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Abstract

Recall that Janson showed that if the edges of the complete graph Kn are as-
signed exponentially distributed independent random weights, then the expected
length of a shortest path between a fixed pair of vertices is asymptotically equal to
(log n)/n. We consider analogous problems where edges have not only a random
length but also a random cost, and we are interested in the length of the minimum-
length structure whose total cost is less than some cost budget. For several classes
of structures, we determine the correct minimum length structure as a function of
the cost-budget, up to constant factors. Moreover, we achieve this even in the more
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general setting where the distribution of weights and costs are arbitrary, so long
as the density f(x) as x → 0 behaves like cxγ for some γ > 0; previously, this
case was not understood even in the absence of cost constraints. We also handle
the case where each edge has several independent costs associated to it, and we
must simultaneously satisfy budgets on each cost. In this case, we show that the
minimum-length structure obtainable is essentially controlled by the product of the
cost thresholds.

Mathematics Subject Classifications: 05C80, 05C85, 90C27

1 Introduction

Let the edges of the complete graph be given independent random edge weights w(e) and
a random cost c(e) for e ∈ E(Kn). We are interested in the problem of estimating the
minimum weight of a combinatorial structure S where the total cost of S is bounded by
some value C. More generally, we allow r costs c(e) = (ci(e), i = 1, 2, . . . , r) for each edge.
The distribution of weights w(e) will be independent copies of Zα

E where ZE denotes the
exponential rate one random variable and α 6 1. The distribution of costs ci(e) will be
independent copies of Zβ

E where β 6 1. In Section 6 we will see that, since we are allowing
powers of exponentials, a simple coupling argument will allow us to model a very general
class of independent weights and costs, where we require just that the densities satisfy
f(x) ≈ cxγ, γ > 0 as x→ 0; here we mean that cxγ/f(x)→ 1 as x→ 0.

Suppose we are given cost budgets of C = (Ci, i = 1, 2, . . . , r) and we consider the
following problem: let S denote some collection of combinatorial strutures such as paths,
matchings, Hamilton cycles, we would like to solve

Opt(S,C) : Minimise w(S) subject to S ∈ S and ci(S) 6 Ci, i = 1, 2, . . . , r,

and let
w∗(C) denote the minimum value in Opt(S,C).

We remark that Frieze and Tkocz [9], [10] have considered finding minimum weight
spanning trees or arborescences in the context of a single cost constraint and uniform
[0, 1] weights and costs. I.e. the case where S is the set of spanning trees of Kn and

the case where S is the set of spanning arborescences of ~Kn. In these cases, they obtain
asymptotically optimal estimates for those problems, whereas for the problems in the
present paper we have only obtained estimates that are correct to within a constant
factor.

The first problem we study involves paths, here denoted as minimum weight paths
for consistency with the remainder of the paper. Let P(i, j) denote the set of paths from
vertex i to vertex j in Kn.

Constrained Minimum Weight Path (CMWP): Opt(P(1, n),C).
Without the constraint c(P ) 6 C, there is a beautiful result of Janson [13] that gives a
precise value for the expected minimum weight of a path, when the w(e)’s are independent
exponential mean one. With the constraints, we are only able to estimate the expected
minimum weight up to a constant (but can do so for a more general class of distributions).
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Throughout the paper we let

Υ =
r∏
i=1

Ci

be the product of the cost thresholds. Our results show that for the structures we con-
sider, this product of the cost thresholds controls the dependency of the minimum-weight
structure on the vector of cost constraints. In particular, for the minimum weight path
problem, we have:

Theorem 1. If nΥ1/β

logr/β n
→∞ and Ci 6 10 log n, i = 1, 2, . . . , r then w.h.p.

w∗(C) = Θ

(
logrα/β+1 n

nαΥα/β

)
.

A = Θ(B) denotes A = O(B) and B = O(A). And here, the hidden constants depend
only on r, α, β.

For the unconstrained problem, see Hassin and Zemel [11], Janson [13] and Bhamidi
and van der Hofstad [2], [3].

Now consider the case of perfect matchings in the complete bipartite graph Kn,n. Let
M2 denote the set of perfect matchings in Kn,n.

Constrained Assigment Problem (CAP): Opt(M2,C).

Theorem 2. If Υ1/β � nr/β−1 log n1 and Ci 6 n, i = 1, 2, . . . , r then w.h.p.

w∗(C) = Θ

(
n1+rα/β−α

Υα/β

)
.

We note that requiring a lower bound on Υ is necessary in Theorem 2. Indeed, if
Υ1/β 6 e−(r+1)βnr/β−1 then the optimization problem is infeasible w.h.p. To see this
we bound the expected number of feasible solutions as follows: let Z1, Z2, . . . , Zr be
independent sums of n independent copies of Z

1/β
E . Then,

n!
r∏
i=1

P (Zi 6 Ci) 6 n!
r∏
i=1

C
n/β
i

βnn!nn(1/β−1)
6

(
erΥ1/β

βnr/β−1

)n
= o(1).

We use Lemma 7 here to bound P(Zi 6 Ci). We note that a problem similar to this was
studied by Arora, Frieze and Kaplan [1] with respect to the worst-case.

Now consider the case of perfect matchings in the complete graph Kn. LetM1 denote
the set of perfect matchings in Kn.

Constrained Matching Problem (CMP) Opt(M1,C).

Theorem 3. If Υ1/β � nr−1 log n and Ci 6 n, i = 1, 2, . . . , r then w.h.p.

w∗(C) = Θ

(
n1+rα/β−α

Υα/β

)
.

1Here A = A(n)� B = B(n) if A/B →∞ as n→∞.
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Now consider the following set of problems: Minimum Spanning Tree (MST), Mini-
mum Spanning Arborescence (MSA), Travelling Salesperson Problem (TSP). Let T de-

note the set of Hamilton cycles in Kn or the set of directed Hamilton cycles in ~Kn.
Constrained Spanning Tree/Arborescence/Travelling Salesperson Problem

(CTSP+) Opt(T ,C).

Theorem 4. If Υ1/β � nr−1 log n and and Ci 6 n, i = 1, 2, . . . , r then w.h.p.

w∗(C) = Θ

(
n1+rα/β−α

Υα/β

)
.

2 Structure of the paper

We prove the above theorems in their order of statement. The upper bounds are proved
as follows: we consider the random graph Gn,p (or bipartite graph Gn,n,p or digraph Dn,p)
for suitably chosen p associated with the random costs. We then seek minimum weight
objects contained in these random graphs. The definition of p is such that objects, if they
exist, automatically satisfy the cost constraints. For minimum weight paths we adapt the
methodology of [13]. For the remaining problems we use theorems in the literature stating
the high probability existence of the required objects when each vertex independently
chooses a few (close) random neighbors.

In Section 6 we consider more general distributions. We are able to extend the above
theorems under some extra assumptions about the Ci.

3 CSP

3.1 Upper Bound for CSP

In the proof of the upper bound, we first consider weights ŵ(e) where the ŵ(e) are
independent exponential mean one random variables. The costs will remain independent
copies of Zβ

E. We will then use Holder’s inequality to obtain the final result.

3.2 log2+r/β n
n

6 Υ1/β and Ci 6 10 log n, i = 1, 2, . . . , r

Suppose now that we let L = 10 log n and

E0 =

{
e : ci(e) 6

Ci
L
, i = 1, 2, . . . .r

}
.

The proof in this case goes as follows:

(i) We search for short paths that only use edges in E0 and note that the graph ([n], E0)
is distributed as Gn,p.

(ii) Observe that any path using fewer than L edges of E0 automatically satifies the cost
constraints.
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(iii) A simple calculation shows that w.h.p. the number of edges between a set S of size
k and the remaining vertices is close to the expectation k(n − k)p for all sets of
vertices S, see (3) and (4).

(iv) We run Dijkstra’s algorithm for finding shortest (now minimum weight) paths from
vertex 1. We use Janson’s argument [13] to bound the distance to the m = n/3
closest vertices V1. We need the claim in item (iii) here.

(v) We repeat (iv), starting from vertex set n, to obtain the m = n/3 closest vertices
V2. If V1 ∩ V2 6= ∅ we will have found a path of low enough weight, otherwise we
claim that w.h.p. there will be a low enough weight edge joining V1, V2.

(vi) We then argue that the trees constructed by the Dijkstra algorithm are close to
being Random Recursive Trees and we can easily bound their height. Showing that
we can use item (ii).

(vii) We finally use Holder’s inequality to switch from ŵ to w.

We first bound the value of P (e ∈ E0).

p = P (e ∈ E0) =
r∏
i=1

(
1− exp

{
−
(
Ci
3L

)1/β
})

, (1)

where e is an arbitrary edge.
We note that if 0 < x 6 1 then x/2 6 1− e−x 6 x. This implies that

Υ1/β

2r(3L)r/β
6 p 6

Υ1/β

(3L)r/β
. (2)

We consider the random graph Gn,p where edges have weight given by ŵ and costs ci(e) 6
Ci/3L, i = 1, 2, . . . , r. We modify Janson’s argument [13].

We now deal with item (iii). We observe that w.h.p. for every set S of size k,
e(S : S̄) ≈ k(n− k)p where e(S : T ) is the number of edges {v, w} with one end in S and
the other in T . We only need to check the claim for |S| 6 n/2. Let ε = 1

log1/3 n
and

ES =
{
e(S : S̄) /∈ (1± ε)k(n− k)p

}
and E =

⋃
|S|6n/2

ES. (3)
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Then, using the Chernoff bounds for the binomial distribution,

P(E) 6
n/2∑
k=1

(
n

k

)
P(Bin(k(n− k), p) /∈ (1± ε)k(n− k)p)

6 2

n/2∑
k=1

(ne
k

)k
e−ε

2k(n−k)p/3

= 2

n/2∑
k=1

(
ne1−ε2(n−k)p/3

k

)k

6 2

n/2∑
k=1

(
ne−Ω(log4/3 n)

k

)
= o(1),

(4)

where we have used (2) to get the last inequality.
We now continue with item (iv). We set S1 = {1} and d1 = 0 and consider run-

ning Dijkstra’s algorithm [6]. At the end of Step k, we will have computed Sk =
{1 = v1, v2, . . . , vk} and 0 = d1, d2, . . . , dk where di is the minimum weight of a path
from 1 to i, i = 1, 2, . . . , k. Let there be νk edges from Sk to [n]\Sk. Arguing as in [13] we
see that dk+1−dk = Zk where Zk is the minimum of νk independent exponential mean one
random variables. Also, the memoryless property of the exponential distribution implies
that Zk is independent of dk. It follows that for k < n/2,

E(dk | ¬E) = E

(
k∑
i=1

1

νi

∣∣∣∣¬E
)

=
k∑
i=1

1 + o(1)

i(n− i)p
=

1 + o(1)

np

k∑
i=1

(
1

i
+

1

n− i

)
=

1 + o(1)

np
(Hk +Hn−1 −Hn−k+1) , (5)

where Hk =
∑k

i=1
1
i
.

By the same token,

Var(dk | ¬E) =
k∑
i=1

Var(Zi | ¬E) =
k∑
i=1

1 + o(1)

(i(n− i)p)2
= O((np)−2). (6)

We only pursue the use of Dijkstra’s algoritm from vertex 1 for m = n/3 iterations. It
follows from (5) and (6) and the Chebyshev inequality that we have w.h.p.

dm ≈
log n

np
. (7)

We next deal with item (vi). The tree built by Dijkstra’s algorithm is close in distribution
to a random recursive tree i.e. vertex vk+1 attaches to a near uniformly random member
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of {v1, v2, . . . , vk}. Indeed, assuming E does not occur,

P(vk+1 attaches to vi) =
e(vi : S̄k)

νk
6

(1 + ε)(n− 1)p

(1− ε)k(n− k)p
.

Hence, if T is the tree constructed in the first m rounds of Dijkstra’s algorithm, then

P(height(T ) > L) 6
∑

1<t1<···<tL<m

L∏
i=1

3(1 + ε)

2(1− ε)ti

6
1

L!

(
3(1 + ε)

2(1− ε)

)L( n∑
i=1

1

i

)L

6

(
3(log n+ 1)e1+o(1)

2L

)L
= o(1).

(8)

It follows from (2), (7) and (8) that w.h.p., for every v ∈ V1 = Sm, there exists a path P
from 1 to v of weight at most

λ ≈ λ0 =
log n

np
.

30r/β logr/β+1 n

nΥ1/β

and costs ci(P ) 6 LCi/3L 6 Ci/3.2

We now deal with item (v). We next consider applying Dijkstra’s algorithm to find
a minimum weight path from vertex n to other vertices. Using the same argument as
above, we see that we can find m vertices V2 that are within distance λ0 of vertex n. If
V1∩V2 6= ∅ then we have found a path of weight at most 2λ0 between vertex 1 and vertex
n.

If V1, V2 are disjoint then w.h.p. there is an edge of weight 20/np between them.
Indeed,

P(∃V1, V2 with no such edge) 6

(
n

m

)2

(e−20/np)n
2/9 = o(1).

This yields a path P with

ŵ(P ) 6 2λ0 +
20

np
6

3 · 30r/β logr/β+1 n

nΥ1/β
. (9)

ci(P ) 6
2Ci
3

+
Ci
3

= Ci, i = 1, 2, . . . , r. (10)

(Here we have used Ci > Υ1/β/Lr−1 � p.)
We now deal with item (vii). We use Holder’s inequality to yield

w(P ) =
∑
e∈P

ŵ(e)α 6

(∑
e∈P

ŵ(e)

)α

L1−α = O

(
logrα/β+1 n

nαΥα/β

)
. (11)

This completes the proof of Theorem 1 for this case.

2Here we write A = A(n) . B = B(n) if A 6 (1 + o(1))B.
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3.3 3ω logr/β n
n

6 Υ1/β 6 logr/β+2 n
n

and Ci 6 10 log n, i = 1, 2, . . . , r

The proof is similar to that of Section 3.2, but requires some changes in some places.
The problem is that we cannot now assume the non-occurrence of E . Other than this,
the proof will follow the same strategy. Our problem therefore is to argue that w.h.p.
e(Sk : S̄k) is sufficiently large.

(a) We now have to keep track of the size of e(Sk : S̄k) as a random process. This is
equation (12).

(b) The term ηk is the number of edges between v /∈ Sk and Sk. We don’t want this to
be large, as it reduces e(Sk+1 : S̄k+1). So, we do not add vertices to Sk if ηk > 2np,
which only happends rarely.

(c) Finally, we have to work harder in the case where V1, V2 are disjoint. We need to use
edges of slightly higher cost in order to get a low weight edge in e(V1 : V2).

Let p be as in (1) where L = 20 log n. Note that from (2) we see that

p 6
log2 n

n
.

We again consider the random graph Gn,p where edges have weight given by ŵ and
costs at most Ci/3L and again modify Janson’s argument [13]. We also restrict our search
for paths, avoiding vertices of high degree.

We set S1 = {1} and d1 = 0. At the end of Step k we will have computed Sk =
{1 = v1, v2, . . . , vk} and 0 = d1, d2, . . . , dk where di is the minimum weight of a path from
1 to i, i = 1, 2, . . . , k. Let there be νk edges from Sk to [n] \ Sk. We cannot rely on E of
(4) not to occur and so we need to modify the argument here.

Assumption: 1 6 k 6 n0 = 1/3p
Modification: if our initial choice v for vk+1 satisfies e(v : S̄k) > 2np then we reject v
permanently from the construction of paths from vertex 1.

The initial aim is roughly the same, we want to show that w.h.p.∑
`6k

ν` > (1− o(1))knp. (12)

For v /∈ Sk, let ηk,v = e(Sk : {v}) and ηk = ηk,vk+1
. Then, w.h.p.

νk+1 > νk − ηk +Bk where Bk = Bin(n1, p)1Bin(n,p)62np, (13)

where n1 = n− 2n0.
The binomials are independent here. This is because the edges between vk+1 and S̄k

have not been exposed by the algorithm to this point. The number of trials n1 comes
from the following: we know from the Chernoff bounds that

P(Bin(n, p) > 2np) 6 e−np/3. (14)
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It follows from the Markov inequality that w.h.p. there are at most ne−np/4 instances
where the modification is invoked. This means that w.h.p. the initial choice for vk has at
least n− n0 − ne−np/4 > n1 possible neighbors. We now define

Sk =
k∑
`=1

Bk.

We need a lower bound for Bk and an upper bound for ηk. We next observe that if

ε = (np)−1/3

then

P(Bk 6 (1− ε)np) = P(Bin(n1, p) > 2np) + P(Bin(n1 6 (1− ε)np)) 6 (1 + o(1))e−ε
2np/3.
(15)

It follows that if k0 = min
{
n0, e

ε2np/4
}

then w.h.p.

P(∃0 6 k 6 k0 : Bk 6 (1− ε)np) 6 (1 + o(1))k0e
−ε2np/3 6 e−ε

2np/12. (16)

For k > k0, we use the fact that Sk is the sum of bounded random variables. Hoeffding’s
inequality [12] gives that

P(Sk 6 E(Sk)− t) 6 exp

{
− 2t2

4kn2p2

}
.

Now E(Bk) > (1− ε)np and so putting t = k2/3np we see that

P(Sk 6 (1− ε)knp− k2/3np) 6 e−k
1/3/2.

So
P(∃k > k0 : Sk 6 (1− ε)knp− k2/3np) 6

∑
k>k0

e−k
1/3/2 = o(1). (17)

We next observe that

P(∃S : |S| = s 6 1/3p, e(S : S) > s+ r) 6
1/3p∑
s=1

(
n

s

)(
s(s− 1)/2

s+ r

)
ps+r

6
1/3p∑
s=1

(
e2np

2

)s (sep
2

)r
. (18)

Putting r = s(np)1/2, the RHS of (18) becomes

1/3p∑
s=1

(
e2np

2

(sep
2

)(np)1/2
)s

6
1/3p∑
s=1

(
e2np

2

(e
6

)(np)1/2
)s

= o(1).
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It follows that w.h.p.,
k∑
`=1

η` = e(Sk) 6 2((np)1/2 + 1)k. (19)

It then follows from (13) and (16) and (17) and (19) that w.h.p.

νk > (1− o(1))knp− 2((np)1/2 + 1)k > (1− o(1))knp. (20)

Arguing as in [13] we see that dk+1−dk = Zk where Zk is the minimum of νk independent
exponential mean one random variables. Also, Zk is independent of dk. It follows that
for k < n,

E(dk) = E

(
k∑
i=1

1

νi

)
6

k∑
i=1

1 + o(1)

inp
=

1 + o(1)

np

k∑
i=1

1

i
=

1 + o(1)

np
Hk, (21)

where Hk =
∑k

i=1
1
i
.

By the same token,

Var(dk) =
k∑
i=1

Var(Zi) =
k∑
i=1

1 + o(1)

(inp)2
= O((np)−2). (22)

It follows from (21) and (22) and the Chebyshev inequality that w.h.p. we have dn0 .
logn
np

.
Let V1 denote the n0 vertices at this distance from vertex 1.

We next consider applying Dijkstra’s algorithm to find a minimum weight path from
vertex n to other vertices. Using the same argument as above, we see that we can find n0

vertices V2 that are within distance (1+o(1)) logn
np

of vertex n. If V1 ∩ V2 6= ∅ then we have

found a path of weight at most (2+o(1)) logn
np

between vertex 1 and vertex n.
If V1, V2 are disjoint then we will use the edges

E1 =

{
e : ci(e) ∈

[
Ci
L
,
2Ci
L

]
, i = 1, 2, . . . .r

}
.

Given e = {x, y} ∈ V1 : V2, then given the history of Dijkstra’s algorithm so far, either
e ∈ E0 or we can say that

P(e ∈ E1 | e /∈ E0) > P(e ∈ E1) = (1− e−(21/β−1)p1/β)r. (23)

For the equation in (23) we use

P(p 6 Zβ
E 6 2p) = P(Zβ

E > p)(1− P(Zβ
E > 2p | ZE > p))

= e−p
1/β

(
1− P(Zβ

E > 2p)

P(Zβ
e > p)

)
= e−p

1/β
(

1− e−(21/β−1)p1/β
)

= e−p
1/β − e−(2p)1/β >

(21/β − 1)p1/β

2
.

(24)
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For the inequality in (24) we use the fact that we now have p 6 log2 n
n

.
Then we search for an edge in E2 = {e ∈ E1 : ŵ(e) 6 1/np}. And,

P(E2 ∩ (V1 : V2) = ∅) 6
(

1−
(

(21/β − 1)p1/β

2

)
(1− e−1/np)

)1/9p2

6

(
1− (21/β − 1)p1/β

2np

)1/9p2

= o(1).

This yields a path of weight at most (2+o(1)) logn
np

+ 1
np

= (2+o(1)) logn
np

.
We deal with the height of the Dijkstra trees. Let T be the tree constructed by

Dijkstra’s algorithm and let ξi, i 6 k denote the number of edges from vi to V1 \ Si.

P(height(T ) > L) 6 E

( ∑
1<t1<···<tL<n0

L∏
i=1

ξti
νti+1−1

)

6 E

( ∑
1<t1<···<tL<n0

L∏
i=1

2np

νti+1−1

)

6 E

 1

L!

(
n0∑
i=1

2np

νi

)L


6 o(1) +
(2enp)L

(np)LL!

(
n0∑
i=1

1 + o(1)

i

)L

= o(1), (25)

since L > 20 log n.
The first o(1) term in (25) is the probability that there is a small νk and this is covered

by (20).
It follows from the above that w.h.p. there exists a path P

where ŵ(P ) .
2 log n

np
and ci(P ) 6

(2L+ 2)Ci
3L

< Ci, i = 1, 2, . . . , r. (26)

Arguing as for (11) we see that

w(P ) 6 ŵ(P )αL1−α = O

(
logrα/β+1 n

nαΥα/β

)
. (27)

3.4 Lower Bound for CSP

This is a straightforward use of the first moment method. Suppose that

Υ1/β =
ω logr/β n

n
, L =

ε logrα/β+1 n

nαΥα/β
,
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where

ε =

(
αβre−2

(
10

(
r

β
+

1

α

))−(r/β+1/α)
)α

,

then

P (∃P : w(P ) 6 L, ci(P ) 6 Ci, i = 1, 2, . . . , r)

6
n−2∑
k=1

nk−1

(
Lk/α

αkk!kk(1/α−1)

) r∏
i=1

C
k/β
i

βkk!kk(1/β−1)
(28)

6
1

n

n−1∑
k=1

(
n · eε

1/α logr/β+1/α n

αnk1/αΥ1/β
· eΥ

1/β

βrkr/β

)k

=
1

n

n−1∑
k=1

(
e2ε1/α logr/β+1/α n

αβrkr/β+1/α

)k

=
1

n

1
2

logn∑
k=1

(
e2ε1/α logr/β+1/α n

αβrkr/β+1/α

)k

+
1

n

n−1∑
k= 1

2
logn

(
e2ε1/α logr/β+1/α n

αβrkr/β+1/α

)k

6
1

n

1
2

logn∑
k=1

(
log n

10(r/β + 1/α)k

)(r/β+1/α)k

+
1

n

n−1∑
k= 1

2
logn

10−k

= o(1).

Explanation for (28): we choose a path of length k from 1 to n in at most nk−1 ways.
Then we use Lemma 7 r + 1 times. Then we use the union bound.

4 Upper Bounds

4.1 Upper Bound for CAP

Let G denote the subgraph of Kn,n induced by the edges that satisfy ci(e) 6 Ci/n for
i = 1, 2, . . . , r. Let

p = P
(
ci(e) 6

Ci
n
, i = 1, 2, . . . , r

)
=

r∏
i=1

(
1− exp

{
−
(
Ci
n

)1/β
})

.

and note that
log n

n
� Υ1/β

2rnr/β
6 p 6

Υ1/β

nr/β
.

The approach for this and the remaining problems is

(i) Look for a small weight structure in an edge weighted random graph G. In this case
the random bipartite graph Gn,n,p.
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(ii) Use an idea of Walkup [15] to construct a random subgraph H of G that only uses
edges of low weight.

(iii) Use a result from the literature that states that w.h.p. the edges of H contain a
copy of the desired structure.

G is distributed as G = Gn,n,p. Note that by construction, a perfect matching M of G
satisfies ci(M) 6 Ci, i = 1, 2, . . . , r.

Let d = np and note that because dnp� log n the Chernoff bounds imply that w.h.p.
every vertex has degree ≈ d. Now each edge of G has a weight uniform in [0, 1]. Following
Walkup [15] we replace w(e), e = (x, y) by min {Z1(e), Z2(e)} where

Z1, Z2 are independent copies of ZW where P(ZW > x)2 = P(Zα
E > x). (29)

We assign Z1(e) to x and Z2(e) to y.
LetX, Y denote the bipartition of the vertices ofG. Now consider the random bipartite

graph H where each x ∈ X is incident to the two Z1-smallest edges incident with x.
Similarly, y ∈ Y is incident to the two Z2-smallest edges incident with y. Walkup [16]
showed that H has a perfect matching w.h.p. The expected weight of this matching is
asymptotically at most(

2αn

dα

)(
Γ

(
1 +

1

α

)
+ Γ

(
2 +

1

α

))
× 1

2
= O

(
n1+rα/β−α

Υα/β

)
. (30)

This follows from (i) the expression given in Corollary 6 for the expected minimum and
second minimum of d copies of Z and (ii) the matching promised in [16] is equally likely
to select a minimum or a second minimum weight edge.

The selected matching is the sum of independent random variables with exponential
tails and so will be concentrated around its mean.

4.2 Upper Bound for CMP

We let p, d be as in Section 4.1. We replace Walkup’s result [16] by Frieze’s result [8]
that the random graph G2−out contains a perfect matching w.h.p. The random graph
Gk−out has vertex set [n] and each vertex v ∈ [n] independently chooses k random edges
incident with v. We again replace c(e), e = (x, y) by min {Z1(e), Z2(e)} where Z1, Z2 are
independent copies of ZW and associate one copy with each endpoint of the edge. We
consider the random graph H where each v ∈ [n] is incident to the two ZW -smallest edges
incident with x. This is distributed as G2−out and we obtain an expression similar to that
in (30).

We have concentration around the mean as in Section 4.1.

4.3 Upper bound for CTSP+

We first consider the TSP. For the symmetric case, we replace the weight w(e), e = {x, y}
by min {Z1(e), Z2(e)} for each edge of Kn and for the asymmetric case we replace w(e), e =
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(x, y) by min {Z1(e), Z2(e)} for each directed edge of ~Kn. In both cases we associate one
copy of ZW to each endpoint of e. We define p, d as in Section 4.1 and consider either the
random graph Gn,p or the random digraph Dn,p.

For the symmetric case, we consider the random graph H that includes the 3 cheapest
edges associated with each vertex, cheapest with respect to ZW (e). This will be distributed
as G3−out which was shown to be Hamiltonian w.h.p. by Bohman and Frieze [4]. For the
asymmetric case, we consider the random digraph H that includes the 2 cheapest out-
edges and the 2 cheapest in edges associated with each vertex, cheapest with respect to
ZW (e). This will be distributed as D2−in,2−out which has vertex set [n] and where each
vertex v independently chooses 2 out- and in-neighbors. The random digraph D2−in,2−out
was shown to be Hamiltonian w.h.p. by Cooper and Frieze [5].

The expected weight of the tour promised by [4] or by [5] is asymptotically equal
to O(n1+rα/β−α/Υα/β) as in Section 4.1. We have concentration around the mean as in
Section 4.1.

We obtain an upper bound for the MST through the fact that a Hamilton path is also
a spanning tree. The same is true for the asymmetric case, since an arborescence is a tree
with edges oriented away from the root.

5 Lower Bounds

We proceed as in Section 3.4. Suppose that Υ = ωnr/β−1 log n and L = εn1+rα/β−α

Υα/β
where

ε will be a sufficiently small constant. Let Λ denote the relevant structure, matching or
cycle. Then, by the union bound and Lemma 7, we have for CAP,CSTSP,CATSP, MST,
MSA

P (∃Λ : w(Λ) 6 L and ci(Λ) 6 Ci, i = 1, 2, . . . , r) 6 nn · Ln/α

αnn!nn(1/α−1)
·
r∏
i=1

C
n/β
i

βnn!nn(1/β−1)

6

(
eε1/αn1/α+r/β−1

αn1/α−1Υ1/β
· e

rΥ1/β

βnr/β

)n
= o(1),

for ε sufficiently small.
For CMP, assuming that n = 2m,

P (∃Λ : w(Λ) 6 L and ci(Λ) 6 Ci, i = 1, 2, . . . , r)

6
n!

m!2m
· Lm/α

αmm!mm(1/α−1)
·

r∏
i=1

C
m/β
i

βmm!mm(1/β−1)

6

(
ε1/αm1/α+r/β−1

2αm1/α−1Υ1/β
· e

rΥ1/β

βmr/β

)m
= o(1),

for ε sufficiently small.
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6 More general distributions

We follow an argument from Janson [13]. We will asssume that w(e), has the distribution
function Fw(t) = P(X 6 t), of a random variable X, that satisfies Fw(t) ≈ at1/α, α 6 1
as t → 0. For the costs ci(e) we have Fc(t) ≈ bt1/β, β 6 1. The constants a, b > 0 can
be dealt with by scaling and so we assume that a = b = 1 here. For a fixed edge and
say, w(e), we consider random variables w<(e), w>(e) such that w<(e) is distributed as
Zα+εn
E and w>(e) is distributed as Zα−εn

E , where εn = 1/10 log n. (This choice of εn means
that nα+εn = e1/10nα.) Then let U(e) be a uniform [0, 1] random variable and suppose
that X has the distribution F−1(U). We couple X,w<, w> by generating U(e) and then

w<(e) = F−1
< (U) = log

(
1

1−u

)α−εn
and F> is defined similarly. The coupling ensures that

w<(e) 6 w(e) 6 w>(e) as long as w(e) 6 εn.
Given the above set up, it only remains to show that w.h.p. edges of length w(e) > εn

or cost ci(e) > εn are not needed for the upper bounds proved above. We can ignore the
lower bounds, because they only increase if we exclude long edges.

Assumptions for CMWP. For the minimum weight path problem we will assume

that Υ1/β � log1+r/β n
n

, which is a log n factor larger than required for Theorem 1. We will
assume that Ci = o(1) and then we only use edges of cost of order Ci/ log n� εn.

Observe that the minimum weight of a path from 1 to n is at most 4 logn
np

w.h.p. and

this is less than εn because of the assumption log1+r/β n
n

� Υ1/β and the definition of p (see
(2)).

Assumptions for the other problems, We deal with costs by assuming that Ci =
o(n/ log n), i = 1, 2, . . . r. It is then a matter of showing that w.h.p. the first few order
statistics of ZW are very unlikely to be greater than εn. (ZW is defined in (29).) But in
all cases this can be bounded as follows: let W1,W2, . . . ,Wm,m > n/2 be independent
copies of ZW . Then,

P(| {i : Wi 6 εn} | 6 3) 6 m3(1− (1− e−ε
1/α
n )1/2)m−3 = m3e−m

1−o(1)
.

This bounds the probability of using a heavy edge at any one vertex and inflating by n
gives us the result we need.

7 Conclusion

We have given upper and lower bounds that hold w.h.p. for constrained versions of some
classical problems in Combinatorial Optimization. They are within a constant factor of
one another, unlike the situation with respect to spanning trees and arborescences, [9],
[10], where the upper and lower bounds are asymptotically equal. It is a challenge to find
tight bounds for the problems considered in this paper and to allow correlation between
length and cost. It would also be interesting to determine how feasiblity depends on
C1, C2, . . . , Cr. This presumably involves lower bounds on their values. If the Ci are very
large then w.h.p. they do not affect the optimum solution. The natural question is as to
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how large can they be so that the constraints are tight and yet very simple algorithms
suffice to solve the optimisation problem.

We have not made any claims about E(w∗(C)) because there is always the (small)
probability that the problem is infeasible. It is not difficiult to similarly bound the
expectation conditional on feasibility.
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A Auxilliary Lemmas

Lemma 5. Let α > 0 and let Y1, Y2, . . . be i.i.d. copies of Z = Zα
E. For a positive integer

m and 1 6 k 6 m, let X
(k)
m be the kth minimum of Y1, . . . , Ym. Then

EX(k)
m = Γ (1 + α)

k−1∑
j=0

j∑
i=0

(
m

j

)(
j

i

)
(−1)i(m+ i− j)−α.

In particular, if k is a constant as m→∞, then

EX(k)
m ≈

1

(k − 1)!
Γ

(
k +

1

α

)
m−α.

Proof. Note that

P(X(k)
m > t) =

k−1∑
j=0

(
m

j

)
P(Y1 6 t)jP(Y1 > t)n−j

(for the kth minimum to be larger than t, we need exactly j variables to be at most t and
m− j larger than t, j = 0, 1, . . . , k − 1). Integrating gives

EX(k)
m =

∫ ∞
0

P(X(k)
m > t)dt =

k−1∑
j=0

(
m

j

)∫ ∞
0

(
1− e−tα

)j
e−(m−j)tαdt.

It remains to expand
(
1− e−tα

)j
and use

∫∞
0
e−λt

α
dt = Γ (1 + α)λ−α. The asymptotic

statements follow by writing (m+ i− j)−α = m−α(1 + i−j
m

)−α and applying the binomial
series.

Corollary 6. Let α > 0 and let Ŷ1, Ŷ2, . . . be i.i.d. copies of Z1, where Z1 is as defined in
(29). For a positive integer m and 1 6 k 6 m, let X̂

(k)
m be the kth minimum of Ŷ1, . . . , Ŷm.

Then

EX̂(k)
m = 2αΓ (1 + α)

k−1∑
j=0

j∑
i=0

(
m

j

)(
j

i

)
(−1)i(m+ i− j)−α.

In particular, if k is a constant as m→∞, then

EX̂(k)
m ≈ 2α

1

(k − 1)!
Γ (k + α)m−α.
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Proof. This follows from Lemma 5 and the fact that Z1 has the same distribution as 2αZ
because we have P(Z1 > x) = P(Z > x)1/2 = P(2αZ > x). (Here Z = Zα

E.)

Lemma 7. Let α 6 1 and let Y1, Y2, . . . be i.i.d. copies of Zα
E. Then for t > 0, we have

P(Y1 + · · ·+ Yn 6 t) 6
tn/α

αnn!nn(1/α−1)
.

Proof. Using the density,

P(Y1 + · · ·+ Yn 6 t) =

∫
x1,...,xn>0,

∑
xi6t

n∏
i=1

α−1x
1/α−1
i e−x

1/α
i dx1 . . . dxn.

By the AM-GM inequality,
n∏
i=1

xi 6

(∑n
i=1 xi
n

)n
,

and trivially e−x
1/α
i 6 1, so the integrand can be pointwise bounded as follows

n∏
i=1

α−1x
1/α−1
i e−x

1/α
i 6 α−n

(∑n
i=1 xi
n

)n(1/α−1)

6 α−n
tn(1/α−1)

nn(1/α−1)

Thus,

P(Y1 + · · ·+ Yn 6 t) 6 α−n
tn(1/α−1)

nn(1/α−1)
· vol

{
x1, . . . , xn > 0,

n∑
i=1

xi 6 t

}
= α−n

tn/α

n!nn(1/α−1)
.
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