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Abstract

The k-cut number of rooted graphs was introduced by Cai et al. as a generaliza-
tion of the classical cutting model by Meir and Moon. In this paper, we show that
all moments of the k-cut number of conditioned Galton-Watson trees converge after
proper rescaling, which implies convergence in distribution to the same limit law re-
gardless of the offspring distribution of the trees. This extends the result of Janson.
Using the same method, we also show that the k-cut number of various random or
deterministic trees of logarithmic height converges in probability to a constant after
rescaling, such as random split-trees, uniform random recursive trees, and scale-free
random trees.

Mathematics Subject Classifications: 60C05, 60F05, 05C05

1 Introduction and main result

In order to measure the difficulty for the destruction of a resilient network Cai et al. [12]
introduced a generalization of the cut model of Meir and Moon [30] where each vertex
(or edge) needs to be cut k ∈ N times (instead of only once) before it is destroyed. More
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precisely, consider that the resilient network is a rooted tree Tn, with n ∈ N vertices. We
assume that sibling vertices in Tn are ordered. (Such trees sometimes are referred to as
plane trees.) We destroy it by removing its vertices as follows: Step 1: Choose a vertex
uniformly at random from the component that contains the root and cut the selected
vertex once. Step 2: If this vertex has been cut k times, remove the vertex together
with the edges attached to it from the tree. Step 3: If the root has been removed, then
stop. Otherwise, go to step Step 1. We let Kk(Tn) denote the (random) total number of
cuts needed to end this procedure the k-cut number, i.e., Kk(Tn) models how much effort
it takes to destroy the network. (For simplicity, we will omit the subscript k and write
K(Tn).) It should be clear that one can define analogously an edge deletion version of
the previous algorithm, where one needs to cut an edge k times before removing it from
the root component. Then, one would be interested in the number Ke(Tn) of edge cuts
needed to isolate the root of Tn.

The case k = 1 (i.e., the traditional cutting model of Meir and Moon [30]) has been
well-studied by several authors. More precisely, Meir and Moon estimated the first and
second moment of the 1-cut number in the cases when Tn is a Cayley tree [30] and a
recursive tree [31]. Subsequently, several weak limit theorems for the 1-cut number have
been obtained for Cayley trees (Panholzer [33, 34]), complete binary trees (Janson [24]),
conditioned Galton-Watson trees (Janson [25] and Addario-Berry et al. [1]), recursive
trees (Drmota et al. [16], Iksanov and Möhle [23]), binary search trees (Holmgren [19])
and split trees (Holmgren [20]). In the general case k ⩾ 1, the authors in [12] established
first moment estimates of K(Tn) for families of deterministic and random trees, such as
paths, complete binary trees, split trees, random recursive trees and conditioned Galton-
Watson trees. In particular, the authors in [12] have proven a weak limit theorem for
K(Tn) when Tn is a path consisting of n vertices. More recently, Cai and Holmgren [11]
also obtained a weak limit theorem in the case when Tn is a complete binary tree.

In this work, we continue the investigation of this general cutting-down procedure in
conditioned Galton-Watson trees and show that K(Tn), after a proper rescaling, converges
in distribution to a non-degenerate random variable. More precisely, let ξ be a non-
negative integer-valued random variable such that

E[ξ] = 1 and 0 < σ2 := V ar(ξ) <∞. (1)

We further assume that the distribution of ξ is aperiodic. This last condition is to avoid
unnecessary complications, but our results can be extended to the periodic case. We
then consider a Galton-Watson process with (critical) offspring distribution ξ. Let Tn be
the family tree conditioned on its number of vertices being n ∈ N, providing that this

conditioning makes sense. The main result of this paper is the following. We write
d→ to

denote convergence in distribution. (In the rest of the paper CRT stands for Continuum
Random Tree.)

Theorem 1. Let k ∈ N. Let Tn be a Galton-Watson tree conditioned on its number of
vertices being n ∈ N with offspring distribution ξ satisfying (1). Then,

σ−1/kn−1+1/2kK(Tn)
d→ZCRT, as n→ ∞, (2)
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where ZCRT is a non-degenerate random variable whose law is determined entirely by its
moments: E[Z0

CRT] = 1, and for q ∈ N, E[Zq
CRT] = ηk,q with

ηk,q := q!

∫ ∞

0

· · ·
∫ ∞

0

y1(y1 + y2) · · · (y1 + · · ·+ yq)e
− (y1+···+yq)

2

2 Fq(yq) dyq · · · dy1, (3)

where yq = (y1, . . . , yq) ∈ Rq
+ and

Fq(yq) :=

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

exp

(
−
y1x

k
1 + y2x

k
2 + · · ·+ yqx

k
q

k!

)
dxq · · · dx2 dx1.

Furthermore, if E[ξp] <∞ for every p ∈ Z⩾0, then for every q ∈ Z⩾0,

σ−q/kn−q+q/2kE[K(Tn)
q] → E[Zq

CRT], as n→ ∞.

In the case k = 1, Theorem 1 reduces to a ZCRT having a Rayleigh distribution with
density xe−x2/2, for x ∈ R+. More precisely, one can verify that η1,q = 2q/2Γ(1 + q/2),
for q ∈ Z⩾0, which are the moments of a random variable with the Rayleigh distribution;
in this paper Γ(·) denotes the well-known gamma function. As we mentioned earlier,
the case k = 1 has been shown in [25, Theorem 1.6] (or Addario-Berry et al. [1]). We
henceforth assume throughout this paper that k ⩾ 2.

It is also important to mention that we could not find a simpler expression (in general)
for the moments ηk,q except for some particular instances. For q = 1, we have

ηk,1 = 2−
1
2k
(k!)

1
k

k
Γ

(
1

k

)
Γ

(
1− 1

2k

)
.

Then Theorem 1 provides a proof of [12, Lemma 4.10], where an estimation of the first
moment of K(Tn) was first announced but whose proof was left to the reader. One can also
compute with the help of Mathematica the second moment of ZCRT or other particular
examples. However, the expressions are too involved and we decided not to include them.

On the other hand, let (U1, . . . , Uq) be q i.i.d. leaves of a Brownian CRT and de-
fine the vector (LCRT

0 , LCRT
1 , . . . , LCRT

q ) where LCRT
0 = 0 and LCRT

i is the total length
of the minimal subtree of a Brownian CRT which connects its root and the leaves of
U1, . . . , Ui; see [3, Lemma 21] from where one can deduce explicitly the distribution of
(LCRT

0 , LCRT
1 , . . . LCRT

q ). From the proof of Theorem 1, we obtain, for q ∈ N, that

ηk,q = q!

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

E
[
exp

(
−
∑q

i=1(L
CRT
i − LCRT

i−1 )xki
k!

)]
d ⃗xq,

where ⃗xq = (xq, . . . , x1) ∈ Rq
+. This suggests that it ought to be possible to build the

random variable ZCRT by some construction that can be interpreted as the k-cut model
on the Brownian CRT defined by Aldous [2, 3]. The appearance of the Brownian CRT
in this framework should not come as a surprise since it is well-known that if we assign
length n−1/2 to each edge of the Galton-Watson tree Tn, then the latter converges weakly
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to a Brownian CRT as n → ∞. We believe that this connection can be exploited even
more than the one used in this work in order to obtain the precise distribution of ZCRT.
For example, ideas from [6] and [1] could be useful to answer this question.

The approach used in this work consists of implementing an extension of the idea of
Janson [25], which was used in [12], in order to study the k-cut model on deterministic
and random trees. The authors in [12] introduced an equivalent model that allows them
to define K(Tn) in terms of the number of records in Tn when vertices are assigned
random labels. More precisely, let (Ei,v)i⩾1,v∈Tn be a sequence of independent exponential
random variables with parameter 1; Exp(1) for short. Let Gr,v :=

∑
1⩽i⩽r Ei,v, for r ∈ N

and v ∈ Tn. Clearly, Gr,v has a gamma distribution with parameters (r, 1), which we
denote by Gamma(r). Imagine that each vertex v ∈ Tn has an alarm clock and v’s clock
fires at times (Gr,v)r⩾1. If we cut a vertex when its alarm clock fires, then due to the
memoryless property of exponential random variables, we are actually choosing a vertex
uniformly at random to cut. However, this also means that we are cutting vertices that
have already been removed from the tree. Thus, for a cut on vertex v at time Gr,v (for
some r ∈ {1, . . . , k}) to be counted in K(Tn), none of its strict ancestors can already have
been cut k times, i.e.,

Gr,v < min{Gk,u : u ∈ Tn and u is a strict ancestor of v}.

When the previous event happens, we say that Gr,v, or simply v, is an r-record and let

Ir,v := JGr,v < min{Gk,u : u ∈ Tn and u is a strict ancestor of v}K, (4)

where J·K denotes the Iverson bracket, i.e., JSK = 1 if the statement S is true and JSK = 0
otherwise. Let Kr(Tn) be the number of r-records, i.e., Kr(Tn) :=

∑
v∈Tn

Ir,v. Then, it
should be clear that

K(Tn)
d
=
∑

1⩽r⩽k

Kr(Tn), (5)

where
d
= denotes equal in distribution.

Loosely speaking, we then consider the well-known depth-first search walk or contour
function Vn = (Vn(t), t ∈ [0, 2(n − 1)]) of the (ordered) tree Tn as depicted in Figure 1,
that is, Vn(t) is “the depth of the t-th vertex” visited in this walk; this will be made precise
in the next section. As it is well-known (see Aldous [3, Theorem 23 with Remark 2] or
[29, Theorem 1]), when Tn is a conditioned Galton-Watson with offspring distribution
satisfying (1), we have that

(n−1/2Vn(2(n− 1)t), t ∈ [0, 1])
d→ 2σ−1Bex, as n→ ∞,

in C([0, 1],R+), with its usual topology, and where Bex = (Bex(t), t ∈ [0, 1]) is a stan-
dard normalized Brownian excursion. It has been shown in [12, Lemma 2.1] that1

1For two sequences of non-negative real numbers (An)n⩾1 and (Bn)n⩾1 such that Bn > 0, we write
An ∼ Bn if An/Bn → 1 as n → ∞
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Figure 1: An example of a depth-first search walk in a tree and the corresponding Vn.

E[Ir,v] ∼ Cr,kdn(v)
−r/k, for some (explicit) constant Cr,k > 0, where dn(v) is the depth

of the vertex v ∈ Tn. Let ◦ denote the root of Tn. Thus, heuristically

E [Kr(Tn) | Tn] ≈
∑

v∈Tn\{◦}

Cr,k

dn(v)r/k
≈ Cr,k

2

∫ 2(n−1)

0

dt

Vn(t)r/k

≈ Cr,k

n−1+ r
2k

∫ 1

0

(
Vn(2(n− 1)t)√

n

)− r
k

dt

≈ Cr,k

n−1+ r
2k

(σ
2

) r
k

∫ 1

0

dt

Bex(t)r/k
,

in distribution, as n→ ∞. (The reader should bear in mind that the above calculation is
not rigorous at all and that the purpose is only to illustrate the idea of proof.) One then
expects that

σ−r/kn−1+ r
2kE [Kr(Tn)] ∼ Cr,kE

[∫ 1

0

(2Bex(t))−r/k dt

]
, as n→ ∞,

which coincides with the right-hand side of (3) when r = q = 1. Note that this informal
computation suggests that2 E [Kr(Tn)] = O(n1− r

2k ), for r ∈ {1, . . . , k}. As a consequence,

Markov’s inequality implies that n−1+ 1
2kKr(Tn) → 0 in probability, as n → ∞, for r ∈

{2, . . . , k}. As shown later, by the identity in (5), it would be enough to prove Theorem 1
for K1(Tn) instead of K(Tn).

In the rest of the paper, Section 2 and Section 3 make the above argument precise
and extend it to higher moments. This will allow us to use the method of moments for
proving Theorem 1. In Section 4, we also apply the same idea to get all moments of the
number of records in paths and several types of trees of logarithmic height, e.g., complete
binary trees, split trees, uniform random recursive trees and scale-free trees.

2 Preliminary results

The purpose of this section is to establish a general convergence result for the number of
1-records K1(Tn) of a deterministic rooted ordered tree Tn. The results of this section

2For two sequences of non-negative real numbers (An)n⩾1 and (Bn)n⩾1 such that Bn > 0, we write
An = O(Bn) if lim supn→∞ An/Bn < ∞.
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can also be viewed as a generalization of those in Janson [25] and in Cai, et al. [12].
Furthermore, these results will allow us to study the convergence of K(Tn) not only for
conditioned Galton-Watson trees, but also for other classes of random trees in Section 4.
We start by defining a probability measure through a continuous function in the same
spirit as in [25, Theorem 1.9]. Let I ⊆ R+ be an interval. For a function f : I → R+ and
t1, . . . , tq ∈ I with q ∈ N, we define

Lf (t1, . . . , tq) :=

q∑
i=1

f(t(i))−
q−1∑
i=1

inf
t∈[t(i),t(i+1)]

f(t), (6)

where t(1), . . . , t(q) are t1, . . . , tq arranged in nondecreasing order. Notice that Lf (t1, . . . , tq)
is symmetric in t1, . . . , tq and that Lf (t) = f(t) for t ∈ I. Define

Df (t1) := Lf (t1) and Df (t1, . . . , tq) := Lf (t1, . . . , tq)− Lf (t1, . . . , tq−1), for q ⩾ 2. (7)

We also consider the functional

Gf (tq,xq) := exp

(
−
Df (t1)x

k
1 + · · ·+Df (t1, . . . , tq)x

k
q

k!

)
, (8)

for xq = (x1, . . . , xq) ∈ Rq
+ and tq = (t1, . . . , tq) ∈ Iq. If I = [0, 1], we further define, for

q ∈ N, m0(f) := 1 and

mq(f) := q!

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

Gf (tq,xq) d ⃗xq d ⃗tq, for q ⩾ 2, (9)

where ⃗xq = (xq, . . . , x1) and ⃗tq = (tq, . . . , t1).

Theorem 2. Let k ∈ N. Suppose that f ∈ C([0, 1],R+) is such that
∫ 1

0
f(t)−1/kdt < ∞.

Then there exists a unique probability measure νf on [0,∞) with finite moments given by∫
[0,∞)

xqνf (dx) = mq(f), for q ∈ Z⩾0.

Proof. We only prove uniqueness here. The proof for existence follows along the lines
of [25, Proof of Theorem 1.9, Pages 18-19] and details are left to the interested reader.
Informally speaking, the idea in [25] for the proof of existence is to build a sequence of
functions that satisfy the conditions of Lemma 3 below. Define the function

Hf,q(tq) :=

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

Gf (tq,xq) d ⃗xq. (10)

By changing the order of integration, we obtain that

Hf,q(tq) =

∫ ∞

0

∫ ∞

xq

· · ·
∫ ∞

x2

Gf (tq,xq) dxq,

the electronic journal of combinatorics 28(1) (2021), #P1.25 6



for xq = (x1, . . . , xq) ∈ Rq
+ and tq = (t1, . . . , tq) ∈ [0, 1]q. By making the change of

variables xq = wq, xq−1 = wq + wq−1, . . . , x1 = wq + · · ·+ w1, we see that

Hf,q(tq) =

∫
[0,∞)q

exp

− 1

k!

q∑
i=1

Df (t1, . . . , ti)

(
q∑

j=i

wj

)k
 dwq,

where wq = (w1, . . . , wq) ∈ Rq
+. From the inequality (x1 + · · ·+ xq)

k ⩾ xk1 + · · ·+ xkq , we
observe that

Hf,q(tq) ⩽
q∏

j=1

∫ ∞

0

exp

(
−
wk

j

k!

j∑
i=1

Df (t1, . . . , ti)

)
dwj

= Γ (1 + 1/k)q Γ(1 + k)q/k
q∏

j=1

(
j∑

i=1

Df (t1, . . . , ti)

)−1/k

= Γ (1 + 1/k)q Γ(1 + k)q/k
q∏

i=1

Lf (t1, . . . , ti)
−1/k

⩽ Γ (1 + 1/k)q Γ(1 + k)q/k
q∏

i=1

f(ti)
−1/k, (11)

where for the last inequality we have used the fact that Lf (t1, . . . , ti) ⩾ max1⩽j⩽i f(tj),
for 1 ⩽ i ⩽ q. The later follows from the symmetry of Lf ; see [25, Lemma 4.1] for a proof.
Then, the previous inequality allows us to conclude that

0 ⩽ mq(f) ⩽ q! Γ (1 + 1/k)q Γ(1 + k)q/k
(∫ 1

0

f(t)−1/kdt

)q

.

We conclude that there exists a > 0 such that
∑∞

q=0mq(f)
xq

q!
< ∞, for 0 ⩽ x < a.

Then a probability measure with moments mq(f) has a finite generating function in a
neighbourhood of 0. Thus, it is well-known that this implies that the probability measure
is unique; see, e.g., [18, Section 4.10].

Consider a rooted ordered tree Tn with root ◦ and n ∈ N vertices. We now explain how
Tn can be encoded by a continuous function. We define the so-called depth-first search
function [2, page 260], ψn : {0, 1, . . . , 2(n− 1)} → { vertices of Tn} such that ψn(i) is the
(i + 1)-th vertex visited in a depth-first walk on the tree starting from the root ◦. Note
that ψn(i) and ψn(i+ 1) always are neighbours, and thus, we extend ψ to [0, 2(n− 1)] by
letting, for 1 ⩽ i < t < i + 1 ⩽ 2(n− 1), ψn(t) to be the one of ψn(i) and ψn(i + 1) that
has largest depth (recall that the depth of a vertex v ∈ Tn is the distance, i.e., number of
edges, between ◦ to v). Let dn(v) be the depth of a vertex v ∈ Tn. We further define the
depth-first walk Vn of Tn by

Vn(i) := dn(ψ(i)), i ∈ {0, . . . , 2(n− 1)},
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and extend Vn to [0, 2(n− 1)] by linear interpolation. Thus Vn ∈ C([0, 2(n− 1)],R+). See
Figure 1 for an example of Vn. Furthermore, we normalize the domain of Vn to [0, 1] by
defining

Ṽn(t) := Vn(2(n− 1)t) and V̂n(t) := ⌈Vn(2(n− 1)t)⌉, (12)

for t ∈ [0, 1]. Thus Ṽn ∈ C([0, 1],R+). Note that dn(ψ(t)) = ⌈Vn(t)⌉, for t ∈ [0, 2(n− 1)].
Moreover,

max
v∈Tn

dn(v) = sup
t∈[0,2(n−1)]

Vn(t) = sup
t∈[0,1]

Ṽn(t). (13)

We now state the central result of this section, that is, a general limit theorem in
distribution for the number of 1-records K1(Tn) of a deterministic rooted tree Tn with n
vertices. It is important to notice that K1(Tn) is a random variable since the 1-records
are random. From now on, we always assume that k ⩾ 2.

Lemma 3. Suppose that (Tn)n⩾1 is a sequence of ordered (deterministic) rooted trees, and

denote the corresponding normalized depth-first walks by Ṽn and V̂n. Suppose that there ex-
ists a sequence (an)n⩾1 of non-negative real numbers with limn→∞ an = 0, limn→∞ na

1/k
n =

∞ and a function f ∈ C([0, 1],R+) such that

(a) anṼn(t) → f(t), in C([0, 1],R+), as n→ ∞.

(b)

∫ 1

0

(anV̂n(t))
−1/k dt→

∫ 1

0

f(t)−1/k dt <∞, as n→ ∞.

Then, for each q ∈ Z⩾0,
n−qa−q/k

n E[K1(Tn)
q] → mq(f),

as n → ∞, where mq(f) is defined in (9). Moreover, n−1a
−1/k
n K1(Tn)

d→Zf , as n → ∞,
where Zf is a random variable with distribution νf defined by Theorem 2.

Before proving Lemma 3, we need to establish some preliminary results and to intro-
duce some further notation. For q ∈ N and vertices v1, . . . , vq ∈ Tn, let Ln(v1, . . . , vq)
be the number of edges in the subtree of Tn spanned by v1, . . . , vq and its root ◦ (i.e.,
the minimal number of edges that are needed to connect v1, . . . , vq and ◦). We write
Dn(v1) := Ln(v1) and Dn(v1, . . . , vq) := Ln(v1, . . . , vq) − Ln(v1, . . . , vq−1) for q ⩾ 2. We
also consider the functional

Gn(vq,xq) := exp

(
−
Dn(v1)x

k
1 + · · ·+Dn(v1, . . . , vq)x

k
q

k!

)
, (14)

for xq = (x1, . . . , xq) ∈ Rq
+ and vq = (v1, . . . , vq) ∈ Tq

n. We denote by Γ(k, ·) the upper
incomplete gamma function of parameter k ∈ N, i.e.,

Γ(k, x) =

∫ ∞

x

tk−1e−t dt, for x ⩾ 0.
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Remark 4. Let Tn be an ordered (deterministic) rooted tree with depth-first search walk
ψn and the corresponding function Vn. It is not difficult to see that Ln and L⌈Vn⌉ are
connected, in the sense that Ln(ψn(t1), . . . , ψn(tq)) = L⌈Vn⌉(t1, . . . , tq) for t1, . . . , tq ∈
[0, 2(n− 1)]; see [25, Lemma 4.4] for a proof of this fact.

Lemma 5. Let Tn be an ordered (deterministic) rooted tree with n ∈ N vertices. Suppose
that there exists a sequence (an)n⩾1 of non-negative real numbers such that limn→∞ an = 0
and maxv∈Tn dn(v) = O(a−1

n ). Let α := 1
2

(
1
k
+ 1

k+1

)
and x0 := aαn. Then, for q ∈ N and

uniformly for all x ∈ [0, x0],

P(Gamma(k) > x)Dn(v1,...,vq) =

(
Γ(k, x)

Γ(k)

)Dn(v1,...,vq)

= (1 +O(a
1
2k
n )) exp

(
−Dn(v1, . . . , vq)x

k

k!

)
,

where the vertices v1, . . . , vq ∈ Tn.

Proof. Our claim can be shown along the lines of [12, Proof of Lemma 5.1].

Recall that for two sequences of non-negative real numbers (An)n⩾1 and (Bn)n⩾1 such
that Bn > 0, one writes An = o(Bn) if limn→∞An/Bn = 0.

Lemma 6. Let Tn be an ordered (deterministic) rooted tree with n ∈ N vertices. Suppose
that there exists a sequence (an)n⩾1 of non-negative real numbers with limn→∞ an = 0,

limn→∞ na
1/k
n = ∞ and maxv∈Tn dn(v) = O(a−1

n ). Then the moments of K1(Tn) are given
by

n−qa−q/k
n E[K1(Tn)

q] = (1 +O(a
q
2k
n ))q!

∫ 1

0

· · ·
∫ 1

0

H̄n,q(tq) d ⃗tq + o(1),

where

H̄n,q(tq) :=

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

GanV̂n
(tq,xq) exp

(
−a1/kn

q∑
i=1

xi

)
d ⃗xq, for q ∈ N. (15)

Proof. For simplicity, we write Xq := K1(Tn)
q for q ∈ Z⩾0 and note that Xq = Xq

1 . For
q ∈ N, we observe that

Xq = (X1 − 1 + 1)q = (X1 − 1)q +

q−1∑
p=0

(
q

p

)
(X1 − 1)p = (X1 − 1)q + Yq.

where Yq :=
∑q−1

p=0

∑p
l=0

(
q
p

)(
p
l

)
(−1)p−lXl. Recall that I1,v is the indicator that v ∈ Tn is a

1-record defined in (4). By the previous identity, we have that

Xq =
∑

v1,...,vq∈Tn\{◦}

I1,v1 · · · I1,vq + Yq = q!
∑

v1,...,vq∈Tn\{◦}

JE(v1, . . . , vq)K + Yq
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where E(v1, . . . , vq) := {E1,vq < · · · < E1,v1 and v1, . . . , vq are all 1-records}; recall that
E1,v1 , . . . , E1,vq are independent random variables with an Exp(1) distribution. To see the
last identity, note that each product I1,v1 · · · I1,vq occurs q! times with indices permuted
and for exactly one of these permutations we have that E1,vq < · · · < E1,v1 .

Consider the simple case q = 2. Conditioning on E1,v2 = x2 < E1,v1 = x1, we see that
v1 and v2 are both 1-records, if and only if, the following two events happen:

(i) the Dn(v1) ancestors of v1 are removed after time x1;

(ii) the Dn(v1, v2) vertices which are ancestors of v2 but not of v1 are removed after time
x2.

Since x2 < x1, we note that the event (i) implies that the vertices which are both the
ancestors of v1 and v2 are removed after x1. Let g(x) := P(Gamma(k) > x) for x ∈ R+.
Since the events (i) and (ii) are independent, we have

P (E(v1, v2)) =
∫ ∞

0

∫ x1

0

g(x1)
Dn(v1)g(x2)

Dn(v1,v2)e−x1−x2 dx2 dx1. (16)

Recall that we are assuming k ⩾ 2. Otherwise, when k = 1, the above equality is not
entirely correct since E(v1, v2) is impossible if v2 is an ancestor of v1; see [25, Lemma 4.3]
for details in the case k = 1.

By generalizing the previous argument to q ∈ N, we see that

P(E(v1, . . . , vq)) =
∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

g(x1)
Dn(v1) · · · g(xq)Dn(v1,...,vq)e−

∑q
i=1 xi d ⃗xq

=

∫ x0

0

∫ x1

0

· · ·
∫ xq−1

0

g(x1)
Dn(v1) · · · g(xq)Dn(v1,...,vq)e−

∑q
i=1 xi d ⃗xq

+

∫ ∞

x0

∫ x1

0

· · ·
∫ xq−1

0

g(x1)
Dn(v1) · · · g(xq)Dn(v1,...,vq)e−

∑q
i=1 xi d ⃗xq

= A1 + A2,

where ⃗xq = (xq, . . . , x1) ∈ Rq
+, x0 = aαn and α = 1

2

(
1
k
+ 1

k+1

)
. On the one hand, Lemma 5

implies that

A2 ⩽
∫ ∞

x0

g(x)Dn(v1)e−x dx ⩽ g(x0)
Dn(v1) = O

(
exp

(
− xk0
2ank!

))
;

we have used our assumption maxv∈Tn dn(v) = O(a−1
n ). On the other hand, Lemma 5 also

implies that

A1 = (1 +O(a
1
2k
n ))q

∫ x0

0

∫ x1

0

· · ·
∫ xq−1

0

Gn(vq,xq)e
−

∑q
i=1 xi d ⃗xq

= (1 +O(a
q
2k
n ))

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

Gn(vq,xq)e
−

∑q
i=1 xi d ⃗xq + A3,
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where vq = (v1, . . . , vq) ∈ Tq
n and

A3 = (1 +O(a
q
2k
n ))

∫ ∞

x0

∫ x1

0

· · ·
∫ xq−1

0

Gn(vq,xq)e
−

∑q
i=1 xi d ⃗xq = O

(
exp

(
− xk0
2ank!

))
this estimation can be deduced similarly as the one for the integral A2. Therefore, the
previous estimations and Remark 4 allow us to conclude that E[Xq] equals to

(1 +O(a
q
2k
n ))q!

∑
v1,...,vq∈Tn\{◦}

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

Gn(vq,xq)e
−

∑q
i=1 xi d ⃗xq

+ E[Yq] + o(nqaq/kn ) (17)

= (1 +O(a
q
2k
n ))q!2−q

∫ 2(n−1)

0

· · ·
∫ 2(n−1)

0

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

G⌈Vn⌉(tq,xq)e
−

∑q
i=1 xi d ⃗xq d ⃗tq

+ E[Yq] + o(nqaq/kn )

= (1 +O(a
q
2k
n ))q!nq

∫ 1

0

· · ·
∫ 1

0

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

GV̂n
(tq,xq)e

−
∑q

i=1 xi d ⃗xq d ⃗tq+

+ E[Yq] + o(nqaq/kn );

note that if we had not excluded the root, we would not be able to write the sum as an
integral. By making the change of variables xi = a

1/k
n wi, for 1 ⩽ i ⩽ q, we have that

E[Xq] = (1 +O(a
q
2k
n ))q!nqaq/kn

∫ 1

0

· · ·
∫ 1

0

H̄n,q(tq)d ⃗tq + E[Yq] + +o(nqaq/kn ).

Finally, our claim follows by induction on q ∈ N and the assumption limn→∞ na
1/k
n =

∞.

We are now able to establish Lemma 3.

Proof of Lemma 3. First note that by condition (a) of Lemma 3 and (13), we have

maxv∈Tn dn(v) = supt∈[0,1] Ṽn(t) = O(a−1
n ). Thus the conditions for Lemma 5 and Lemma 6

are satisfied.
Recall the functions H̄n,q and Hf,q defined in (15) and (10), respectively. Therefore,

notice that we only need to show that∫
[0,1]q

H̄n,q(tq) d ⃗tq →
∫
[0,1]q

Hf,q(tq) d ⃗tq, as n→ ∞. (18)

The above convergence together with Lemma 6 implies that E[K1(Tn)
q] = O(nqa

q/k
n )

which clearly proves the first claim in Lemma 3. The second claim follows immediately
from Theorem 2 and the method of moments.
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We henceforth prove the claim in (18). Recall that a sequence (gn)n⩾1 of non-negative
functions on a measure space (Ω,F , µ) with total mass 1, i.e., µ(Ω) = 1, is uniformly
integrable if

∫
Ω
gn dµ <∞ for all n ⩾ 1 and

sup
A∈F :µ(A)⩽δ

sup
n⩾1

∫
A

gn dµ→ 0, as δ → 0.

We also recall the following useful result on uniformly integrable sequences of functions.
Suppose further that gn → g almost everywhere as n→ ∞. By [27, Proposition 4.12], we
know that

(gn)n⩾1 is uniformly integrable if and only if

∫
gn dµ→

∫
g dµ <∞, (19)

as n→ ∞. Then in order to prove (18), it is enough to check the following:

(i) The sequence (H̄n,q)n⩾1 is uniformly integrable on [0, 1]q, and

(ii) H̄n,q → Hf,q as n→ ∞.

We start by showing (i). Note that |anṼn(t) − anV̂n(t)| ⩽ an for t ∈ [0, 1]. Then, the

assumption (a) implies that anV̂n(t) → f(t) and 1/(anV̂n(t))
1/k → (1/f(t))1/k, for every

t ∈ [0, 1], as n → ∞. Moreover, the assumption (b) shows that (1/(anV̂n(t))
1/k)n⩾1 is

uniformly integrable on [0, 1]. More generally, for every fixed q ∈ N and tq = (t1, . . . , tq),

define the function H̃n,q(tq) := (anV̂n(t1) · · · anV̂n(tq))−1/k. We then observe that∫ 1

0

· · ·
∫ 1

0

H̃n,q(tq) dtq =

(∫ 1

0

(
anV̂n(t)

)−1/k

dt

)q

→
(∫ 1

0

f(t)−1/k dt

)q

=

∫ 1

0

· · ·
∫ 1

0

(f(t1) · · · f(tq))−1/q dtq,

as n → ∞. Thus the result in (19) shows that the sequence (H̃n,q)n⩾1 is uniformly

integrable on [0, 1]q. Next notice that the inequality exp(−a1/kn (x1+ · · ·+xq)) ⩽ 1 implies
that H̄n,q(tq) ⩽ HanV̂n,q

(tq), where HanV̂n,q
is defined in (10). Then the inequality (11)

implies that there exists a constant Ck,q > 0 such that H̄n,q(tq) ⩽ Ck,qH̃n,q(tq). Hence (i)
follows by applying [18, Theorem 4.5].

Finally, we verify (ii). Recall that condition (a) implies that anV̂n(t) → f(t), for every

t ∈ [0, 1], as n→ ∞. Hence, whenever 0 ⩽ t1 ⩽ t2 ⩽ 1, inft∈[t1,t2] anV̂n(t) → inft∈[t1,t2] f(t)
as n→ ∞. Thus, for q ∈ N, the equation (7), implies that

DanV̂n
(t1, . . . , tq) → Df (t1, . . . , tq)
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uniformly for t1, . . . , tq ∈ [0, 1] as n→ ∞. Then, for xq ∈ Rq
+ and tq ∈ [0, 1]q,

GanV̂n
(tq,xq)e

−a
1/k
n

∑q
i=1 xi → Gf (tq,xq), as n→ ∞.

Note that for ε ∈ (0, 1) there exists N ∈ N such that

GanV̂n
(tq,xq)e

−a
1/k
n

∑q
i=1 xi ⩽ exp

(
−(1− ε)f(t1)x

1/k
1

k!

)
, for n ⩾ N.

Moreover, note that condition (b) implies that the function on the right-hand side of the
inequality is integrable on {xq ∈ R+ : 0 ⩽ xq ⩽ · · · ⩽ x1 < ∞}. Therefore, it should be
clear that (ii) follows by the dominated convergence theorem. This finishes the proof.

We can apply similar ideas as in the proofs of Lemma 3 and Lemma 6 to estimate
the mean of the number of r-records Kr(Tn). It is important to mention that we have
not tried to estimate higher moments of Kr(Tn) to obtain a limit theorem in distribution
for this quantity. We believe that our methods can be used but the computations will
be more involved and we decided not to do it. Furthermore, the next results show that
Kr(Tn) is of smaller order than K1(Tn) and hence it will not contribute (in the limit) to
the distribution of the k-cut number K(Tn).

Lemma 7. Let Tn be an ordered (deterministic) rooted tree with n ∈ N vertices. Suppose
that there exists a sequence (an)n⩾1 of non-negative real numbers with limn→∞ an = 0,

limn→∞ na
1/k
n = ∞ and maxv∈Tn dn(v) = O(a−1

n ). Then, for r ∈ {1, . . . , k},

n−1a−r/k
n E[Kr(Tn)] = (1 +O(a

1
2k
n ))

∫ 1

0

∫ ∞

0

xr−1e−a
1/k
n x

Γ(r)
e−

anV̂n(t)xk

k! dxdt+ o(1).

Proof. Note that the case r = 1 has been proven in Lemma 6. We follow a similar strategy
to prove the case r ∈ {2, . . . , k}. Recall that Ir,v is the indicator of the event that the
vertex v ∈ Tn is an r-record defined in (4). We observe that

E[Ir,v] =
∫ ∞

0

xr−1e−x

Γ(r)
P(Gamma(k) > x)dn(v) dx

=

∫ x0

0

xr−1e−x

Γ(r)
P(Gamma(k) > x)dn(v) dx+

∫ ∞

x0

xr−1e−x

Γ(r)
P(Gamma(k) > x)dn(v) dx

= A1 +A2,

where xα0 = aαn and α = 1
2

(
1
k
+ 1

k+1

)
. On the one hand, Lemma 5, with q = 1, implies

that

A2 ⩽ O

(
e−

xk0
2ank!

)∫ ∞

0

xr−1e−x dx = O

(
e−

xk0
2ank!

)
.

On the other hand, Lemma 5, with q = 1, also implies that

A1 = (1 +O(a
1
2k
n ))

∫ x0

0

xr−1e−x

Γ(r)
e−

dn(v)xk

k! dx
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= (1 +O(a
1
2k
n ))

∫ ∞

0

xr−1e−x

Γ(r)
e−

dn(v)xk

k! dx+ A3,

where

A3 =

∫ ∞

x0

xr−1e−x

Γ(r)
e−

dn(v)xk

k! dx = O

(
e−

xk0
2ank!

)
;

this estimate can be deduced similarly as the one for the integral A2. By recalling that
Kr(Tn) =

∑
v∈Tn

Ir,v, we conclude from the previous estimations that

E[Kr(Tn)] = (1 +O(a
1
2k
n ))

∑
v∈Tn\{◦}

∫ ∞

0

xr−1e−x

Γ(r)
e−

dn(v)xk

k! dx+ o(nar/kn ) (20)

= (1 +O(a
1
2k
n ))2−1

∫ 2(n−1)

0

∫ ∞

0

xr−1e−x

Γ(r)
e−

⌈Vn(t)⌉xk
k! dxdt+ o(nar/kn )

= (1 +O(a
1
2k
n ))n

∫ 1

0

∫ ∞

0

xr−1e−x

Γ(r)
e−

V̂n(t)xk

k! dxdt+ o(nar/kn ).

Finally, our claim follows by making the change of variables x = a
1/k
n w.

Lemma 8. Suppose that (Tn)n⩾1 is a sequence of ordered (deterministic) rooted trees. Sup-
pose that there exists a sequence (an)n⩾1 of non-negative real numbers with limn→∞ an = 0,

limn→∞ na
1/k
n = ∞, and a function f ∈ C([0, 1],R+) such that Ṽn satisfies the condition

(a) in Lemma 3 and that for r ∈ {1, . . . , k},∫ 1

0

(anV̂n(t))
−r/k dt→

∫ 1

0

f(t)−r/k dt <∞, as n→ ∞.

Then,

n−1a−r/k
n E[Kr(Tn)] →

(k!)r/kΓ(r/k)

kΓ(r)

∫ 1

0

f(t)−r/k dt, as n→ ∞.

Proof. Notice that the case r = 1 has been proved in Lemma 3. The proof of the general
case r ∈ {1, . . . , k} follows by a simple adaptation of the argument used in the proof of
Lemma 3 for q = 1 with the use of Lemma 7. One only needs to note that∫ 1

0

∫ ∞

0

xr−1

Γ(r)
e−

f(t)xk

k! dxdt =
(k!)

r
k

k

Γ( r
k
)

Γ(r)

∫ 1

0

f(t)−r/k dt.

3 Proof of Theorem 1

Let Tn be a Galton-Watson tree conditioned on its number of vertices being n ∈ N with
offspring distribution ξ satisfying (1). Note that in this case both the r-records and the
tree are random. Then we study Kr(Tn) as a random variable conditioned on Tn. More
precisely, we first choose a random tree Tn. Then we keep it fixed and consider the number
of r-records. This gives a random variable Kr(Tn) with distribution that depends on Tn.
We have the following lemma that corresponds to [25, Lemma 4.8].
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Lemma 9. Let Tn be a Galton-Watson tree conditioned on its number of vertices being
n ∈ N with offspring distribution ξ satisfying (1). For r ∈ {1, . . . , k}. We have that
E[Kr(Tn)] = O(n1− r

2k ).

Proof. By an application of the proof of Lemma 7 with an = n−1/2 (in particular, the
equality (20)), we see that

E[Kr(Tn)|Tn] ⩽ (1 +O(a
1
2k
n ))

∑
v∈Tn\{◦}

∫ ∞

0

xr−1

Γ(r)
e−

dn(v)xk

k! dx+ o(nar/kn )

= (1 +O(a
1
2k
n ))

∑
v∈Tn\{◦}

(k!)r/kΓ(r/k)

kΓ(r)
dn(v)

−r/k + o(nar/kn )

= (1 +O(a
1
2k
n ))

(k!)r/kΓ(r/k)

kΓ(r)

∞∑
i=1

i−r/kwi(Tn) + o(nar/kn ), (21)

where wi(Tn) denotes the number of vertices at depth i ∈ N in Tn. Notice that

∞∑
i=1

i−r/kwi(Tn) ⩽ n1− r
2k +

⌊n1/2⌋∑
i=1

i−r/kwi(Tn),

by the fact that
∑

i⩾0wi(Tn) = n. Since E[ξ2] <∞ by our assumption (1), [25, Theorem
1.13] implies that for all n, i ∈ N, E[wi(Tn)] ⩽ Ci for some constant C > 0 depending on
ξ only. Therefore,

∞∑
i=1

i−r/kE[wi(Tn)] ⩽ n1− r
2k +

⌊n1/2⌋∑
i=1

E[wi(Tn)]i
− r

k = O(n1− r
2k ). (22)

By taking expectation in (21), our claim follows by (22).

We continue by studying the moments of the number of 1-records K1(Tn). We denote
by µn the (random) probability distribution of σ−1/kn−1+1/2kK1(Tn) given Tn. Define the
random variables

mq(Tn) := E[K1(Tn)
q|Tn], q ∈ Z⩾0.

Notice that the moments of µn are given by σ−q/kn−q+q/2kmq(Tn). We have the following
lemma that corresponds to [25, Lemma 4.9].

Lemma 10. Let Tn be a Galton-Watson tree conditioned on its number of vertices being
n ∈ N with offspring distribution ξ satisfying (1). Furthermore, suppose that for every
fixed q ∈ N we have that E[ξq+1] <∞. Then E[mq(Tn)] = O(nq− q

2k ).
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Proof. By an application of Lemma 6 with q ∈ N and an = n−1/2 (in particular, the
equality (17) in its proof), we see that

mq(Tn) ⩽ (1 +O(n− q
4k ))q!

∑
v1,...,vq∈Tn\{◦}

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

Gn(vq,xq) d ⃗xq + Yq,

where Yq :=
∑q−1

p=0

∑p
l=0

(
q
p

)(
p
l

)
(−1)p−lml(Tn). After a similar computation as in the proof

of the inequality (11), one sees that there exists a constant Ck,q > 0 such that

mq(Tn) ⩽ (1 +O(n− q
4k ))q!Ck,qm̄1(Tn)

q + Yq, (23)

where m̄1(Tn) :=
∑

v∈Tn\{◦} dn(v)
−1/k. Notice that

m̄1(Tn) =
∞∑
i=1

wi(Tn)i
− 1

k ⩽ n1− 1
2k +

⌊n1/2⌋∑
i=1

wi(Tn)i
− 1

k ,

where wi(Tn) denotes the number of vertices at depth i ∈ N in Tn. Since E[ξq+1] < ∞
for q ∈ N, [25, Theorem 1.13] implies that for all n, i ∈ N, E[wi(Tn)

q] ⩽ Ciq for some
constant C > 0 depending on q and ξ only. Therefore, Minkowski’s inequality implies
that

E[m̄1(Tn)
q]

1
q ⩽ n1− 1

2k +

⌊n1/2⌋∑
i=1

E[wi(Tn)
q]

1
q i−

1
k = O(n1− 1

2k ). (24)

By taking expectation in (23), we deduce from (24) that

E[mq(Tn)] = E[Yq] +O(nq− q
2k ),

and our claim follows by induction on q ∈ N.

Let Ṽn and V̂n be the normalized depth-first search walks associated with the condi-
tioned Galton-Watson tree Tn. Note that in this case Ṽn becomes a random function on
C([0, 1],R+). Recall that a remarkable result due to Aldous [3, Theorem 23 with Remark
2] (see also [29, Theorem 1]) shows that

n−1/2Ṽn
d→ 2σ−1Bex, as n→ ∞, (25)

in C([0, 1],R+), with its usual topology, and where Bex = (Bex(t), t ∈ [0, 1]) is a standard
normalized Brownian excursion. Note that Bex is a random element from C([0, 1],R+);
see for example [8] or [36].

Lemma 11. For r ∈ {1, . . . , k}, we have that
∫ 1

0
Bex(t)−r/k dt <∞ almost surely.

Proof. One only needs to show that E[
∫ 1

0
Bex(t)−r/k dt] <∞. This follows by computing

E[Bex(t)−r/k], for every t ∈ [0, 1], from the well-known density function of Bex(t); see [8,
Chapter II, Equation (1.4)].
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Therefore, Theorem 2 and Lemma 11 imply that there exists almost surely a (unique)
measure ν2Bex with moments given bymq(2B

ex). The next result provides a generalization
of [25, Theorem 1.10] and it will be used in the proof of Theorem 1.

Theorem 12. Let Tn be a Galton-Watson tree conditioned on its number of vertices being
n ∈ N with offspring distribution ξ satisfying (1). Then

µn
d→ ν2Bex , as n→ ∞, (26)

in the space of probability measures on R. Moreover, we have that for every q ∈ N,

σ−q/kn−q+q/2kmq(Tn)
d→mq(2B

ex), as n→ ∞. (27)

The convergences in (25), (26) and (27), for all q ∈ N, hold jointly. In particular, if
E[ξp] <∞ for all p ∈ N, then for all q ∈ N and l ∈ N,

σ−lq/kn−lq/k+lq/2kE[mq(Tn)
l] → E[mq(2B

ex)l], as n→ ∞. (28)

Proof. A simple adaptation of the proof of [25, Lemma 4.7] easily shows that(
Ṽn,

∫ 1

0

V̂n(t)
−1/k dt

)
d→
(
2σ−1Bex, 2−1/kσ1/k

∫ 1

0

Bex(t)−1/k dt

)
, (29)

in C([0, 1],R+)×R, as n→ ∞. By the Skorohod coupling theorem (see e.g. [27, Theorem
4.30]), we can assume that the trees (Tn)n⩾1 are defined on a common probability space
such that the convergence in (29) holds almost surely. Therefore, the convergences (26)
and (27) follow immediately from Lemma 3. It only remains to prove (28). Recall that
we assume that E[ξp] < ∞ for every p ∈ N. By Jensen’s inequality, we notice that

mq(Tn)
l ⩽ mlq(Tn) for l, q ∈ N. Hence Lemma 10 implies that E[mq(Tn)

l] = O(nlq− lq
2k ).

This shows that every moment of the right-hand side of (27) stays bounded as n → ∞
which implies (28).

We are now able to prove Theorem 1.

Proof of Theorem 1. Lemma 9 establishes that E[Kr(Tn)] = O(n1− r
2k ) for r ∈ {1, . . . , k}.

As a consequence, Markov’s inequality implies that n−1+ 1
2kKr(Tn) → 0 in probability, as

n→ ∞, for r ∈ {2, . . . , k}. Then, by the identity in (5), it is enough to prove Theorem 1
for K1(Tn) instead of K(Tn). By the definition of µn and Theorem 12, for any bounded
continuous function g : R+ → R+,

E[g(σ−1/kn−1+1/2kK1(Tn))|Tn] =

∫
g dµn

d→
∫
g dν2Bex , as n→ ∞.

Taking expectations, the dominated convergence theorem implies that

σ−1/kn−1+1/2kK1(Tn)
d→ZCRT, as n→ ∞,
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where ZCRT has distribution ν(·) = E[ν2Bex(·)]. Suppose that E[ξp] < ∞ for every p ∈ N.
Lemma 10 implies that every moment of n−1+1/2kK1(Tn) stays bounded as n→ ∞ which
implies the moment convergence in Theorem 1. It remains to identify the moments of
ZCRT (or equivalently ν). Notice that

E[Zq
CRT] =

∫
xq dν = E

[∫
xq dν2Bex

]
= E[mq(2B

ex)], for q ∈ N.

For q ∈ N, let U1, . . . , Uq be independent random variables with the uniform distribution
on [0, 1]. Let Y1, . . . , Yq be the first q points in a Poisson process on (0,∞) with intensity

x dx, i.e., Y1, . . . , Yq have joint density function y1 · · · yqe−y2q/2 on 0 < y1 < · · · < yq < ∞.

It is well-known that L2Bex(U1, . . . , Uq)
d
= Yq, see, e.g., [25, Proof of Lemma 5.1]. Thus by

recalling the definition of the function H2Bex,q in (10), we see that

E[mq(2B
ex)] = q!E[H2Bex,q(Uq)] = q!

∫ y1

0

· · ·
∫ yq−1

0

∫ ∞

0

y1 · · · yqe−y2q/2F̃q(yq) dyq, (30)

where Uq = (U1, . . . , Uq), yq = (y1, . . . , yq) ∈ Rq
+ and

F̃q(yq) :=

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

exp

(
−
y1x

k
1 + (y2 − y1)x

k
1 + · · ·+ (yq − yq−1)x

k
q

k!

)
d ⃗xq.

Finally, the expression for the moments in Theorem 1 follows by first changing the order
of integration in (30) and then by making the change of variables wi = yi − yi−1 for
2 ⩽ i ⩽ q.

Following the idea of the proof of Theorem 1, we obtain the following convergence of
the first moment of the number of r-records Kr(Tn). This provides a proof of [12, Lemma
4.10].

Lemma 13. Let Tn be a Galton-Watson tree conditioned on its number of vertices being
n ∈ N with offspring distribution ξ satisfying (1). For r ∈ {1, . . . k}, we have that

n−1+ r
2kE[Kr(Tn)] →

(k!)
r
k

k

Γ( r
k
)Γ
(
1− r

2k

)
Γ(r)

(
σ√
2

) r
k

, as n→ ∞.

Proof. The proof follows by a simple adaptation of the argument used in the proof of
Theorem 1 by using Lemma 8 (with an = n−1/2), Lemma 9 and Lemma 11. One only
needs to note that

E
[∫ 1

0

Bex(t)−r/k dt

]
= 2−

r
2kΓ
(
1− r

2k

)
,

which follows from the well-known density function of Bex(t); see [8, Chapter II, Equation
(1.4)].
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4 Further applications

In this section, we show that the results obtained in Section 2 can be used and extended
to study the k-cut model in other families of trees. In this section, let Tn be a rooted tree
(maybe random and not necessarily ordered) with n ∈ N vertices and root ◦.

4.1 Paths

Lemma 14. Let Tn be a path with n vertices labelled 1, . . . , n from the root to the leaf.

For k ∈ {2, 3, . . . }, we have that n−1+1/kK(Tn)
d→Zpath, as n→ ∞, where Zpath is a non-

degenerate random variable whose law is determined entirely by its moments: E[Zq
path] =

mq(f) for q ∈ Z⩾0, where

f(t) =

{
2t, t ∈ [0, 1/2],
2− 2t, t ∈ (1/2, 1].

Proof. By [12, Theorem 1.1], we know that E[Kr(Tn)] = O(n1− r
k ), for r ∈ {1, . . . , k − 1},

and E[Kk(Tn)] = O(lnn). Then Markov’s inequality implies that n−1+1/kKr(Tn) → 0
in probability, as n → ∞, for r ∈ {2, . . . , k}. Thus, by the identity (5), it is enough
to prove our result for K1(Tn) instead of K(Tn). Note that the normalized depth-first

search walks Ṽn and V̂n of Tn, defined in (12), are given by n−1Ṽn(t) = f(t). and that

n−1V̂n(t) = n−1⌈Ṽn(t)⌉ for t ∈ [0, 1]. It should be clear that the conditions of Lemma 3
are fulfilled with an = n−1. Therefore, our result follows from a simple application of
Lemma 3.

Remark 15. The convergence in distribution and moments of the k-cut number of a path to
Zpath has been proved in [12, Theorem 1.5] with a very different method. The contribution
of Lemma 14 is the formula for computing the q-th moment of the limiting variable Zpath

for all q ∈ Z⩾0.

4.2 General trees

The next result establishes a limit in distribution for the number of 1-records K1(Tn) of a
general (random) rooted tree in the same spirit as in Lemma 3. For q ∈ N, let u1, . . . , uq
be a sequence of independent uniformly chosen vertices on Tn. Recall that Ln(u1, . . . , uq)
denotes the number of edges in the subtree of Tn spanned by u1, . . . , uq and its root ◦ (i.e.,
the minimal number of edges that are needed to connect u1, . . . , uq and ◦). In particular,
Ln(u1) = dn(u1) is the depth of the vertex u1 in Tn. In the sequel, we will often use the
notation An = Op(Bn), where (An)n⩾1 and (Bn)n⩾1 are two sequences of non-negative real
random variables such that Bn > 0, to indicate that limδ→∞ lim supn→∞ P(An > δBn) = 0.

Theorem 16. Let (Tn)n⩾1 be a sequence of rooted trees. Suppose that there exists a

sequence (an)n⩾1 of non-negative real numbers with limn→∞ an = 0, limn→∞ na
1/k
n = ∞

and such that

(a) maxv∈Tn Ln(v) = Op(a
−1
n ).
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(b) For every q ∈ N, an(Ln(u1), . . . , Ln(u1, . . . , uq))
d→ (ζ1, . . . , ζ1+ · · ·+ ζq), as n→ ∞,

where ζ1, ζ2 . . . is a sequence of i.i.d. random variables in R+ with no atom at 0.

(c) For every q ∈ N, E[(anLn(u1) · · · anLn(uq))
−1/k1{u1,...,uq∈Tn\{◦}}] → E[ζ−1/k

1 ]q <
∞, as n→ ∞.

Then n−1a
−1/k
n K1(Tn)

d→Zζ, as n → ∞, where Zζ is a random variable whose law is
determined entirely by its moments: E[Z0

ζ ] = 1, and for q ∈ N,

E[Zq
ζ ] = q!

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

E

[
exp

(
−
ζ1x

k
1 + · · ·+ ζqx

k
q

k!

)]
d ⃗xq.

Proof. By the assumption (a) and Lemma 6 (in particular, the identity (17)), we see that

E[K1(Tn)
q|Tn] = (1 +O(a

q
2k
n ))q!

∑
v1,...,vq∈Tn\{◦}

Ĥn,q(vq) + Yq,

where vq = (v1, . . . , vq) ∈ Tq
n, Yq :=

∑q−1
p=0

∑p
l=0

(
q
p

)(
p
l

)
(−1)p−lE[K1(Tn)

l|Tn] and

Ĥn,q(vq) :=

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

Gn(vq,xq)e
−

∑q
i=1 xi d ⃗xq,

with Gn defined in (14). Then we see that

n−qE[K1(Tn)
q] = (1 +O(a

q
2k
n ))q!E[Ĥn,q(uq)1{uq∈(Tn\{◦})q}] + n−qE[Yq],

where uq = (u1, . . . , uq). Suppose that we have proven that

a−q/k
n E[Ĥn,q(uq)1{uq∈(Tn\{◦})q}]

→
∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

E

[
exp

(
−
ζ1x

k
1 + · · ·+ ζqx

k
q

k!

)]
d ⃗xq. (31)

as n → ∞. Then the result follows by induction on q ∈ N together with the previous
convergence.

We henceforth prove the claim in (31). From the result in (19), it is enough to check
the following:

(i) The sequence (a
−q/k
n Ĥn,q(uq)1{uq∈(Tn\{◦})q})n⩾1 is uniformly integrable.

(ii) a−q/k
n Ĥn,q(uq)1{uq∈(Tn\{◦})q}

d→
∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

exp

(
−
ζ1x

k
1 + · · ·+ ζqx

k
q

k!

)
d ⃗xq,

as n→ ∞.
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We start by showing (i). Since exp(−(x1 + · · ·+ xq)) ⩽ 1 for x1, . . . , xq ∈ R+, we have
that

Ĥn,q(uq) ⩽
∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

Gn(uq,xq) d ⃗xq.

Hence after a similar computation as in the proof of the inequality (11), one obtains that
there exists a constant Ck,q > 0 such that

a−q/k
n Ĥn,q(uq)1{uq∈(Tn\{◦})q} ⩽ Ck,qa

−q/k
n (Ln(u1) · · ·Ln(uq))

−1/k1{uq∈(Tn\{◦})q}.

Notice that our hypotheses (b) and (c) together with the result in (19) show that the
sequence

a−q/k
n ((Ln(u1) · · ·Ln(uq))

−1/k1{uq∈(Tn\{◦})q})n⩾1

is uniformly integrable. Hence (i) follows from [18, Theorem 5.4.5].

Finally, we verify (ii). By making the change of variables xi = a
1/k
n wi, for 1 ⩽ i ⩽ q,

we see that

Ĥn,q(uq) = aq/kn

∫ ∞

0

∫ w1

0

· · ·
∫ wq−1

0

Ḡn(uq,wq)e
−a

1/k
n

∑q
i=1 wi d ⃗wq,

where wq = (w1, . . . , wq) ∈ Rq
+, ⃗wq = (wq, . . . , w1), and

Ḡn(uq,wq) := exp

(
−
anDn(u1)w

k
1 + · · ·+ anDn(u1, . . . , uq)w

k
q

k!

)
,

with Dn(u1) := Ln(u1) and Dn(u1, . . . , uq) := Ln(u1, . . . , uq)− Ln(u1, . . . , uq−1) for q ⩾ 2.

Notice that 1{uq∈(Tn\{◦})q}
d→ 1, as n→ ∞. Thus, condition (b) implies that

Ḡn(uq,wq)1{uq∈(Tn\{◦})q}
d→ exp

(
−
ζ1w

k
1 + · · ·+ ζqw

k
q

k!

)
, as n→ ∞.

By the Skorohod coupling theorem (see e.g. [27, Theorem 4.30]), we can assume that the
previous convergence holds almost surely together with the convergence in condition (b).
Notice that for ε ∈ (0, 1) there exists N ∈ N such that

Ḡn(vq,wq)1{vq∈(Tn\{◦})q} ⩽ exp
(
−(1− ε)ζ1w

k
1/k!

)
, for n ⩾ N.

By condition (c), notice also that the function on the right-hand side is integrable on
{wq ∈ Rq

+ : 0 ⩽ wq ⩽ · · · ⩽ w1 < ∞}. Therefore, it should be clear now that (ii) follows
by the dominated convergence theorem. This concludes our proof.
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The next result establishes an estimate for the mean number of r-records Kr(Tn) of
a general (random) rooted tree in the same spirit as in Lemma 8. Furthermore, it shows
that Kr(Tn) is of smaller order than K1(Tn) and hence it will not contribute (in the limit)
to the distribution of the k-cut number K(Tn). We believe as well that our methods can
be used to estimate higher moments and to obtain an analogue result to Theorem 16 for
Kr(Tn). We have not attempted to do it and the estimation of the mean is enough for
our purpose.

Lemma 17. Let (Tn)n⩾1 be a sequence of rooted trees. Suppose that there exists a sequence
(an)n⩾1 of non-negative real numbers with limn→∞ an = 0, limn→∞ nan = ∞ and such that

(a) maxv∈Tn Ln(v) = Op(a
−1
n ).

(b) anLn(u1)
d→ ζ1, as n→ ∞, where ζ1 is a random variable in R+ with no atom at 0.

(c) For every r ∈ {1, . . . k}, E[(anLn(u1))
−r/k1{u1∈Tn\{◦}}] → E[ζ−r/k

1 ] <∞, as n→ ∞.

Then, for r ∈ {1, . . . k},

n−1a−r/k
n E[Kr(Tn)] →

(k!)r/kΓ(r/k)

kΓ(r)
E[ζ−r/k

1 ], as n→ ∞. (32)

Proof. By the assumption (a) and Lemma 7 (in particular, the identity (20)), we see that

E[Kr(Tn)|Tn] = (1 +O(a
1
2k
n ))

∑
v∈Tn\{◦}

∫ ∞

0

xr−1e−x

Γ(r)
e−

Ln(v)xk

k! dx+ o(nar/kn ).

Hence

n−1E[Kr(Tn)] = (1 +O(a
1
2k
n ))

∫ ∞

0

xr−1e−x

Γ(r)
E
[
e−

Ln(u1)x
k

k! 1{u1∈Tn\{◦}}

]
dx+ o(ar/kn ).

Therefore, our result follows by proving that

a−r/k
n

∫ ∞

0

xr−1e−x

Γ(r)
E
[
e−

Ln(u1)x
k

k! 1{u1∈Tn\{◦}}

]
dx →

∫ ∞

0

xr−1

Γ(r)
E
[
e−

ζ1x
k

k!

]
dx, as n → ∞,

where the last integral is equal to the right-hand side of (32). Note that the case r = 1
has been proved in Theorem 16. The proof of the general case r ∈ {1, . . . , k} follows by a
simple adaptation of the argument used in the proof of Theorem 16 for q = 1 and details
are left to the reader.

The next lemma provides a useful way to verify condition (c) in Theorem 16.

Lemma 18. Let Tn be a rooted tree. Suppose that there exists a sequence (an)n⩾1 of non-

negative real numbers with limn→∞ an = 0, limn→∞ na
1/k
n = ∞ and such that for every

q ∈ N,

an(Ln(u1), · · · , Ln(uq))
d→ (ζ1, . . . , ζq), as n→ ∞,
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where ζ1, ζ2 . . . is a sequence of i.i.d. random variables in R+ with no atom at 0 such that

E[ζ−1/k
1 ] <∞. Furthermore, assume that for every q ∈ N there exists δ > 0 such that for

all ε ∈ (0, δ)

E[Wi(Tn)] = o(naq/k+1
n ), uniformly on 0 ⩽ i ⩽ ε1/qa−1

n , (33)

where Wi(Tn) denotes the number of vertices a depth i ∈ Z⩾0 in Tn. Then the condition
(c) in Theorem 16 is satisfied

Proof. For simplicity, we introduce the notation

Xn,q := (anLn(u1) · · · anLn(uq))
−1/k1{uq∈(Tn\{◦})q}

and Xq := (ζ1 · · · ζq)−1/k, for n, q ∈ N. Consider δ > 0 such that for ε ∈ (0, δ) the property
in (33) is satisfied. Define the function ϕε : R+ → R+ given by ϕε = 0 on [0, ε], ϕε = 1 on

[2ε,∞), and ϕε linear on [ε, 2ε]. Since 1{uq∈(Tn\{◦})q}
d→ 1 we observe that

E[Xn,qϕε(X
−k
n,q )] → E[Xqϕε(X

−k
q )], as n→ ∞.

Further, we note that ϕε(X
−k
q ) → 1, almost surely, as ε → 0. In order to show that

condition (c) in Theorem 16 is fulfilled, it is enough to check that

lim
ε→0

lim
n→∞

E[(Xn,q −Xn,qϕε(X
−k
n,q ))] = 0. (34)

Notice that

E[(Xn,q −Xn,qϕε(X
−k
n,q ))] ⩽ E

[
Xn,q1{X−k

n,q⩽ε}

]
.

Since {X−k
n,q ⩽ ε} ⊆ {1 ⩽ Ln(u1) ⩽ ε1/qa−1

n } ∩ · · · ∩ {1 ⩽ Ln(uq) ⩽ ε1/qa−1
n }, it is not

difficult to see that

E[(Xn,q −Xn,qϕε(X
−k
n,q ))] ⩽ E

 1

n

∑
v∈Tn\{◦}

(anLn(v))
−1/k1{Ln(v)⩽ε1/qa−1

n }

q
⩽

1

n
E

 ∑
v∈Tn\{◦}

(anLn(v))
−q/k1{Ln(v)⩽ε1/qa−1

n }

 ,
where we have used Jensen’s inequality to obtain the second inequality. Finally, by our
choice of ε (recall assumption (33)), we observe that

E[(Xn,q −Xn,qϕε(X
−k
n,q ))] ⩽ n−1a−q/k

n

⌊ε1/qa−1
n ⌋∑

i=1

i−q/kE[Wi(Tn)] = o(1).

This clearly implies (34) and concludes our proof.
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Similarly, we also provide a useful way to verify condition (c) in Lemma 17.

Lemma 19. Let Tn be a rooted tree. Suppose that there exists a sequence (an)n⩾1 of non-
negative real numbers with limn→∞ an = 0, limn→∞ nan = ∞ and such that the condition
(b) in Lemma 17 holds with a random variable ζ1 satisfying E[ζ−r/k

1 ] < ∞ for every
r ∈ {1, . . . , k}. Furthermore, assume that for every r ∈ {1, . . . , k} there exists δ > 0 such
that for all ε ∈ (0, δ)

E[Wi(Tn)] = o(nar/k+1
n ), uniformly on 0 ⩽ i ⩽ εa−1

n , (35)

where Wi(Tn) denotes the number of vertices at depth i ∈ Z⩾0 in Tn. Then the condition
(c) in Lemma 17 is fulfilled.

Proof. It should be clear that this can be shown along the lines of the proof of Lemma 18,
and therefore, we omit its proof.

4.3 Trees of logarithmic height

Natural examples of trees that fulfil the conditions of Theorem 16 are the class of random
trees with logarithmic height, i.e., trees Tn such that maxv∈Tn dn(v) = Op(lnn). For
instance, random split trees, uniform random recursive trees, scale-free random trees and
mixtures of complete regular trees.

4.3.1 Complete binary trees

Let Tbi
n be a complete binary tree with n ∈ N vertices, i.e., its height is ⌊lnn⌋. Recall that

Tbi
n has 2i vertices at height i ∈ {0, 1, . . . , ⌊lnn⌋}, and n−2⌊lnn⌋+1 vertices of height ⌊lnn⌋,

moreover, the vertices of height ⌊lnn⌋ have leftmost positions among the 2⌊lnn⌋ possible
ones; see, e.g., [28, Page 401]. We use the notation lg2 n = (lnn)/(ln 2) for the logarithm
with base 2 of n ∈ N. It should be clear that condition (a) in Theorem 16 is satisfied with

an = (lg2 n)
−1. Furthermore, one readily checks that (lg2 n)

−1(Ln(u1), Ln(u1, u2))
d→ (1, 2),

as n → ∞. By a simple application of [5, Corollary 1], this implies that condition (b)
in Theorem 16 is satisfied with ζ1 ≡ 1. Notice that each vertex in Tbi

n has at most
2 children. Then it should be clear that condition (c) of Theorem 16 follows from
Lemma 18 since E[Wi(Tbi

n )] ⩽ 2i for i ∈ Z⩾0. Therefore, Theorem 16 implies that

n−1(lg2 n)
1/kK1(Tbi

n )
d→Z1, as n → ∞, where Z1 is the random variable whose law is

determined entirely by its moments: E[Z0
1 ] = 1, and for q ∈ N,

E[Zq
1 ] = q!

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

exp

(
−
xk1 + · · ·+ xkq

k!

)
d ⃗xq. (36)

It should be clear that Lemma 17 and Lemma 19 imply that

E[Kr(Tbi
n )] = O(n(lg2 n)

−r/k)
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for r ∈ {1, . . . , k}. Therefore, by the identity (5) and Markov’s inequality,

n−1(lg2 n)
1/kK(Tbi

n )
d→Z1, as n→ ∞.

However, it follows from the next lemma that Z1 ≡ (k!)
1
kΓ (1 + 1/k). Therefore, we

actually have

n−1(lg2 n)
1/kK(Tbi

n )
d→Z1 ≡ (k!)1/kΓ (1 + 1/k) . (37)

Remark 20. As Theorem 1.1 of [11] shows, K(Tbi), after proper shifting and rescaling,
also converges to a non-degenerate limit distribution with an infinite mean. Thus it is not
possible to derive the result in [11] with the method of moments which we use to derive
Theorem 1 for conditioned Galton-Watson trees. The same is true for split trees, random
recursive trees and scale-free trees.

Lemma 21. For q ∈ N, we have that

q!

∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

exp

(
−
xk1 + · · ·+ xkq

k!

)
d ⃗xq = (k!)q/kΓ

(
1 +

1

k

)q

.

Proof. By making the change of variables wi = xki /k!, for 1 ⩽ i ⩽ q, we notice that the
integral at the right-hand side of (36) is equal to

q!(k!)q/kΓ

(
1 +

1

k

)q ∫ ∞

0

∫ w1

0

· · ·
∫ wq−1

0

q∏
i=1

e−wiw
1
k
−1

i

Γ(1/k)
d ⃗wq = (k!)q/kΓ

(
1 +

1

k

)q

.

To see the last identity, we notice that the integral at the left-hand side is simply the
probability that G1 ⩾ G2 ⩾ . . . ⩾ Gq, where G1, . . . , Gq are independent Gamma(1/k, 1)
random variables, which is equal to 1/q! since each order of G1, . . . , Gq is equally likely.

4.3.2 Split trees

The class of random split trees was first introduced by Devroye [13] to encompass many
families of trees that are frequently used in algorithm analysis, e.g., binary search trees
and tries. Its exact construction is somewhat lengthy and we refer readers to either the
original algorithmic definition in [13, 21] or the more probabilistic version in [10, Section
2]. Informally speaking, a split tree Tsp

n is constructed by first distributing n ∈ N balls
among the vertices of an infinite b-ary tree (b ∈ N \ {1}) and then removing all subtrees
without balls. Each vertex in the infinite b-ary tree is given a random non-negative split
vector V = (V1, . . . , Vb) such that

∑b
i=1 Vi = 1 and Vi ⩾ 0, drawn independently from

the same distribution. These vectors affect how balls are distributed. In the study of
split-trees, the following condition of V is often assumed (see, e.g., Holmgren [21]):

Condition A. The split vector V is permutation invariant. Moreover, P(V1 = 1) =
P(V1 = 0) = 0, and that − log(V1) is non-lattice.
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Set µ := bE[−V1 lnV1] ∈ (0, ln b). Devroye [13] showed that maxv∈Tsp
n
dn(v) = Op(lnn),

that is, condition (a) in Theorem 16 with an = µ(lnn)−1. Berzunza et al. [7, Lemma 5

and Corollary 1] have shown that µ(lnn)−1(Ln(u1), Ln(u1, u2))
d→ (1, 2), as n → ∞. By

a simple application of [5, Corollary 1], this implies that condition (b) in Theorem 16 is
satisfied with ζ1 ≡ 1. Notice that each vertex in Tsp

n has at most b children. Then it should
be clear that condition (c) of Theorem 16 follows from Lemma 18 since E[Wi(Tsp

n )] ⩽ bi for

i ∈ Z⩾0. Therefore, Theorem 16 implies that µ−1/kn−1(lnn)1/kK1(Tsp
n )

d→Z1, as n → ∞,
where Z1 is the random variable whose law is determined entirely by its moments given
in (36). Furthermore, Lemma 17 and Lemma 19 imply that E[Kr(Tsp

n )] = O(n(lnn)−r/k)
for r ∈ {1, . . . , k}. Therefore, by the identity (5) and the Markov’s inequality,

µ−1/kn−1(lnn)1/kK1(Tsp
n )

d→Z1 ≡ (k!)1/kΓ (1 + 1/k) .

4.3.3 Uniform random recursive trees

A uniform random recursive tree Trr
n is a random tree of n ∈ N vertices constructed

recursively as follows: let Trr
1 be the tree of a single vertex labelled 1, given Trr

n−1, choose a
vertex in Trr

n−1 uniformly at random and attach a vertex labelled n to the selected vertex
as its child, which give Trr

n . The uniform random recursive tree is one of the most studied
random tree models. They appear for instance as simple epidemic models, or in computer
science as data structures. We refer to [15, Chapter 6] for background. Theorem 6.32 in
[15] shows that maxv∈Trr

n
dn(v) = Op(lnn), that is, condition (a) in Theorem 16 is satisfied

with an = (lnn)−1. From the results of Dobrow [14] (see also [15, Section 2.5.5]), it is

not difficult to see that (lnn)−1(Ln(u1), Ln(u1, u2))
d→ (1, 2), as n → ∞. By a simple

application of [5, Corollary 1], this implies that condition (b) in Theorem 16 is satisfied
with ζ1 ≡ 1. By [17, Equation (11)],

E[Wi(Trr
n )] =

(lnn)i

Γ(1 + 1/(lnn))i!
(1 +O(1/(lnn)))

uniformly for n ⩾ 3 and 1 ⩽ i ⩽ K lnn, for all K ⩾ 1. Then it should be clear that
condition (c) of Theorem 16 follows from Lemma 18. Therefore, Theorem 16 implies

that n−1(lnn)1/kK1(Trr
n )

d→Z1, as n → ∞, where Z1 is the random variable whose law is
entirely determined by its moments given in (36). Furthermore, Lemma 17 and Lemma 19
imply that E[Kr(Trr

n )] = O(n(lnn)−r/k) for r ∈ {1, . . . , k}. Therefore, by the identity (5)
and the Markov’s inequality,

n−1(lnn)1/kK1(Trr
n )

d→Z1 ≡ (k!)1/kΓ (1 + 1/k) .

4.3.4 Scale-free random trees

Scale-free random trees form a family of random trees that grow following a preferential
attachment algorithm, and are commonly used to model complex real-world networks; see
Móri [32]. A scale-free random tree Tsf

n is a random tree of n ∈ N vertices constructed

the electronic journal of combinatorics 28(1) (2021), #P1.25 26



recursively as follows: Fix a parameter α ∈ (−1,∞), and start from the tree Tsf
1 that

consists in a single edge connecting the vertices labelled 1 and 2. Suppose that T sf
n has

been constructed for some n ⩾ 1, and for every i ∈ {1, . . . , n+ 1}, denote by degn(i) the
degree of the vertex i in T sf

n . Then conditionally given T sf
n , T sf

n+1 is built by adding an
edge between the new vertex n+ 2 and a vertex vn in T sf

n chosen at random according to
the law

P(vn = i|T sf
n ) =

degn(i) + α

2n+ α(n+ 1)
, i ∈ {1, . . . , n+ 1}.

The standard preferential attachment tree (also known as plane-oriented recursive tree)
was made popular by Barabási and Albert [4] and it corresponds to the choice of α = 0.
On the other hand, if one lets α → ∞, then the algorithm yields a uniform random
recursive tree. Janson [26] showed that scale-free random trees can also be viewed as split
trees with the branching factor b = ∞.

Pittel [35] showed that maxv∈Tsf
n
dn(v) = Op(lnn), that is, condition (a) in Theorem 16

is satisfied with an = (β lnn)−1, where β := (1+α)/(2+α). From the results of Borovkov
and Vatutin [9] (see the bibliography therein for further references), it is not difficult to

see that (β lnn)−1(Ln(u1), Ln(u1, u2))
d→ (1, 2), as n → ∞. By a simple application of [5,

Corollary 1], this implies that condition (b) in Theorem 16 is satisfied with ζ1 ≡ 1. Hwang
[22, Equation 8] showed that, for α = 0, i.e., for the standard preferential attachment tree,

E[Wi(Tsf
n )] =

√
πn21−i(lnn)i−1

Γ(i) (2i/(lnn) + 1) Γ (i/(lnn) + 1)
(1 +O (1/(lnn))) , (38)

uniformly for 1 ⩽ i ⩽ K lnn for all K ⩾ 1. Thus by an argument similar to that for
uniform random recursive trees, we have for α = 0,

2−1/kn−1(lnn)1/kK(Tst
n )

d→Z1 ≡ (k!)1/kΓ (1 + 1/k) . (39)

Open problem. To apply Theorem 16 to general scale-free trees, we need an estimate
of E

[
Wi(Tsf

n )
]
for all α > −1, which is currently missing in the literature. Thus we leave

it as an open problem that an estimation similar to (38) holds for all α > −1. This would
imply that the convergence in (39) holds for all scale-free trees.

Remark 22. In all previous examples of Section 4.3, the limit distributions found here
are all degenerate. However, we conjecture that another normalization should yield to
non-degenerate limits. This is known to be the case, when k = 1, for complete binary
trees (Janson [24]), recursive trees (Drmota et al. [16], Iksanov and Möhle [23]), binary
search trees (Holmgren [19]) and split trees (Holmgren [20]). In the general case k ⩾ 1,
Cai and Holmgren [11] obtained also a weak limit theorem in the case of complete binary
trees suggesting that our conjecture must be true.

4.3.5 Mixture of regular trees

Our next example provides a method to build trees that fulfill the conditions of Theorem
16 where the random variables ζ1, ζ2, . . . in the hypotheses are not constants. Basically,
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the procedure consists of gluing trees which satisfy the assumptions of Theorem 16. In
this example, we consider a mixture of complete regular trees but one may consider
other families of trees as well. For a fixed integer m ⩾ 1, let (di)

m
i=1 denote a positive

sequence of integers. Next, for i = 1, . . . ,m, let hi(n) : R+ → R+ be a function with

limn→∞ hi(n) = ∞. Let T
(di)
ni be a complete di-regular tree with height ⌊hi(n)⌋. Since

there are dji vertices at distance j = 0, 1, . . . , ⌊hi(n)⌋ from the root, its size is given by

ni = ni(n) = di(d
⌊hi(n)⌋
i − 1)/(di − 1).

In particular, one can check that each tree T
(di)
ni fulfills the assumptions in Theorem 16

with an = lnni and ζ1 = (ln di)
−1; note that condition (c) in Theorem 16 follows from

Lemma 18 and the fact that the number of descendants of each vertex is bounded. Now
imagine that we merge all the m regular trees into one common root. This leads us to a
new tree T

(d)
n of size n =

∑m
i=1 ni + 1−m. Assume further that n1 ∼ n2 ∼ · · · ∼ nm, as

n→ ∞. Then, we observe that the probability that a vertex of T
(d)
n chosen uniformly at

random belongs to the tree T
(di)
ni converges when n→ ∞ to 1/m. Then, one readily checks

that this new tree satisfies the hypotheses in Theorem 16 with an = lnn and ζ1, ζ2, . . .
are i.i.d. random variables uniformly distributed in the set {1/ ln d1, . . . , 1/ ln dm}. To

see this, note that the probability that a uniform chosen vertex of T
(d)
n belongs to T

(di)
ni

converges to 1/m.
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