. .,

T, obtained from F' by replacing the multiplication -, the division / and the addition +
with the addition +, the subtraction — and the maximum max (resp. the minimum min).
This procedure from F' to f* is called the tropicalization (or ultradiscretization).

Proposition 5. Let P be a finite poset. Let R : J(P) — J(P) and p = p*? : KAB(P) —
KAB(P) be the combinatorial and birational rowmotion maps respectively. Let m : P x
Z — 7 be a map with finite support. If there is a integers p and q such that

[T [(F) @] =arpe (14)

(v,k)EPXZ

for any F € K4B(P), then

> mkxveRD=p, > mvk)xlveRI)=q, (15)

(v,k)EPXZ (v,k)ePXZ

where x[S] =1 if S is true and 0 if S is false.
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Proof. By applying the tropicalization procedure to (14), we obtain

Z m(v, k) <§i’“’bf> (v) = ap+ bq

(v,k)EPXZ
for any f € P**(P). Then specializing f = x7 and using (13), we obtain (15). O
Corollary 6. (a) If (p"F) (v) = F(v) for any F € K*5(P) andv € P, then R"(I) = I

any I € J(P).

(b) Let v and w € P and k be a positive integer. Suppose that (p"F) (v) - F(w) = AB
for any F € KAB(P). Then, for any I € J(P), we have v € R*¥(I) if and only if
wéel.

(¢) Let M be a subset of P and h be a positive integer. If [[}—} [Toear (p"F) (v) = APB?
for any F € K4B(P), then we have ZZ;& # (RM(I)N M) =q for any I € J(P).

Similar statements hold for birational Coxter-motion.

2.2 Birational rowmotion on graded posets

In this subsection we present some properties of birational rowmotion on graded posets.
A poset P is called graded of height n if there exists a rank function rk : P — {1,2,...,n}
satisfying the following three conditions:

(i) If v is minimal in P, then rk(v) = 1;
(ii) If v is maximal in P, then rk(v) = n;
(iii) If v covers w, then rk(v) = rk(w) + 1.

Lemma 7. If P is a graded poset of height n and the birational rowmotion map p™F has
finite order N, then N is divisible by n + 1.

Proof. By Corollary 6 (a), we have RN(I) = I for all I € J(P). On the other hand, it is
easy to see that the (R)-orbit of the empty order ideal () has length n 4+ 1. Hence we see
that n + 1 divides N. O

The following lemma gives a relation between p*® and p'!.

Lemma 8. Let P be a graded poset of height n. For a map F : P — Ryq and positive
real numbel“s A, B € Ry, we denote by FAB € KAB(P) the extension of F to P such
that FAB(1) = A and FAB(0) = B. For 1 <k <n+1 and v € P, we have

A if 1 <k <rk(v) —1,
AB if k =rk(v),

B ifrk(v) +1<k<n,
1 ifk=n+1.

((pA,B)k FA,B) (v) = ((pl,l)k F1,1> (v) x (16)

Proof. We can use the recursive formula (6) to proceed by double induction on & and
n —rk(v). O
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2.3 Change of variables

Let P be a finite poset. Given an initial state X € K4B(P), we regard X (v) (v € P) as
indeterminates. In the computation of (p*X) (v) (v € P) of iterations of the birational
rowmotion map p = p™P, it is convenient to change variables from {X(v) : v € P} to

{Z(v) : v € P} defined by the formula
X (v) if v is minimal,
Z(v) = X (v)
ZwGP,w<v X<w)

This change of variables is used in [9] to describe a lattice path formula for birational
rowmotion on a type A minuscule poset. Then the inverse change of variables is given by

X(v) =Y Z(w)Z(v)-- Z(v,), (18)
where the sum is taken over all saturated chains v; >--->wv, in P such that v; = v and v,

is minimal in P. Note that this change of variables is a birational lift of Stanley’s transfer
map between the order polytope and the chain polytope of a poset (see [17, Section 3]).

(17)

otherwise.

3 Minuscule posets

In this section we review a definition and properties of minuscule posets.

3.1 Definition and properties of minuscule posets

Let g be a finite dimensional simple Lie algebra over the complex number field C of type
X,, where X € {A, B,C, D, E, F,G} and n is the rank of g. We fix a Cartan subalgebra
h and choose a positive root system A, of the root system A C b*. Let II = {ay,...,a,}
be the set of simple roots, where we follow [2, Planche I-IX] for the numbering of simple
roots. We denote by w; the fundamental weight corresponding to the 7th simple root «;.
Let AY C b be the positive coroot system. Let TV be the Weyl group of g, which acts on
h and h*. The simple reflections {s, : a € I} generate WW.

For a dominant integral weight A\, we denote by Vx, » the irreducible g-module with
highest weight A and by Lx, \ the set of weights of Vx, 1. We say that a nonzero dominant
integral weight X\ is minuscule if L, ) is a single W-orbit. See [3, VIII, §7, n°3] for
properties of minuscule weights. It is known that minuscule weights are fundamental
weights. Table 1 is the list of minuscule weights.

Let A be a minuscule weight of a simple Lie algebra g of type X,,. We equip the set
of weights Lx, » with a poset structure by defining p > v if v — p is a linear combination
of simple roots with nonnegative integer coefficients. We note that A is the minimum
element of the poset Lx, .

Definition 9. Let g be a simple Lie algebra of type X,, and A a minuscule weight. Then
the minuscule poset Py, x is defined by

Px,a={B" € AT: (", \) =1}, (19)

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(1) (2021), #P1.17 8



Table 1: List of minuscule weights

type | minuscule weights | Coxeter number
A, w1, Wa, . . ., Wn n+1

B, Wy 2n

C, w1 2n

D, w1, Wn-1, Tn 2n — 2

E6 w1, We 12

E7 wr 18

Eq none 30

Fy none 12

Go none 6

where the partial ordering on Py, , is given by saying that a¥ > Y if ¥ — ¥ is a linear
combination of simple coroots with nonnegative integer coefficients.

Proposition 10. Let A be a minuscule weight and Px, \ be the corresponding minuscule
poset. Then we have

(a) ([12, Propositions 3.2 and 4.1]) The poset Lx, x is a distributive lattice.

(b) ([12, Theorem 11]) There exists a unique map c : Px, x — II, called the coloring of
Px, x, such that the map

\.7<PXn,)\) ST — A\— ZC(U) € LXn,)\
vel

gives an isomorphism of posets.

If X is a minuscule weight, then the stabilizer W) of A in W is the maximal parabolic
subgroup generated by {sg : § € Il \ {a}}, where « is the simple root corresponding to
the fundamental weight .

Proposition 11. Let Px,  be the minuscule poset corresponding to a minuscule weight
A, and wy the longest element of the stabilizer Wy. Then the map

L PXn,)\ > ﬁv — wABV € me)\
gives an involutive anti-automorphism of the poset Px, .

Proof. Tt is enough to show that Y >+ implies wy5" < wyy" for Y, 7Y € Px, . It
follows from (5Y,A) = (v¥,A) = 1 that ¥ — +" is a linear combination of IV \ {a"}
with nonnegative integer coefficients, where IIV is the set of simple coroots and «" is the
simple coroot dual to A. Since wy(ITV \ {a¥}) = —(I1V \ {a"}), we see that w)3Y — wyy”
is a linear combination of TV \ {«"} with nonpositive integer coefficients. O
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The following properties of minuscule posets can be checked easily (e.g., by using a
description given in the next subsection).

Proposition 12. Let P = Px, » be the minuscule poset corresponding to a minuscule
weight X\, and ¢ : P — II the coloring.

(a) The poset P is graded of height h — 1, where h is the Cozeter number of g.

(b) The poset P has a unique minimal element vy, and a unique mazimal element Vyay.
Moreover, if we put amin = ¢(Vmin) and Qmax = ¢(Umax), then the simple root iy
corresponds to the fundamental weight X and cupay = —WoQmin corresponds to —wgA,
where wy is the longest element of W.

(¢c) If v <w in P, then their colors c(v) and c(w) are adjacent in the Dynkin diagram
of g.

(d) For each o € 11, the subposet P* = {v € P : ¢(v) = a} is a chain.
(e) If v, w € P, then the difference rk(v) — rk(w) is even.

3.2 Description of minuscule posets

In this subsection we give explicit descriptions of minuscule posets and their colorings.
The minuscule posets can be embedded into the poset Z?, where (i,7) < (¢/,5) in Z? if
and only if i« <4 and j < j§'.

Type A,. The positive coroot system AY of type A,, can be described as AY = {e;—e¢; :
1<i<j<n+1} withe; +---+e,:1 =0. Then we have

PAn,wr:{ei—ej:1<i<T7 T+1<]<n+1}

and the map e; —e; — (r —i,j —r — 1) gives an isomorphism of posets from Py, -, to
the subposet

{(G,j))€Z*:0<i<r—1,0<j<n—r}CZ.
The poset Py, », is a product poset [0,7 — 1] x [0,n — r] of two chains, where [0, m] =
{0,1,...,m} is a chain. We call this poset Py, o, a rectangle poset. The involution ¢ is the
180° rotation of the Hasse diagram. For example, the Hasse diagrams and the colorings

of P4, o, and Py, o, are given in Figure 1, where we label a vertex v with ¢ to indicate
that c(v) = .

Type B,. If we realize the positive coroot system AY of type B, as AY = {e; £ ¢; :
1<i<j<npU{2,:1< i< n}, then we have

Pp, o, ={ei+te;: 1<i<j<n},

and the map e; + e; — (n — j,n — i) gives an poset isomorphism from Pp, -, to the
subposet
{(G,/)€eZ*:0<i<j<n—1} CZ%.
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Figure 1: Pa, , (left) and Py, o, (right)

We call Pp, , a shifted staircase poset. The involution ¢ is the horizontal flip of the Hasse
diagram. For example the Hasse diagram of Pp, -, and its coloring are given in Figure 2.

NN .
> 2R
v - o - @/ﬁ o

Figure 2: Pp, o, Figure 3: Pc, =, Figure 4: Pp, o, Figure 5: Pp, s

Type C,. If we realize the positive coroot system AY of type C,, as AY = {e; ¢; :
1<i<j<n}tU{e :1<i<n}, then we have

PC’n,wl = {61 —€2,...,€1 _€n761761+6n7"'7€1+62}~
The poset ¢, , is a chain, and isomorphic to the subposet
{(1,1),...,(L,n—1),(1,n),(2,n),...,(n,n)} C Z*

For example the Hasse diagram of P, -, and its coloring are given in Figure 3. Note that
Pc, =, is isomorphic to Pa,, , =, but they have different colorings.

Type D,,. We realize the positive coroot system AY of type D, as AY = {e;+e;: 1<
i<j<n}

For the minuscule weight @, we have

Pp,w ={e1—€2,...,e1 —€y_1,61 —€n,€1 +€p,€1+€p1,...,61 + €2},
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and it is isomorphic to the subposet
{(1,1),...,(L,n=1),(1,n),(2,n —1),(2,n),...,(n,n)} C Z*

See Figure 4 for the Hasse diagram of Pp, -, and its coloring. The poset Pp, o, is called
a double-tailed diamond poset. The involutive anti-automorphism ¢ is given by

leg+ep)=er—ex (I1<k<n—1), leg+ee,) =e +(—1)"ce,.
For the minuscule weights w,, and w, _1, we have
Pp,w, ={ei+e:1<i<j<n}

and Pp, o, , is obtained from Pp, -, by replacing e; + e, with ¢; —e, for 1 <i<n—1.
Both posets Pp, , and Pp, . , are isomorphic to {(i,7) € Z* : 0 < i < j < n— 2}
For example, the Hasse diagram and the coloring of Pp, .. are given in Figure 5. Note
that Pp, o, , = Pp, w,, and they are isomorphic to Pp but they have different
colorings.

n—1,Wn—-1"

Type Eg¢. The minuscule poset P, -, is isomorphic to the subposet

{(1, 1):(2,1),(3,1),(4,1),(5,1),(3,2), (4,2), (5,2),} c 72
(4,3),(5,3),(6,3), (4,4),(5,4),(6,4),(7,4),(8,4) ’

and the Hasse diagram and the coloring are given in Figure 6. The involution ¢ is the
180° rotation of the Hasse diagram. As posets, Pr, =, = Py we-

Type E. The minuscule poset P, o is isomorphic to the subposet

(1,1),(1,2),(1,3),(1,4),(1,5), (1,6),(2,4), (2,5), (2,6),
(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,5),(5,6), (5,7), p C Z2,
(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9), (9,9)

and the Hasse diagram and the coloring are given in Figure 7. The involution ¢ is the
horizontal flip of the Hasse diagram.

4 Periodicity

The goal of this section is to prove the periodicity of birational rowmotion and Coxeter-
motion (Theorem 2 (a) and Theorem 3 (a)).

4.1 Periodicity of birational rowmotion

For the birational rowmotion map on minuscule posets, periodicity has been established
in [6, 7] except for the type E; minuscule poset. Let P be a minuscule poset associated
to a Lie algebra g, and p*P : KAB(P) — KAP the birational rowmotion map. Since
periodicity depends only on the poset structure, we may assume that g is simply-laced.
And by Proposition 12 (a), Lemmas 7 and 8, it is enough to show that p = ph! satisfies
p" = 1, where h is the Coxeter number of g.
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e If P is a type A, minuscule poset, i.e., if P is a rectangle poset [0,r — 1] x [0,n —r],
then it was shown that the birational rowmotion map p has order n + 1 (Grinberg—
Roby [7, Theorem 30], see [9, Corollary 2.12] for another proof).

o If P = Pp, -, is a double-tailed diamond poset, then P is a skeletal poset of height
2n — 3, and it follows from [6, Propositions 61, 74 and 75] that p has order 2n — 2
(see [6, Section 10] for a definition of skeletal posets and details).

o If P = Pp, o, is a shifted staircase poset, then Grinberg-Roby [7, Theorem 58]
proved that p has order 2n.

o If P = Pp, -, is the minuscule poset of type Ej, then by using a computer we can
verify that p has order 12.

o Let P = Pp. . be the minuscule poset of type E;. Given an initial state X €
KCH(P), we regard {X(v) : v € P} as indeterminates and introduce new indeter-
minates {Z(v) : v € P} by (17). Also we use the realization of P as a subposet
of Z? given in Subsection 3.2. With the author’s laptop, it takes about 20 seconds
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for Maplel9 to compute all the values (p*X) (v) (0 < k < 18, v € P) as rational
functions in {Z(v) : v € P} and check that (p'®X) (v) = X (v) for all v € P. The
change of variables from {X(v) : v € P} to {Z(v) : v € P} makes computation
much faster. (It takes almost three hours without using the Z-coordinates.)

This completes the proof of Theorem 2 (a).

4.2 Periodicity of birational Coxeter-motion

In order to prove the periodicity of birational Coxeter-motion (Theorem 3 (a)), we work
with the birational toggle group and show that any birational Coxeter-motion maps are
conjugate to the birational rowmotion map in this group.

Let P be a finite poset and fix positive real numbers A and B. We define the birational
toggle group, denote by G(P), to be the subgroup generated by birational toggles 7, = 745
(v € P) in the group of all bijections on KAP(P).

A key tool here is the non-commutativity graph. Given elements ¢, ..., g, of a group
G, the non-commutativity graph T'(g1,...,g,) is defined as the graph with vertex set
{1,2,...,n}, in which two vertices ¢ and j are joined if and only if g;g; # g;g;- The
following lemma is useful.

Lemma 13. (/2, V, §6, n°1, Lemma 1]) Let gi,...,g, be elements of a group G. If
the non-commutativity graph I'(g1, ..., gn) has no cycle, then g,y ... gun) 5 conjugate to
g1---9n n G for any permutation v of 1,2,... n.

First we prove that all birational Coxeter-motion maps are conjugate.

Proposition 14. Let P be a minuscule poset. Then all birational Cozeter-motion maps
are conjugate to each other in the birational toggle group G(P).

Proof. Note that birational toggles 7, and 7, are commutative unless v < w ore v > w.
It follows from Proposition 12 (c) that, if simple roots o and 8 are not adjacent in the
Dynkin diagram of g, then the corresponding elements o, and o3 commute with each
other in G(P). Hence the non-commutativity graph I'(o,,, . . ., 04, ), where aq, ..., a, are
the simple roots, is a subgraph (of the underlying simple graph) of the Dynkin diagram.
Since the Dynkin diagram of g has no cycle, we can use Lemma 13 to conclude that any
two Coxeter-motion maps are conjugate in G(P). O

The periodicity of birational Coxeter-motion maps (Theorem 3 (a)) immediately fol-
lows from the following thoerem and the periodicity of the birational rowmotion map
(Theorem 2 (a)).

Theorem 15. Let P be a minuscule poset. Then any birational Coxeter-motion map is
conjugate to the birational rowmotion map p = p™B in the birational toggle group G(P).
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This theorem is a birational lift of [15, Theorem 1.3]. In order to prove this theorem,
we use the notion of re-poset, which was introduced by Striker-Williams [18, Section 4.2].
We put A = {(i,j) € Z* : i+ jiseven}. A poset P is called a rowed-and-columned
poset (re-poset for short) if there is a map 7 : P — A such that, if v covers u in P and
w(v) = (4,7), then 7(u) = (i + 1,7 — 1) or (¢ — 1,5 — 1). Minuscule posets P = Px, »
are rc-posets with respect to the composition map 7 : P — A of the embedding P «— Z?
given in Subsection 3.2 and the map Z? 5 (i,7) + (j —4,7+1) € A. A row (resp. column)
of an RC-poset P is a subset M of P of the form

M = {v € P : the second coordinate of 7(v) equals 7},
(resp. M = {v € P : the first coordinate of 7(v) equals c})

for some r (resp. ¢). If M is a subset of a row or a column of P, then the composition of
toggles 7, (v € M) is independent of the order of composition, so we denote by 7[M] the
resulting element of the toggle group G(P). If Ry, ..., R, are the non-empty rows of an
rc-poset P from bottom to top, then the rowmotion map p = p* is given by

p=T[Ri]oT[Ry]0o- - 0oT[R,]
The following Lemma is proved by exactly the same argument as in [18].

Lemma 16. ([18, Theorem 5.2]) Let P be an rc-poset. Let Ry, ..., R, be the non-empty
rows of P from bottom to top, and C1,...,C,, the non-empty columns of P from left to
right. Then the rowmotion map p is conjugate to T[Cyy] o - o T[Cyimy] in G(P) for any
permutation v of 1,2,...,m.

We prove Theorem 15 by using this lemma.

Proof of Theorem 15. Let 11 = {ay,...,a,} be the set of simple roots, where we follow
the numbering in [2], and C4,...,C,, the non-empty columns of P (see Figures 1-7).
Then, by Lemmas 13 and 16, it is enough to prove that v = o,, - - - 04, is conjugate to
T[Ch] - - - 7[Cp]. We prove this claim by a case-by-case argument.

n

o If P= Py, o, then o,, = 7[C;] for 1 <i < nandy=r7[C4] - 7[Cy].

o If P=Pg, o, theno,, = 7[Cpi1-] for 1 <i < n, and 7 is conjugate to o, - - 04, =
T[Ch] - - - 7[Cp] by Lemma 13.

o If P=P¢, ,, then 0,, = 7[C;] for 1 <i < nand v =7[Cy]---7[C,].

o If P = Pp, o, then 7[C}] = o, for i # n — 3 and 7[Cy_s] = 0a, ,0a,. Hence
7[C1] - T[Chit] = Cay Oy 400y 500, 0a,_20a,_, 1S conjugate to v by Lemma 13.

o If P=Pp, ,, then 7[C}] = 04, ,04, and 7[C;] = 04, , for 2 < i < n — 1. Hence
T[Ch] - T[Chzi] = Oa, 100,00, 5 -+ - Oa, is conjugate to v by Lemma 13.
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Figure 9: Non-commutativity graph for Pg, .

o If P = Pp, ,, then we have

Cy =P, Cy=P*U(CynP?), Cy=P™,
Cy=P* U (CynP*), Cs= P,

If we put

g1 =T[P"], g2=7[P™] g3=71[P*"], gs=7[P*], g5=7[P"],
g6 = T[Co N P*], g7 = 7[C5 N P™,

then Figure 8 shows the non-commutativity graph I'(gy, ..., g7). Hence by applying
Lemma 13, we see that

T[Ch] - - - T[C5] = [P T[P?]7T[Cy N P2 7| P )T [PY]T[C5 N P*?|T[P*°]
is conjugate to
v = T[PYT[Cy N P2|T[C5 N P27 [P |7 P|T[P]T[P*].
o If P = Pp, ., then we have

01:Pa7, CQZPQG, ng(C’gﬂPaQ)l_lP%,
C4IPa4, C5:(C5HPO‘2)I_IP°‘3, CGIPOQ,

and P*? = (C5N P*) U (Cs N P*?). If we put

G = T[PCW], g2 = T[Paﬁ], g3 = T[Pas]’
g4 = T[Pa4]> g5 = T[Pa3]7 96 = T[PalL
gr = T[C3N P*],  gg = 7[Cs N P

then Figure 9 shows the non-commutativity graph I'(gy, ..., gs). Hence by applying
Lemma 13, we see that

T[Ch] - - - T[Cs] = T[ P T[PY]7T[C3 N P2 7| P |1 [P]7[C5 N P*?|7[P*]1[P"]
is conjugate to
v = T[P*7[C5 N P 7[C5 N P2 7[P*|1[P*|T [P |T[P*|T[P"7].
This completes the proof of Theorem 15, and hence of Theorem 3 (a). O
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5 Reciprocity

In this section we prove the reciprocity for birational rowmotion (Theorem 2 (b)) and
propose a conjectural reciprocity for a particular birational Coxeter-motion map.

The proof of the reciprocity for birational rowmotion is based on a case-by-case analy-
sis. Let P be a minuscule poset associated to a simple Lie algebra g and p* the birational
rowmotion map. Since the claim of Theorem 2 (b) depends only on the poset structure
of P, we may assume that g is simply-laced. By Lemma 8, it is enough to consider the
case where A = B = 1. For a type A minuscule poset, the reciprocity was proved by
Grinberg—Roby [7, Theorem 32] and Musiker—Roby [9, Corollary 2.13]. Also, with a help
of computer, we can verify the reciprocity for the minuscule posets of types Fg and E7; by
checking (p™*)X) (w) = 1/X (ww) as rational functions in the variables {Z(v) : v € P}
given by (17). The remaining minuscule posets are the shifted staircase posets Pp, =,
and the double-tailed diamond posets Pp,, =, .

5.1 Shifted staircase posets

Let P = {(i,j) € Z*> : 0 < i < j < r} be a shifted staircase poset, and p = ph! :
KH(P) — KM (P) the birational rowmotion map on P. We derive the reciprocity for
P from that for the rectangle poset P = {(i,j) € Z2 : 0 < i,j < r}. We denote by
p: KY(P) — K“(P) the birational rowmotion map on P with A = B = 1. The
following lemma is a consequence of [7, Lemma 59 (c)] and Lemma 8 (with A =1/2 and
B =2).

Lemma 17. For F € K"(P), we define F € K“(P) by
~. . F(i,5) i<y,
F(i,j) = p.).. .
F(j,1) ifi>j.
Then we have

12 ifl1<k<i+,

1 ifk=i+j+1,
ifi+j+2<k<2r+1,

1 if k= 2r+2

(¢ F) (i) = (7°F) (i.5) »

for 1 <k <2r+2and(i,j) € P.

By using this lemma and the reciprocity for the rectangle poset ﬁ, we have

i+j+1 ) = (LR (6 6) = 1 = !
(o71F) (i) = (7 @“”_ﬁv—w—ﬁ_Fv<w—w

This is the desired identity for a shifted staircase poset.
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5.2 Double-tailed diamond posets

In this subsection, we prove the reciprocity for double-tailed diamond posets. Let P =
Pp, =, be the minuscule poset associated to the minuscule weight A = w; of the Lie
algebra of type D,,. We label elements of P by

+

Ui:€1+ei+1 (1<2<n—2),
V,_1 = €1+ €y, U,

Vi = €1 — €ap—1—i (TL < 1 < 2n — 3)

Note that v, is the maximum element and vg,,_3 is the minimum element.
Fix an initial state X € KY'(P). We regard X(v) (v € P) as indeterminates and
define Z € KV1(P) by (17). We write

r=Xw) 1<i<2n-3,i#n—-1), =z
Zi:Z(Ui) (1 z

Then we have

ifir#n—1,2n—3,
Tit1 ) xﬂ: .
n— . . 4+ n—
A e le:n—L Rp—1 = .
Tp_1 + Tp_q Tn
Ton—3 if i =2n — 3,

For positive integers ¢ and [ satisfying 1 <7< 2n—3and i +[—1 < 2n — 3, we define
monomials C(i;1) and C*(i;1) as follows:

(i) f1<i<n—2andi+1!—1<n—2, then we put
C(i; l) = ZiZi41 " Ril—1-
(i) f1<i<n—landn—1<i+[]—1<2n— 3, then we put
CE(i51) = 2241+ Zn—2Z 120+ Zigl—1.
(iii) If n+2 < i < 2n — 3, then we put
C(i; l) = ZiZi41 " Ril-1-
Then the original indeterminates X (v) can be expressed in terms of Z(v) as follows:

Lemma 18. The values X (v) (v € P) are expressed in terms of C(i;1) and C*(i;1) as
follows:

X(v)=CH(;2n—i—2)4+C (i;2n—i—2) if1 <i<n-—2,
X)) =C*n—1;n—-1) ifi=n—1,
X(v) =C(i;2n — i — 2) ifn<i<2n-3.
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Recall that P is a graded poset with rank function rk given by rk(v;) = 2n —i — 2
(1<i<2n—3,i#n—1)and k(v ;) =n—1. Then it is straightforward to prove the
following explicit formulas by using induction on k& and i. (We omit the proof.)

Proposition 19. Let v € P and k a positive integer. If 1 < k < rk(v), then the value
(P*X) (v) of iterations of birational rowmotion is expressed in terms of C(i;1) and C*(i;1)
as follows:

(a) If v=v; with 1 <i<n—2, we have

(ka)(vi): — + ifn—i<k<n-—1,

(b) If v=10vE,, we have

1
CE(*I)k_l (]{7 n — 1) ’

(PkX> (Urjzil) =

(¢) If v=v; withn <i<2n—3, we have

1
X)) = e my

Since the involution ¢ : P — P is given by

e(=1)"
n—1 >

L(v)) =vap—io (I1<i<2n—-3,i#n—-1), lv,_;)=v

n—1
we obtain the desired reciprocity by comparing formulas in Lemma 18 and Proposition 19.
This completes the proof of Theorem 2 (b) for all minuscule posets.
5.3 Reciprocity for birational Coxeter-motion

We have the following conjectural reciprocity for a particular birational Coxeter-motion
map.

Conjecture 20. Let P be a minuscule poset. We decompose the simple root system II
into a disjoint union of two subsets II; and II; such that any roots in A; are pairwise
orthogonal for each i. We define 7, and v by

"= H O—Q’Ba Y2 = H 0;347B7
B

a€ll; ells
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and put
0 =My,
—_———
h factors

where h is the Coxeter number. Then we conjecture that

GF)0) = 5 (20)

for any F' € KAB(P) and v € P.

The periodicity of birational Coxeter-motion maps is a consequence of this conjecture.
In fact, v = 717 is a Coxeter-motion map and

ho )07 if h is even,
T (51,252’1 if n is Odd,

where 015 = Y172717271 - - -1 and d21 = V2117271 - - V2. If b is even, then we have

AB AB

h = (6? V) = = = V).

If h is odd, we can derive (y"F) (v) = F(v) from (20) in a similar manner.

6 File homomesy

This section is devoted to the proof of the file homomesy phenomenon (Theorem 2 (c)
and Theorem 3 (b)).

6.1 Local properties

First we investigate local properties of birational rowmotion and Coxeter-motion around
a given file.

Let P be a minuscule poset with coloring ¢ : P — II. We regard the Hasse diagram of
the poset P = P U {T, 6} as a directed graph, where a directed edge u — v corresponds
to the covering relation v < v. For o € 11, let N be the neighborhood of P* = {x € P :
c(x) = a} given by

N = {z € P : there is an element y € P such that z <y or x > y}.

We define G* to be the bipartite directed subgraph of the Hasse diagram of P with black
vertex set P® and white vertex set N®. It follows from Proposition 12 (c¢) that
{/1\7 6} if a = Omax = min,

]/\\fa _ |_| Pﬁ L } it a = Omax 3& Omin,
B 0} if a = Omin 7é Qmax;

otherwise,
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where  runs over all simple roots adjacent to « in the Dynkin diagram, and ayay (resp.
Qimin) 18 the color of the maximum (resp. minimum) element of P.

To describe the graph structure of G, we introduce two sequences of posets G,,
and H,,. For a positive integer m, let G,, be the poset consisting of 3m elements
Tl s Ty YLy s Yme1s 21, Zm—1, U, ¥ With covering relations

ULy, T3<Y<Tiy1, T@<Z<Tiy1, Ty <.

Note that G is the three-element chain. And, for an integer m > 2, let H,, be the
(2m + 1)-element chain

UL <Y <L <Y <" << Y1 < Ty < V.

We regard the Hasse diagrams of G, and H,, as bipartite directed graphs with black
vertices x1, ..., T,,. For example, the Hasse diagrams of G4 and Hy are shown in Figures 10
and 11 respectively.

v v

Ty Ty
Ys z3 Ys

T3 T3
Y2 Z9 Yo

T2 T2
hn 21 n

T x

U U

Figure 10: G4 Figure 11: Hy

Lemma 21. Fach bipartite directed graph G is decomposed into a disjoint union of
graphs of the form G,, or H,, as follows:

o I[f P= Py, ., then

G* < G, ifr <i<s,
Gnoiv1 if s <<,

wherer +s=n+1 and r < s.

o I[f P=Pp, ,, then

quie )G f1<i<n—1,
| H ifi=n.
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o I[f P=Pc, o, then
GiuUuG, if1<i<n—2,

G* = ( H, ifi=n—1,
o I[f P=Pp, o, then
GiuUuG, if1<i<n—3,
G = { Gy ifit=mn—2,
G1 zfz:n—l,n
o If P=Pp, =, then
G, ifl<i<n—2,

o= (Gl)ul(nfl)/zJ ifi=n—1,
(G ifi=a,

where GY™ is the disjoint union of m copies of G, and |x]| stands for the largest
integer not exceeding x.

o If P = Py, then

(GiUG, ifi=1,2,6,
G={G UG, ifi=3,5,
|Gy ifi = 4.
o If P= Py, ., then
(G, UG, ifi=1,
GiUGIUG ifi=2,
Gy UGy ifi=3,
G = { G if i = 4,
GiUGsUG, ifi=5,
GiUG, UGy ifi=6,
\GluGluGl ifi="1.

The following relations are a key to the proof of the file homomesy phenomenon.
Lemma 22. Let p = p™® be the birational rowmotion map and o a simple root.

(a) If the graph G, = {T1,. ., Ty Y15, Ym—1, 215 -+ » Zm—1,U, V} APPEGTS AS G COM-
nected component of G, then we have

L1 ) ) - H(pF) ;) = H P'F)(y:) H p'F)(z) - (p"F)(v), (21)

where we use the same symbol to denote the corresponding vertices of G¢.
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(b) If the graph Hy,, = {x1, ..., Tony Y1y - - - s Ym—1, U, V} appears as a connected component
of G, then we have

m m m—1
1 F)e) - T F W [[ER@?- P, (22
i=1 =1 =1

where we use the same symbol to denote the corresponding vertices of G*.
Proof. (a) It follows from (6) that

F(zp) - (pF)(@m) = (pF)(v) - (F(Ym-1) + F(2m-1)),
(PF)(yi) - (pF)(z) - (F(yiz1) + F(2i21))
Fle) - (pF)e) = (PP () + (PF) (=)
_ F(u) - (pF) (1) - (pF)(21)
) R = =0 a0 + P )
By replacing F' with p™ !F (resp. p'~'F) in the first (resp. second) equation, and then

by multiplying the resulting equations together, we obtain (21).
(b) can be checked by a similar computation. O

2<i<m-—1),

Lemma 23. Let o be a simple root and and 0, = [[,cpo 4B the product of birational
toggles over P®.

(a) If G, appears as a connected component of G, then we have

m m m—1 m—1
[ F@) - T[eaf) @) = Flu)- T] Fly) - ] F(z)- Flo). (23)
i=1 i=1 i=1 i=1
(b) If H,, appears as a connected component of G*, then we have
m m m—1
[[F@) - ][eaF) @) = F(u)- [ Fu)? - F). (24)
i=1 i=1 i=1

Fy:) - F(2i) - (F(yi1) + F(zi-1))
Fy:) + F(z)
F

F(a1) - (00F) (1) = (?@1) + F(=1)

F(a) - (0aF)(2:) =

Multiplying them together, we obtain (23).
(b) can be checked by a similar computation. O
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6.2 File homomesy for birational rowmotion

In this subsection, we prove the file homomesy phenomenon for birational rowmotion
(Theorem 2 (c)).

The following properties of Coxeter elements will be useful in the proof of Theorem 2
(c) and Theorem 3(b); the proof of the latter will be given in the next subsection. A
Cozeter element in a Weyl group W = (s, : a € II) is a product of all simple reflections
S in any order. Then it is known that all Coxeter elements are conjugate. By definition,
the Coxeter number is the order of any Coxeter element.

Lemma 24. Let ¢ be a Cozeter element and h the Cozeter number. Then we have
(a) If p € b* satisfies cpup = p, then p = 0.

(b) As a linear transformation on b*, we have

>

-1
=0 (25)
0

B
Il

(c) Let o € I be a simple root and w the corresponding fundamental weight. If ¢ =
Say -+ Sa, 15 a Coxeter element with II = {aq,...,an} and B = Sa, -+ Sayp_, Qs
where o = ay,, then we have

cw=w — B, (26)
h—1 k-1
(B) = hw. (27)
k=1 =0

Proof. (a) See [2, V, §6, n°2].

(b) follows from c" = 1 and (a).

(c) Since syw = w — (Y, w)y = w — doye for v € II, we have cw = w —
Say *** Say_, 0 = @ — 5. Hence we see that

k-1
dfo=w-— Z ép.
=0
By using (25), we obtain
h—1 h—1 k—1
T S Y
k=0 k=1 i=0
from which (27) follows. O
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In order to prove Theorem 2 (c), we consider

P (F) = H (p(rk(v)frk(vé’))ﬂp) (v), (28)

vePe

instead of ®,(F) = [[,cpo F'(v). Here vg is the minimum element of P*. Note that P*
is a chain and rk(v) — rk(vg) is an even integer (see Proposition 12 (d) and (e)). Since p
has finite order h, we have

h—1 h—1
[1®a(o"F) =[] @u("F). (29)
k=0 k=0

Remark 25. Tt is worth mentioning that @/ (p*X) are Laurent monomials in the variables
Z(v) defined by (17). In a forthcoming paper [10], we will give explicit formulas for
P’ (p*X) in classical types.

Remark 26. For a type A minuscule poset P = [0,7] x [0,n — 7], we can express ®/ (F)
in terms of Einstein-Propp’s recombination map R : K45 (P) — K45 (P) defined by

(RF) (i,5) = (P F) (i, ).
(See [4, Section 6].) For a simple root ay = e — €41, we have

D, (RF) if 1
@/ F — k
o F) {Cbak (Rp"*F) ifr

Proposition 27. For a € Il and F € K*P(P), we have
@Ia(F) . @;(IOF) prmng A6a,amax Baavamin H @/Ig(pmayﬁF)i<a »ﬁ>’ (30)
Bra
where B runs over all simple roots adjacent to « in the Dynkin diagram and

1 z'fvﬂ>va,
maﬁ:{ /Y 0

0 if v <.

Proof. We explain the proof in the case where g is of type E;, A = w; and o = 5. (The
other cases can be proved in a similar way.) We label elements of P* as v{,v{,vs,...
from bottom to top. By definition (28), we have

®,,,(F) = F(v*) - (pF)(v1*) - (p"F)(v5*) - (0°F)(v5*) - (,04F)( i) (P F)(vs?),
. (F) = F(05°) - (0 F)(v1°) - (p°F)(v57) - (0" F)(v5°) - (0°F)(v3®),
@, (F) = F(vg®) - (0" F)(v7°) - (0" F)(v5°) - (" F)(v5°).

«a
Us
ag
Us
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The subgraph G5 has three connected components

{UO vUO ’Uoﬁ}NGQv
{Ul 7U2 7U3 7U4 JUI 7U2 ?US 7U1 7U26} G37

{ug*, vi®, 05t = G
By applying (21) to each of the three connected components of G, we obtain

) - (PF)(v5?) = F(vg®) - (pF)(vg*),

) (PF)(v5°) - (p*F)(v5°) - (pF)(v1°) - (p*F)(v57) - (0" F) (v5?)

= F(u") - (pF)(07°) - (pF)(v5*) - (0 F)(v5°) - (0°F)(vs*) - (p°F)(vg")
Fuy?) - (pF)(vy?) = F(vs*) - (pF)(v5°).

By replacing F' with p?F (resp. p®F) in the second (resp. third) equation, and then by
multiplying the three resulting equations together, we have

F(vg®
as
1

F(

@

Since v® < vy® < vy* (see Figure 7), we obtain (30) in this case. O

Corollary 28. For a simple root 5 € 11, we put

h—1
F) =] ®s("F).
k=0

Then we have for fixed o € 11,

[T @s(F)@ = Athooms B (31)
Bell
for any F € K4B(P).
Proof. Since p has finite order h, Equation (29) implies (55(F) = Z;é Py (pM™F) for
any integer m. Hence (31) follows from (30). O

Now we are ready to prove Theorem 2 (c).

Proof of Theorem 2 (c). We define an element ji(F) € b* for F € K4Z(P) by putting
= Z log ©u(F) -
Note that, if " is the fundamental coweight corresponding to «, then we have
log &a(F) = (=", i(F)).
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Since Wyax = —WoA (resp. wmin = A) is the fundamental weight corresponding to the color
Omax (T€SP. Qpin) of the maximum (resp. minimum) element of P (see Proposition 12 (b)),
it it enough to show
i(F) = ha - @Wyax + hb - @inin, (32)
where a =log A, b = log B.
Since we have B
> (0¥, B)log ©4(F) = hale g, + hbla,aumas
Bell

by Corollary 28, we see that for any a € I1

safi(F) =Y log ®3(F) - (B — (", B)a)

Bell
= Zlog Ds(F)3 — <Z<av,ﬂ> log &DB(F)> a
Bell Bell

= 1(F) — (da.ama P00 + 00 a,,, 1D) .

Let ¢ = 54, -+ - Sa, be a Coxeter element and put
Bmax = Say *** Sap_1 ¥, Pmin = Say *** Sap_ ¥,

where ap = max, O = amin. Then we have

ci(F) = fu(F) = (ha - Brmax + hb - Buin) -
By substituting Smax = @Wmax — C@Wmax and Bmin = Wmin — CWmin (see (26)), we have

c(p(F) — ha - wpnax — hb - Wmax) = @(F) — ha - @Wpax — hb - Wax-
Then it follows from Lemma 24 (a) that
(F) — ha - @yax — hb + Wpax = 0.

This completes the proof of (32) and hence of Theorem 2 (c). O

6.3 File homomesy for birational Coxeter-motion

In this subsection we prove Theorem 3 (b). The following proposition is a consequence of
Lemma 21 and Equations (23), (24).

Proposition 29. Let 0 =[], pa 7o : K4B(P) — K4E(P) be the product of toggles over
P, Then

(a) For a simple root o, we have

Do (F) - Do (0o F) = Advemes Blocmin [T dp(F)~"7),
Bra
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(b) For simple roots a # [3, we have ®g(o,F) = @g(F).

By using this proposition, we can complete the proof of the file homomesy phenomenon
for birational Coxeter-motion.

Proof of Theorem 3 (b). We define an element u(F) € b* for F € K45(P) by putting
w(F) = 3 log @5(F) - B
Bell

First we prove
(00 ) = Saft(F) + (Oa,amax@ + Oav,min0) @ (33)
where a = log A and b = log B. By using Proposition 29, we have

WoaF) = log®s(0,F)f + log a(0oF)a

B#a
= Z log ®5(F)B + <5a,amaxa + Oaspin 0 — Z(av, B) log ®5(F) — log (IDQ(F)> o
B#a B
= Z log @5(F) (8 — (", B)a) —1og Po(F) 4+ (Oaama® + Oa,op0)
BFa
= 10g D4(F)sa(3) + 108 ©o(F)$a(a) + (Jaamut + o, b) @
Ba

= Sa(M(F)) + (5a,amaxa + 5a,aminb) o

Suppose that v = 04, -+ - 04, and let ¢ = s,, - -S4, be the corresponding Coxeter
element. Then, by iteratively using (33), we obtain

M(’YF) = C(M(F)) +a- Bmax +b- Bmin7

where Bpax and B, are defined by Buax = Say = Sap_1 Q%> Bmin = Say ** * Say,_1 Om With
Q= Qmax and a,, = amg,. Hence by induction on k& we see that

k—1 k-1
pFF) = F(p(F) +ad ¢ (Buas) +b Y ¢ (Bunin)-
i=0 i=0
Therefore we have
h—1 h—1 h—1 k—1 h—1 k—1
> uFF) =) Fu(F) +a ' (Bax) + b ¢ (Brmin)-
k=0 k=0 k=1 i=0 k=1 i=0

Now it follows from (25) and (27) that

T
L

w(Y*F) = ah - @yax + bh - i
0

£
Il
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By the definition of u(F), we have

h—1
Z log ( @5(7’“F)) - B =ah - Wyax + bh - Wiin.-
pell k=0
Then we can complete the proof by taking the pairing (", ). O
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