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Abstract

We present a rigorous and precise analysis of degree distribution in a dynamic
graph model introduced by Solé, Pastor-Satorras et al. in which nodes are added
according to a duplication-divergence mechanism. This model is discussed in nu-
merous publications with only very few recent rigorous results, especially for the
degree distribution. In this paper we focus on two related problems: the expected
value and variance of the degree of a given node over the evolution of the graph and
the expected value and variance of the average degree over all nodes. We present
exact and precise asymptotic results showing that both quantities may decrease or
increase over time depending on the model parameters. Our findings are a step
towards a better understanding of the graph behaviors such as degree distributions,
symmetry, power law, and structural compression.

Mathematics Subject Classifications: 05C07, 05C80, 05C82

1 Introduction

Many real-world networks, such as protein-protein and citation networks, are widely
viewed as driven by an internal evolution mechanism based on duplication and muta-
tion [19]. New nodes are added to the network as copies of existing nodes together
with some random divergence, resulting in differences among the original nodes and their
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copies. It has been claimed that graphs generated from these models exhibit many proper-
ties characteristic to real-world networks such as power-law degree distribution, the large
clustering coefficient, and a large amount of symmetry [3, 11]. However, some of these
results turned out not to be correct (e.g., power-law degree distribution was disproved
in [6]) or not proved rigorously. In this paper we focus on presenting exact and precise
asymptotic results for the expected degree of a given node over time and the average
degree in the graph. We show that these two quantities exhibit phase transitions over the
parameter space.

The widest known duplication divergence model was introduced by Solé, Pastor-
Satorras et al. [14], denoted here as DD(t, p, r). It is defined as follows: starting from
a given graph Gt0 on t0 vertices (labeled from 1 to t0) we repeat the following procedure
until we get a graph on t vertices: (i) Duplication: Select a node u from a current graph G
(on k vertices) uniformly at random. Add node v (with label k+ 1) to the graph and add
edges between v and all neighbors of u; (ii) Divergence: connections from v are randomly
retained with probability p (otherwise they are deleted). Furthermore, for all nodes w not
adjacent to u we add an edge between v and w, independently at random with probability
r/k. Note that nodes in the graph are labeled by the numbers from 1 to t, according to
their order of appearance in the graph.

This model is a generalization of the pure duplication model, where no edges are added
in the divergence step (r = 0). It is also similar to the Chung-Lu model, in which the
duplication step and the first part of the divergence step (retaining p-edges) is exactly
the same as in our model, however instead of adding r-edges we only add a single edge
between v and u with some fixed probability q [3].

Additionally note that the case p = 0 of our model somewhat resembles Erdős-Renýı
graphs in the sense that all pairs of vertices correspond to independent Bernoulli variables.
However, their respective probabilities are different, as at k-th step we add a vertex with
k − 1 possible incident edges with probabilities Ber(r/k).

It has been shown that graphs generated by this model for a set of parameters fit very
well into the structure of some real-world networks (e.g., protein-protein and citation
networks) in terms of the degree distribution [4] and small subgraphs (graphlets) count
[13]. It was also shown that this model may exhibit a large amount of symmetry (measured
by the number of automorphisms) [15], and this distinguishes it from other graph models
such as Erdős-Renyi and preferential attachment [10]. We formally showed in [17] that for
the special case of p = 1, r = 0 the expected logarithm of the number of automorphisms
for graphs on t vertices is asymptotically Θ(t log t), which indicates a lot of symmetry.
However, the extension of it for all p and r is a difficult open problem.

The most interesting open problem in the duplication-divergence model DD(t, p, r) is
the quest to uncover the behavior of the degree distribution, that is, the number of nodes
of a given degree. For r = 0 it was recently proved by Hermann and Pfaffelhuber in [6]
that depending on a value of p either there exists a limiting distribution with almost all
vertices isolated or there is no limiting distribution as t → ∞. It should be mentioned
that still the most interesting problem, namely the rate of convergence is open. They also
asserted (but without proof) that this holds also for r > 0. Our findings in this paper
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indicate that this is not the case as the size of the graph grows to infinity. Moreover, it
is shown in [9] that the number of vertices of degree one is Ω(ln t) but again the precise
rates of growth of the number of vertices with degrees k > 0 are yet unknown. Recently,
also for r = 0, Jordan [8] showed that the power-law of the degree distribution exists for
the connected component for p < e−1. In this case the exponent is equal to γ which is the
solution of 3 = γ + pγ−2. The case p ⩾ e−1 still remains an open problem.

In this paper we approach the problem of the degree distribution from a different
perspective. We investigate the behavior of two closely related variables: the degree of
a vertex s in Gt denoted degt(s) and the average degree D(Gt) in Gt. We present in
Theorems 5–17 exact and precise asymptotics of the expected values and variances of the
parameters under investigation when t → ∞. We show that all parameters exhibit phase
transition as a function of p. In particular, we find that E[degt(s)] grows respectively

like
(
t
s

)p
,
√

t
s

log s or
(
t
s

)p
s2p−1, depending whether p < 1/2, p = 1/2 or p > 1/2.

Furthermore, E[D(Gt)] is either Θ(1), Θ(log t) or Θ(t2p−1) for the same ranges of p. We
also determine the exact constants for the leading terms that strictly depend on p, r,
t0 and the structure of the seed graph Gt0 . This confirms the empirical findings of [7]
regarding the seed graph influence on the structure of Gt.

These findings allow us to better understand why the DD(t, p, r) model differs quite
substantially from other graph models such as preferential attachment model [18]. In
particular, we observe that the expected degree behaves differently as t → ∞ for various
values of s and p. For example, if p > 1/2, then for s = O(1) (that is, for very old
nodes) we observe that E[degt(s)] = O(tp) while for s = Θ(t) (i.e., very young nodes) we
have E[degt(s)] = O(t2p−1). This behavior is very different than the degree distribution
for, say, preferential attachment model, for which the expected degree of a vertex s in
a graph on t vertices is of order

√
t/s [10] and may lead to our better understanding of

some graph behaviors such as degree distribution, existence of power-law phenomenon,
symmetry, and structural compression.

2 Main results

In this section we present our main results with proofs and auxiliary lemmas delayed until
the next section.

We use the standard graph notation, e.g. from [5]: V (G) denotes the set of vertices of
graph G, NG(u) – the set of neighbors of vertex u in G, degG(u) = |NG(u)| – the degree
of u in G. For brevity we use the abbreviations for Gt, e.g. degt(u) instead of degGt

(u).
All graphs are simple. Let us also introduce the average degree D(Gt) of Gt as

D(G) =
1

|V (G)|
∑

v∈V (G)

degG(u)

, and average degree squared D(Gt) of Gt as

D2(G) =
1

|V (G)|
∑

v∈V (G)

deg2
G(u)
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. They are also known in the literature as the first and second moment of the degree
distribution, respectively.

Formally, we define the DD(t, p, r) model as follows: let 0 ⩽ p ⩽ 1 and 0 ⩽ r ⩽ t0 be the
parameters of the model. Let also Gt0 be a graph on t0 vertices, with V (Gt0) = {1, . . . , t0}.
Now, for every t = t0, t0 + 1, . . . we create Gt+1 from Gt according to the following rules:

1. add a new vertex t + 1 to the graph,

2. pick vertex u from V (Gt) = {1, . . . , t} uniformly at random – and denote u as
parent(t + 1),

3. for every vertex i ∈ V (Gt):

(a) if i ∈ Nt(parent(t + 1)), then add an edge between i and t+ 1 with probability
p,

(b) if i /∈ Nt(parent(t + 1)), then add an edge between i and t+ 1 with probability
r
t
.

2.1 Expected value

First, we derive the exact and the asymptotic expression for the expected values of the
average degree, the degree of the last node, and the degree of a given node. We start
our considerations by deriving a recurrence expression for E[degt(s)] from the definition
of the model.

Lemma 1. For all t ⩾ t0 it holds that

E[degt+1(s)] = E[degt(s)]
(

1 +
p

t
− r

t2

)
+

r

t
.

Note that in order to solve this recurrence we need to know the behavior of E[degs(s)]
for s ⩾ t0.

Next, we establish a relation between the expected degree of the newest vertex and
the expected average degree of the previous graph.

Lemma 2. For any t ⩾ t0 it holds that

E[degt+1(t + 1)] =
(
p− r

t

)
E[D(Gt)] + r.

Now, we use the model definition again to find the following recurrence for E[D(Gt)]:

Lemma 3. For any t ⩾ t0 it is true that

E[D(Gt+1)] = E[D(Gt)]

(
1 +

2p− 1

t + 1
− 2r

t(t + 1)

)
+

2r

t + 1
.

This leads us to the exact and asymptotic expressions for E[D(Gt)].
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Lemma 4. For all t ⩾ t0 we have

E[D(Gt)] =
Γ(t + c3)Γ(t + c4)

Γ(t)Γ(t + 1)(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
+ 2r

t−1∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
,

where c3 = p +
√

p2 + 2r, c4 = p−
√

p2 + 2r, and Γ(z) is the Euler gamma function.

Theorem 5. Asymptotically as t → ∞ we find

E[D(Gt)] =



t2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

D(Gt0)(1 + o(1)) if p ⩽ 1
2
, r = 0,

2r
1−2p

(1 + o(1)) if p < 1
2
, r > 0,

2r ln t (1 + o(1)) if p = 1
2
, r > 0,

t2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

(1 + o(1)) if p > 1
2
,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
])

where D(Gt0) is the average degree of the initial graph Gt0 and

3F2

[ a1,a2,a3
b1,b2 ; z

]
=

∞∑
l=0

(a1)l(a2)l(a3)l
(b1)l(b2)l

zl

l!

is the generalized hypergeometric function with (a)l = a(a+ 1) . . . (a+ l− 1), (a)0 = 1 the
rising factorial (see [1] for details).

Combining Lemmas 2 and 4 we obtain the following result:

Lemma 6. For all t > t0 it is true that

E[degt(t)] = (pt− p− r)
Γ(t + c3 − 1)Γ(t + c4 − 1)

Γ(t)2(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
+ 2r

t−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
+ r,

where c3, c4 are as above.

Similarly from Lemma 4 and Theorem 5 we get the final formula for degt(t).

Theorem 7. Asymptotically as t → ∞ it holds that

E[degt(t)] =



pt2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

D(Gt0)(1 + o(1)) if p ⩽ 1
2
, r = 0,

r
1−2p

(1 + o(1)) if p < 1
2
, r > 0,

2rp ln t (1 + o(1)) if p = 1
2
, r > 0,

pt2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

(1 + o(1)) if p > 1
2
,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
])

with the same notation as in Theorem 5.
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Now we are in the position to state the exact and asymptotic expressions for E[degt(s)].

Lemma 8. For all t > s > t0 it is true that

E[degt(s)] =
Γ(t + c1)Γ(t + c2)

Γ(t)2[
(ps− p− r)

Γ(s + c3 − 1)Γ(s + c4 − 1)

Γ(s + c1)Γ(s + c2)(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
+ 2r

s−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)

+
rΓ(s)2

Γ(s + c1)Γ(s + c2)
+ r

t−1∑
j=s

Γ(j)Γ(j + 1)

Γ(j + c1 + 1)Γ(j + c2 + 1)

]
,

where c1 =
p+
√

p2+4r

2
, c2 =

p−
√

p2+4r

2
, c3 and c4 as above.

Theorem 9. Asymptotically as t → ∞ it holds that:
(i) for s = O(1)

E[degt(s)] = tp(1 + o(1))[
(ps− p− r)

Γ(s + c3 − 1)Γ(s + c4 − 1)

Γ(s + c1)Γ(s + c2)(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
+ 2r

s−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)

+
rΓ(s)2

Γ(s + c1)Γ(s + c2)

(
1 + 3F2

[
s,s+1,1

s+c1+1,s+c2+1 ; 1
] s

s2 + ps− r

)]
.

(ii) for s = ω(1) and s = o(t)

E[degt(s)] =



D(Gt0)
pΓ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4)

(
t
s

)p
s2p−1(1 + o(1)) if p ⩽ 1

2
, r = 0,

r log
(
t
s

)
(1 + o(1)) if p = 0, r > 0,

r(1−p)
p(1−2p)

(
t
s

)p
(1 + o(1)) if 0 < p < 1

2
, r > 0,

r
√

t
s

log s (1 + o(1)) if p = 1
2
, r > 0,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
])

pΓ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

(
t
s

)p
s2p−1(1 + o(1)) if p > 1

2
.
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(iii) for s = ct− o(t), 0 < c ⩽ 1,

E[degt(s)] =



D(Gt0)
pΓ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4)
t2p−1cp−1(1 + o(1)) if p ⩽ 1

2
, r = 0,

r (1 − log c) (1 + o(1)) if p = 0, r > 0,(
r(1−p)

p(1−2p)cp
− r

p

)
(1 + o(1)) if 0 < p < 1

2
, r > 0,

r√
c

log t (1 + o(1)) if p = 1
2
, r > 0,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
])

pΓ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

t2p−1cp−1(1 + o(1)) if p > 1
2
.

Thus we have presented a complete characterization of the expected average degree
and the expected degree of a vertex s at time t.

2.2 Variance

The procedure described above can be extended to find also the second moment of the
degree distribution.

First, the analogous reasoning as in the previous subsection leads to a recurrence

Lemma 10. For all t ⩾ s it holds that

E[deg2
t+1(s)] = E[deg2

t (s)]

(
1 +

2p

t
− 2r

t2

)
+ E[degt(s)]

(
p + 2r

t
− r

t2

)
+

r

t
.

To solve this recurrence we need to know the behavior of E[deg2
s(s)] for all s ⩾ t0. To

do this we will need the following lemma connecting E[deg2
t (t)] and the first two moments

of the degree distribution.

Lemma 11. For any t ⩾ t0 it holds that

E[deg2
t+1(t + 1)] =

(
p2 − 2pr

t
+

r2

t2

)
E[D2(Gt)]

+

(
p− p2 + 2pr − r + 2r2

t
+

r2

t2

)
E[D(Gt)] + r2 + r − r2

t
.

Similarly as before, here we need to find E[D2(Gt)], that is, the average degree squared
of Gt. We find the following recurrence:

Lemma 12. For all t ⩾ t0 it is true that

E[D2(Gt+1)] = E[D2(Gt)]

(
1 +

2p + p2 − 1

t + 1
− 2r(1 + p)

t(t + 1)
+

r2

t2(t + 1)

)
+ E[D(Gt)]

(
2p− p2 + 2pr + 2r

t + 1
− 2r + 2r2

t(t + 1)
+

r2

t2(t + 1)

)
+

2r2 + 2r

t + 1
− r2

t(t + 1)
.
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Here E[D2(Gt+1)] should not be confused with E[D2(Gt+1)], however the latter one
may be derived in similar fashion:

Lemma 13. For all t ⩾ t0 it is true that

E[D2(Gt+1)
∣∣ Gt] =

D2(Gt)
t2 + 4tp− 4r

(t + 1)2
+ D2(Gt)

4

(t + 1)2

(
p2 − 2pr

t
+

r2

t2

)
+ D(Gt)

4

(t + 1)2

(
tr + p− p2 + 2pr − r + 2r2

t
+

r2

t2

)
+

4

(t + 1)2

(
r2 + r − r2

t

)
.

Finally, we may obtain both exact and asymptotic formulas for the variances of inves-
tigated random variables. However, due to the complicated form of the constants in exact
formulas, we drop the exact formulas from the paper and present only the asymptotic
rates of growth.

Theorem 14. The following holds

E[D2(Gt)] =


Θ(1) if p <

√
2 − 1,

Θ(log t) if p =
√

2 − 1,

Θ(tp
2+2p−1) if p >

√
2 − 1.

Applying Theorems 5 and 14 to Lemma 11 we observe E[D2(Gt)] asymptotically dom-
inates E[D(Gt)] and therefore

Theorem 15. It holds that

Var[degt(t)] =


Θ(1) if p <

√
2 − 1,

Θ(log t) if p =
√

2 − 1,

Θ(tp
2+2p−1) if p >

√
2 − 1.

Now we present the asymptotic expressions for Var[degt(s)]. Here we have two cases
with different regimes – however it should be noted that the leading terms may have
different exact leading constants for different ranges of p and r, the same as we have in
Theorem 9.

Theorem 16. Asymptotically as t → ∞ it holds that:
(i) for s = O(1)

Var[degt(s)] =

{
Θ(log t) if p = 0,

Θ(t2p) if p > 0.
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(ii) for s = ω(1)

Var[degt(s)] =


Θ
(

log
(
t
s

))
if p = 0

Θ
( (

t
s

)2p )
if 0 < p <

√
2 − 1

Θ
( (

t
s

)2p
log s

)
if p =

√
2 − 1

Θ
( (

t
s

)2p
sp

2+2p−1
)

if p >
√

2 − 1.

We conclude by stating the formula for Var[D(Gt)].

Theorem 17. It is true that asymptotically as t → ∞

Var[D(Gt)] =


Θ(1) if p < 1

2
,

Θ(log2 t) if p = 1
2
,

Θ(t4p−2) if p > 1
2
.

It is worth noting that for both degt(t) and degt(s) the order of growth of variance is
completely dominated by the second moment (unless it’s O(1)). However, with D(Gt) the
situation is different: both E[D2(Gt)] and (E[D(Gt)])

2 have the same order – although
with different leading constants.

3 Analysis

In this section we provide proofs of our main results. We start with a sequence of lemmas
that allow us to solve a particular type of recurrence encountered in this analysis, and
then we extract asymptotics using analytic tools.

3.1 Useful lemmas

We begin our analysis by deriving a series of lemmas useful for the analysis of the following
type of recurrence

E[f(Gn+1)
∣∣ Gn] = f(Gn)g1(n) + g2(n) (1)

for some nonnegative functions g1(n), g2(n) and a Markov process Gn. It should be noted
that our recurrences for E[degt(s)] and E[D(Gt)] (e.g. see Lemmas 1 and 3) fall under
this pattern.

Next lemma is a generalization of a result obtained in [6], where only the case g1(n) =
1 + a

n
, a > 0, was analyzed.

Lemma 18. Let (Gn)∞n=n0
be a Markov process for which Ef(Gn0) > 0 and (1) holds with

g1(n) > 0, g2(n) ⩾ 0 for all n = n0, n0 + 1, . . .. Then
(ii) The process (Mn)∞n=n0

defined by Mn0 = f(Gn0) and

Mn = f(Gn)
n−1∏
k=n0

1

g1(k)
−

n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)
(2)
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is a martingale.
(ii) For all n ⩾ n0

Ef(Gn) = f(Gn0)
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
n−1∏

k=j+1

g1(k)

=
n−1∏
k=n0

g1(k)

(
f(Gn0) +

n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)

)
.

Proof. Observe that

E[Mn+1

∣∣ Gn] = E[f(Gn+1)
∣∣ Gn]

n∏
k=n0

1

g1(k)
−

n∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)

= f(Gn)
n−1∏
k=n0

1

g1(k)
−

n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)
= Mn

which proves (i). Furthermore, after some algebra and taking expectation with respect to
Gn we arrive at

Ef(Gn) = E[Mn]
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)

n−1∏
k=n0

g1(k)

= f(Gn0)
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
n−1∏

k=j+1

g1(k)

which completes the proof.

We now observe that (2) as a solution of recurrences of type (1) contains sophisticated
products and the sum of products with which we must deal to find asymptotics. The next
lemma shows how to handle such products.

Lemma 19. Let W1(k), W2(k) be polynomials of degree d with respective roots ai, bi
(i = 1, . . . , d), that is, W1(k) =

∏d
i=1(k − ai) and W2(k) =

∏d
j=1(k − bj). Then

n−1∏
k=n0

W1(k)

W2(k)
=

d∏
i=1

Γ(n− ai)

Γ(n− bi)

Γ(n0 − bi)

Γ(n0 − ai)
.

Proof. We have

n−1∏
k=n0

W1(k)

W2(k)
=

n−1∏
k=n0

d∏
i=1

k − ai
k − bi

=
d∏

i=1

n−1∏
k=n0

k − ai
k − bi

=
d∏

i=1

Γ(n− ai)

Γ(n− bi)

Γ(n0 − bi)

Γ(n0 − ai)

which completes the proof.
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The next lemma presents the well-known asymptotic expansion of the gamma function
but we include it here for the sake of completeness.

Lemma 20 (Abramowitz, Stegun [1]). For any a, b ∈ R if n → ∞, then

Γ(n + a)

Γ(n + b)
= na−b

∞∑
k=0

(
a− b

k

)
B

(a−b+1)
k (a) · n−k

= na−b

(
1 +

(a− b)(a + b− 1)

2n
+ O

(
1

n2

))
,

where B
(l)
k (x) are the generalized Bernoulli polynomials.

Now we deal with sum of products as seen in (2). In particular, we are interested in
the following sum of products

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

with a =
∑k

i=1 ai, b =
∑k

i=1 bi. In the next three lemmas we consider three cases: a+1 > b,
a + 1 = b and a + 1 < b.

Lemma 21. Let ai, bi ∈ R (k ∈ N) with a =
∑k

i=1 ai, b =
∑k

i=1 bi such that a + 1 > b.
Then it holds asymptotically for n → ∞ that

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
1

a− b + 1
na−b+1 + O

(
nmax{a−b,0})

Proof. We estimate the sum using Lemma 20 and the Euler-Maclaurin formula [16, p. 294]

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
n∑

j=n0

ja−b

(
1 + O

(
1

j

))
=

∫ n

n0

ja−b

(
1 + O

(
1

j

))
dj

= na−b+1

(
1

a− b + 1
+ O

(
1

n

))
+ O(1)

which completes the proof.

Lemma 22. Let ai, bi ∈ R (k ∈ N) with a =
∑k

i=1 ai, b =
∑k

i=1 bi such that a + 1 = b.
Then asymptotically

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= lnn + O (1)

Proof. We proceed as before

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
n∑

j=n0

1

j

(
1 + O

(
1

j

))
=

∫ n

n0

1

j

(
1 + O

(
1

j

))
dj

= [ln j + O(1)]nn0
= lnn + O(1)

which completes the proof.
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Lemma 23. Let ai, bi ∈ R (i = 1, . . . , k, k ∈ N) with a =
∑k

i=1 ai, b =
∑k

i=1 bi such that
a + 1 < b. Then it holds for every n ∈ N+ that

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=

∏k
i=1 Γ(n + ai)∏k
i=1 Γ(n + bi)

k+1Fk

[
n+a1,...,n+ak,1
n+b1,...,n+bk

; 1
]

where pFq[
a
b ; z] is the generalized hypergeometric function. Moreover it is true that asymp-

totically

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= na−b+1

(
1

b− a− 1
+ O

(
1

n

))
.

Proof. The proof of the first formula follows directly from the definition of the generalized
hypergeometric function. Second formula follows from Lemma 20, as we know that for
n → ∞:

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
∞∑
j=n

ja−b

(
1 + O

(
1

j

))
=

∫ ∞

n

ja−b

(
1 + O

(
1

j

))
dj

= na−b+1

(
1

b− a− 1
+ O

(
1

n

))
as desired.

3.2 Proofs for expected values

Proof of Lemma 1. Observe that for any t ⩾ s we know that vertex s may be connected
to vertex t + 1 in one of the following two cases:

• either s ∈ Nt(parent(t + 1)) (which holds with probability degt(s)
t

) and we add an
edge between s and t + 1 (with probability p),

• or s /∈ Nt(parent(t + 1)) (with probability t−degt(s)
t

) and we an add edge between s
and t + 1 (with probability r

t
).

Therefore, we obtain the following recurrence for E[degt(s)]:

E[degt+1(s)
∣∣ Gt] =

(
degt(s)

t
p +

t− degt(s)

t

r

t

)
(degt(s) + 1)

+

(
degt(s)

t
(1 − p) +

t− degt(s)

t

(
1 − r

t

))
degt(s)

= degt(s)
(

1 +
p

t
− r

t2

)
+

r

t
.

After applying the law of total expectation we get the desired result.
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Proof of Lemma 2. We first observe that it follows from the definition of the model that
the degree of the new vertex t+1 is the total number of edges from t+1 to Nt(parent(t + 1))
(chosen independently with probability p) and to all other vertices (chosen independently
with probability r

t
). Note that it can be expressed as a sum of two binomial variables

degt+1(t + 1)

∼ Bin (degt(parent(t + 1)), p) + Bin
(
t− degt(parent(t + 1)),

r

t

)
.

These variables are independent conditional on the choice of parent, hence

E[degt+1(t + 1)
∣∣ Gt] =

t∑
k=0

Pr(degt(parent(t + 1)) = k)
(
pk +

r

t
(t− k)

)
=
(
p− r

t

) t∑
k=0

k Pr(degt(parent(t + 1)) = k) + r.

Since parent sampling is uniform, we know that Pr(parent(t + 1) = i) = 1
t

and there-
fore

D(Gt) =
t∑

k=0

k Pr(degt(parent(t + 1)) = k).

By combining the two equations above with the law of total expectation we finally estab-
lish the lemma.

Proof of Lemma 3. Again we turn directly to the definition of the model, from which we
derive the following recurrence for the average degree of Gt+1:

E[D(Gt+1)
∣∣ Gt] =

1

t + 1

(
t∑

i=1

degt(i) + 2E
[
degt+1(t + 1)

∣∣ Gt

])
=

1

t + 1

(
tD(Gt) + 2E[degt+1(t + 1)

∣∣ Gt]
)

= D(Gt)

(
1 +

2p− 1

t + 1
− 2r

t(t + 1)

)
+

2r

t + 1
.

where the last equality follows from Lemma 2.
The final result is a direct consequence of applying the law of total expectation.

Proof of Lemma 4. It is sufficient to apply Lemmas 18 and 19 to Lemma 3 with g1(t) =
1 + 2p−1

t+1
− 2r

t(t+1)
and g2(t) = 2r

t+1
.

Proof of Theorem 5. For convenience, we introduce

A1(t) :=
Γ(t + c3)Γ(t + c4)

Γ(t)Γ(t + 1)
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
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A2(t) :=
Γ(t + c3)Γ(t + c4)

Γ(t)Γ(t + 1)

t−1∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)
,

so that

E[D(Gt)] = A1(t) + 2rA2(t).

Then, the result follows directly from the equations above combined with Lemmas 21
to 23 for the respective ranges of p:

A1(t) = t2p−1D(Gt0)
Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
(1 + o(1))

A2(t) =


1

1−2p
(1 + o(1)) if p < 1

2
,

ln t (1 + o(1)) if p = 1
2
,

t2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

t0
t20+2pt0−2r

3F2

[
t0+1,t0+1,1

t0+c3+1,t0+c4+1 ; 1
]
(1 + o(1)) if p > 1

2
.

Proof of Lemma 8. By applying Lemma 18 to Lemma 1 with g1(t) = 1 + p
t
− r

t2
and

g2(t) = r
t

we obtain

E[degt(s)] = E[degs(s)]
t−1∏
k=s

(
1 +

p

k
− r

k2

)
+

t−1∑
j=s

r

j

t−1∏
k=j+1

(
1 +

p

k
− r

k2

)
.

Now we combine this result with Lemma 19 and find that

E[degt(s)] =
Γ(t + c1)Γ(t + c2)

Γ(t)2(
E[degs(s)]

Γ(s)2

Γ(s + c1)Γ(s + c2)
+ r

t−1∑
j=s

Γ(j)Γ(j + 1)

Γ(j + c1 + 1)Γ(j + c2 + 1)

)

where c1 =
p+
√

p2+4r

2
, c2 =

p−
√

p2+4r

2
.

Now it is sufficient to apply Lemma 6 to this equation to get the final result.

Proof of Theorem 9. All parts of this theorem – as it was in the case of E[D(Gt)] above
– follow as consequences of Lemma 8 combined with Lemmas 21 to 23 for the respective
ranges of p and r.
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3.3 Proofs for second moments and variances

Proof of Lemma 10. The formula follows directly from the model itself:

E[deg2
t+1(s)

∣∣ Gt] =

(
degt(s)

t
p +

t− degt(s)

t

r

t

)
(degt(s) + 1)2

+

(
degt(s)

t
(1 − p) +

t− degt(s)

t

(
1 − r

t

))
deg2

t (s),

so we need only to rearrange the terms and apply the law of total expectation.

Proof of Lemma 11. It may be observed that

E[deg2
t+1(t + 1)

∣∣ Gt] =

=
t∑

k=0

Pr(degt(parent(t + 1)) = k)
k∑

a=0

(
k

a

)
pa(1 − p)k−a

t−k∑
b=0

(
t− k

b

)(r
t

)b (
1 − r

t

)t−k−b

(a + b)2

=
t∑

k=0

Pr(degt(parent(t + 1)) = k)(
k2

(
p2 − 2pr

t
+

r2

t2

)
+ k

(
p− p2 + 2pr − r + 2r2

t

)
+ r2 + r − r2

t

)
= D2(Gt)

(
p2 − 2pr

t
+

r2

t2

)
+ D(Gt)

(
p− p2 + 2pr − r + 2r2

t
+

r2

t2

)
+ r2 + r − r2

t
,

since we have similarly as before in the case of D(Gt):

D2(Gt) =
t∑

i=1

Pr(parent(t + 1) = i) deg2
t (i)

=
t∑

k=0

Pr(degt(parent(t + 1)) = k)k2.

This, after applying the law of total expectation, establishes the lemma.

Proof of Lemma 12. We start from the definition of the second moment of the degree
distribution of Gt:

E[D2(Gt+1)
∣∣ Gt] =

1

t + 1
E

[
t+1∑
i=1

deg2
t+1(i)

∣∣ Gt

]

the electronic journal of combinatorics 28(1) (2021), #P1.18 15



=
1

t + 1
E

[
t∑

i=1

(degt(i) + It+1(i)))
2 + deg2

t+1(t + 1)
∣∣ Gt

]

=
1

t + 1
E

[
t∑

i=1

deg2
t (i) + 2

t∑
i=1

degt(i)It+1(i)

+
t∑

i=1

I2t+1(i) + deg2
t+1(t + 1)

∣∣ Gt

]

where It+1(i) is an indicator variable denoting whether there is an edge between vertices
t + 1 and i.

Now we use the following simple facts

t∑
i=1

I2t+1(i) =
t∑

i=1

It+1(i) = degt+1(t + 1),

E

[
t∑

i=1

degt(i)It+1(i)
∣∣ Gt

]
=

t∑
i=1

degt(i)E[It+1(i)
∣∣ Gt]

=
t∑

i=1

degt(i)

(
degt(i)

t
p +

t− degt(i)

t

r

t

)
=
(
p− r

t

)
D2(Gt) + rD(Gt).

This lead us to

E[D2(Gt+1)
∣∣ Gt] = D2(Gt)

(
1 +

2p + p2 − 1

t + 1
− 2r(1 + p)

t(t + 1)
+

r2

t2(t + 1)

)
+ D(Gt)

(
2p− p2 + 2pr + 2r

t + 1
− 2r + 2r2

t(t + 1)
+

r2

t2(t + 1)

)
+

r2 + 2r

t + 1
− r2

t(t + 1)
.

To finish the proof, we again apply the law of total expectation.

Proof of Lemma 13. From the model definition we get

E[D2(Gt+1)
∣∣ Gt] =

1

(t + 1)2
E

( t+1∑
i=1

degt+1(i)

)2 ∣∣ Gt


=

1

(t + 1)2

((
t∑

i=1

degt(i)

)2

+ 4E
[
degt+1(t + 1)

∣∣ Gt

] t∑
i=1

degt(i)

+ 4E
[
deg2

t+1(t + 1)
∣∣ Gt

])
.
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Now it is sufficient to substitute the respective parts of the formula by D2(Gt) and D(Gt)
and once again apply the law of total expectation.

Proof of Theorem 14. We split the formula

B1(t) :=
Γ(t + c5)Γ(t + c6)Γ(t + c7)

Γ(t)2Γ(t + 1)
D2(Gt0)

Γ(t0)
2Γ(t0 + 1)

Γ(t0 + c5)Γ(t0 + c6)Γ(t0 + c7)
,

B2(t) :=
Γ(t + c5)Γ(t + c6)Γ(t + c7)

Γ(t)2Γ(t + 1)
(1 + o(1))

t−1∑
j=t0

E[D(Gj)]
1

j + 1

Γ(j + 1)2Γ(j + 2)

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)
,

B3(t) :=
Γ(t + c5)Γ(t + c6)Γ(t + c7)

Γ(t)2Γ(t + 1)
(1 + o(1))

t−1∑
j=t0

1

j + 1

Γ(j + 1)2Γ(j + 2)

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)
,

so that

E[D2(Gt)] = B1(t) + (2p− p2 + 2pr + 2r)B2(t) + (r2 + 2r)B3(t),

where c5, c6, c7 are the roots of equation t3 − (2p + p2)t2 − 2r(1 + p)t− r2 = 0.
Now we may show that asymptotically:

B1(t) = tp
2+2p−1D2(Gt0)

Γ(t0)
2Γ(t0 + 1)

Γ(t0 + c5)Γ(t0 + c6)Γ(t0 + c7)
(1 + o(1)),

B2(t) = tp
2+2p−1(1 + o(1))
t−1∑
j=t0

E[D(Gj)]
Γ(j + 1)3

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)
,

B3(t) = tp
2+2p−1(1 + o(1))
t−1∑
j=t0

Γ(j + 1)3

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)
.

The rate of growth of B1(t) is of course Θ(tp
2+2p−1). The rates of growth of B3(t) can be

found by applying Lemmas 21 to 23 to the respective cases: for example, when p >
√

2−1
we have B3(t) = Θ(tp

2+2p−1
∑

j−p2−2p) = Θ(1).
Finding the asymptotics of B2(t) is more complicated. To solve it we substitute

E[D(Gj)] using Theorem 5 and note that

B21(t) =
t−1∑
j=t0

Γ(j + c3)Γ(j + c4)Γ(j + 1)2

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)Γ(j)
,
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B22(t) =
t−1∑
j=t0

j−1∑
k=t0

Γ(k + 1)2

Γ(k + c3 + 1)Γ(k + c4 + 1)

Γ(j + c3)Γ(j + c4)Γ(j + 1)2

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)Γ(j)
,

so that

B2(t) = tp
2+2p−1(1 + o(1))

(
D(Gt0)

Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4)
B21(t) + 2rB22(t)

)
.

Here B21(t) poses no problem, as it can be analyzed similarly as B3(t). Moreover, we
bound

B22(t) ⩽
t−1∑
k=t0

Γ(k + 1)2

Γ(k + c3 + 1)Γ(k + c4 + 1)

t−1∑
j=t0

Γ(j + c3)Γ(j + c4)Γ(j + 1)2

Γ(j + c5 + 1)Γ(j + c6 + 1)Γ(j + c7 + 1)Γ(j)
.

Now if p >
√

2 − 1 the right hand side is upper bounded by a constant, as the first sum
is of order Θ(t1−2p) and the second sum is of order Θ(t2p−2p−p2) – and therefore in total
B22(t) = O(t1−2p−p2), so it’s bounded from above by a constant.

All other cases are treated in exactly analogous way. By putting them all together in
the way presented above we obtain the final result.

Proof of Theorem 16. Lemma 10 combined with Lemma 18 lead us to

E[deg2
t (s)] = E[deg2

s(s)]
t−1∏
k=s

(
1 +

2p

k
− 2r

k2

)

+
t−1∑
j=s

[
E[degj(s)]

(
p + 2r

j
− r

j2

)
+

r

j

] t−1∏
k=j+1

(
1 +

2p

k
− 2r

k2

)
.

From Lemmas 19 and 20 we find that

t−1∏
k=j

k2 + 2kp− 2r

k2
= Θ

(
t2p

j2p

)
.

To find the asymptotic expression for E[deg2
t (s)] it is sufficient to combine this with

Lemma 8 and Theorem 15 (substituting E[degj(s)] and E[deg2
s(s)], respectively) and apply

Lemmas 21 to 23 for the proper ranges of p. For example, for s = O(1) it holds that

• the first part grows like Θ(log t) for p = 0 and Θ(t2p) otherwise,

• the second part grows like Θ(1), Θ(log t) or Θ(t2p−1) for p less, equal to or greater
than 1

2
,
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so the first part is always asymptotically greater than the second part.
The variance is obtained in the usual way, by subtracting the square of the respective

formulas from Theorem 5. Note that here, in contrast to Theorem 9 we do not need to
distinguish the case s = ct− o(t), as it differs only in the leading constant, but not in the
rate of growth.

Proof of Theorem 17. The product form of E[D2(Gt)] may be derived from Lemmas 13
and 18 as

E[D2(Gt)] = D2(Gt0)
t−1∏
j=t0

j2 + 4jp− 4r

(j + 1)2

+
t−1∑
j=t0

E[D2(Gj)]
4p2

(j + 1)2
(1 + o(1))

t−1∏
k=j+1

k2 + 4kp− 4r

(k + 1)2

+
t−1∑
j=t0

E[D(Gj)]
4jr

(j + 1)2
(1 + o(1))

t−1∏
k=j+1

k2 + 4kp− 4r

(k + 1)2

+
t−1∑
j=t0

4r2

(j + 1)2
(1 + o(1))

t−1∏
k=j+1

k2 + 4kp− 4r

(k + 1)2
.

Now use Lemmas 19 and 20 to prove that for any j it holds that

t−1∏
k=j

k2 + 4kp− 4r

(k + 1)2
= Θ

(
t4p−2

j4p−2

)
.

Finally, we may consider each term of the sum separately and find – using Lemmas 21
to 23 – that asymptotically:

• the first term grows like Θ(t4p−2),

• the second term grows like Θ(t4p−2
∑

E[D2(Gj)j
−4p]), which is Θ(t−1), Θ(t−1 log t)

or Θ(tp
2+2p−2) for p <

√
2 − 1, p =

√
2 − 1 and p >

√
2 − 1 respectively – and in

each case dominated by the first term,

• the third term grows like Θ(t4p−2
∑

E[D(Gj)j
1−4p]), which is Θ(1), Θ(log t) or

Θ(t2p−1) for p < 1
2
, p = 1

2
and p > 1

2
respectively,

• the fourth term grows like O(t4p−2
∑

j−4p), which is always asymptotically domi-
nated by the second term.

This establishes the behavior of E[D2(Gt)] – and the only remaining part is to combine
this with Theorem 5 to find Var[D(Gt)].
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4 Discussion

In this paper we focus on rigorous and precise analysis of the expected average degree
and variance of a given node in the network as well as the average degree over all nodes.
We presented exact and asymptotic results showing phase transitions of these quantities
as a function of p.

It is worth noting that the parameter p solely drives the rate of growth of both first
and second moments of variables D(Gt)], degt(t) and degt(s). The parameter r impacts
only the leading constant and lower order terms. The proposed methodology can be easily
extended to obtain higher moments of the above quantities, if needed.

The future work may include investigations both the large deviation of the degree
distribution as well as the complete spectrum of the degree distribution (i.e., the number
of nodes of degree k) as a function of k, t, Gt0 , p and r.
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