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Abstract

Birational rowmotion is a discrete dynamical system on the set of all positive
real-valued functions on a finite poset, which is a birational lift of combinatorial
rowmotion on order ideals. It is known that combinatorial rowmotion for a minus-
cule poset has order equal to the Coxeter number, and exhibits the file homomesy
phenomenon for refined order ideal cardinality statistics. In this paper we generalize
these results to the birational setting. Moreover, as a generalization of birational
promotion on a product of two chains, we introduce birational Coxeter-motion on
minuscule posets, and prove that it enjoys periodicity and file homomesy.

Mathematics Subject Classifications: 05E18, 06A11

1 Introduction

Rowmotion (at the combinatorial level) is a bijection R on the set J (P ) of order ideals
of a finite poset P , which assigns to I ∈ J (P ) the order ideal R(I) generated by the
minimal elements of the complement P \ I. The map R can be also described in terms of
toggles. For each v ∈ P , let tv : J (P )→ J (P ) be the map given by

tv(I) =


I ∪ {v} if v 6∈ I and I ∪ {v} ∈ J (P ),

I \ {v} if v ∈ I and I \ {v} ∈ J (P ),

I otherwise,

(1)

and call it the toggle at v. Then the rowmotion map R is expressed as the composition

R = tv1 ◦ tv2 ◦ · · · ◦ tvN , (2)
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where (v1, v2, . . . , vN) is any linear extension of P , i.e., a list of all the elements of P
such that vi < vj in P implies i < j. This rowmotion has been studied from several
perspectives and under various names. See [18] and [19] for the history and references.

Rowmotion exhibits nice properties such as periodicity and homomesy on special
posets including root posets (see [11, 1]) and minuscule posets (see [15, 16]). In gen-
eral, given a set S and a bijection f : S → S, we say that a statistic θ : S → R is
homomesic with respect to f if there exists a constant C such that for any 〈f〉-orbit T

1

#T

∑
x∈T

θ(x) = C.

We refer the reader to [14] for the homomesy phenomenon. For a minuscule poset P and
a simple root α ∈ Π, we put

Pα = {v ∈ P : c(v) = α}, (3)

where c : P → Π is the coloring of P with color set Π, the set of simple roots. This subset
Pα is called the file corresponding to α. (See Section 3 for the definition of minuscule
posets and related terminology.)

If P is a minuscule poset, then the associated rowmotion map R has the following
properties:

Theorem 1. Let P be a minuscule poset associated to a minuscule weight λ of a simple
Lie algebra g. Then we have

(a) (periodicity, Rush–Shi [15, Thoerem 1.4]) The rowmotion map R has finite order
equal to the Coxeter number h of g.

(b) (file homomesy, Rush–Wang [16, Theorem 1.2]) For each simple root α ∈ Π, the
refined order ideal cardinality #(I ∩ Pα) is homomesic with respect to R. More
precisely, for any I ∈ J (P ), we have

1

h

h−1∑
k=0

#
(
Rk(I) ∩ Pα

)
= 〈$∨, λ〉,

where $∨ is the fundamental coweight corresponding to α.

One motivation of this paper is to lift the results in the above theorem to the birational
level.

Einstein–Propp [4] introduced birational rowmotion by lifting the notion of toggles
from the combinatorial level to the piecewise-linear level, and then to the birational level.
Given a finite poset P , let P̂ = P t {1̂, 0̂} be the poset obtained from P by adjoining an
extra maximum element 1̂ and an extra minimum element 0̂. For positive real numbers
A and B, we put

KA,B(P ) = {F : P̂ → R>0 | F (1̂) = A, F (0̂) = B},
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where R>0 denotes the set of positive real numbers. For v ∈ P , we define the birational
toggle τA,Bv : KA,B(P )→ KA,B(P ) at v by

(
τA,Bv F

)
(x) =


1

F (v)
·
∑

w∈P̂ , wlv F (w)∑
z∈P̂ , zmv 1/F (z)

if x = v,

F (x) otherwise,

(4)

where the symbol xm y means that x covers y, i.e., x > y and there is no element z such
that x > z > y. It is clear that τA,Bv is an involution. (See Equation (12) for a definition of
piecewise-linear toggles.) Then we define birational rowmotion ρA,B : KA,B(P )→ KA,B(P )
by

ρA,B = τA,Bv1
◦ · · · ◦ τA,BvN

, (5)

where (v1, . . . , vN) is a linear extension of P . It can be shown that the definition of ρA,B

is independent of the choice of linear extension. Since rowmotion is defined by toggling
from top to bottom, we have a recursive formula for the values of the birational rowmotion
map: (

ρA,BF
)

(v) =
1

F (v)
·

∑
w∈P̂ , wlv F (w)∑

z∈P̂ , zmv 1/ (ρA,BF ) (z)
. (6)

We omit the superscript A,B and simply write K(P ), τv and ρ when there is no confusion.
For birational rowmotion on a product of two chains, periodicity and (multiplicative)

file homomesy are obtained by Grinberg–Roby [7] and Einstein–Propp [4], Musiker–Roby
[9] respectively. In this paper we generalize their results from products of two chains (type
A minuscule posets) to arbitrary minuscule posets.

For a minuscule poset and a simple root α ∈ Π, we define

Φα(F ) =
∏
v∈Pα

F (v) (7)

for F ∈ KA,B(P ). Our main results for birational rowmotion are summarized as follows:

Theorem 2. Let P be the minuscule poset associated to a minuscule weight λ of a finite
dimensional simple Lie algebra g. Let ρ = ρA,B be the birational rowmotion map. Then
we have

(a) (periodicity) The map ρ has finite order equal to the Coxeter number h of g.

(b) (reciprocity) For any v ∈ P and F ∈ KA,B(P ), we have

(
ρrk(v)F

)
(v) =

AB

F (ιv)
, (8)

where rk : P → {1, 2, . . . , h − 1} is the rank function of the graded poset P and
ι : P → P is the canonical involutive anti-automorphism of P (see Proposition 11).
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(c) (file homomesy) For a simple root α, we have

h−1∏
k=0

Φα(ρkF ) = Ah〈$
∨,−w0λ〉Bh〈$∨,λ〉 (9)

for any F ∈ KA,B(P ), where w0 is the longest element of the Weyl group W of g,
and $∨ is the fundamental coweight corresponding to α.

Part (a) of this theorem is established in [6, 7] except for the type E7 minuscule poset.
In this paper we provide a way to settle the E7 case by using a computer. For a type
A minuscule poset, Part (b) is obtained in [7, Theorem 32]. Our proof of Part (b) is
based on a case-by-case analysis (with a help of computer in types E6 and E7). Part
(c) in type A follows from Einstein–Propp [4, Theorems 5.3 and 6.6] and Musiker–Roby
[9, Theorem 2.16]. We will give an almost uniform proof to Part (c). Also we can use
tropicalization (or ultradiscretization) to deduce the results for piecewise-linear rowmotion
as well as combinatorial rowmotion in Theorem 1 (see Section 2).

Another aim of this paper is to introduce and study birational Coxeter-motion on
minuscule posets, which is regarded as a generalization of birational promotion on a
product of two chains (see [4, Definition 4.3]). For a simple root α ∈ Π, we define
σA,Bα : KA,B(P )→ KA,B(P ) as the composition

σA,Bα =
∏
v∈Pα

τA,Bv , (10)

which is independent of the order of composition. Then a Coxeter-motion map is a
product of all the σA,Bα ’s in any order. Our results for birational Coxeter-motion are
stated as follows:

Theorem 3. Let P be a minuscule poset. Let γ = γA,B be a birational Coxeter-motion
map. Then we have

(a) (periodicity) The map γ has finite order equal to the Coxeter number h.

(b) (file homomesy) For each simple root α ∈ Π, we have

h−1∏
k=0

Φα(γkF ) = Ah〈$
∨,−w0λ〉Bh〈$∨,λ〉. (11)

If P is a type A minuscule poset and π is the birational promotion map (a special case
of birational Coxeter-motion maps), then there is an explicitly defined “recombination
map” R such that Rρ = πR (see [4, Theorem 6.2]), which, together with Theorem 2 (a),
implies Part (a) of the above theorem. We prove Part (a) for arbitrary minuscule posets by
showing that any birational Coxeter-motion map is conjugate to the birational rowmotion
map in the birational toggle group (Theorem 15 below). By applying tropicalization to
Part (a), we obtain the periodicity of piecewise-linear Coxeter-motion, which is proved
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in [5, Theorem 1.12] via quiver representation. Part (b) in type A is obtained in [4,
Theorem 5.3].

Hopkins [8] obtains another example of homomesy for the birational rowmotion for a
wider class of posets including minuscule posets.

Theorem 4. (Hopkins [8, Theorem 4.43]) Let P be a minuscule poset and ρ = ρA,B the
birational rowmotion map. For F ∈ KA,B(P ), we define

Ψ(F ) =
∏
x∈P

F (x)∑
y∈P̂ ,ylx F (y)

.

Then we have
h−1∏
k=0

Ψ(ρkF ) =

(
A

B

)#P

.

Via tropicalization, this theorem reduces to the homomesy phenomenon of the an-
tichain cardinality statistic, which was proved in [16, Theorem 1.4]. In a forthcoming
paper [10], we use explicit formulas for iterations of the birational rowmotion map to
give refinements of Theorem 4. Our refinement in type A provides a birational lift of the
homomesy given in [13, Proof of Theorem 27].

The remaining of this paper is organized as follows. We collect some general facts
concerning birational rowmotion in Section 2, and give a definition and properties of
minuscule posets in Section 3. In Sections 4 to 6 we give a proof of our main theorems.
The periodicity in Theorem 2 (a) and Theorem 3 (a) is proved in Section 4, and the
reciprocity in Theorem 2 (b) is verified in Section 5. In Section 6, after investigating local
properties around a file, we complete the proof of file homomesy in Theorem 2 (c) and
Theorem 3 (b).

2 Generalities on rowmotion

In this section, we explain how combinatorial and birational rowmotion are related and
give some general facts about birational rowmotion.

2.1 Combinatorial, piecewise-linear and birational rowmotion

We begin by recalling the definition of piecewise-linear toggles and rowmotion. Given a
finite poset P and real numbers a, b, we put

Pa,b(P ) = {f : P̂ → R : f(1̂) = a, f(0̂) = b},

where P̂ = P t {1̂, 0̂}. We define the piecewise-linear toggles t̃±,a,bv : Pa,b(P ) → Pa,b(P )
at v ∈ P by the formulas(

t̃+,a,bv f
)

(v) = max{f(w) : w ∈ P̂ , w l v}+ min{f(z) : z ∈ P̂ , z m v} − f(v),(
t̃−,a,bv f

)
(v) = min{f(w) : w ∈ P̂ , w l v}+ max{f(z) : z ∈ P̂ , z m v} − f(v),

(12)
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and
(
t̃±,a,bv f

)
(x) = f(x) for x 6= v. For an order ideal I ∈ J (P ), let χ±I be the character-

istic functions defined by

χ+
I (v) =

{
0 if v ∈ I or v = 0̂,

1 if v ∈ P \ I or v = 1̂,
χ−I (v) =

{
1 if v ∈ I or v = 0̂,

0 if v ∈ P \ I or v = 1̂.

Then it follows from definitions (1) and (12) that the toggle t̃±,a,bv is a piecewise-linear lift
of the combinatorial toggle tv in the following sense:

t̃+,1,0v (χ+
I ) = χ+

tvI
, t̃−,0,1v (χ−I ) = χ−tvI . (13)

The piecewise-linear rowmotion map R̃±,a,b : Pa,b(P )→ Pa,b(P ) is defined by

R̃±,a,b = t̃±,a,bv1
◦ · · · ◦ t̃±,a,bvN

,

where (v1, . . . , vN) is a linear extension of P .
A rational function F (X1, · · · , Xm) ∈ Q(X1, · · · , Xm) is called subtraction-free if F is

expressed as a ratio F = G/H of two polynomials G(X1, · · · , Xm) and H(X1, · · · , Xm) ∈
Z[X1, . . . , Xm] with nonnegative integer coefficients. By using

lim
ε→+0

ε log(ea/ε + eb/ε) = max{a, b}, lim
ε→−0

ε log(ea/ε + eb/ε) = min{a, b},

we can see that, if F (X1, . . . , Xm) is subtraction-free, then for any real numbers x1, . . . , xm
∈ R the limits

f±(x1, · · · , xm) = lim
ε→±0

ε logF (ex1/ε, · · · , exm/ε)

exist and f+(x1, . . . , xm) (resp. f−(x1, . . . , xm)) is the piecewise-linear function in x1, . . . ,
xm obtained from F by replacing the multiplication ·, the division / and the addition +
with the addition +, the subtraction − and the maximum max (resp. the minimum min).
This procedure from F to f± is called the tropicalization (or ultradiscretization).

Proposition 5. Let P be a finite poset. Let R : J (P )→ J (P ) and ρ = ρA,B : KA,B(P )→
KA,B(P ) be the combinatorial and birational rowmotion maps respectively. Let m : P ×
Z→ Z be a map with finite support. If there is a integers p and q such that∏

(v,k)∈P×Z

[(
ρkF

)
(v)
]m(v,k)

= ApBq (14)

for any F ∈ KA,B(P ), then∑
(v,k)∈P×Z

m(v, k)χ[v 6∈ Rk(I)] = p,
∑

(v,k)∈P×Z

m(v, k)χ[v ∈ Rk(I)] = q, (15)

where χ[S] = 1 if S is true and 0 if S is false.
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Proof. By applying the tropicalization procedure to (14), we obtain∑
(v,k)∈P×Z

m(v, k)
(
R̃±,a,bf

)
(v) = ap+ bq

for any f ∈ Pa,b(P ). Then specializing f = χ±I and using (13), we obtain (15).

Corollary 6. (a) If
(
ρhF

)
(v) = F (v) for any F ∈ KA,B(P ) and v ∈ P , then Rh(I) = I

any I ∈ J (P ).

(b) Let v and w ∈ P and k be a positive integer. Suppose that
(
ρkF

)
(v) · F (w) = AB

for any F ∈ KA,B(P ). Then, for any I ∈ J (P ), we have v ∈ Rk(I) if and only if
w 6∈ I.

(c) Let M be a subset of P and h be a positive integer. If
∏h−1

k=0

∏
v∈M

(
ρkF

)
(v) = ApBq

for any F ∈ KA,B(P ), then we have
∑h−1

k=0 #
(
Rk(I) ∩M

)
= q for any I ∈ J (P ).

Similar statements hold for birational Coxter-motion.

2.2 Birational rowmotion on graded posets

In this subsection we present some properties of birational rowmotion on graded posets.
A poset P is called graded of height n if there exists a rank function rk : P → {1, 2, . . . , n}
satisfying the following three conditions:

(i) If v is minimal in P , then rk(v) = 1;

(ii) If v is maximal in P , then rk(v) = n;

(iii) If v covers w, then rk(v) = rk(w) + 1.

Lemma 7. If P is a graded poset of height n and the birational rowmotion map ρA,B has
finite order N , then N is divisible by n+ 1.

Proof. By Corollary 6 (a), we have RN(I) = I for all I ∈ J (P ). On the other hand, it is
easy to see that the 〈R〉-orbit of the empty order ideal ∅ has length n+ 1. Hence we see
that n+ 1 divides N .

The following lemma gives a relation between ρA,B and ρ1,1.

Lemma 8. Let P be a graded poset of height n. For a map F : P → R>0 and positive
real numbers A, B ∈ R>0, we denote by FA,B ∈ KA,B(P ) the extension of F to P̂ such
that FA,B(1̂) = A and FA,B(0̂) = B. For 1 6 k 6 n+ 1 and v ∈ P , we have

((
ρA,B

)k
FA,B

)
(v) =

((
ρ1,1
)k
F 1,1

)
(v)×


A if 1 6 k 6 rk(v)− 1,

AB if k = rk(v),

B if rk(v) + 1 6 k 6 n,

1 if k = n+ 1.

(16)

Proof. We can use the recursive formula (6) to proceed by double induction on k and
n− rk(v).
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2.3 Change of variables

Let P be a finite poset. Given an initial state X ∈ KA,B(P ), we regard X(v) (v ∈ P ) as
indeterminates. In the computation of

(
ρkX

)
(v) (v ∈ P ) of iterations of the birational

rowmotion map ρ = ρA,B, it is convenient to change variables from {X(v) : v ∈ P} to
{Z(v) : v ∈ P} defined by the formula

Z(v) =


X(v) if v is minimal,

X(v)∑
w∈P,wlvX(w)

otherwise.
(17)

This change of variables is used in [9] to describe a lattice path formula for birational
rowmotion on a type A minuscule poset. Then the inverse change of variables is given by

X(v) =
∑

Z(v1)Z(v2) · · ·Z(vr), (18)

where the sum is taken over all saturated chains v1m · · ·mvr in P such that v1 = v and vr
is minimal in P . Note that this change of variables is a birational lift of Stanley’s transfer
map between the order polytope and the chain polytope of a poset (see [17, Section 3]).

3 Minuscule posets

In this section we review a definition and properties of minuscule posets.

3.1 Definition and properties of minuscule posets

Let g be a finite dimensional simple Lie algebra over the complex number field C of type
Xn, where X ∈ {A,B,C,D,E, F,G} and n is the rank of g. We fix a Cartan subalgebra
h and choose a positive root system ∆+ of the root system ∆ ⊂ h∗. Let Π = {α1, . . . , αn}
be the set of simple roots, where we follow [2, Planche I–IX] for the numbering of simple
roots. We denote by $i the fundamental weight corresponding to the ith simple root αi.
Let ∆∨+ ⊂ h be the positive coroot system. Let W be the Weyl group of g, which acts on
h and h∗. The simple reflections {sα : α ∈ Π} generate W .

For a dominant integral weight λ, we denote by VXn,λ the irreducible g-module with
highest weight λ and by LXn,λ the set of weights of VXn,λ. We say that a nonzero dominant
integral weight λ is minuscule if LXn,λ is a single W -orbit. See [3, VIII, §7, n◦3] for
properties of minuscule weights. It is known that minuscule weights are fundamental
weights. Table 1 is the list of minuscule weights.

Let λ be a minuscule weight of a simple Lie algebra g of type Xn. We equip the set
of weights LXn,λ with a poset structure by defining µ > ν if ν − µ is a linear combination
of simple roots with nonnegative integer coefficients. We note that λ is the minimum
element of the poset LXn,λ.

Definition 9. Let g be a simple Lie algebra of type Xn and λ a minuscule weight. Then
the minuscule poset PXn,λ is defined by

PXn,λ = {β∨ ∈ ∆∨+ : 〈β∨, λ〉 = 1}, (19)
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Table 1: List of minuscule weights
type minuscule weights Coxeter number
An $1, $2, . . . , $n n+ 1
Bn $n 2n
Cn $1 2n
Dn $1, $n−1, $n 2n− 2
E6 $1, $6 12
E7 $7 18
E8 none 30
F4 none 12
G2 none 6

where the partial ordering on PXn,λ is given by saying that α∨ > β∨ if α∨− β∨ is a linear
combination of simple coroots with nonnegative integer coefficients.

Proposition 10. Let λ be a minuscule weight and PXn,λ be the corresponding minuscule
poset. Then we have

(a) ([12, Propositions 3.2 and 4.1]) The poset LXn,λ is a distributive lattice.

(b) ([12, Theorem 11]) There exists a unique map c : PXn,λ → Π, called the coloring of
PXn,λ, such that the map

J (PXn,λ) 3 I 7→ λ−
∑
v∈I

c(v) ∈ LXn,λ

gives an isomorphism of posets.

If λ is a minuscule weight, then the stabilizer Wλ of λ in W is the maximal parabolic
subgroup generated by {sβ : β ∈ Π \ {α}}, where α is the simple root corresponding to
the fundamental weight λ.

Proposition 11. Let PXn,λ be the minuscule poset corresponding to a minuscule weight
λ, and wλ the longest element of the stabilizer Wλ. Then the map

ι : PXn,λ 3 β∨ 7→ wλβ
∨ ∈ PXn,λ

gives an involutive anti-automorphism of the poset PXn,λ.

Proof. It is enough to show that β∨ > γ∨ implies wλβ
∨ < wλγ

∨ for β∨, γ∨ ∈ PXn,λ. It
follows from 〈β∨, λ〉 = 〈γ∨, λ〉 = 1 that β∨ − γ∨ is a linear combination of Π∨ \ {α∨}
with nonnegative integer coefficients, where Π∨ is the set of simple coroots and α∨ is the
simple coroot dual to λ. Since wλ(Π

∨ \ {α∨}) = −(Π∨ \ {α∨}), we see that wλβ
∨ −wλγ∨

is a linear combination of Π∨ \ {α∨} with nonpositive integer coefficients.
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The following properties of minuscule posets can be checked easily (e.g., by using a
description given in the next subsection).

Proposition 12. Let P = PXn,λ be the minuscule poset corresponding to a minuscule
weight λ, and c : P → Π the coloring.

(a) The poset P is graded of height h− 1, where h is the Coxeter number of g.

(b) The poset P has a unique minimal element vmin and a unique maximal element vmax.
Moreover, if we put αmin = c(vmin) and αmax = c(vmax), then the simple root αmin

corresponds to the fundamental weight λ and αmax = −w0αmin corresponds to −w0λ,
where w0 is the longest element of W .

(c) If v l w in P , then their colors c(v) and c(w) are adjacent in the Dynkin diagram
of g.

(d) For each α ∈ Π, the subposet Pα = {v ∈ P : c(v) = α} is a chain.

(e) If v, w ∈ Pα, then the difference rk(v)− rk(w) is even.

3.2 Description of minuscule posets

In this subsection we give explicit descriptions of minuscule posets and their colorings.
The minuscule posets can be embedded into the poset Z2, where (i, j) 6 (i′, j′) in Z2 if
and only if i 6 i′ and j 6 j′.

Type An. The positive coroot system ∆∨+ of type An can be described as ∆∨+ = {ei−ej :
1 6 i < j 6 n+ 1} with e1 + · · ·+ en+1 = 0. Then we have

PAn,$r = {ei − ej : 1 6 i 6 r, r + 1 6 j 6 n+ 1}

and the map ei − ej 7→ (r − i, j − r − 1) gives an isomorphism of posets from PAn,$r to
the subposet

{(i, j) ∈ Z2 : 0 6 i 6 r − 1, 0 6 j 6 n− r} ⊂ Z2.

The poset PAn,$r is a product poset [0, r − 1] × [0, n − r] of two chains, where [0,m] =
{0, 1, . . . ,m} is a chain. We call this poset PAn,$r a rectangle poset. The involution ι is the
180◦ rotation of the Hasse diagram. For example, the Hasse diagrams and the colorings
of PA7,$1 and PA7,$3 are given in Figure 1, where we label a vertex v with i to indicate
that c(v) = αi.

Type Bn. If we realize the positive coroot system ∆∨+ of type Bn as ∆∨+ = {ei ± ej :
1 6 i < j 6 n} ∪ {2ei : 1 6 i 6 n}, then we have

PBn,$n = {ei + ej : 1 6 i 6 j 6 n},

and the map ei + ej 7→ (n − j, n − i) gives an poset isomorphism from PBn,$n to the
subposet

{(i, j) ∈ Z2 : 0 6 i 6 j 6 n− 1} ⊂ Z2.
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Figure 1: PA7,$1 (left) and PA7,$3 (right)

We call PBn,$n a shifted staircase poset. The involution ι is the horizontal flip of the Hasse
diagram. For example the Hasse diagram of PB4,$4 and its coloring are given in Figure 2.
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Type Cn. If we realize the positive coroot system ∆∨+ of type Cn as ∆∨+ = {ei ± ej :
1 6 i < j 6 n} ∪ {ei : 1 6 i 6 n}, then we have

PCn,$1 = {e1 − e2, . . . , e1 − en, e1, e1 + en, . . . , e1 + e2}.

The poset PCn,$1 is a chain, and isomorphic to the subposet

{(1, 1), . . . , (1, n− 1), (1, n), (2, n), . . . , (n, n)} ⊂ Z2.

For example the Hasse diagram of PC4,$1 and its coloring are given in Figure 3. Note that
PCn,$1 is isomorphic to PA2n−1,$1 , but they have different colorings.

Type Dn. We realize the positive coroot system ∆∨+ of type Dn as ∆∨+ = {ei± ej : 1 6
i < j 6 n}.

For the minuscule weight $1, we have

PDn,$1 = {e1 − e2, . . . , e1 − en−1, e1 − en, e1 + en, e1 + en−1, . . . , e1 + e2},
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and it is isomorphic to the subposet

{(1, 1), . . . , (1, n− 1), (1, n), (2, n− 1), (2, n), . . . , (n, n)} ⊂ Z2.

See Figure 4 for the Hasse diagram of PD5,$1 and its coloring. The poset PDn,$1 is called
a double-tailed diamond poset. The involutive anti-automorphism ι is given by

ι(e1 + ek) = e1 − ek (1 6 k 6 n− 1), ι(e1 + εen) = e1 + (−1)nεen.

For the minuscule weights $n and $n−1, we have

PDn,$n = {ei + ej : 1 6 i < j 6 n}

and PDn,$n−1 is obtained from PDn,$n by replacing ei + en with ei − en for 1 6 i 6 n− 1.
Both posets PDn,$n and PDn,$n−1 are isomorphic to {(i, j) ∈ Z2 : 0 6 i 6 j 6 n − 2}.
For example, the Hasse diagram and the coloring of PD5,$5 are given in Figure 5. Note
that PDn,$n−1

∼= PDn,$n , and they are isomorphic to PBn−1,$n−1 , but they have different
colorings.

Type E6. The minuscule poset PE6,$6 is isomorphic to the subposet{
(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (3, 2), (4, 2), (5, 2),
(4, 3), (5, 3), (6, 3), (4, 4), (5, 4), (6, 4), (7, 4), (8, 4)

}
⊂ Z2,

and the Hasse diagram and the coloring are given in Figure 6. The involution ι is the
180◦ rotation of the Hasse diagram. As posets, PE6,$1

∼= PE6,$6 .

Type E7. The minuscule poset PE7,$7 is isomorphic to the subposet
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6),
(3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 5), (5, 6), (5, 7),
(4, 8), (4, 9), (5, 8), (5, 9), (6, 8), (6, 9), (7, 9), (8, 9), (9, 9)

 ⊂ Z2,

and the Hasse diagram and the coloring are given in Figure 7. The involution ι is the
horizontal flip of the Hasse diagram.

4 Periodicity

The goal of this section is to prove the periodicity of birational rowmotion and Coxeter-
motion (Theorem 2 (a) and Theorem 3 (a)).

4.1 Periodicity of birational rowmotion

For the birational rowmotion map on minuscule posets, periodicity has been established
in [6, 7] except for the type E7 minuscule poset. Let P be a minuscule poset associated
to a Lie algebra g, and ρA,B : KA,B(P ) → KA,B the birational rowmotion map. Since
periodicity depends only on the poset structure, we may assume that g is simply-laced.
And by Proposition 12 (a), Lemmas 7 and 8, it is enough to show that ρ = ρ1,1 satisfies
ρh = 1, where h is the Coxeter number of g.
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Figure 7: PE7,$7

• If P is a type An minuscule poset, i.e., if P is a rectangle poset [0, r− 1]× [0, n− r],
then it was shown that the birational rowmotion map ρ has order n+ 1 (Grinberg–
Roby [7, Theorem 30], see [9, Corollary 2.12] for another proof).

• If P = PDn,$1 is a double-tailed diamond poset, then P is a skeletal poset of height
2n− 3, and it follows from [6, Propositions 61, 74 and 75] that ρ has order 2n− 2
(see [6, Section 10] for a definition of skeletal posets and details).

• If P = PDn,$n is a shifted staircase poset, then Grinberg–Roby [7, Theorem 58]
proved that ρ has order 2n.

• If P = PE6,$6 is the minuscule poset of type E6, then by using a computer we can
verify that ρ has order 12.

• Let P = PE7,$7 be the minuscule poset of type E7. Given an initial state X ∈
K1,1(P ), we regard {X(v) : v ∈ P} as indeterminates and introduce new indeter-
minates {Z(v) : v ∈ P} by (17). Also we use the realization of P as a subposet
of Z2 given in Subsection 3.2. With the author’s laptop, it takes about 20 seconds
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for Maple19 to compute all the values
(
ρkX

)
(v) (0 6 k 6 18, v ∈ P ) as rational

functions in {Z(v) : v ∈ P} and check that (ρ18X) (v) = X(v) for all v ∈ P . The
change of variables from {X(v) : v ∈ P} to {Z(v) : v ∈ P} makes computation
much faster. (It takes almost three hours without using the Z-coordinates.)

This completes the proof of Theorem 2 (a).

4.2 Periodicity of birational Coxeter-motion

In order to prove the periodicity of birational Coxeter-motion (Theorem 3 (a)), we work
with the birational toggle group and show that any birational Coxeter-motion maps are
conjugate to the birational rowmotion map in this group.

Let P be a finite poset and fix positive real numbers A and B. We define the birational
toggle group, denote by G(P ), to be the subgroup generated by birational toggles τv = τA,Bv

(v ∈ P ) in the group of all bijections on KA,B(P ).
A key tool here is the non-commutativity graph. Given elements g1, . . . , gn of a group

G, the non-commutativity graph Γ(g1, . . . , gn) is defined as the graph with vertex set
{1, 2, . . . , n}, in which two vertices i and j are joined if and only if gigj 6= gjgi. The
following lemma is useful.

Lemma 13. ([2, V, §6, n◦1, Lemma 1]) Let g1, . . . , gn be elements of a group G. If
the non-commutativity graph Γ(g1, . . . , gn) has no cycle, then gν(1) . . . gν(n) is conjugate to
g1 . . . gn in G for any permutation ν of 1, 2, . . . , n.

First we prove that all birational Coxeter-motion maps are conjugate.

Proposition 14. Let P be a minuscule poset. Then all birational Coxeter-motion maps
are conjugate to each other in the birational toggle group G(P ).

Proof. Note that birational toggles τv and τw are commutative unless v l w ore v m w.
It follows from Proposition 12 (c) that, if simple roots α and β are not adjacent in the
Dynkin diagram of g, then the corresponding elements σα and σβ commute with each
other in G(P ). Hence the non-commutativity graph Γ(σα1 , . . . , σαn), where α1, . . . , αn are
the simple roots, is a subgraph (of the underlying simple graph) of the Dynkin diagram.
Since the Dynkin diagram of g has no cycle, we can use Lemma 13 to conclude that any
two Coxeter-motion maps are conjugate in G(P ).

The periodicity of birational Coxeter-motion maps (Theorem 3 (a)) immediately fol-
lows from the following thoerem and the periodicity of the birational rowmotion map
(Theorem 2 (a)).

Theorem 15. Let P be a minuscule poset. Then any birational Coxeter-motion map is
conjugate to the birational rowmotion map ρ = ρA,B in the birational toggle group G(P ).
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This theorem is a birational lift of [15, Theorem 1.3]. In order to prove this theorem,
we use the notion of rc-poset, which was introduced by Striker–Williams [18, Section 4.2].
We put Λ = {(i, j) ∈ Z2 : i+ j is even}. A poset P is called a rowed-and-columned
poset (rc-poset for short) if there is a map π : P → Λ such that, if v covers u in P and
π(v) = (i, j), then π(u) = (i + 1, j − 1) or (i − 1, j − 1). Minuscule posets P = PXn,λ
are rc-posets with respect to the composition map π : P → Λ of the embedding P ↪→ Z2

given in Subsection 3.2 and the map Z2 3 (i, j) 7→ (j− i, j+ i) ∈ Λ. A row (resp. column)
of an RC-poset P is a subset M of P of the form

M = {v ∈ P : the second coordinate of π(v) equals r},
(resp. M = {v ∈ P : the first coordinate of π(v) equals c})

for some r (resp. c). If M is a subset of a row or a column of P , then the composition of
toggles τv (v ∈M) is independent of the order of composition, so we denote by τ [M ] the
resulting element of the toggle group G(P ). If R1, . . . , Rn are the non-empty rows of an
rc-poset P from bottom to top, then the rowmotion map ρ = ρA,B is given by

ρ = τ [R1] ◦ τ [R2] ◦ · · · ◦ τ [Rn].

The following Lemma is proved by exactly the same argument as in [18].

Lemma 16. ([18, Theorem 5.2]) Let P be an rc-poset. Let R1, . . . , Rn be the non-empty
rows of P from bottom to top, and C1, . . . , Cm the non-empty columns of P from left to
right. Then the rowmotion map ρ is conjugate to τ [Cν(1)] ◦ · · · ◦ τ [Cν(m)] in G(P ) for any
permutation ν of 1, 2, . . . ,m.

We prove Theorem 15 by using this lemma.

Proof of Theorem 15. Let Π = {α1, . . . , αn} be the set of simple roots, where we follow
the numbering in [2], and C1, . . . , Cm the non-empty columns of P (see Figures 1–7).
Then, by Lemmas 13 and 16, it is enough to prove that γ = σα1 · · · σαn is conjugate to
τ [C1] · · · τ [Cm]. We prove this claim by a case-by-case argument.

• If P = PAn,$r , then σαi = τ [Ci] for 1 6 i 6 n and γ = τ [C1] · · · τ [Cm].

• If P = PBn,$n , then σαi = τ [Cn+1−i] for 1 6 i 6 n, and γ is conjugate to σαn · · ·σα1 =
τ [C1] · · · τ [Cm] by Lemma 13.

• If P = PCn,$1 , then σαi = τ [Ci] for 1 6 i 6 n and γ = τ [C1] · · · τ [Cn].

• If P = PDn,$1 , then τ [Ci] = σαi for i 6= n − 3 and τ [Cn−3] = σαn−3σαn . Hence
τ [C1] · · · τ [Cn−1] = σα1 · · ·σαn−4σαn−3σαnσαn−2σαn−1 is conjugate to γ by Lemma 13.

• If P = PDn,$n , then τ [C1] = σαn−1σαn and τ [Ci] = σαn−i for 2 6 i 6 n − 1. Hence
τ [C1] · · · τ [Cn−1] = σαn−1σαnσαn−2 · · ·σα1 is conjugate to γ by Lemma 13.
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• If P = PE6,$6 , then we have

C1 = Pα1 , C2 = Pα3 t (C2 ∩ Pα2), C3 = Pα4 ,

C4 = Pα5 t (C4 ∩ Pα2), C5 = Pα6 .

If we put

g1 = τ [Pα1 ], g2 = τ [Pα3 ] g3 = τ [Pα4 ], g4 = τ [Pα5 ], g5 = τ [Pα6 ],

g6 = τ [C2 ∩ Pα2 ], g7 = τ [C5 ∩ Pα2 ],

then Figure 8 shows the non-commutativity graph Γ(g1, . . . , g7). Hence by applying
Lemma 13, we see that

τ [C1] · · · τ [C5] = τ [Pα1 ]τ [Pα3 ]τ [C2 ∩ Pα2 ]τ [Pα4 ]τ [Pα5 ]τ [C5 ∩ Pα2 ]τ [Pα6 ]

is conjugate to

γ = τ [Pα1 ]τ [C2 ∩ Pα2 ]τ [C5 ∩ Pα2 ]τ [Pα3 ]τ [Pα4 ]τ [Pα5 ]τ [Pα6 ].

• If P = PE7,$7 , then we have

C1 = Pα7 , C2 = Pα6 , C3 = (C3 ∩ Pα2) t Pα5 ,

C4 = Pα4 , C5 = (C5 ∩ Pα2) t Pα3 , C6 = Pα1 ,

and Pα2 = (C3 ∩ Pα2) t (C5 ∩ Pα2). If we put

g1 = τ [Pα7 ], g2 = τ [Pα6 ], g3 = τ [Pα5 ],

g4 = τ [Pα4 ], g5 = τ [Pα3 ], g6 = τ [Pα1 ],

g7 = τ [C3 ∩ Pα2 ], g8 = τ [C5 ∩ Pα2 ]

then Figure 9 shows the non-commutativity graph Γ(g1, . . . , g8). Hence by applying
Lemma 13, we see that

τ [C1] · · · τ [C6] = τ [Pα7 ]τ [Pα6 ]τ [C3 ∩ Pα2 ]τ [Pα5 ]τ [Pα4 ]τ [C5 ∩ Pα2 ]τ [Pα3 ]τ [Pα1 ]

is conjugate to

γ = τ [Pα1 ]τ [C3 ∩ Pα2 ]τ [C5 ∩ Pα2 ]τ [Pα3 ]τ [Pα4 ]τ [Pα5 ]τ [Pα6 ]τ [Pα7 ].

This completes the proof of Theorem 15, and hence of Theorem 3 (a).
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5 Reciprocity

In this section we prove the reciprocity for birational rowmotion (Theorem 2 (b)) and
propose a conjectural reciprocity for a particular birational Coxeter-motion map.

The proof of the reciprocity for birational rowmotion is based on a case-by-case analy-
sis. Let P be a minuscule poset associated to a simple Lie algebra g and ρA,B the birational
rowmotion map. Since the claim of Theorem 2 (b) depends only on the poset structure
of P , we may assume that g is simply-laced. By Lemma 8, it is enough to consider the
case where A = B = 1. For a type A minuscule poset, the reciprocity was proved by
Grinberg–Roby [7, Theorem 32] and Musiker–Roby [9, Corollary 2.13]. Also, with a help
of computer, we can verify the reciprocity for the minuscule posets of types E6 and E7 by
checking

(
ρrk(w)X

)
(w) = 1/X(ιw) as rational functions in the variables {Z(v) : v ∈ P}

given by (17). The remaining minuscule posets are the shifted staircase posets PDn,$n
and the double-tailed diamond posets PDn,$1 .

5.1 Shifted staircase posets

Let P = {(i, j) ∈ Z2 : 0 6 i 6 j 6 r} be a shifted staircase poset, and ρ = ρ1,1 :
K1,1(P ) → K1,1(P ) the birational rowmotion map on P . We derive the reciprocity for

P from that for the rectangle poset P̃ = {(i, j) ∈ Z2 : 0 6 i, j 6 r}. We denote by

ρ̃ : K1,1(P̃ ) → K1,1(P̃ ) the birational rowmotion map on P̃ with A = B = 1. The
following lemma is a consequence of [7, Lemma 59 (c)] and Lemma 8 (with A = 1/2 and
B = 2).

Lemma 17. For F ∈ K1,1(P ), we define F̃ ∈ K1,1(P̃ ) by

F̃ (i, j) =

{
F (i, j) if i 6 j,

F (j, i) if i > j.

Then we have

(
ρkF

)
(i, j) =

(
ρ̃kF̃

)
(i, j)×


1/2 if 1 6 k 6 i+ j,

1 if k = i+ j + 1,

2 if i+ j + 2 6 k 6 2r + 1,

1 if k = 2r + 2

for 1 6 k 6 2r + 2 and (i, j) ∈ P .

By using this lemma and the reciprocity for the rectangle poset P̃ , we have(
ρi+j+1F

)
(i, j) =

(
ρ̃i+j+1F̃

)
(i, j) =

1

F̃ (r − i, r − j)
=

1

F (r − j, r − i)
.

This is the desired identity for a shifted staircase poset.
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5.2 Double-tailed diamond posets

In this subsection, we prove the reciprocity for double-tailed diamond posets. Let P =
PDn,$1 be the minuscule poset associated to the minuscule weight λ = $1 of the Lie
algebra of type Dn. We label elements of P by

vi = e1 + ei+1 (1 6 i 6 n− 2),

v+
n−1 = e1 + en, v−n−1 = e1 − en,

vi = e1 − e2n−1−i (n 6 i 6 2n− 3).

Note that v1 is the maximum element and v2n−3 is the minimum element.
Fix an initial state X ∈ K1,1(P ). We regard X(v) (v ∈ P ) as indeterminates and

define Z ∈ K1,1(P ) by (17). We write

xi = X(vi) (1 6 i 6 2n− 3, i 6= n− 1), x±n−1 = X(v±n−1),

zi = Z(vi) (1 6 i 6 2n− 3, i 6= n− 1), z±n−1 = Z(v±n−1).

Then we have

zi =


xi
xi+1

if i 6= n− 1, 2n− 3,

xn−2

x+
n−1 + x−n−1

if i = n− 1,

x2n−3 if i = 2n− 3,

z±n−1 =
x±n−1

xn
.

For positive integers i and l satisfying 1 6 i 6 2n − 3 and i + l − 1 6 2n − 3, we define
monomials C(i; l) and C±(i; l) as follows:

(i) If 1 6 i 6 n− 2 and i+ l − 1 6 n− 2, then we put

C(i; l) = zizi+1 · · · zi+l−1.

(ii) If 1 6 i 6 n− 1 and n− 1 6 i+ l − 1 6 2n− 3, then we put

C±(i; l) = zizi+1 · · · zn−2z
±
n−1zn · · · zi+l−1.

(iii) If n+ 2 6 i 6 2n− 3, then we put

C(i; l) = zizi+1 · · · zi+l−1.

Then the original indeterminates X(v) can be expressed in terms of Z(v) as follows:

Lemma 18. The values X(v) (v ∈ P ) are expressed in terms of C(i; l) and C±(i; l) as
follows: 

X(vi) = C+(i; 2n− i− 2) + C−(i; 2n− i− 2) if 1 6 i 6 n− 2,

X(v±n−1) = C±(n− 1;n− 1) if i = n− 1,

X(vi) = C(i; 2n− i− 2) if n 6 i 6 2n− 3.
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Recall that P is a graded poset with rank function rk given by rk(vi) = 2n − i − 2
(1 6 i 6 2n− 3, i 6= n− 1) and rk(v±n−1) = n− 1. Then it is straightforward to prove the
following explicit formulas by using induction on k and i. (We omit the proof.)

Proposition 19. Let v ∈ P and k a positive integer. If 1 6 k 6 rk(v), then the value(
ρkX

)
(v) of iterations of birational rowmotion is expressed in terms of C(i; l) and C±(i; l)

as follows:

(a) If v = vi with 1 6 i 6 n− 2, we have

(
ρkX

)
(vi) =



1

C(k; i)
if 1 6 k 6 n− i− 1,

1

C+(k; i)
+

1

C−(k + 1; i)
if n− i 6 k 6 n− 1,

1

C(k; i)
if n 6 k 6 2n− i− 2.

(b) If v = v±n−1, we have

(
ρkX

)
(v±n−1) =

1

Cε(−1)k−1(k;n− 1)
.

(c) If v = vi with n 6 i 6 2n− 3, we have(
ρkX

)
(vi) =

1

C+(k; i) + C−(k; i)
.

Since the involution ι : P → P is given by

ι(vi) = v2n−i−2 (1 6 i 6 2n− 3, i 6= n− 1), ι(vεn−1) = v
ε(−1)n

n−1 ,

we obtain the desired reciprocity by comparing formulas in Lemma 18 and Proposition 19.
This completes the proof of Theorem 2 (b) for all minuscule posets.

5.3 Reciprocity for birational Coxeter-motion

We have the following conjectural reciprocity for a particular birational Coxeter-motion
map.

Conjecture 20. Let P be a minuscule poset. We decompose the simple root system Π
into a disjoint union of two subsets Π1 and Π2 such that any roots in ∆i are pairwise
orthogonal for each i. We define γ1 and γ2 by

γ1 =
∏
α∈Π1

σA,Bα , γ2 =
∏
β∈Π2

σA,Bβ ,
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and put
δ = γ1γ2γ1γ2γ1 · · ·︸ ︷︷ ︸

h factors

,

where h is the Coxeter number. Then we conjecture that

(δF )(v) =
AB

F (ιv)
(20)

for any F ∈ KA,B(P ) and v ∈ P .

The periodicity of birational Coxeter-motion maps is a consequence of this conjecture.
In fact, γ = γ1γ2 is a Coxeter-motion map and

γh =

{
δ2 if h is even,

δ1,2δ2,1 if n is odd,

where δ1,2 = γ1γ2γ1γ2γ1 · · · γ1 and δ2,1 = γ2γ1γ1γ2γ1 · · · γ2. If h is even, then we have(
γhF

)
(v) =

(
δ2F

)
(v) =

AB

(δF ) (ιv)
=

AB

AB/F (ι2v)
= F (v).

If h is odd, we can derive
(
γhF

)
(v) = F (v) from (20) in a similar manner.

6 File homomesy

This section is devoted to the proof of the file homomesy phenomenon (Theorem 2 (c)
and Theorem 3 (b)).

6.1 Local properties

First we investigate local properties of birational rowmotion and Coxeter-motion around
a given file.

Let P be a minuscule poset with coloring c : P → Π. We regard the Hasse diagram of
the poset P̂ = P t {1̂, 0̂} as a directed graph, where a directed edge u → v corresponds

to the covering relation ul v. For α ∈ Π, let N̂α be the neighborhood of Pα = {x ∈ P :
c(x) = α} given by

N̂α = {x ∈ P̂ : there is an element y ∈ Pα such that xl y or xm y}.

We define Gα to be the bipartite directed subgraph of the Hasse diagram of P̂ with black
vertex set Pα and white vertex set N̂α. It follows from Proposition 12 (c) that

N̂α =
⊔
β∼α

P β t


{1̂, 0̂} if α = αmax = αmin,

{1̂} if α = αmax 6= αmin,

{0̂} if α = αmin 6= αmax,

∅ otherwise,
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where β runs over all simple roots adjacent to α in the Dynkin diagram, and αmax (resp.
αmin) is the color of the maximum (resp. minimum) element of P .

To describe the graph structure of Gα, we introduce two sequences of posets Gm

and Hm. For a positive integer m, let Gm be the poset consisting of 3m elements
x1, · · · , xm, y1, · · · , ym−1, z1, · · · , zm−1, u, v with covering relations

ul x1, xi l yi l xi+1, xi l zi l xi+1, xm l v.

Note that G1 is the three-element chain. And, for an integer m > 2, let Hm be the
(2m+ 1)-element chain

ul x1 l y1 l x2 l y2 l · · ·l ym−1 l xm l v.

We regard the Hasse diagrams of Gm and Hm as bipartite directed graphs with black
vertices x1, . . . , xm. For example, the Hasse diagrams ofG4 andH4 are shown in Figures 10
and 11 respectively.

dt
d dtd dtd dtddd

6

@@I ���

��� @@I

@@I ���

��� @@I

@@I ���

��� @@I

6
v
x4

x3

x2

x1

u

y3

y2

y1

z3

z2

z1

Figure 10: G4

dt
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6

@@I

���

@@I

���

@@I

���

6
v
x4

x3

x2

x1

u

y3

y2

y1

Figure 11: H4

Lemma 21. Each bipartite directed graph Gα is decomposed into a disjoint union of
graphs of the form Gm or Hm as follows:

• If P = PAn,$r , then

Gαi ∼=


Gi if 1 6 i 6 r,

Gr if r 6 i 6 s,

Gn−i+1 if s 6 i 6 l,

where r + s = n+ 1 and r 6 s.

• If P = PBn,$n, then

Gαi ∼=

{
Gi if 1 6 i 6 n− 1,

Hl if i = n.
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• If P = PCn,$1, then

Gαi ∼=


G1 tG1 if 1 6 i 6 n− 2,

H2 if i = n− 1,

G1 if i = n.

• If P = PDn,$1, then

Gαi ∼=


G1 tG1 if 1 6 i 6 n− 3,

G2 if i = n− 2,

G1 if i = n− 1, n.

• If P = PDn,$n, then

Gαi ∼=


Gl if 1 6 i 6 n− 2,

(G1)tb(n−1)/2c if i = n− 1,

(G1)tbn/2c if i = n,

where Gtm1 is the disjoint union of m copies of G1, and bxc stands for the largest
integer not exceeding x.

• If P = PE6,$6, then

Gαi ∼=


G1 tG1 if i = 1, 2, 6,

G1 tG2 if i = 3, 5,

G4 if i = 4.

• If P = PE7,$7, then

Gαi ∼=



G1 tG1 if i = 1,

G1 tG1 tG1 if i = 2,

G2 tG2 if i = 3,

G6 if i = 4,

G1 tG3 tG1 if i = 5,

G1 tG2 tG1 if i = 6,

G1 tG1 tG1 if i = 7.

The following relations are a key to the proof of the file homomesy phenomenon.

Lemma 22. Let ρ = ρA,B be the birational rowmotion map and α a simple root.

(a) If the graph Gm = {x1, . . . , xm, y1, . . . , ym−1, z1, . . . , zm−1, u, v} appears as a con-
nected component of Gα, then we have

m∏
i=1

(ρi−1F )(xi) ·
m∏
i=1

(ρiF )(xi) = F (u) ·
m−1∏
i=1

(ρiF )(yi) ·
m−1∏
i=1

(ρiF )(zi) · (ρmF )(v), (21)

where we use the same symbol to denote the corresponding vertices of Gα.
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(b) If the graph Hm = {x1, . . . , xm, y1, . . . , ym−1, u, v} appears as a connected component
of Gα, then we have

m∏
i=1

(ρi−1F )(xi) ·
m∏
i=1

(ρiF )(xi) = F (u) ·
m−1∏
i=1

(ρiF )(yi)
2 · (ρmF )(v), (22)

where we use the same symbol to denote the corresponding vertices of Gα.

Proof. (a) It follows from (6) that

F (xm) · (ρF )(xm) = (ρF )(v) · (F (ym−1) + F (zm−1)),

F (xi) · (ρF )(xi) =
(ρF )(yi) · (ρF )(zi) · (F (yi−1) + F (zi−1))

(ρF )(yi) + (ρF )(zi)
(2 6 i 6 m− 1),

F (x1) · (ρF )(x1) =
F (u) · (ρF )(y1) · (ρF )(z1)

(ρF )(y1) + (ρF )(z1)
.

By replacing F with ρm−1F (resp. ρi−1F ) in the first (resp. second) equation, and then
by multiplying the resulting equations together, we obtain (21).

(b) can be checked by a similar computation.

Lemma 23. Let α be a simple root and and σα =
∏

v∈Pα τ
A,B
v the product of birational

toggles over Pα.

(a) If Gm appears as a connected component of Gα, then we have

m∏
i=1

F (xi) ·
m∏
i=1

(σαF )(xi) = F (u) ·
m−1∏
i=1

F (yi) ·
m−1∏
i=1

F (zi) · F (v). (23)

(b) If Hm appears as a connected component of Gα, then we have

m∏
i=1

F (xi) ·
m∏
i=1

(σαF )(xi) = F (u) ·
m−1∏
i=1

F (yi)
2 · F (v). (24)

Proof. (a) By the definition (4), we have

F (xm) · (σαF )(xm) = F (v) · (F (ym−1) + F (zm−1)),

F (xi) · (σαF )(xi) =
F (yi) · F (zi) · (F (yi−1) + F (zi−1))

F (yi) + F (zi)
(2 6 i 6 m− 1),

F (x1) · (σαF )(x1) =
F (y1) · F (z1) · F (u)

F (y1) + F (z1)
.

Multiplying them together, we obtain (23).
(b) can be checked by a similar computation.
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6.2 File homomesy for birational rowmotion

In this subsection, we prove the file homomesy phenomenon for birational rowmotion
(Theorem 2 (c)).

The following properties of Coxeter elements will be useful in the proof of Theorem 2
(c) and Theorem 3(b); the proof of the latter will be given in the next subsection. A
Coxeter element in a Weyl group W = 〈sα : α ∈ Π〉 is a product of all simple reflections
sα in any order. Then it is known that all Coxeter elements are conjugate. By definition,
the Coxeter number is the order of any Coxeter element.

Lemma 24. Let c be a Coxeter element and h the Coxeter number. Then we have

(a) If µ ∈ h∗ satisfies cµ = µ, then µ = 0.

(b) As a linear transformation on h∗, we have

h−1∑
k=0

ck = 0 (25)

(c) Let α ∈ Π be a simple root and $ the corresponding fundamental weight. If c =
sα1 · · · sαn is a Coxeter element with Π = {α1, . . . , αn} and β = sα1 · · · sαk−1

αk,
where α = αk, then we have

c$ = $ − β, (26)

h−1∑
k=1

k−1∑
i=0

ci(β) = h$. (27)

Proof. (a) See [2, V, §6, n◦2].
(b) follows from ch = 1 and (a).
(c) Since sγ$ = $ − 〈γ∨, $〉γ = $ − δα,γα for γ ∈ Π, we have c$ = $ −

sα1 · · · sαk−1
αk = $ − β. Hence we see that

ck$ = $ −
k−1∑
i=0

ciβ.

By using (25), we obtain

0 =
h−1∑
k=0

ck$ = h$ −
h−1∑
k=1

k−1∑
i=0

ciβ,

from which (27) follows.
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In order to prove Theorem 2 (c), we consider

Φ′α(F ) =
∏
v∈Pα

(
ρ(rk(v)−rk(vα0 ))/2F

)
(v), (28)

instead of Φα(F ) =
∏

v∈Pα F (v). Here vα0 is the minimum element of Pα. Note that Pα

is a chain and rk(v)− rk(vα0 ) is an even integer (see Proposition 12 (d) and (e)). Since ρ
has finite order h, we have

h−1∏
k=0

Φα(ρkF ) =
h−1∏
k=0

Φ′α(ρkF ). (29)

Remark 25. It is worth mentioning that Φ′α(ρkX) are Laurent monomials in the variables
Z(v) defined by (17). In a forthcoming paper [10], we will give explicit formulas for
Φ′α(ρkX) in classical types.

Remark 26. For a type A minuscule poset P ∼= [0, r] × [0, n − r], we can express Φ′α(F )
in terms of Einstein–Propp’s recombination map R : KA,B(P )→ KA,B(P ) defined by

(RF ) (i, j) =
(
ρjF

)
(i, j).

(See [4, Section 6].) For a simple root αk = ek − ek+1, we have

Φ′αk(F ) =

{
Φαk(RF ) if 1 6 k 6 r,

Φαk(Rρ
r−kF ) if r 6 k 6 n.

Proposition 27. For α ∈ Π and F ∈ KA,B(P ), we have

Φ′α(F ) · Φ′α(ρF ) = Aδα,αmaxBδα,αmin

∏
β∼α

Φ′β(ρmα,βF )−〈α
∨,β〉, (30)

where β runs over all simple roots adjacent to α in the Dynkin diagram and

mα,β =

{
1 if vβ0 > vα0 ,

0 if vβ0 < vα0 .

Proof. We explain the proof in the case where g is of type E7, λ = $7 and α = α5. (The
other cases can be proved in a similar way.) We label elements of Pα as vα0 , v

α
1 , v

α
2 , . . .

from bottom to top. By definition (28), we have

Φ′α4
(F ) = F (vα4

0 ) · (ρF )(vα4
1 ) · (ρ2F )(vα4

2 ) · (ρ3F )(vα4
3 ) · (ρ4F )(vα4

4 ) · (ρ5F )(vα4
5 ),

Φ′α5
(F ) = F (vα5

0 ) · (ρ2F )(vα5
1 ) · (ρ3F )(vα5

2 ) · (ρ4F )(vα5
3 ) · (ρ6F )(vα5

4 ),

Φ′α6
(F ) = F (vα6

0 ) · (ρ3F )(vα6
1 ) · (ρ4F )(vα6

2 ) · (ρ7F )(vα6
3 ).
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The subgraph Gα5 has three connected components

{vα4
0 , vα5

0 , vα6
0 } ∼= G2,

{vα4
1 , vα4

2 , vα4
3 , vα4

4 , vα5
1 , vα5

2 , vα5
3 , vα6

1 , vα6
2 } ∼= G3,

{vα4
5 , vα5

4 , vα6
3 } ∼= G1.

By applying (21) to each of the three connected components of Gα5 , we obtain

F (vα5
0 ) · (ρF )(vα5

0 ) = F (vα6
0 ) · (ρF )(vα4

0 ),

F (vα5
1 ) · (ρF )(vα5

2 ) · (ρ2F )(vα5
3 ) · (ρF )(vα5

1 ) · (ρ2F )(vα5
2 ) · (ρ3F )(vα5

3 )

= F (vα4
1 ) · (ρF )(vα6

1 ) · (ρF )(vα4
2 ) · (ρ2F )(vα6

2 ) · (ρ2F )(vα4
3 ) · (ρ3F )(vα4

4 )

F (vα5
4 ) · (ρF )(vα5

4 ) = F (vα4
5 ) · (ρF )(vα6

3 ).

By replacing F with ρ2F (resp. ρ6F ) in the second (resp. third) equation, and then by
multiplying the three resulting equations together, we have

Φ′α5
(F ) · Φ′α5

(ρF ) = Φ′α6
(F ) · Φ′α4

(ρF ).

Since vα6
0 < vα5

0 < vα4
0 (see Figure 7), we obtain (30) in this case.

Corollary 28. For a simple root β ∈ Π, we put

Φ̃β(F ) =
h−1∏
k=0

Φβ(ρkF ).

Then we have for fixed α ∈ Π,∏
β∈Π

Φ̃β(F )〈α
∨,β〉 = Aδhα,αmaxBhδα,αmin (31)

for any F ∈ KA,B(P ).

Proof. Since ρ has finite order h, Equation (29) implies Φ̃β(F ) =
∏h−1

k=0 Φ′β(ρk+mF ) for
any integer m. Hence (31) follows from (30).

Now we are ready to prove Theorem 2 (c).

Proof of Theorem 2 (c). We define an element µ̃(F ) ∈ h∗ for F ∈ KA,B(P ) by putting

µ̃(F ) =
∑
α∈Π

log Φ̃α(F ) · α.

Note that, if $∨ is the fundamental coweight corresponding to α, then we have

log Φ̃α(F ) = 〈$∨, µ̃(F )〉.
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Since $max = −w0λ (resp. $min = λ) is the fundamental weight corresponding to the color
αmax (resp. αmin) of the maximum (resp. minimum) element of P (see Proposition 12 (b)),
it it enough to show

µ̃(F ) = ha ·$max + hb ·$min, (32)

where a = logA, b = logB.
Since we have ∑

β∈Π

〈α∨, β〉 log Φ̃β(F ) = haδα,αmax + hbδα,αmax

by Corollary 28, we see that for any α ∈ Π

sαµ̃(F ) =
∑
β∈Π

log Φ̃β(F ) · (β − 〈α∨, β〉α)

=
∑
β∈Π

log Φ̃β(F )β −

(∑
β∈Π

〈α∨, β〉 log Φ̃β(F )

)
α

= µ̃(F )− (δα,αmaxha+ δα,αmin
hb)α.

Let c = sα1 · · · sαn be a Coxeter element and put

βmax = sα1 · · · sαk−1
αk, βmin = sα1 · · · sαm−1αm,

where αk = αmax, αm = αmin. Then we have

cµ̃(F ) = µ̃(F )− (ha · βmax + hb · βmin) .

By substituting βmax = $max − c$max and βmin = $min − c$min (see (26)), we have

c (µ̃(F )− ha ·$max − hb ·$max) = µ̃(F )− ha ·$max − hb ·$max.

Then it follows from Lemma 24 (a) that

µ̃(F )− ha ·$max − hb ·$max = 0.

This completes the proof of (32) and hence of Theorem 2 (c).

6.3 File homomesy for birational Coxeter-motion

In this subsection we prove Theorem 3 (b). The following proposition is a consequence of
Lemma 21 and Equations (23), (24).

Proposition 29. Let σα =
∏

v∈Pα τv : KA,B(P )→ KA,B(P ) be the product of toggles over
Pα. Then

(a) For a simple root α, we have

Φα(F ) · Φα(σαF ) = Aδα,αmaxBδα,αmin

∏
β∼α

Φβ(F )−〈α
∨,β〉.
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(b) For simple roots α 6= β, we have Φβ(σαF ) = Φβ(F ).

By using this proposition, we can complete the proof of the file homomesy phenomenon
for birational Coxeter-motion.

Proof of Theorem 3 (b). We define an element µ(F ) ∈ h∗ for F ∈ KA,B(P ) by putting

µ(F ) =
∑
β∈Π

log Φβ(F ) · β.

First we prove
µ(σαF ) = sαµ(F ) + (δα,αmaxa+ δα,αmin

b)α (33)

where a = logA and b = logB. By using Proposition 29, we have

µ(σαF ) =
∑
β 6=α

log Φβ(σαF )β + log Φα(σαF )α

=
∑
β 6=α

log Φβ(F )β +

(
δα,αmaxa+ δα,αmin

b−
∑
β 6=α

〈α∨, β〉 log Φβ(F )− log Φα(F )

)
α

=
∑
β 6=α

log Φβ(F )(β − 〈α∨, β〉α)− log Φα(F )α + (δα,αmaxa+ δα,αmin
b)α

=
∑
β 6=α

log Φβ(F )sα(β) + log Φα(F )sα(α) + (δα,αmaxa+ δα,αmin
b)α

= sα(µ(F )) + (δα,αmaxa+ δα,αmin
b)α.

Suppose that γ = σα1 · · ·σαn , and let c = sα1 · · · sαn be the corresponding Coxeter
element. Then, by iteratively using (33), we obtain

µ(γF ) = c(µ(F )) + a · βmax + b · βmin,

where βmax and βmin are defined by βmax = sα1 · · · sαk−1
αk, βmin = sα1 · · · sαm−1αm with

αk = αmax and αm = αmin. Hence by induction on k we see that

µ(γkF ) = ck(µ(F )) + a
k−1∑
i=0

ci(βmax) + b
k−1∑
i=0

ci(βmin).

Therefore we have

h−1∑
k=0

µ(γkF ) =
h−1∑
k=0

ck(µ(F )) + a

h−1∑
k=1

k−1∑
i=0

ci(βmax) + b

h−1∑
k=1

k−1∑
i=0

ci(βmin).

Now it follows from (25) and (27) that

h−1∑
k=0

µ(γkF ) = ah ·$max + bh ·$min.
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By the definition of µ(F ), we have∑
β∈Π

log

(
h−1∏
k=0

Φβ(γkF )

)
· β = ah ·$max + bh ·$min.

Then we can complete the proof by taking the pairing 〈$∨, 〉.
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