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Abstract

Consider a graph G on n vertices with a(g) edges which does not contain an
induced Ky, (t > 2). How large must o be to ensure that G contains, say, a large
clique or some fixed subgraph H? We give results for two regimes: for o bounded
away from zero and for a = o(1).

Our results for @ = o(1) are strongly related to the Induced Turdn numbers
which were recently introduced by Loh, Tait, Timmons and Zhou. For a bounded
away from zero, our results can be seen as a generalisation of a result of Gyarfas,
Hubenko and Solymosi and more recently Holmsen (whose argument inspired ours).

Mathematics Subject Classifications: 05C35

1 Introduction

Fix an integer ¢ > 2 and consider a graph G on n vertices with a(;‘) edges which does

not contain an induced Ks,;. How large does o have to be to ensure that G contains some
substructure (like a large clique or a fixed subgraph H)? We consider two regimes: « is
bounded away from zero and « goes to zero as n goes to infinity.

In the regime where « is bounded away from zero, G will contain substructures that
grow with n (so for example the clique number of G, w(G), will go to infinity). Gyéarfas,
Hubenko and Solymosi [7] dealt with the clique number in the case when ¢ = 2 (that is,
G contains no induced C}), confirming a conjecture of Erdés.

Proposition 1 (Gyérfas-Hubenko-Solymosi, [7]). Let G be a graph on n vertices with

a(g) edges. If G does not contain an induced Ky o, then w(G) > o*n/10.

This was recently improved by Holmsen [§] (note that 1 —+/1 —a > «/2 for a € [0, 1]).
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Proposition 2 (Holmsen, [8]). Let G be a graph on n vertices with a( ) edges. If G does
not contain an induced Ky, then w(G) > (1 — /1 — a)’n.

This result has the added advantage that (1 — /1 —a)* — 1 as a — 1, so it is approxi-
mately tight as a — 1. The arguments in this paper are motivated by Holmsen’s.

Our main result is Theorem 10, which is an extension to the situation where G does
not contain an induced Ky, and also considers whether G contains some general subgraph
(in place of a clique). For comparison with Proposition 2, we state the special case of the
clique (we believe this result is also in a sense tight as & — 1 — see Remark 12). First, it
will be convenient to define a constant § depending on « and t.

Definition 3. Given a € [0, 1] and an integer ¢t > 2, define

Bi(a) = 2’0 - vi=al.

t
— /1 (1
2vt—1 [ (
Note that Sa(a) = 1 — /1 — « so Proposition 2 can be stated as: if G is a graph on n
vertices with a(}) edges containing no induced Ko, then w(G) > Ba()?n

Theorem 4. Let G be a graph on n vertices with 04(’2‘) edges containing no induced Ko,

and let B = Bi(a). For any positive integer r with R(t,r) < $%*n, we have w(G) > r + 1.

Here R(t,7) denotes the usual Ramsey number. It is natural for Ramsey numbers to
appear in the statement. The class of graphs with “no induced K5;” includes those with
“no independent t-set” and if w(G) > r + 1 for all such graphs, then R(t,r +1) <n

Since R(2,7) = r, Theorem 4 is exactly Holmsen’s result when ¢t = 2. In Section 3,
using known Ramsey number bounds we prove explicit lower bounds for the clique number
for all t. As an illustration, we state the case t = 3, which is particularly clean.

Theorem 5. Let G be a graph on n vertices with a( ) edges. If G does not contain an
induced Ky 3, then

L a\/_J for alln, and
% v/nlogn + 2 for large enough n in terms of «.

The regime where o goes to zero is closely related to the following natural question first
proposed by Loh, Tait, Timmons and Zhou [9]. Consider a graph G on n vertices with
oz(g) edges containing no induced Ks; — how large must a be to ensure that some fixed
graph H is a subgraph of G7 If we do not ban G from containing an induced Kj; then the
answer follows from the theorem of Erdds and Stone [3] (see Erdés and Simonovits [2]):

a=1- m + o(1) where x(H) is the chromatic number of H. However forbidding

) =
(G>

G from containing an induced Ky, (ruling out Turdn-style graphs) changes the answer
drastically. In particular we will see that the required o grows like n='/2, that is, the
required number of edges grows like n%/2.
Loh, Tait, Timmons and Zhou introduced the notion of an induced Turdn number:
define
ex(n, {H, F-ind})
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to be the maximum number of edges in a graph on n vertices which does not contain H
as a subgraph and does not contain F' as an induced subgraph. In this paper we focus
on F' = Ky, which was also considered by Loh, Tait, Timmons and Zhou. We will give
some improvements to their results. The important case where H is an odd cycle has
been resolved by Ergemlidze, Gyéri and Methuku [5].

Proposition 6 (Loh-Tait-Timmons-Zhou, [9]). Let t > 3 be an integer and G be a graph

on n vertices within minimum degree d. If G does not contain an induced Ky, then
G & o
> ——(1—o(1 —t+1.
w(6) > (g1 - o)

A graph with a(;) edges has average degree a(n — 1) and has a subgraph of minimum
degree at least a(n — 1)/2. Thus one should view d as being between a(n — 1)/2 and

a(n —1). We improve the dependence upon ¢ for all o as well as adding a (log n)lfﬁ
factor for constant a > 0.

Theorem 7. Let G be a graph on n vertices with a(g) edges. If G does not contain an
induced Koy, then

w(G) > L%(azn)ﬁj —t+3 for all n, and

w(G) = QLOt(azn(log n)t_Q)E for large enough n in terms of a.

Finally, Loh, Tait, Timmons and Zhou gave a general upper bound for ex(n, {H, F-ind})
when F' = Ky 4.

Proposition 8 (Loh-Tait-Timmons-Zhou, [9]). Fiz a graph H with vy vertices. For any
nteger t = 2, ) L,
ex(n, {H, Ky 1-ind}) < (V2 + 0o(1))t2 (v +t)7n2.

They also noted that a corollary of Fiiredi [6] is that, for H not bipartite,
tins — Ot(n%) < ex(n,{H, Ky441-ind}).

NI

In particular, for non-bipartite H, ex(n,{H, Ko;41-ind}) = ©,(n*?) but the correct
growth rate in ¢ lies between 1¢*/2n%? and Cyt"™)/2n3/2. We give a slightly more general
result (expressing the upper bound for the induced Turdn number in terms of a Ramsey
number involving H — see Corollary 15 and Theorem 18) followed by an improvement to
the general upper bound.

Theorem 9. Fiz a graph H with vy vertices. For any integert > 1,

ex(n,{H, Ky;1-ind}) < (t + 1)UH2_ln%,
ex(n, {H, Ko441-ind}) < e 1ot lns

The first bound shows that, for non-bipartite H, the correct growth rate in ¢ is a poly-
nomial in ¢ times n®2. The second bound is better when t and vy are of comparable
size.
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2 Notation, main result and organisation

If v is a vertex of a graph G = (V| F) then I'(v) = {u € V : wv € E'} is the neighbourhood
of v. We set G, = G[I'(v)]. For a fixed graph H, let { H —x} be the set of graphs obtained
by removing a single vertex from H and let { H — €} be the set of graphs obtained from H
by either removing a single vertex or two non-adjacent vertices. In particular the Ramsey
number, R(K;, {H — x}), is the least n such that any red-blue colouring of the edges of
K, contains either a red K; or a blue graph which can be obtained from H by removing
a single vertex.
Our main result is the following which applies for all values of a.

Theorem 10. Fizx a graph H. Let G be a graph on n vertices with a( ) edges containing
no induced Koy (t = 2) and let 5 = f(a).
If R(Ky, {H—=x}) < B?n, then H is a subgraph of G. In particular, if R(K;,{H—1z}) <

tt_—gl -an, then H is a subgraph of G.

The sufficiency of R(K;, {H — z}) < 5 - a®n follows from the following lemma which
relates § to a in a manageable way.

Lemma 11. For all a € [0, 1] and integers t > 2, = [Bi(«) satisfies
(t—1)(a— B’ =31 - )3

=1
fIa<B<a,
B—1, asa — 1.

Proof. The equation (t — 1)(a — 8%)? = t*(1 — a)$? is a quadratic in 2. One can check
that f;(«) does indeed square to a solutlon of this quadratic.

Fix ¢ and define the function f(z) = /1 — (1 —2/t)%2x — /1 — 1z for = E [0,1]. Then
f is convex increasing with f(0) = O and f(1) = z”t L. Thus f(z) < 221z, Also the
derivative of f at zero is 2 — 2 = ttQ Y so flz) > t2 221 In particular B = 2\ﬁf( )
satisfies */’;Tla <pf<a

Finally, f is continuous so, as « tends to 1, 8 tends to 2\/‘;71]“(1) =1. ]

We prove Theorem 10 in Section 5. Before that we use Ramsey estimates to obtain various
corollaries. We normally give two versions of the results: one which holds for all values
of n and a stronger bound which holds for large enough n (in terms of «). The latter is
only really applicable in the regime where « is bounded away from zero.

In Section 3 we look at the special case where H is a complete graph, proving Theo-
rems 4, 5 and 7. In Section 4 we consider general H for the Induced Turdn problem (so
a going to zero) and prove Theorem 9. Finally in Section 6 we exhibit a variation on
our methods which gives a slight asymptotic improvement for the induced Turan number
of H-free graphs with no induced K,,. This includes the observation that such graphs
contain O(n?"/*) = o(n?) triangles.
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3 Clique numbers of graphs with no induced K,
If we take H = K,y in Theorem 10 then {H — 2} = {K,} so Theorem 4 is immediate.

Theorem 4. Let G be a graph on n vertices with a( ) edges containing no induced Ko,
and let 3 = By(a). For any positive integer r with R(t,r) < $%*n, we have w(G) > r + 1.

Remark 12. The following example illustrates why we believe this result is in a sense tight
as a« — 1. Consider a graph G on n vertices which has no independent ¢-set and smallest
possible clique number (a Ramsey-like graph): that is, R(t,w(G) + 1) > n > R(t,w(G)).
Now G has no independent t-set so does not contain an induced Ks;. If there are such
graphs with (1 — 0(1))(;) edges then these form a sequence of graphs for which v — 1
(and so f — 1), but for which the statement becomes false if 3 is actually replaced by 1.

We do believe that such graphs have (1 — o(1))(;) edges. This would follow, for

2
Rg(; lm?) — 0 as m — oo (true for ¢t = 3 and 4 by standard Ramsey bounds

but not known in general): the non-neighbours of a vertex in such a graph, G, cannot
contain an independent (t— 1)-set, so there are at most R(t—1,w(G)+ 1) non-neighbours,
and so 6(G) would be (1 —o(1))n.

The following corollary for t = 3 contains Theorem 5.

example, from

Corollary 13. Let G be a graph on n vertices with a( ) edges which contains no induced
K3 Let = Ps(a) = 2\[[\/1———\/1—04. Then

w(G) = |BV2n] = |2av/n] for alln, and
w(G) = B/inlogn +2 > Lan/nlogn + 2 for large enough n, say n > exp(2¢”572).

Proof. Firstly, the theorem of Erdés and Szekeres [4] gives that R(3,r) < (1) for all

positive r. Thus r = |3v/2n] — 1 satisfies R(3,7) < 1|8v2n]?* < #*n and so Theorem 4
gives the first result.

Secondly, R(3,7) < bg((TT—Ql for all 7 > 4 (a corollary of Shearer’s result on indepen-

dent sets in triangle-free graphs, [10]). Thus r = {6 %nlog nJ + 2 satisfies R(3,7) < 3*n
provided n > exp(2e2572). O
The following corollary (which contains Theorem 7) for ¢ larger than three is obtained

in exactly the same way, using known bounds for R(¢,r). Improvements in the upper
bounds on Ramsey numbers would improve the results.

Corollary 14. Let G be a graph on n vertices with a( ) edges containing no induced Ko,
and let = pi(a). Then

w(G) =

w(G) 2 55 (8*n) T (F57) T 2 g (a®n(logn) )

'_

= (g2n)=1 J—t+3andw(G)/L La?n)e1 J—t+3f07"alln, and

for large enough n in terms of (.
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Proof. The theorem of Erdds and Szekeres [4] gives that R(t,r) < ("[%) < % for

all positive r. Thus r = | (8*n(t — 1)!)$J —t+ 2 has R(t,r) < 8°n so, by Theorem 4,

1 1

w(G) = (Bt -1 —t+3 > [(5Bra’n(t— 1)) | —t+3.

1 1
Furthermore (t—1)! > (%) so ((t—1)1)"" > =1 That (SH(¢—1)1) 7T > 5 follows
from (¢t —1)! > (t_l)H/z for t > 4 and can be checked directly for ¢t = 2, 3.
Finally R(t,7) < 2(20)t 3( o 1 > for r sufficiently large (see Bollobés [1, Thm 12.17])
so we obtain, for all large n, that

w(G) > %(%)

4 Turan number for no H and no induced K,

L

2 t—2
> 1 (a*n(logn) . -
20\ 2(t — 1)t-3

We now focus on the regime where « goes to zero and consider the induced Turan numbers
introduced by Loh, Tait, Timmons and Zhou.

Corollary 15. Fix a graph H. For any integer t > 2,

3
2

ex(n,{H, Ky4-ind}) < R(K;,{H — })%n :

2\/7

Proof. Let G be a graph on n Vertices containing no induced Kj; and no CoPy of H. By
Theorem 10, R(K;,{H — z}) > ~a’n so a < Fn ~2R(K,,{H — x})2. Therefore

N

e(G) =a(?) < R(K,, {H — z})in2(n — 1). O

2\/7

We now use Theorem 7 and Corollary 15 to prove Theorem 9, restated here for conve-
nience.

Theorem 9. Fizx a graph H with vy vertices. For any integer t > 1,

vg=l 3
n?2

ex(n, {H, Ka41-ind}) < (t+1)
ex(n, {H, Ky441-ind}) < e g

3
nz.

Proof. Note that R(Ky,{H — x}) < R(t+ 1,vg — 1). For all positive integers a and b

?

a+b—2\ _ a+b—2  a+b-3 b a—1
(afl)_ a—1 a—2 lgb

and so Erdés and Szekeres’s bound [4] gives R(K,y1,{H — z}) < (t + 1)*#~2. By Corol-
lary 15,

—1

ex(n,{H, Ky;41-ind}) < ;i\/lz(t + 1)UTH71n% < (t+ 1)111_]2 .

Njw
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Let G be a graph on n vertices with a(g) edges and no induced Ksy4y1. If G does not
contain H then w(G) < vy so, by Theorem 7, vy > | L(a®n)7| —t+2. vy +t—2is an
integer so )

vg+t—2> L(a’n)r.
Now rearranging and using e(G) = a(}) < $n? we get

VH
-1

t :
e(G) < n%Zt_l(l + U=2)2 e 2013, O

5 Proof of main result

For convenience we restate the main result here. As mentioned earlier, the proof is
motivated by that of Holmsen [§].

Theorem 10. Fiz a graph H. Let G be a graph on n vertices with oz(g) edges containing
no induced Koy (t > 2) and let B = fi(a).

If R(Ky, {H—=x}) < 3°n, then H is a subgraph of G. In particular, if R(K;,{H—z}) <
tt’—Ql -on, then H is a subgraph of G.

Proof. By Lemma 11, for a € [0,1] we have 0 < f < a < 1 and also ﬁ(a — BQ)Q =

t2
(1—a)s
Suppose that G does not contain H. Let the set of missing edges in G be M =
(V(G)) — E(G), which has size (1 — a)(3}). For each v € V(G), let

2

m, be the total number of missing edges in G,
Ay, ...,A,, be a maximal collection of pairwise vertex-disjoint

independent t-sets in G,.

By the maximality of ,, G[['(v)\ U; A;] does not contain an independent ¢-set. Further-
more it does not contain any H — = (else together with v we have a copy of H in G).
Thus

R(Ky,{H —z})— 1> |T'(v)| — ty, = deg(v) — t7,, and so
Yo = qldeg(v) — R(K;, {H — x}) + 1] > j[deg(v) — *(n — 1)]. (1)

G contains no induced Ky, so at most one vertex in A; is adjacent to all of Aj (for any
i # j). In particular, between A; and A; there must be at least + — 1 missing edges.
These missing edges are in no A, (by vertex-disjointness) and each such edge corresponds
to only one pair (4, Aj). Considering these missing edges as well as the ones contained

entirely in each Ay gives

my = ()7 + = 1)(%) = q(n),

where
q(z) =5t z(z+t—1)
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is convex and increasing for non-negative x. Averaging (1) over v € G we have
—Z%/ (G) = Bn(n—1)] = H(a = B°) (n—1).

Using Jensen, the monotonicity of ¢, and the fact that o > 8 > 5% gives

%va %Zq(%)>q( Z%) (3 (= B%)(n 1))
S Ha- )1 (- a1 +t-1)
2 Yo P Ha
=Sa-)" (3)
= B (1= a)(}).

Now Y comu = > ,cp #{v with e C T'(v)} and [M| = (1 — ) (}) so there is € € M and
S C V(G) of size at least 3?n such that € C I'(v) for each v € S: that is, all vertices of S
are in the common neighbourhood of the two end-vertices of the missing edge e.

Now G[S] contains no independent ¢-set (else together with € we have an induced Ko )
and |S| > 3°n > R(K;,{H — z}) so G[S] contains a copy of some H — x. Together with
one end-vertex of € we have a copy of H in G. [

WV

\\/

Remark 16. It is natural to ask whether the ideas of this argument could be extended to
graphs which contain no induced K,;. The argument above is so clean partly because the
number of independent 2-sets in G is determined by « (it is [M| = (1—a)(})). Extending
to no induced K,; would require some knowledge of the number of independent s-sets

in G.

6 Improvement when there are few triangles

3

Corollary 15 says ex(n, {H, K-ind}) < 2F R(K,,{H—x})2n3. In this section we show
that n-vertex H-free graphs with no induced Ky, contain o(n?) triangles. This asymptot-
ically improves our lower bound on the number of missing edges in each neighbourhood
and so improves Corollary 15 by a factor of v/t as well as reducing the Ramsey number
used — see Theorem 18.

Theorem 17. Fix a graph H and an integer t > 2. Every n-vertex graph which contains
no copy of H and no induced Ko, has at most O(n?") triangles.

Proof. By Corollary 15, there is a constant C' = Cp; such that every m-vertex graph
which contains no copy of H and no induced Ky, has at most Cm?3/? edges.

Let G be a graph on n vertices containing no induced K, and no copy of H. For each
vertex v of GG, note that exactly e(G,) triangles in G contain v. As G has no copy of H
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and no induced Koy,

e(G)
e(Gv)

Cn3/2,

<
< C deg(v)*2.

Let X be the set of vertices in G whose degree is at least f(n) (a function of n whose
value we give later). Firstly,

[X[f(n) <) deg(v) < 2¢(G) < 2Cn*?,
vEX

and so the number of triangles in G whose vertices are all in X is at most

(‘)3“) < %|X|3 < %C3n9/2f<n)—3'

The number of triangles of G' containing at least one vertex in V(G) \ X is at most

D e(Gy) < C Y deg(v)¥.

v X v€X
The function 2 — 232 is convex and all v € X satisfy deg(v) < f(n), so

™ deg(0)?? < (f<n>1 Zdeg<v>>f<n>3/2 = f)? Y deg(v)

v X vgX vgX
< 2f(n)'/%e(G) < 2002 f(n)'/2.

Thus, the number of triangles in G is at most
%C?’ng/zf(n)_?’ 420232 f(n) V2,

We minimise this last expression by taking f(n) = 2%7C?/"n%7 which gives a value less
than 3C1%/Tn?7/14, O

Theorem 18. Fiz a graph H and an integer t > 2. Let A(n, H,t) denote the greatest
number of triangles in a graph on n vertices containing no copy of H and no induced K.

Let G be a graph on n vertices with oz(g) edges containing no induced Koy. If

a?(n —1) > R(K;, {H — &}) — 1+ 3A(n, H,t)(2) ",
then H is a subgraph of G. In particular,

3
n2.

D=

ex(n, {H, Kyp-ind}) < 3 (R(Ky, {H —e}) — 1+ o(1))

Proof. R(K;,{H —¢€}) > 2 so we in fact have

1

afa(n —1) = 1] > (1 — a)(R(Ky, {H —€}) — 1) + 3A(n, H, 1) (5) .
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We will use this to show H is a subgraph of G. Suppose for contradiction it is not. Let
the set of missing edges in G be M = (V(2G)) — E(G) which has size (1 — a)(}). For each
v e V(Q) let

ey, = e(Gy),

m, = total number of missing edges in G,,.

First note that e, +m, = (‘F(;)') = (degz(v)), so, by Jensen’s inequality,

Syt e0) > n(*§") = n(*5) = ala(n - 1) - 1)(3).

Now e, is also the number of triangles in G containing v so Y | _ €, is three times the

number of triangles in G which is at most 3A(n, H,t). Thus

veG

> my = ala(n = 1) =1](3) = 3A(n, H,t) > (1 — a)(3) (R(K,, {H — &}) - 1).

veG

Now Y camo = Doy #{v withe C I'(v)} and [M] = (1 — @)(}) so there is some
missing edge € and some S C V(G) of size R(K;,{H — €}) with e C I'(v) for each v € S.
G[S] does not contain an independent t-set (else together with € we have an induced K
in G) so G[S] contains a copy of some H — x or some H — é. Together with € we have
that G contains a copy of H proving the first result.

By Theorem 17, A(n, H,t) = o(n?). Suppose that G is a graph on n vertices with no
H and no induced Kj;. We must have

oa®(n—1) < R(K;, {H —¢&}) — 1+ o(1).
Using e(G) = a(g) we get the required result. ]
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