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Abstract

A hypergraph H is super-pancyclic if for each A ⊆ V (H) with |A| > 3, H
contains a Berge cycle with base vertex set A. We present two natural necessary
conditions for a hypergraph to be super-pancyclic, and show that in several classes
of hypergraphs these necessary conditions are also sufficient. In particular, they are
sufficient for every hypergraph H with δ(H) > max{|V (H)|, |E(H)|+10

4 }.
We also consider super-cyclic bipartite graphs: (X,Y )-bigraphs G such that for

each A ⊆ X with |A| > 3, G has a cycle CA such that V (CA)∩X = A. Super-cyclic
graphs are incidence graphs of super-pancyclic hypergraphs, and our proofs use the
language of such graphs.
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1 Introduction

1.1 Longest cycles in bipartite graphs and hypergraphs

For positive integers n,m, and δ with δ 6 m, let G(n,m, δ) denote the set of all bipartite
graphs with a bipartition (X, Y ) such that |X| = n > 2, |Y | = m and for every x ∈ X,
d(x) > δ. In 1981, Jackson [4] proved that if δ > max{n, m+2

2
}, then every graph G ∈

G(n,m, δ) contains a cycle of length 2n, i.e., a cycle that contains all vertices of X. This
result is sharp. Jackson also conjectured that if G ∈ G(n,m, δ) is 2-connected, then the
lower bound on δ can be weakened.

Conjecture 1 (Jackson [4]). Let m,n, δ be integers. If δ > max{n, m+5
3
}, then every

2-connected graph G ∈ G(n,m, δ) contains a cycle of length 2n.

Recently, the conjecture was proved in [8]. The restriction δ > m+5
3

cannot be weak-
ened any further because of the following example:

Example 2. Let n1 > n2 > n3 > 1 be such that n1 + n2 + n3 = n. Let G3(n1, n2, n3) ∈
G(n, 3δ− 4, δ) be the bipartite graph obtained from Kδ−2,n1 ∪Kδ−2,n2 ∪Kδ−2,n3 by adding
two vertices a and b that are both adjacent to every vertex in the parts of size n1, n2, and
n3. Then a longest cycle in G3(n1, n2, n3) has length 2(n1 + n2) 6 2(n− 1).

Very recently [9], the bound was refined for 3-connected graphs in G ∈ G(n,m, δ).

Theorem 3 ([9]). Let m,n, δ be integers. If δ > max{n, m+10
4
}, then every 3-connected

graph G ∈ G(n,m, δ) contains a cycle of length 2n.

A construction very similar to Construction 2 shows that the bound m+10
4

is sharp.
The results can be translated into the language of hypergraphs and hamiltonian Berge

cycles.
Recall that a hypergraph H is a set of vertices V (H) and a set of edges E(H) such

that each edge is a subset of V (H). We consider hypergraphs with edges of any size. The
degree, d(v), of a vertex v is the number of edges that contain v.

A Berge cycle of length ` in a hypergraph is a set of ` distinct vertices {v1, . . . , v`}
and ` distinct edges {e1, . . . , e`} such that for every i ∈ [`], vi, vi+1 ∈ ei (indices are taken
modulo `). The vertices v1, . . . , v` are the base vertices of the cycle.

Naturally, a hamiltonian Berge cycle in a hypergraph H is a Berge cycle whose set of
base vertices is V (H).

Let H = (V (H), E(H)) be a hypergraph. The incidence graph of H is the bipartite
graph I(H) with parts (X, Y ) where X = V (H), Y = E(H) such that for e ∈ Y, v ∈ X,
ev ∈ E(I(H)) if and only if the vertex v is contained in the edge e in H.

If H has n vertices, m edges and minimum degree at least δ, then I(H) ∈ G(n,m, δ).
There is a simple relation between the cycle lengths in a hypergraph H and its incidence
graph I(H): If {v1, . . . , v`} and {e1, . . . , e`} form a Berge cycle of length ` in H, then
v1e1 . . . v`e`v1 is a cycle of length 2` in I(H), and vice versa.
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1.2 Super-pancyclic hypergraphs and super-cyclic bigraphs

Recall that an n-vertex graph is pancyclic if it contains a cycle of length ` for every
3 6 ` 6 n. There are a number of interesting results on pancyclic graphs, see e.g.
survey [10]. A similar notion for hypergraphs and a strengthening of it were recently
considered in [8].

A hypergraph H is pancyclic if it contains a Berge cycle of length ` for every ` > 3.
Furthermore, H is super-pancyclic if for every A ⊆ V (H) with |A| > 3, H has a Berge
cycle whose set of base vertices is A.

While the notion of super-pancyclic graphs is useless, since only complete graphs have
this property, the notion for general hypergraphs is nontrivial. For example, Jackson’s
proof [4] that for δ > max{n, m+2

2
}, each graph G ∈ G(n,m, δ) has a cycle of length 2n

yields a stronger statement. In the language of hypergraphs, it implies the following.

Theorem 4 ([4]). If δ > max{n, m+2
2
}, then every n-vertex hypergraph with m edges and

minimum degree at least δ is super-pancyclic.

It is interesting to find broader conditions guaranteeing that a hypergraph is super-
pancyclic. The notion of super-pancyclicity translates into the language of bipartite
graphs as follows.

By an (X, Y )-bigraph we mean a bipartite graph G with a specified ordered bipartition
(X, Y ). An (X, Y )-bigraph is super-cyclic if for every X ′ ⊆ X with |X ′| > 3, G has a
cycle C with V (C) ∩X = X ′; we say that C is based on X ′.

To state necessary conditions for an (X, Y )-bigraph to be super-cyclic, we need a new

notion. For A ⊆ X, the super-neighborhood N̂(A) is the set {y ∈ Y : |N(y) ∩ A| > 2}.
If G is a super-cyclic (X, Y )-bigraph, A ⊆ X, and C is a cycle based on A, let

B = V (C) ∩ Y . Then B ⊆ N̂(A) and G[A ∪ B] is 2-connected. Since adding a vertex of
degree at least 2 to a 2-connected graph keeps the graph 2-connected, we conclude that
every super-cyclic bigraph satisfies the following1.

For each A ⊆ X with |A| > 3:

{
|N̂(A)| > |A|, and

G[A ∪ N̂(A)] is 2-connected.
(1)

We conjecture that these necessary conditions for a bigraph to be super-cyclic are also
sufficient.

Conjecture 5. If G is an (X, Y )-bigraph satisfying (1), then G is super-cyclic.

To give partial support for Conjecture 5, let us somewhat refine the notion of super-
cyclic bigraphs.

1Jaehoon Kim [6] observed that to check condition (1), it is sufficient to verify that G[A ∪ N̂(A)] is

2-connected only when |A| = 3, though |N̂(A)| > |A| still needs to be checked for all A. When |A| > 3,

if G[A∪ N̂(A)] is not 2-connected, there is a subset A′ ⊆ A with |A′| = 3 for which G[A′ ∪ N̂(A′)] is also
not 2-connected.
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For an integer k > 3, a bipartite graph G with partition (X, Y ) is k-cyclic if for every
X ′ ⊆ X with |X ′| = k, G has a cycle C that is based on X ′. If G is k-cyclic for all
3 6 k 6 |X|, then it is super-cyclic.

In a series of claims, we prove the following.

Theorem 6. If G is an (X, Y )-bigraph satisfying (1), then G is k-cyclic for k = 3, 4, 5, 6.

Another result supporting Conjecture 5 was proved in [8] (in slightly different terms).

Theorem 7 ([8]). Let δ > max{n, m+5
3
}. If G ∈ G(n,m, δ) satisfies (1), then G is

super-cyclic.

We use Theorem 6 and the ideas of the proof of Theorem 3 to strengthen Theorem 7
as follows.

Theorem 8. Let δ > max{n, m+10
4
}. If G ∈ G(n,m, δ) satisfies (1), then G is super-

cyclic.

In terms of hypergraphs, our result is as follows.

Corollary 9 (Hypergraph version of Theorem 8). Let δ > max{n, m+10
4
}. If the incidence

graph of an n-vertex hypergraph H with m edges and minimum degree δ(H) satisfies (1),
then H is super-pancyclic.

We present the main proofs in the language of bipartite graphs. We will say that an
(X, Y )-bigraph G is critical if the following conditions hold:

(a) G satisfies (1) but is not super-cyclic,

(b) N̂(X) = Y , and

(c) for every X ′ ⊂ X with X ′ 6= X, G[X ′ ∪ Y ] is super-cyclic.

Note that every graph satisfying (1) is either super-cyclic or has a critical subgraph.
Furthermore, we say that a critical (X, Y )-bigraph G is saturated if, after adding any

X, Y -edge to G, the resulting graph is super-cyclic.
In Section 2 we prove basic properties of critical bigraphs. Based on this, in Section 3

we prove Theorem 6 for k = 3, 4, and 5. In Section 4 we discuss saturated critical graphs,
which will be useful in the last two sections. In Section 5 we prove Theorem 6 for k = 6.
In Section 6 we prove Theorem 8.

2 Properties of critical bigraphs

For all (X, Y )-bigraphs G below we assume |X| > 3, since G is trivially super-cyclic when
|X| 6 2.

Lemma 10. Suppose that an (X, Y )-bigraph G satisfies (1). Then |N(x) ∩ N(x′)| > 1
for all distinct x, x′ ∈ X.
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Proof. Let x′′ be any vertex in X − {x, x′} and A = {x, x′, x′′}. If N(x) ∩ N(x′) = ∅,

then G[A ∪ N̂(A)]− x′′ has no x, x′-path, contradicting (1).

Claim 11. Let G be a critical (X, Y )-bigraph. Then G is 2-connected.

Proof. This is by the fact that Y = N̂(X) and by (1).

Recall that for a vertex v ∈ V (G) and a set U ⊆ V (G), a v, U-fan of size t is a set of
t paths from v to U such that the only common vertex of any two distinct paths is v. In
view of Claim 11, the classical Dirac’s Fan Lemma [3, 11] implies the following fact.

Lemma 12. Let G be a critical (X, Y )-bigraph, v ∈ V (G), and U ⊆ V (G) with |U | > 2.
Then G has 2 paths from v to U having only the vertex v in common.

Let G be a critical (X, Y )-bigraph with |X| = k + 1 and x0 ∈ X, where k > 2. Note
that if k < 2, then G cannot be critical, since it is trivially super-cyclic. By definition,
G − {x0} is super-cyclic. In particular, it has a cycle C = x1y1x2y2 . . . xkykx1 based on
X −{x0}. We index the vertices of C modulo k; for example, xk+1 = x1. We derive some
properties of such triples (G, x0, C).

Claim 13. For all yi, yj ∈ N(x0), xi and xj have no common neighbor outside C. Simi-
larly, xi+1 and xj+1 have no common neighbor outside C.

Proof. If xi and xj have a common neighbor y /∈ V (C), then the cycle

x1y1 . . . xiyxjyj−1 . . . yix0yjxj+1 . . . x1

is based on X, contrary to assumption. If xi+1 and xj+1 have such a common neighbor,
consider the cycle C in reverse and apply the same argument.

Claim 14. For every yi ∈ N(x0), xi and x0 have no common neighbor outside C; simi-
larly, xi+1 and x0 have no common neighbor outside C.

Proof. If xi and x0 have a common neighbor y /∈ V (C), then we may extend C to a
cycle based on X by replacing the edge xiyi with the path xiyx0yi. The proof for xi+1 is
similar.

Claim 15. For every i, if xi has a common neighbor y with x0 outside C, then xi+1 has
no common neighbor with x0 outside C, except possibly for y.

Proof. If xi+1 and x0 have a common neighbor y′ /∈ V (C), with y′ 6= y, then we may extend
C to a cycle based on X by replacing the path xiyixi+1 with the path xiyx0y

′xi+1.

Lemma 16. The vertex x0 has at least two neighbors in C.
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Proof. Let A be the subset of X consisting of x0, together with all xi that do not have a
common neighbor with x0 outside C.

If |A| > 3, then G[A∪ N̂(A)] is 2-connected by (1), so x0 has at least two neighbors in

N̂(A). Each of these neighbors must also be adjacent to at least one vertex in A− {x0}.
By our choice of A, these neighbors must be in C, and we are done.

If |A| 6 2, then x0 has a common neighbor outside C with all but at most one
of x1, x2, . . . , xk. By Claim 15, two consecutive vertices xi, xi+1 cannot have different
common neighbors with x0 outside C. Therefore there is a vertex y0 outside C adjacent
to x0 and to all but at most one of x1, x2, . . . , xk.

By Claim 11, d(x0) > 2. So there are two possibilities:

• If x0 has a neighbor yi in C, then at least one of xi or xi+1 is adjacent to y0; then
it has a common neighbor with x0 outside C, contradicting Claim 14.

• If x0 has a neighbor y′0 outside C, then y′0 has a neighbor xi in C because δ(G) > 2.
By Claim 15, xi−1 and xi+1 cannot have common neighbors with x0 outside C except
possibly for y′0. If xi−1 6= xi+1 then at least one of them is adjacent to y0, which
is a contradiction. Otherwise, if xi−1 = xi+1 then k = 2 and |X| = 3. If x0 has a
neighbor y′′0 that is adjacent to xi−1, then we have a contradiction. If there is no such

neighbor, then let A = {x0, xi, xi−1}. We see that G[A ∪ N̂(A)] is not 2-connected,
a contradiction.

Therefore the case |A| 6 2 is impossible, completing the proof.

3 3-, 4-, and 5-cyclic graphs

Theorem 6 makes four claims: for k = 3, 4, 5, 6. In this section, we prove three of them.

Claim 17. All (X, Y )-bigraphs G satisfying (1) are 3-cyclic.

Proof. Suppose the claim is false and take a vertex-minimal counter-example, so that
|X| = 3 and Y = N̂(X). Then G is critical. By Claim 11, G is 2-connected, so it contains
a cycle.

Suppose the longest cycle C = x1y1x2y2x1 of G has 4 vertices and does not include the
vertex x3. By Lemma 12, there are 2 paths from x3 to V (C) having only x3 in common.
Then G would contain a cycle of length 6 unless the paths are just x3y1 and x3y2. Suppose
that y3 ∈ Y (note that |Y | > 3 by (1)). Again, by Lemma 12, there are 2 paths from y3
to V (C) having only y3 in common. Then G would contain a cycle of length 6 unless the
paths are just y3x1 and y3x2. Then we get a 6-cycle x1y1x3y2x2y3x1.

Claim 18. All (X, Y )-bigraphs G satisfying (1) are 4-cyclic.

Proof. Suppose the claim is false and take a vertex-minimal counter-example, so that
|X| = 4 and Y = N̂(X). Then G is critical. Let x0 ∈ X = {x0, x1, x2, x3} have maximum
degree. By Claim 17, G− {x0} has a 6-cycle C = x1y1x2y2x3y3x1.
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Case 1: x0 has a neighbor y0 outside of C. By Lemma 16, x0 is adjacent to at least
two of {y1, y2, y3}; since δ(G) > 2, y0 is adjacent to at least one of {x1, x2, x3}. Then
there is an edge of C both of whose endpoints are adjacent to x0 or y0; without loss of
generality, it’s x1y1. We can replace x1y1 by x1y0x0y1, extending C.

Case 2: All of x0’s neighbors are in C. Then the neighbors of x in C have degree at
least 3, and all other vertices in Y at least 2. Since |Y | > |X|, there are also vertices of
X with degree 3, and since x0 was chosen to have maximum degree in X, its degree is at
least 3. Therefore x0 is adjacent to all of {y1, y2, y3}.

Since |Y | > 4, there is y0 ∈ Y outside C. By Claim 11, y0 has at least two neighbors
in X, and neither of them is x0. Without loss of generality, y0 is adjacent to x1 and x2,
and so G has a cycle x0y1x2y0x1y3x3y2x0.

In both cases, we get an 8-cycle, a contradiction.

Claim 19. All (X, Y )-bigraphs G satisfying (1) are 5-cyclic.

Proof. Suppose the claim is false and take a vertex-minimal counter-example, so that
|X| = 5 and Y = N̂(X). Then G is critical. Let x0 ∈ X = {x0, x1, x2, x3, x4} have
maximum degree. By Claim 18, G− {x0} has an 8-cycle C = x1y1x2y2x3y3x4y4.

Case 1: x0 has a neighbor y0 outside of C. By Lemma 16, x0 is adjacent to at least
two of {y1, y2, y3, y4}; since δ(G) > 2, y0 is adjacent to at least one of {x1, x2, x3, x4}. In
almost all cases, there is an edge of C both of whose endpoints are adjacent to x0 or y0,
in which case we are done as before. The remaining case is unique up to relabeling C;
without loss of generality, x0 is adjacent to y1 and y2 and y0 is adjacent to x4.

If x3y4 is an edge, then there is a 10-cycle x1y1x2y2x0y0x4y3x3y4x1, and similarly there
is a 10-cycle if x1y3 is an edge. If neither is an edge, then N̂({x0, x1, x3}) contains y1 and
y2, but not y3 or y4, so it needs a third vertex (call it y5) which is outside C, adjacent to
x1 and either to x0 or to x3. In either case, we get a 10-cycle: one of

x1y5x3y2x2y1x0y0x4y4x1 or x1y5x0y1x2y2x3y3x4y4x1.

Note that in Case 1, we did not use that x0 has maximum degree.
Case 2: All of x0’s neighbors are in C. In this case, as before, we argue that x0 must

have degree at least 3. Say x0 is adjacent to {y1, y2, y3}; we make no assumption about
whether x0 is adjacent to y4.

We can replace x2 or x3 by x0 to get new cycles using the same vertices y1, y2, y3, y4
of Y . If x2 or x3 has a neighbor other than y1, y2, y3, y4, then we can apply Case 1.

So all the other vertices of Y (and there must be at least one) must be adjacent only
to x1 and x4. Since they can be swapped in for y4 to get a new cycle, if y4 is adjacent to
any of x0, x2, x3, we can also reduce to a cycle C where Case 1 applies. Therefore y4 is
also adjacent only to x1 and x4.

But now N̂({x0, x1, x2, x3}) = {y1, y2, y3} which violates (1). In all cases, we get a
contradiction.
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4 Saturated critical bigraphs

Recall that a critical (X, Y )-bigraph G is saturated if adding to G any X, Y -edge results
in a super-cyclic bigraph.

Lemma 20. If G is a saturated critical (X, Y )-bigraph, then for every y ∈ Y , |N(y)| 6=
|X| − 1.

Proof. Suppose G is a saturated critical (X, Y )-bigraph, and for y0 ∈ Y and x0 ∈ X we
have N(y0) = X −{x0}. Since G is critical, G−{x0} is super-cyclic, but G has no cycles
based on X. Let |X| = k. Since G is saturated, G+y0x0 has a 2k-cycle y0x1y1x2y2 . . . xky0
where xk = x0. Then G contains path P = y0x1y1x2 . . . xk.

By the choice of y0, {x1, . . . , xk−1} ⊆ N(y0). Thus if xk is adjacent to any yj for
1 6 j 6 k − 2, then G has cycle xkyjxjyj−1 . . . y0xj+1yj+1 . . . xk, a contradiction. Hence
xk has only one neighbor on P . Let NG(xk) = {yk−1, z1, z2, . . . , zs}. Since G is 2-
connected, s > 1. Again, if any zi is adjacent to any xj for j 6 k − 2, then G has
cycle xkzixjyj−1 . . . y0xj+1yj+1 . . . xk, a contradiction. Hence N(zi) = {xk−1, xk} for all
1 6 i 6 s. Switching z1 with yk−1 we conclude that N(yk−1) = {xk−1, xk}. So, the only
vertex of X − {xk} at distance 2 from xk is xk−1, a contradiction to Lemma 10.

Lemma 21. If G is a saturated critical (X, Y )-bigraph and some x0 ∈ X has degree 2,
then

(a) each of its neighbors is adjacent to all vertices in X, and

(b) d(x) > 4 for every x ∈ X − {x0}.

In particular, at most one vertex in X has degree 2.

Proof. Suppose G is a saturated critical (X, Y )-bigraph, and d(x0) = 2 for some x0 ∈ X.
Let N(x0) = {y1, y2}. We first prove part (a):

N(y1) = N(y2) = X. (2)

Indeed, suppose N(yj) 6= X for some j ∈ {1, 2}. Then by Lemma 20, |X − N(yj)| > 2,

say, {x, x′} ⊆ X −N(yj). Consider A = {x0, x, x′} and B = N̂G(A). Then yj /∈ B and so
dG[A∪B](x0) 6 1, a contradiction to (1). This proves (a).

Suppose (b) does not hold and consider an x ∈ X−{x0} such that d(x) 6 3. Note that
by (a), x is adjacent to y1 and y2. For any x′ ∈ X − {x, x0}, Claim 17 for A = {x, x′, x0}
yields that there is a common neighbor y(x′) of x and x′ distinct from y1 and y2. Since
d(x) 6 3, all y(x′) coincide, and hence there is a vertex y adjacent to all vertices in X
apart from x0, a contradiction to Lemma 20. This proves (b).

Lemma 22. If G is a saturated critical (X, Y )-bigraph, then for every y ∈ Y , |N(y)| 6=
|X| − 2.
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Proof. Suppose G is a saturated critical (X, Y )-bigraph, and N(y0) = X − {x′, x′′} for
some y0 ∈ Y . Let |X| = k.

Assume d(x′) > d(x′′). By Lemma 21, d(x′) > 3. Since G is saturated, it has a path
P = y0x1y1x2 . . . yk−1xk where xk = x′. We may assume x′′ = xj for some j.

If xk is adjacent to any yi for i ∈ [k − 2]− {j − 1}, then G has cycle

y0xi+1yi+1xi+2 . . . xkyixi . . . y0,

a contradiction. So N(xk) ∩ V (P ) ⊆ {yk−1, yj−1}. Let N(xk) − V (P ) = {z1, z2, . . . , zs}.
Since d(xk) > 3, s > 1. Let T = X − {xk, xk−1, xj−1}. Again, if any z` is adjacent to any
xi ∈ T , then G has cycle y0xi+1yi+1xi+2 . . . xkz`xi . . . y0, a contradiction. Hence

N(z`) ∩ T = ∅ for all 1 6 ` 6 s. (3)

Since Claim 19 implies k > 6, |T | > 3. By Claim 17, for each xi, xi′ ∈ T , G contains a
6-cycle C1 with V (C1) ∩X = {xk, xi, xi′}, say C1 = xkyxiy

′xi′y
′′xk. By (3) and the fact

that N(xk) ∩ V (P ) ⊆ {yj−1, yk−1}, {y, y′′} ⊆ {yk−1, yj−1}. In particular, xkyj−1 ∈ E(G).
Similarly, if there are xi, xi′ ∈ T both not adjacent to yk−1 or both not adjacent to yj−1,

then G does not contain a 6-cycle C1 with V (C1)∩A = {xk, xi, xi′}; however, G is 3-cyclic,
a contradiction. This means |N(yk−1) ∩ T | > |T | − 1 and |N(yj−1) ∩ T | > |T | − 1. Since
|T | > 3, this implies that there is xi ∈ T∩N(yk−1)∩N(yj−1). Note that i 6∈ {j−1, k−1, k},
since xj−1 6∈ T . Since xi+1 6∈ {xj, xk}, y0 is adjacent to xi+1.

y0 xj xk

z1 . . . zs

xi y0 xj xk

z1 . . . zs

xi y0 xj xk

z1 . . . zs

xi

Figure 1: 3 configurations for Lemma 22

Since G is 2-connected, z1 has a neighbor in {xk−1, xj−1}. If z1xk−1 ∈ E(G), then
G has cycle y0x1 . . . xiyk−1xkz1xk−1yk−2xk−2 . . . xi+1y0. So N(z1) = {xk, xj−1} (see Fig. 1
(1)). If j 6= k−1, then G has the cycle y0x1 . . . xj−1z1xkyj−1xjyjxj+1 . . . xk−1y0 (see Fig. 1
(2)). Hence we may suppose j = k − 1. Then by the definition of T , i 6 k − 3. So G has
the cycle y0x1 . . . xiyk−2xk−1yk−1xkz1xk−2yk−2 . . . xi+1y0 (see Fig. 1 (3)), a contradiction.

A critical (X, Y )-bigraph G is Y -minimal if every proper subgraph G′ = (X ′, Y ′;E ′)
of G satisfying (1) is super-cyclic.

Lemma 23. If a saturated critical Y -minimal (X, Y )-bigraph G has vertices y1, y2 ∈ Y
of degree 2, then N(y1) 6= N(y2).
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Proof. Suppose N(y1) = N(y2) = {x1, x2}, and consider the graph G′ := G − {y1} with
partite sets X and Y ′ = Y −{y1}. Note that in G, each cycle of length at least 6 contains
at most one vertex in {y1, y2} since the neighbors of such a vertex on the cycle must be
exactly x1 and x2. Hence for each cycle C of length at least 6 in G, there exists a cycle
C ′ in G′ with C ∩X = C ′ ∩X. We will show that (1) holds for G′.

Indeed, suppose there exists a set A ⊆ X with |N̂G′(A)| < |A|. Then {x1, x2} ⊆ A,

N̂G′(A) = N̂G(A) − {y1}, and hence |N̂(A)| = |A|. If |A| > 4, then |N̂(A − {x1})| >
|A − {x1}| = |A| − 1. However, N̂(A − {x1}) ⊆ N̂(A) − {y1, y2}, a contradiction. So

|A| = 3, say A = {x1, x2, x3}, N̂G′(A) = {y2, y3}, and N̂(A) = {y1, y2, y3}. But there is
no 6-cycle in G based on A since N(y1) = N(y2) = {x1, x2}. This contradicts Claim 17.

Now suppose G′ is not 2-connected. Then G′ contains a cut vertex v, and {v, y1} is a
cut set in G. This implies that x1 and x2 are in different components of G− {v, y1}, and
so v = y2. Let x3 ∈ X − {x1, x2}. Then there is no 6-cycle based on {x1, x2, x3} in G, a
contradiction.

By the definition of critical Y -minimal bigraphs, G′ is super-cyclic; but then G also
is.

Lemma 24. If G is a saturated critical Y -minimal (X, Y )-bigraph, x ∈ X and C is a
cycle based on X − {x}, then x has at least two non-neighbors in V (C) ∩ Y .

Proof. Let |X| = k and let C = x1y1 . . . xk−1yk−1x1. Suppose for the sake of contradiction
that |N(x) ∩ V (C)| > k − 2. If N(x) contains a vertex y that is not in C, then because
G is 2-connected, y has a neighbor in V (C), say x1. Then without loss of generality,
y1 ∈ N(x), and we may replace the edge x1y1 in C with the path x1yxy1 to obtain a cycle
based on X, a contradiction.

So we may assume N(x) ⊆ V (C). Since |N̂(X)| > |X|, there exists a vertex y ∈
N̂(X) \ V (C). Since G is 2-connected and yx /∈ E(G), y has some neighbors xi and xj
in C. If {yi, yj} ⊆ N(x) then we obtain the cycle x1y1 . . . xiyxjyj−1 . . . yixyjxj+1 . . . x1,
a contradiction. Similarly, we have that {yi−1, yj−1} 6⊆ N(x). The remaining case is
N(y) = {xi, xi+1} and N(x) = V (C) − {yi}. By considering the cycle obtained by
replacing yi with y, we see that by symmetry, N(yi) = {xi, xi+1}. But this contradicts
Lemma 23.

5 6-cyclic graphs

In this section, we complete the proof of Theorem 6 by proving that all (X, Y )-bigraphs
satisfying (1) are 6-cyclic. We will use NC(x) to denote the neighborhoods of x that are
in V (C).

Lemma 25. If G is a saturated critical (X, Y )-bigraph and |X| = 6, then X contains a
vertex of degree at least 4.

Proof. Suppose all vertices in X have degree at most 3.
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Case 1: There is a vertex y ∈ Y with d(y) > 4. By Lemma 22, d(y) 6= 4, so d(y) > 5.
Let x1, x2, x3, x4, x5 be five neighbors of y; let C = x1y1x2y2x3y3x4y4x5y5x1 be a cycle
containing them.

If y /∈ V (C), then x1, x2, x3, x4, x5 each have two neighbors on C and are also adjacent
to y. Since the degree of each xi is at most 3, they cannot have any other neighbors. In
that case, the set A = {x1, x2, x4} contradicts (1), since N̂(A) = {y1, y}.

Therefore y ∈ V (C); say, y = y1. Then x3, x4, x5 have two neighbors on C and an edge
to y1, so they have degree 3. By (1) applied to A = {x1, x3, x5}, x1 must have an edge to
one of y2, y3, y4; symmetrically, x2 must have an edge to one of y3, y4, y5. This yields 3
edges incident to each of x1, x2, x3, x4, x5; none of these can have any other neighbors.

By (1), |N̂(X)| > 6; however, since there is only one vertex in X − V (C), N̂(X) ⊆
N(X ∩ V (C)) = Y ∩ V (C). This only has size 5, a contradiction.

Case 2: All vertices in Y have degree at most 3. Let X = {x1, x2, x3, x4, x5, x6}. Let
C1 = x1y1x2y2x3y3x1 be a 6-cycle based on {x1, x2, x3} and let C2 = x4y4x5y5x6y6x4 be a
6-cycle based on {x4, x5, x6}. We have V (C1)∩V (C2) = ∅, since a vertex in V (C1)∩V (C2)
would have degree at least 4.

In the cycle based on {x1, x2, x4}, the vertex x4 must have two common neighbors
with {x1, x2}. Since ∆(G) 6 3, at least one of them is a neighbor of x4 on C2. Without
loss of generality, let y4 be a common neighbor with x1, so that x1y4 ∈ E(G).

Now consider the cycle based on {x1, x4, x5}. By the same argument, either x4 or x5
must be adjacent to one of x1’s neighbors on C1. Without loss of generality, let x4y1 be
that edge; then the cycle x1y4x5y5x6y6x4y1x2y2x3y3x1 is based on X, a contradiction.

Claim 26. All (X, Y )-bigraphs G satisfying (1) are 6-cyclic.

Proof. Take a vertex-minimal counterexample G with the most edges, meaning in partic-
ular that |X| = 6 and Y = N̂(X). By Claims 17–19, G is k-cyclic for 3 6 k 6 5; therefore
G is critical, saturated and Y -minimal.

Let X = {x1, . . . , x6} and x6 be a vertex of maximum degree in X. By Lemma 25,
d(x6) > 4. Let C = x1y1x2y2x3y3x4y4x5y5x1 be a cycle based on X−{x6}. By Lemma 16
and Lemma 24, x6 has either 2 or 3 neighbors on C, so it has at least one neighbor y6 not
on C.

By symmetry, the following two cases are exhaustive.
Case 1: {y1, y3} ⊆ NC(x6). In this case, by Claim 14, no vertex y ∈ N(x6)−V (C) can

be adjacent to x1, x2, x3, or x4, so it must be adjacent to x5 and x6 only. By Lemma 23,
y6 is the only such vertex. By Claim 14 again, x6 cannot be adjacent to y4 or y5. To have
d(x6) > 4, x6 must also be adjacent to y2, and therefore d(x6) = 4.

If x2y4 ∈ E(G), then the cycle x2y4x4 . . . y2x6y6x5y5x1y1x2 is based on X, and if
x2y5 ∈ E(G), the cycle x2y2 . . . x5y6x6y1x1y5x2 is based on X. Thus, x2y4 6∈ E(G) and
x2y5 6∈ E(G). A similar argument shows that x3y5, x3y4 /∈ E(G). However, applying
Claim 17 to A = {x2, x3, x5}, we find distinct vertices y′ ∈ N(x2) ∩ N(x5) and y′′ ∈
N(x3) ∩N(x5) such that y′, y′′ 6∈ {y4, y5, y6}. Therefore x5 is adjacent to y4, y5, y6, y

′, y′′,
and d(x5) > 5 > d(x6), contradicting the choice of x6.
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Case 2: NC(x6) = {y1, y2}. In this case, in order to have d(x6) > 4, x6 must have
neighbors y, y′ outside C. By Claim 14, y and y′ can only have x4 and x5 as neighbors. If
y is adjacent to x4 and y′ is adjacent to x5, or vice versa, we contradict Claim 15; if both
are adjacent only to x4 or both only to x5, we contradict Lemma 23.

6 Bigraphs with high minimum degree

6.1 Properties of smallest counterexamples

Throughout this subsection, we assume that G is a vertex-minimal counterexample to
Theorem 8 with the most edges; let G ∈ G(n,m, δ) where δ > max{n, m+10

4
}. Then for

each X ′ ⊂ X with X ′ 6= X, G[X ′ ∪ Y ] also satisfies the conditions of Theorem 8 and
hence is super-cyclic.

Let G′ = G[X ∪ N̂(X)], i.e., G′ is obtained by removing only the degree-1 vertices of
G. Then G′ is critical and saturated. In particular, for every x ∈ X, there exists a cycle
C in G′ (and therefore in G) such that V (C) ∩X = X − {x}. By Lemma 12, G′ has an
x, V (C)-fan F of size 2.

Among the triples (C, x, F ) where x ∈ X, C is a cycle with V (C)∩X = X −{x} and
F is an x, V (C)-fan, choose a triple such that the size of F is maximized, and subject to
this, |V (F )| is minimized. Let |V (C)| = 2` (so |X| = ` + 1). Let t be the size of F , and
let T = V (C) ∩ V (F ) = {u1, . . . , ut}.

Fix a clockwise direction of C. For every vertex u of C, x+C(u) (respectively, x−C(u))
denotes the closest to u clockwise (respectively, counterclockwise) vertex of X distinct
from u. For a set U ⊂ V (C), X+

C (U) = {x+C(u) : u ∈ U}. When C is clear from
the content, the subscripts could be omitted. The vertices y+(u), y−(u) and the sets
X−(U), Y +(U), Y −(U) are defined similarly.

Viewing F as a tree (spider) with root x, any two vertices u, v ∈ V (F ) define the
unique u, v-path F [u, v] in F . For u, v ∈ V (C), let C[u, v] be the clockwise u, v-path in
C and let C−[u, v] be the counterclockwise u, v-path in C.

Lemma 27. t 6 `− 2.

Proof. We first show that
t 6 `− |T ∩X|. (4)

If w ∈ T ∩ X and y+(w) ∈ T , then the cycle wF [w, y+(w)]y+(w)C[y+(w), w]w is based
on X, a contradiction. Similarly, y−(w), x+(w), x−(w) /∈ T . Thus, |T ∩ X| 6 `/2 and
|T ∩ Y | 6 `− 2|T ∩X|. This proves (4).

For the remainder of the proof, note that if Claims 13–15 are applied to G′, then the
conclusions hold for G as well, since they are unaffected by the addition of vertices of
degree 1 in Y .

Let C = x1y1 . . . x`y`x1, and suppose t > ` − 1. By (4), |T ∩X| 6 1. If T ∩X = ∅,

we may assume that xyi ∈ E(G) for all 1 6 i 6 ` − 1. By (1), |N̂(X)| > ` + 1, so
there is y ∈ Y − V (C) with at least two neighbors in X. This will contradict one of
Claims 13–15 (possibly, in reversed orientation of C), unless all such y are adjacent to
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only x` = x−(y`) and x1 = x+(y`). Fix such a vertex y. Let A = X−{x`}. There exists a

vertex y′ ∈ (Y − V (C)) ∪ {y`} such that y′ ∈ N̂(A), i.e., y′ has two neighbors other than
x` (so y′ 6= y). Let C ′ be the cycle obtained by replacing y` with y. Then the vertex y′

violates one of Claims 13–15 with respect to C ′.
If |T ∩X| = 1, then by (4), we may assume that xyi ∈ E(G) for all 1 6 i 6 `− 2 and

that x has a common neighbor y ∈ Y − V (C) with x`. By (1), |N̂(X − x`)| > `, so there
is y0 ∈ (Y −V (C))∪{y`−1, y`} with at least two neighbors in X−x`. If y0 ∈ (Y −V (C)),
this again will contradict one of Claims 13–15, unless N(y0) = {x`−1, x1}. In this case,
we obtain the longer cycle y1C[y1, y`−2]y`−2xyx`y`−1x`−1y0x1. So suppose without loss of
generality y0 = y` has a neighbor z ∈ X −{x`, x1}. By the case, z 6= x, so suppose z = xj
for some 2 6 j 6 ` − 1. Then G has cycle y`C[y`, yj−1]yj−1xyx`C

−[x`, xj]xjy` based on
X, a contradiction.

Given a cycle C and distinct x1, x2, x3 ∈ X ∩ V (C), we say that x1 and x2 cross at
x3 if the cyclic order is x1, x3, x2 and x1y

+(x3), x2y
−(x3) ∈ E(G) or if the cyclic order is

x1, x2, x3 and x1y
−(x3), x2y

+(x3) ∈ E(G). In this case, we also say that x3 is crossed by
x1 and x2.

The following is Lemma 2.8 in [9]. It holds for each bipartite graph G (no restrictions).

Lemma 28 ([9]). Let C be a cycle of an (X, Y )-bigraph G, and let u, v ∈ V (C) ∩X. If
u and v have at most r crossings, then dC(u) + dC(v) 6 |V (C)|/2 + 2 + r.

Proof. We induct on r. Suppose r = 0. Consider the two paths P1 = C[u, v] and
P2 = C−[u, v]. In P1 = v1 . . . vk (v1 = u, vk = v), each vi ∈ X satisfies at most one
of the following: vi+1u ∈ E(G) or vi−1v ∈ E(G). So dP1(u) + dP1(v) 6 |V (P1) ∩ X|.
Similarly, dP2(u) + dP2(v) 6 |V (P2) ∩X|. Since (X ∩ V (P1)) ∩ (X ∩ V (P2)) = {u, v} and
V (P1) ∪ V (P2) = V (C), we get dC(u) + dC(v) 6 |V (C)|/2 + 2.

For r > 1, delete an edge incident to u that is used in a crossing, and induct.

Lemma 29. If ui ∈ X∩T , then y+(ui) has no neighbors in (F−V (C))∪X+(T )\{x+(ui)}.

Proof. Suppose y+(ui) has a neighbor z in F − V (C). Then the cycle

uiF [ui, z]zy
+(ui)C[y+(ui), ui]ui

is based on X, a contradiction.
Suppose now that y+(ui) has a neighbor x1 in X+(T )\{x+(ui)}, where u ∈ T satisfies

x+(u) = x1. Then the cycle x1y
+(ui)C[y+(ui), u]uF [u, ui]uiC

−[ui, x1]x1 is based on X, a
contradiction.

Lemma 30. If x1 ∈ X+(T ), then x1 cannot have a neighbor in F − V (C).

Proof. Suppose x1 has a neighbor y′ in F − V (C). Let u1 ∈ T be such that x1 = x+(u1)
and z be a neighbor of u1 in F . Let P be a z, y′-path in F and the cycle C ′ be defined
by C ′ = x1C[x1, u1]u1zPy

′x1. If y′ 6= z, then C ′ is based on X and we are done. Thus
z = y′ and hence u1 ∈ X. Let F ′ = F − u1. Note that F ′ is an x, V (C ′)-fan such that
|V (F ∩C)| = |V (F ′∩C ′)|, but |V (F ′)| < |V (F )|, contradicting the choice of C and F .

the electronic journal of combinatorics 28(1) (2021), #P1.2 13



Lemma 31. Suppose that x1, x2 ∈ X+(T ). Then

(i) x1 and x2 share no neighbors in Y − V (C);

(ii) neither x1 nor x2 share a neighbor in Y − V (C) with x.

Proof. Part (i) follows from Claim 13. From Lemma 30, if x1 and x have a common
neighbor outside of C, it is not in F . Suppose they share some neighbor y ∈ Y − V (C).
Let x1 = x+(u1). Then we have a longer cycle x1C[x1, u1]u1F [u1, x]xyx1. The same holds
for x2 and x. This proves (ii).

Lemma 32. Suppose u1, u2 ∈ T . If x1 = x+(u1) and x2 = x+(u2) cross at x3 ∈ X∩V (C),
then

(i) x3 /∈ T ;

(ii) G has a cycle C ′ containing (X ∩ V (C)− {x3}) ∪ {x} such that |C ′| > |C|;

(iii) x3 shares no neighbors in Y − V (C) with any vertex in the set {x} ∪X+(T );

(iv) x3 has at most t neighbors on C.

Proof. Suppose that the cyclic order is x1, x3, x2 and x1y
+(x3), x2y

−(x3) ∈ E(G) (the
other case is symmetric).

For part (i), let y be a neighbor of x3 in F . Let z be a neighbor of u1 in F . Let P be
a z, y-path in F and the cycle C ′ be defined by

C ′ := x1y
+(x3)C[y+(x3), u1]u1zPyx3C

−[x3, x1]x1.

Then C ′ is based on X. This contradiction proves (i).
The cycle

C1 := x1y
+(x3)C[y+(x3), u2]u2F [u2, u1]u1C

−[u1, x2]x2y
−(x3)C

−[y−(x3), x1]x1

proves (ii).
To prove (iii), assume that y ∈ Y − V (C) is a common neighbor of x3 and a vertex in

{x} ∪X+(T ), and consider all cases. If yx ∈ E(G), let

C ′ = x1y
+(x3)C[y+(x3), u1]u1F [u1, x]xyx3C

−[x3, x1]x1.

If y is not in F [x, u1], then C ′ is a cycle based on X, a contradiction. Otherwise, let F ′′

be F − F [u1, y]. Note F ′′ is an x, V (C ′′)-fan where

C ′′ = x1y
+(x3)C[y+(x3), u1]u1F [u1, y]yx3C

−[x3, x1]x1,

and |V (F ∩C)| = |V (F ′′ ∩C ′′)|, but |V (F ′′)| < |V (F )|, contradicting the choice of C and
F .
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If uj ∈ T , xj = x+(uj), yxj ∈ E(G), and xj ∈ C[y+(x3), u1], then the cycle

C ′ := x1C[x1, x3]x3yxjC[xj, u1]u1F [u1, uj]ujC
−[uj, y

+(x3)]y
+(x3)x1

is based on X. Similarly, if xj ∈ C[u1, y
−(x3)], then the cycle

C ′ := x2C[x2, uj]ujF [uj, u2]u2C
−[u2, x3]x3yxjC[xj, y

−(x3)]y
−(x3)x2

is based on X, a contradiction. This proves (iii).
By the choice of (C, x, F ) and (ii), x3 has at most t neighbors on C1. The only vertices

in Y ∩ V (C)− V (C1) are y−(x1) and y−(x2). If x3y
−(x1) ∈ E(G), then the cycle

y−(x1)C[y−(x1), y
−(x3)]y

−(x3)x2C[x2, u1]u1F [u1, u2]u2C
−[u2, x3]x3y

−(x1)

is based on X. If x3y
−(x2) ∈ E(G), then the cycle

x1C[x1, x3]x3y
−(x2)C[y−(x2), u1]u1F [u1, u2]u2C

−[u2, y
+(x3)]y

+(x3)x1

is based on X. This proves (iv).

Lemma 33. Suppose u1, u2 ∈ T , x1 = x+(u1), and x2 = x+(u2). Then no two vertices
x3, x4 ∈ V (C) crossed by x1 and x2 have a shared neighbor in Y − V (C).

Proof. Suppose vertices x3, x4 ∈ V (C) ∩ X are crossed by x1 and x2 and there is some
y ∈ (N(x3) ∩N(x4))− V (C). By Lemma 32, y /∈ V (F ).

We consider two cases. If x3 and x4 both are on C[x1, x2] or both are on C[x2, x1],
then we may assume that their cyclic order is x1, x3, x4, x2. In this case, the cycle

x1C[x1, x3]x3yx4C[x4, u2]u2F [u2, u1]u1C
−[u1, x2]x2y

−(x4)C
−[y−(x4), y

+(x3)]y
+(x3)x1

is based on X.
If one of x3 and x4 is on C[x1, x2] and the other is on C[x2, x1], then we may assume

that their cyclic order is x1, x3, x2, x4. In this case, the cycle

x1C[x1, x3]x3yx4C
−[x4, x2]x2y

+(x4)C[y+(x4), u1]u1F [u1, u2]u2C
−[u2, y

+(x3)]y
+(x3)x1

is based on X. This proves the lemma.

Lemma 34. Let A ⊆ X+(T ). Then
∑

w∈A dC(w) 6 |A|(`− 2) + 2.

Proof. Let x1, x2 ∈ A such that x1 = x+(u1) and x2 = x+(u2) for some u1, u2 ∈ T . We
first prove that

if u2 ∈ Y and y+(x2)x1 ∈ E(G), then dC(x2) 6 `− 2. (5)

The cycle C ′ = x1y
+(x2)C[y+(x2), u1]u1F [u1, u2]u2C

−[u2, x1]x1 contains all vertices in C
except x2 and possibly y+(u1) (in the case that u1 ∈ X). By Lemma 29 and Lemma 30,
NC(x2) = NC′(x2). By Lemma 27 applied to C ′ and x2, dC(x2) = dC′(x2) 6 `− 2.
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In particular, if dC(x1) = `, i.e., x1 is adjacent to every y vertex in C, then by
Lemma 29, each x2 ∈ X+(T ) − {x1} satisfies u2 ∈ Y . Therefore by (5), dC(x2) 6 ` − 2.
It follows that

∑
w∈A dC(w) 6 |A|(`− 2) + 2.

So suppose every w ∈ A has dC(w) 6 `−1, and there exist two vertices x1, x2 ∈ A with
equality. Define u1, u2 as before. Then for every x3 ∈ X+(T )−{x1, x2}, either u1 ∈ Y and
x3y

+(x1) /∈ E(G) by (5), or u1 ∈ X and x3y
+(x1) /∈ E(G) by Lemma 29. The same holds

for x3 and x2. Therefore dC(x3) 6 `− 2, and again
∑

w∈A dC(w) 6 |A|(`− 2) + 2.

Lemma 35. Suppose t > 4, u1, u2 ∈ T , x1 = x+(u1), and x2 = x+(u2). Then at most
one vertex in C is crossed by x1 and x2.

Proof. Suppose vertices x3, x4 ∈ V (C) ∩X are crossed by x1 and x2.
Let A = X+(T )∪{x, x3, x4} (possibly, X+(T )∩{x3, x4} 6= ∅), and A′ = A−{x, x3, x4}.

Note that |A′| > t− 2, and by Lemma 34 applied to A′,
∑

w∈A′ dC(w) 6 |A′|(`− 2) + 2.
Since x can have at most t neighbors on C, |N(x)−V (C)| > δ− t. By Lemma 32(iv),

|N(x3) − V (C)| > δ − t and |N(x4) − V (C)| > δ − t. By Claims 13–15 (applied to G′)
and Lemmas 32(iii) and 33, no two distinct vertices in A have a common neighbor in
Y − V (C). Thus, remembering the ` vertices in Y ∩ V (C), we get

|Y | > `+
∑
u∈A

|N(u)− V (C)|

= `+ |N(x)− V (C)|+ |N(x3)− V (C)|+ |N(x4)− V (C)|+
∑
u∈A′

|N(u)− V (C)|

> `+ 3(δ − t) + δ|A′| − (`− 2)|A′| − 2

> `+ 3δ − 3t+ (δ − `+ 2)|A′| − 2

> `+ 3δ − 3t+ (δ − `+ 2)(t− 2)− 2

> `+ 3δ − 3t+ (δ − `+ 2) + (δ − `+ 2)(t− 3)− 2

> `+ 3δ − 3t+ (δ − `+ 2) + 3(t− 3)− 2

= 4δ − 3t+ 2 + 3(t− 3)− 2 = 4δ − 9,

as claimed.

Lemma 36. For any x1, x2 ∈ X, x1 and x2 cannot be separated by a set of two vertices.

Proof. Recall that G is a vertex-minimum counterexample to Theorem 8, and G′ = G[X∪
N̂(X)] is critical and saturated.

Suppose that for some x1, x2 ∈ X, u1, u2 ∈ V (G), x1 and x2 are in different components
of G − {u1, u2}. Note that u1, u2 ∈ V (G′), since V (G) − V (G′) contains only vertices of
degree 1 in Y .

If there also exists x3 ∈ X − {x1, x2} such that x3 is in a different component of
G− {u1, u2} than both x1 and x2, then G cannot contain a 6-cycle based on {x1, x2, x3},
since these vertices are separated by a set of size two. Hence we may assume G−{u1, u2}
contains exactly two components containing vertices in X. Call these components D1 and
D2 where x1 ∈ V (D1) and x2 ∈ V (D2).
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Choose any two vertices x, x′ ∈ X − {u1, u2}; then choose a third vertex x′′ ∈ X −
{u1, u2} such that not all three of x, x′, x′′ are in the same component of G−{u1, u2}. Let
C be a cycle based on A = {x, x′, x′′}.

Since {u1, u2} separates one of the vertices of A from the others, u1, u2 ∈ V (C); since
V (C) ∩X = A and neither u1 nor u2 is in A, we must have u1, u2 ∈ Y .

Moreover, u1 must have an edge to either x or x′ in C, and therefore in G. Since
x, x′ ∈ X were arbitrary, |N(u1)| > |X| − 1. By Lemma 20 applied to G′, NG′(u1) = X,
and therefore N(u1) = X. By symmetry, we also obtain N(u2) = X.

Now suppose each component of G − {u1, u2} has at least 2 vertices in X. For i ∈
{1, 2}, set Xi = X ∩Di. By the minimality of G, there exists a cycle C1 of G based on
X1∪{x2} and a cycle C2 based on X2∪{x1}. Since D1 and D2 are separated by {u1, u2},
NC1(x2) = NC2(x1) = {u1, u2}. Therefore (C1−{x2})∪ (C2−{x1}) is a cycle in G which
is based on X, a contradiction.

Thus we may assume without loss of generality that V (D1) ∩ X = {x1}. Note that
this implies all neighbors of x1 other than u1 and u2 have degree 1. Let G1 be obtained
from G by deleting x1 and all of its neighbors except for u1.

We will show that G1 is a counterexample that has fewer vertices than G. Set X ′ =
X − {x1} = X ∩ V (G1). If there exists A ⊆ X ′ with |A| > 3 such that |N̂G1(A)| < |A|,
then in G, N̂G(A ∪ {x1}) = N̂G1(A) ∪ {u2} < |A ∪ {x1}|, a contradiction.

Next, we will show that for all A with |A| > 3, G1[A∪ N̂G1(A)] is 2-connected. Recall
that G1−{u1} = D2. The subgraph of D2 obtained by removing all vertices in Y of degree

1 is still connected. Call this subgraph H. If A = X ′, then G1[A∪N̂G1(A)] = G1[H∪{u1}].
Since H is connected and u1 is adjacent to all vertices in X ′, G1[H ∪{u1}] is 2-connected.
Now suppose A 6= X ′. Then by the choice of G as a minimum counterexample, there
exists a cycle C in G with V (C)∩X = A∪{x1}, where NC(x1) = {u1, u2}. In particular,

P := C−{x1, u1, u2} is a path containing all vertices of A. In G1, G1[A∪ N̂G1(A)] can be
obtained from P by adding u1, which is adjacent to all of V (P )∩X, and possibly adding
some additional vertices in Y with degree at least 2. Hence it is 2-connected.

Next, suppose that it is super-cyclic. By the minimality of G, G contains no cycle C
based on X; however, because G1 is super-cyclic, we may find a cycle C ′ = v1v2 . . . v2|X′|v1
in G1 (and therefore in G) based on X − {x1} such that u2 /∈ V (C ′). If u1 /∈ V (C ′), then
we may replace in C ′ any segment vivi+1vi+2 (for vi ∈ X) with the path viu1x1u2vi+2 to
obtain a contradiction. Otherwise, if u1 = vi for some i, we replace the path vi−1u1vi+2

with vi−1u1xu2vi+2.
Finally, we have |Y ∩ G1| 6 |Y | − (δ − 1) 6 (4δ − 10) − (δ − 1) 6 4(δ − 1) − 10.

The last inequality holds because we may assume that |X| > 7 and therefore δ > 7, since
Theorem 6 implies Theorem 8 for |X| 6 6. This shows that G1 is a counterexample for
Theorem 8 (with δ′ = δ − 1) which has fewer vertices than G, contradicting the choice of
G.
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6.2 Proof of Theorem 8

Proof of Theorem 8. As in the previous subsection, suppose for the sake of contradiction
that G is a vertex-minimum, edge-maximal counterexample to Theorem 8. By the choice
of G, for each x ∈ X, there exists some cycle C with V (C) ∩ X = X − {x}. We may
also assume that |X| > 7 and therefore δ > 7, since Theorem 6 implies Theorem 8 for
|X| 6 6.

Letting G′ = G[X ∪ N̂(X)], it follows from our choice of G that G′ is critical and
saturated.

If there exists a pair (x,C) with an x, V (C)-fan F of size at least 4, then choose such
a triple which maximizes t = |V (F ) ∩ V (C)|, and subject to this, minimizes |V (F )|. Let
T = V (F ) ∩ V (C). By Lemmas 31 and 35, no two vertices in X+(T ) ∪ {x} share a
neighbor outside of V (C), and no two vertices in X+(T ) cross more than one time. By
Lemma 28, for each pair x1, x2 ∈ X+(T ), dC(x1) + dC(x2) 6 |V (C) ∩ Y | + 3 = |X| + 2.
Therefore

|Y | > |V (C) ∩ Y |+
∑

w∈X+(T )∪{x}

dY−V (C)(w)

> |X| − 1 + δ(t+ 1)−
∑

w∈X+(T )∪{x}

dC(w)

> |X| − 1 + δ(t+ 1)− t− t(|X|+ 2)/2.

Since the coefficient at t is at least δ − 1 − (δ + 2)/2 > 0 (assuming, as we do, that
δ > 4), this quantity is minimized whenever t is minimized, i.e., t = 4. We obtain
|Y | > |X| − 1 + 5δ − 4− 2(|X|+ 2), which is minimized when |X| = δ. So |Y | > 4δ − 9,
a contradiction.

Now suppose that for all x ∈ X and cycles C with V (C) ∩X = X − {x}, the largest
x, V (C)-fan has size at most 3. Choose x ∈ X with the maximum number of neighbors
of degree at least 2. If every x ∈ X has at most 3 neighbors of degree at least 2 (and
at least δ − 3 neighbors of degree 1), then we have |Y | > |X|(δ − 3) + 3; since |X| > 4,
|Y | > 4δ − 9, a contradiction.

Therefore x has at least 4 neighbors of degree at least 2. Let F be a maximum x, V (C)-
fan of G and set T = F ∩ V (C). By Lemma 36, |T | > 3, since x cannot be separated
from X − x′ by a set of size 2. So |T | = 3.

By Lemma 16, |T ∩ Y | > 2 (we apply this lemma to G′, but the conclusion carries
over to G). If |T ∩ Y | = 3, then since x has at least 4 neighbors of degree at least 2,
there exists y ∈ N(x)− V (C). Since all vertices in X − {x} are contained in C, y has a
neighbor x′ ∈ C. But then F ∪ xyx′ is an x, V (C)-fan of size 4, a contradiction.

Finally, we may assume T ∩ V (C) = {x1, y1, y2}, where x and x1 have at least 2
common neighbors outside C. In particular, {y1, y2} ⊂ N(x), and for any x′ 6= x, x1, we
have N(x)∩N(x′) ⊆ {y1, y2}, otherwise we could find a larger x, V (C)-fan. We will show
that N(y1) = N(y2) = X. If there exists x′, x′′ ∈ X − {x1} such that x′yi, x

′′yi /∈ E(G)
for some i ∈ {1, 2}, then there cannot exist a 6-cycle based on {x, x′, x′′}, a contradiction.
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Hence |N(y)| > |X| − 2 which implies N(y) = X by Lemma 22 (again, we apply this
lemma to G′, but the conclusion carries over to G).

Consider y ∈ N̂(x)−{y1, y2}. Since there is no x, V (Cx)-fan of size 4, N(y) ⊆ T ∪{x}.
That is, N(y) = {x, x1} and so N̂(x) ⊆ N(x1). Recall that we chose x to have a maximum

number of neighbors of degree at least 2. Additionally, note that V (C)∩Y ⊆ N̂(X). Thus

NC(x1) = {y1, y2}, since otherwise |N̂(x1)| > |N̂(x)|. But then {y1, y2} separates {x, x1}
from the rest of the vertices in X, contradicting Lemma 36.
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