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Abstract

Recently Cutler and Radcliffe proved that the graph on n vertices with maximum
degree at most r having the most cliques is a disjoint union of bn/(r+ 1)c cliques of
size r + 1 together with a clique on the remainder of the vertices. It is very natural
also to consider this question when the limiting resource is edges rather than vertices.
In this paper we prove that among graphs with m edges and maximum degree at
most r, the graph that has the most cliques of size at least two is the disjoint union
of
⌊
m
/ (

r+1
2

)⌋
cliques of size r+1 together with the colex graph using the remainder

of the edges.

Mathematics Subject Classifications: 05C30, 05C35, 05C69

1 Introduction

There has been a lot of recent work on the general problem of determining which graphs
have the most cliques subject to natural “resource limitations” and additional constraints.
Most of the early work focused on vertices as resources, and added other conditions. There
are results about n-vertex graphs of maximum degree at most r. For instance, Cutler and
the second author proved that the unique graph on n vertices with maximum degree at
most r having the most cliques is G = aKr+1 ∪ Kb, with a as large as possible. Gan,
Loh, and Sudakov [12] made substantial progress on the natural conjecture that the same
graph has the largest number of cliques of any fixed size t > 3. Very recently Chase [4]
proved this conjecture.

Zykov [17] proved that the Turán graph has the largest number of t-cliques among all
n-vertex graphs containing no Kr+1. There is a large literature on the very closely related
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problem of determining which n-vertex graphs have the largest number of independent
sets [8, 11].

In this paper we consider results for which the resource is edges. We fix the number of
edges in the graph, possibly impose other conditions, and ask which graph has the largest
number of cliques.

Since we are putting no constraint on the number of vertices, the simplest version of
the problem is that of determining

max
{
k̃(G) : G has m edges

}
,

where we write kt(G) for the number of cliques in G of size t and

k̃(G) =
∑
t>2

kt(G)

for the number of cliques in G of size at least 2. This question is straightforward to answer.
The Kruskal-Katona Theorem [15, 13] easily shows that this maximum is achieved when
G = C(m), the colex graph having m edges. This is the graph on vertex set N whose
edges are the first m in the colexicographic (colex) order on pairs.

Proposition 1. For t > 2, if a graph G has m edges, then kt(G) 6 kt(C(m)). In
particular, if m =

(
q
2

)
, then kt(G) 6

(
q
t

)
.

Proof. Immediate from the Kruskal-Katona Theorem. See [14] for details.

Radcliffe and Uzzell noted that it is a straightforward consequence of the “rainbow
Kruskal-Katona Theorem” of Frankl, Füredi, and Kalai [9], together with an important
result of Frohmader [10] that

max
{
k̃(G) : G has m edges and contains no Kr+1

}
,

is achieved by the r-partite colex-Turán graph CTr(m). For more details see [16].

1.1 Main Result

In this paper we consider the next most natural problem in this area. We determine

f(m, r) = max{k̃(G) : G has m edges and ∆(G) 6 r}.

Indeed we show that the maximum is attained by a graph made up of as many copies
of Kr+1 as it is possible to build with m edges, together with an additional component
(possibly empty) that is a colex graph on strictly fewer than

(
r+1
2

)
edges. For convenience

we give a name to the value of k̃ of this graph. Defining a and b by m = a
(
r+1
2

)
+ b,

0 6 b <
(
r+1
2

)
we let

g(m, r) = k̃(aKr+1 ∪ C(b)) = a(2r+1 − r − 2) + k̃(C(b)).
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It is possible to describe the last term more carefully. For any 0 6 b <
(
r+1
2

)
, there exist

unique c and d defined by b =
(
c
2

)
+ d, 0 6 d < c. Moreover C(b) consists of a clique of

size c, together with another vertex joined to d vertices of the clique. We have

k̃(C(b)) = 2c − c+ 2d − 2.

Thus our main theorem is as follows.

Main Theorem. For all m, r ∈ N, write m = a
(
r+1
2

)
+ b with 0 6 b <

(
r+1
2

)
. If G is a

graph on m edges with ∆(G) 6 r, then

k̃(G) 6 k̃(aKr+1 ∪ C(b)), (1)

with equality if and only if (disregarding isolated vertices) G = aKr+1 ∪ C(b) or G =
aKr+1 ∪Kc ∪K2 (where b =

(
c
2

)
+ 1).

In [14], we conjectured the following refinement of this main theorem.

Conjecture 2. For any t > 3, if G is a graph with m edges and maximum degree at most
r, then

kt(G) 6 kt(aKr+1 ∪ C(b)),

where m = a
(
r+1
2

)
+ b and 0 6 b <

(
r+1
2

)
.

We proved this conjecture when t = 3 and r 6 8:

Theorem 3 ([14]). For any r 6 8, if G is a graph with m edges and maximum degree at
most r, then

k3(G) 6 k3(aKr+1 ∪ C(b)),

where m = a
(
r+1
2

)
+ b and 0 6 b <

(
r+1
2

)
.

Our proof of the main theorem uses several “local moves”: alterations to a potentially
optimal graph demonstrating that a closely related graph would have a strictly larger value
of k̃. We handle graphs to which no local move applies by a global averaging argument.

Our initial analysis of the structure of a potentially optimal graph is to consider tight
cliques. A clique, of size t say, is tight if its vertices have r + 1− t common neighbors. A
maximal tight clique is called a cluster. We expect that optimal graphs will have many
tight cliques. Note that it is impossible to have a cluster of size r since by definition such
a tight clique would be contained in a Kr+1 component, i.e. a cluster of size r + 1. If a
cluster of size r + 1 exists, we will be able to apply induction on m. Also, if G ∈ G(m, r)
is connected and m >

(
r+1
2

)
, then all clusters in G have size at most r − 1. Much of our

proof involves considering the possible structures and relationships of clusters.
In Section 2 we outline the basic properties of clusters. In Section 3 we discuss the

various local alterations we will attempt to do on a potentially optimal connected graph.
All are variants of an operation we call folding, which was introduced in a slightly different
context in [5] and also used in [6] and [14]. If we can establish that the folded graph has
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no more edges and no higher maximum degree than before, and k̃ has strictly increased,
then we can eliminate G as a potentially optimal graph. In Section 4 we use a global
averaging argument to show that the remaining connected graphs are not extremal, and
in Section 5 we prove our Main Theorem. We finish in Section 6 by describing some open
problems in the area.

2 Clusters

Let us begin by establishing some notation. Most of our notation is standard (see, for
instance, [2]). We will write N [v] for the closed neighborhood of a vertex v. If e is an
edge of G then we let kt(e) denote the number of t-cliques of G containing e. Most of the
graphs we consider will have m edges and maximum degree at most r. We write G(m, r)
for the set of such graphs and GC(m, r) for the set of connected graphs in G(m, r).

One way to think about counting the number of cliques in a graph G containing m
edges, is to count how the 3-cliques are made up of 2-cliques, how the 4-cliques are made
up of 3-cliques, and so on. Clearly each t-clique contains t copies of Kt−1, and equally
easily each t-clique K is contained in |N(K)| copies of Kt+1, where N(K) is the set
of common neighbors of K. Thus, for G with maximum degree at most r to have many
cliques it seems likely that many of its cliques must have as large a common neighborhood
as possible. This prompts the following definitions.

Definition 4. If G is a graph of maximum degree at most r and T ⊆ V (G) is a clique
satisfying |N(T )| = r+1−|T |, then we say that T is tight. If T is a maximal tight clique,
then we say it is a cluster.

For a cluster T we can analyze the graph locally as consisting of T , its neighbors, and
connections to the rest of the graph. The following definition establishes our notation and
conventions.

Definition 5. Suppose that G ∈ GC(m, r) is a graph with a cluster T ⊆ V (G). We let
ST = N(T ) and let BT be the graph of edges uv such that u ∈ ST and v ∈ V (G)\(T ∪ST ).
We define

RT = G[ST ],

i.e., the graph on ST whose edges are those not in G. We think of the missing edges RT

as red edges, and the edges BT from the cluster to the rest of the graph as blue edges.
See Figure 1. When the risk of confusion is low we will simply refer to ST , RT , and BT

as S, R, and B. Note that since G has maximum degree at most r we know that for all
vertices x ∈ S we have dB(x) 6 dR(x).

Lemma 6. Let G be a graph with maximum degree at most r.

1. Two vertices x, y ∈ V (G) of degree r belong to some common tight clique precisely
if N [x] = N [y]. In particular the relation of belonging to some common tight clique
is an equivalence relation on vertices of degree r. The clusters of G are disjoint and
are the equivalence classes.
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T
S

Figure 1: A cluster and its neighborhood

2. An edge can be incident to at most two clusters.

3. An edge e that is not tight (equivalently, that is not in a cluster) has kt(e) 6
(
r−2
t−2

)
for every t > 2.

Proof. Immediate.

3 Local Moves

In this section we define three ways to alter a potentially extremal connected graph G
when it has a cluster T with certain properties. We call these local moves folding, colex
folding, and partial folding. We use colex folding (Subsection 3.2) and partial folding
(Subsection 3.3) to show that graphs with certain types of clusters are not extremal.

3.1 Folding

As in [5], [6], and [14], we define the operation of folding as follows.

Definition 7. Suppose that G ∈ GC(m, r) and T ⊆ V (G) is a cluster. The folding of G
at T is the new graph GT formed by converting T ∪ S into a clique (of size r + 1) and
deleting all the blue edges. In other words we define

GT = G+

(
S

2

)
− E(B).

The folded graph GT also has maximum degree at most r since each vertex in T ∪ S
now has degree equal to r, and the degree of each other vertex has weakly decreased.
Nevertheless, for the clusters T that have e(B) < e(R), we have e(GT ) > e(G), so a
comparison to GT cannot determine whether G is extremal. In contrast, when e(B) >
e(R), we have GT ∪ (e(G) − e(GT ))K2 ∈ G(m, r). Thus we consider folding only when

e(B) > e(R). We define unfoldable clusters as those with k̃(G) > k̃(GT ) (whether or not
e(GT ) 6 e(G)). We use unfoldability in Subsection 4.1.
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3.2 Colex Folding

Colex folding is a natural variant of folding to consider when e(B) < e(R).

Definition 8. Suppose that G ∈ GC(m, r) and T ⊆ V (G) is a cluster. The colex folding
of G at T is the new graph G′T formed by deleting T ∪ S and adding a colex graph with
the appropriate number of edges. In other words we define

G′T = G[V (G) \ (T ∪ S)] ∪ C
((r + 1

2

)
− e(R) + e(B)

)
.

By construction e(G′T ) = e(G). When e(B) < e(R), the number of edges in the new
colex component is less than

(
r+1
2

)
, so no vertex will have degree greater than r, and

G′T ∈ G(m, r). We will show that if some cluster T in G has e(B) < e(R) 6 r, then

k̃(G) 6 k̃(G′T ). In going from G to G′T we lose all cliques that contain a blue edge, but
we will show that we get a net gain from cliques we create in the colex component.

We call cliques containing a blue edge blue cliques. We start by proving a series of
statements bounding the number of blue cliques.

Proposition 9. For any cluster T in a graph G ∈ GC(m, r) and any t > 2, the number
of blue Kt’s is at most

(
e(B)
t−1

)
.

Proof. Given a t-clique C that contains a blue edge, its blue edges form a spanning and
connected (indeed, complete bipartite) subgraph of C, so C has a blue spanning tree.
This map from blue Kt’s to (t− 1)-sets of blue edges is an injection.

Lemma 10. For u, q ∈ N such that
(
q
2

)
6 u and t > 2,

kt(C(u)) +

(
q

t− 1

)
6 kt(C(u+ q)).

Proof. By Pascal’s identity, this inequality is equivalent to kt(G1) 6 kt(G2), where G1 =
Kq+1 ∪ C(u) and G2 = Kq ∪ C(u+ q). We can change G1 to G2 by deleting one vertex of
the Kq+1 and adding its q edges to the colex component.

In Kq+1 there are
(
q
t−1

)
Kt’s that contain a given vertex; these are the Kt’s lost. We

show that at least
(
q
t−1

)
Kt’s are gained by considering two cases based on c and d defined

by u =
(
c
2

)
+ d, 0 6 d < c.

Case 10.1: q 6 c− d
In this case, the q new edges form a star in the colex component. They contribute(

q
t−1

)
new Kt’s from this star alone.

Case 10.2: q > c− d
In this case, the q new edges do not form a star in the colex component; they complete

the next largest clique and then add a new vertex. The assumption that
(
q
2

)
6 u implies

that q 6 c, so only one new vertex is added. Let q1 = c − d (the number of edges to
complete the next clique) and q2 = q− q1 = q− c+d (the degree of the new vertex). Note
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q2 6 d. In completing the first clique we add
(
d
t−2

)
+
(
d+1
t−2

)
+ · · · +

(
c−1
t−2

)
Kt’s. Then the

edges incident to the new vertex add
(

0
t−2

)
+
(

1
t−2

)
+ · · ·+

(
q2−1
t−2

)
Kt’s. The total number

of new Kt’s is

q2−1∑
i=0

(
i

t− 2

)
+

c−1∑
i=d

(
i

t− 2

)
>

q2−d+c−1∑
i=0

(
i

t− 2

)
=

q−1∑
i=0

(
i

t− 2

)
=

(
q

t− 1

)
.

Theorem 11. Suppose that G ∈ GC(m, r) and T is a cluster in G with e(B) < e(R) 6 r.
Let G′T be the colex folding of G at T . Then G′T ∈ G(m, r) and, for every t > 2, kt(G

′
T ) >

kt(G).

Proof. First, G′T ∈ G(m, r) by definition since e(B) < e(R). We will apply Lemma 10
with u =

(
r+1
2

)
− e(R) and q = e(B). We have e(B) < e(R) 6 r. Therefore(

e(B)

2

)
6

(
r

2

)
=

(
r + 1

2

)
− r 6

(
r + 1

2

)
− e(R),

and so Lemma 10 implies kt(C(
(
r+1
2

)
− e(R))) +

(
e(B)
t−1

)
6 kt(C(

(
r+1
2

)
− e(R) + e(B))).

Therefore

kt(G) = kt(T ∪ S) + kt(B) + kt(G \ (T ∪ S))

6 kt

(
C
((r + 1

2

)
− e(R)

))
+

(
e(B)

t− 1

)
+ kt(G \ (T ∪ S)) by Propositions 1 and 9

6 kt

(
C
((r + 1

2

)
− e(R) + e(B)

))
+ kt(G \ (T ∪ S)) by Lemma 10

= kt(G
′
T ).

Corollary 12. Suppose that G ∈ GC(m, r) and T is a cluster in G with e(B) < e(R) 6 r.

Let G′T be the colex folding of G at T . Then G′T ∈ G(m, r) and k̃(G′T ) > k̃(G).

Proof. By Theorem 11,
∑

t>2 kt(G
′
T ) >

∑
t>2 kt(G).

3.3 Partial Folding

Partial folding is a simpler variant of folding, first used in [14], to consider when e(B) <
e(R). For a graph G ∈ GC(m, r) and T ⊆ V (G) a cluster, a partial folding of G at T is a
graph obtained from G by deleting all blue edges and adding any e(B) of the red edges.
The resulting graph is always in G(m, r). The following lemma shows that if some cluster

T in G has e(B) < e(R) and |T | > r−1
2

, then k̃(G) would be increased by a partial folding
of G at T .

Lemma 13. Suppose that G ∈ GC(m, r) and T is a tight clique in G with |T | > r−1
2

and

e(B) < e(R). Let G′ be a partial folding of G at T . Then G′ ∈ G(m, r) and k̃(G′) > k̃(G).
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Proof. Let s = |ST |. The loss from deleting the blue edges is at most 2s−2e(B): for each
blue edge uv with v ∈ S, v has s − 1 − dR(v) neighbors in S and at most dR(v) − 1
neighbors in V (G) \ (T ∪ S) other than u. In total, u and v have at most s− 2 common
neighbors, and any subset of them forms one clique containing uv.

The number of cliques gained from adding any one red edge is at least 2|T |, one for each
subset of T . Therefore the net gain is at least 2|T |e(R)−2s−2e(B) > (2|T |−2s−2)e(R) > 0,
since |T | > r−1

2
.

4 Averaging

In this section we consider the connected graphs in which every cluster either is unfoldable
or is small and has many edges missing from its neighborhood. This includes the graphs
in which there are no clusters. We use an averaging argument to show that these graphs
are not extremal.

4.1 Fixed loss and unfoldable clusters

In handling unfoldable clusters, we will make use of a concept introduced in [5], the fixed
loss of a cluster.

Definition 14 ([5]). The fixed loss of a graph R is

φ(R) =
∑
I∈I(R)
I 6=∅

(2δI − 1),

where I(R) is the set of independent sets of R, and for any I ⊆ V (R), δI = min{dR(x) :
x ∈ I}.

The fixed loss φ(RT ) associated with a cluster T is a crude upper bound on the number
of cliques appearing in G but not in GT . We will use prior technical results about the
fixed loss to show that unfoldable clusters have a large number of incident edges each
contained in few t-cliques for every t > 3.

Theorem 15 ([5, Theorem 4.4]). If R is a graph on s vertices then

φ(R) 6 φ(Ks) = s(2s−1 − 1).

The following lemma appears in [5] in an incorrect form. The following version is
correct. The corrected proof is available in [7].

Lemma 16. If T is a cluster in G ∈ GC(m, r) with k̃(GT ) 6 k̃(G), then φ(RT ) > 2r−2|T |

and |T | 6 log2(s), where s = |ST |.

The following theorem and proof were slightly modified from [5].
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Theorem 17. Let R be a graph on s vertices having ` vertices of degree one. Then

φ(R) 6 5 · 2s−2 + (s− `− 2)2s−`−1.

Proof. Let L be the set of vertices of degree one. We split up the sum computing φ(R)
into two parts, the contributions of independent sets containing an element of L and the
rest. To this end, let

φ′(R) =
∑
I∈I(R)
I∩L6=∅

2δI − 1 = #{I ∈ I(R) : I ∩ L 6= ∅}, and

φ′′(R) =
∑

∅6=I∈I(R)
I∩L=∅

2δI − 1.

To bound the first term, we consider two cases. If R does not contain a K2 component,
then observe

φ′(R) = #{I ∈ I(R) : I ∩ L 6= ∅} 6 (2` − 1)2s−`−1.

This follows from the fact that no vertex of L is adjacent to any other and therefore, given
any nonempty subset L′ of L, at least one vertex of R\L is excluded from I. So there are
at most 2s−`−1 independent sets contributing to φ′(R) of the form L′∪J where L∩J = ∅.

Otherwise, R contains a K2 component xy. No independent set of R contains both
x and y, and the independent sets containing x are in bijection with those containing y.
Therefore

φ′(R) = #{I ∈ I(R) : x, y /∈ I, I ∩ L 6= ∅}+ 2#{I ∈ I(R) : x ∈ I, I ∩ L 6= ∅}
6 (2`−2 − 1)(2s−`) + 2(2`−2)(2s−`)

= (2` + 2`−1 − 2)2s−`−1,

where in the second line for each term we have counted the independent sets by their
vertices in L \ {x, y} and then their vertices in R \ L.

On the other hand, writing dL(v) for |N(v) ∩ L|,

φ′′(R) =
∑

∅6=I∈I(R)
I∩L=∅

(
2δI − 1

)
6

∑
∅6=I∈I(R)
I∩L=∅

|I|(2δI − 1)

=
∑

v∈V (R)\L

∑
v∈I∈I(R)
I∩L=∅

(
2δI − 1

)
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6
∑

v∈V (R)\L

∑
v∈I∈I(R)
I∩L=∅

(
2d(v) − 1

)
6

∑
v∈V (R)\L

2s−`−d(v)+dL(v)−1(2d(v) − 1)

=
∑

v∈V (R)\L

(
2s−`+dL(v)−1 − 2s−`−d(v)+dL(v)−1

)

= 2s−`−1

 ∑
v∈V (R)\L

2dL(v) −
∑

v∈V (R)\L

2dL(v)−d(v)


6 2s−`−1(2` + s− `− 1).

The fifth step above follows as in the proof of Theorem 15 and the final step uses the
convexity of 2x on the first term and ignores the second.

Combining these bounds, we have

φ(R) = φ′(R) + φ′′(R)

6 2s−`−1(2` + max{0, 2`−1 − 1}+ 2` + s− `− 2)

= max{2s + 2s−`−1(s− `− 2), 2s + 2s−2 + 2s−`−1(s− `− 3)}
6 5 · 2s−2 + 2s−`−1(s− `− 2).

Lemma 18. Let r > 3 and 3 6 t 6 r + 1. If T is a cluster in G ∈ GC(m, r) and

k̃(GT ) 6 k̃(G), then there are at least 2
(|T |

2

)
edges e incident to T with kt(e) 6

(
r−3
t−2

)
.

Proof. We will show that there are at least |T | − 1 vertices v in S with dR(v) > 2. This
is clear if |T | = 1. Otherwise, we let ` be the number of vertices of R of degree one. If
` > s − |T | + 2, then by Theorem 17, we would have φ(R) 6 5 · 2s−2 + (|T | − 4)2|T |−3.
Note that this would imply

2r−2|T | 6 φ(R) 6 5·2r−1−|T |+(|T |−4)2|T |−3 6 5·2r−1−|T |+1

8
s log2 s 6 5·2r−1−|T |+1

8
r log2 r,

by Lemma 16. We are assuming that |T | > 2, and no cluster can have size r for then it
would not be a maximal clique—by definition it would be contained in a Kr+1. By the
convexity of 2x, since 2 6 |T | 6 r − 1, we have 2|T | + 2r+1−|T | 6 22 + 2r−1, and

2r − 2|T | 6 5 · 2r−1−|T | + 1

8
r log2 r

2r−1 − 4 6 2r − 2|T | − 2r+1−|T | 6 2r−1−|T | +
1

8
r log2 r 6 2r−3 +

1

8
r log2 r

3 · 2r−3 − 4 <
1

8
r log2 r,
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a contradiction for r > 4. When r = 3, we also have |T | = 2, contradicting 2r − 2|T | 6
5 · 2r−1−|T | + (|T | − 4)2|T |−3.

Let h be the number of vertices in R of degree at least two. Having shown that
` 6 s − |T | + 1, we know that h > |T | − 1. Thus there are |T |h > 2

(|T |
2

)
edges xy

with x ∈ T , y ∈ S, and dR(y) > 2, so |NG(x) ∩ NG(y)| 6 r − 3. Therefore kt(e) =
kt−2(G[N(x) ∩N(y)]) 6

(
r−3
t−2

)
.

4.2 Averaging calculations

We will write E1 for the set of tight edges and let E2 = E(G) \ E1.

Lemma 19. If every cluster T in G ∈ G(m, r) has |T | 6 r
2
, then less than half the edges

of G are tight.

Proof. Let C be the set of clusters in G. By Lemma 6, each tight edge is in exactly one
cluster, so |E1| =

∑
T∈C

(|T |
2

)
.

By Lemma 6, an edge is incident to at most two clusters. By counting in two ways
the pairs (e, T ) where e ∈ E2 is incident to the cluster T , |E2| > 1

2

∑
T∈C|T |(r + 1− |T |).

|E1|
|E1|+ |E2|

6

∑
T∈C

(|T |
2

)∑
T∈C

(|T |
2

)
+ 1

2

∑
T∈C|T |(r + 1− |T |)

=

∑
T∈C

(|T |
2

)∑
T∈C|T |r/2

=
1

r
·
∑

T∈C|T |(|T | − 1)∑
T∈C|T |

6
1

r
·
∑

T∈C|T |(
r
2
− 1)∑

T∈C|T |

=
1

r

(r
2
− 1
)

=
1

2
− 1

r
<

1

2
.

Lemma 20. If every cluster T in G ∈ GC(m, r) either (1) is unfoldable, i.e, k̃(G) >
k̃(GT ), or (2) has e(R) > r − 2, then for every t > 4,∑

e∈E(G)

kt(e) 6
∑

e∈E(G)

(
r − 2

t− 2

)
.

Proof. For every edge e, we will define a modified version of kt(e). We let ue be 1 if e
belongs to an unfoldable cluster and 0 otherwise. We let u′e be the number of unfoldable
clusters to which e is incident if kt(e) 6

(
r−3
t−2

)
and 0 otherwise. We set

k′t(e) = kt(e) + (
u′e
2
− ue)

(
r − 3

t− 3

)
.

the electronic journal of combinatorics 28(1) (2021), #P1.26 11



We show for all edges in G that k′t(e) 6
(
r−2
t−2

)
. Suppose first that kt(e) 6

(
r−3
t−2

)
. Note

ue > 0 and, by Lemma 6, u′e 6 2. For these edges we have

k′t(e) 6

(
r − 3

t− 2

)
+

2

2

(
r − 3

t− 3

)
=

(
r − 2

t− 2

)
.

Now if kt(e) >
(
r−3
t−2

)
, then we have

k′t(e) = kt(e)− ue
(
r − 3

t− 3

)
.

If such an edge is in an unfoldable cluster (ue = 1), then at least one edge is missing from
its neighborhood (using the hypothesis that G is connected), so

k′t(e) = kt(e)−
(
r − 3

t− 3

)
= kt−2(N(e))−

(
r − 3

t− 3

)
6

(
r − 1

t− 2

)
−
(
r − 3

t− 4

)
−
(
r − 3

t− 3

)
=

(
r − 2

t− 2

)
.

Finally, if e has kt(e) >
(
r−3
t−2

)
and is not in an unfoldable cluster (so ue = u′e = 0

and k′t(e) = kt(e)), then either e is not in a cluster, in which case |N(e)| 6 r − 2 and
kt(e) 6

(
r−2
t−2

)
, or e is in a cluster of type (2), so there are at most

(
r−1
2

)
− (r − 2) =

(
r−2
2

)
edges in N(e). By Proposition 1, k′t(e) = kt(e) = kt−2(N(e)) 6

(
r−2
t−2

)
. Now we compute

as follows.∑
e∈E(G)

(
r − 2

t− 2

)
>
∑

e∈E(G)

k′t(e) =
∑

e∈E(G)

kt(e) +

(
r − 3

t− 3

) ∑
e∈E(G)

u′e
2
−
(
r − 3

t− 3

)∑
e∈E

ue.

The final negative term is
(
r−3
t−3

)
times the total number of edges in unfoldable clusters,

i.e., (
r − 3

t− 3

) ∑
T an unfoldable cluster

(
|T |
2

)
.

On the other hand, by Lemma 18, the second term is at least

1

2

(
r − 3

t− 3

) ∑
T an unfoldable cluster

2

(
|T |
2

)
.

Thus ∑
e∈E(G)

(
r − 2

t− 2

)
>
∑

e∈E(G)

kt(e).

Lemma 21. Let r > 3 and G ∈ G(m, r). If |E1| < |E2|, and, for every t > 4, we have∑
e∈E(G) kt(e) 6

∑
e∈E(G)

(
r−2
t−2

)
, then∑
t>2

1(
t
2

) ∑
e∈E(G)

kt(e) < g(m, r).
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Proof. We first split up the sum on the left side, use the given properties of G, and find
an upper bound in terms of m and r.∑

t>2

1(
t
2

) ∑
e∈E(G)

kt(e) = m+
1

3

∑
e∈E(G)

k3(e) +
∑
t>4

1(
t
2

) ∑
e∈E(G)

kt(e)

6 m+
1

3
(
∑
e∈E1

(r − 1) +
∑
e∈E2

(r − 2)) +
∑
t>4

m(
t
2

)(r − 2

t− 2

)
= m+

1

3
(
∑
e∈E1

(r − 1) +
∑
e∈E2

(r − 2)) +
m(
r
2

)∑
t>4

(
r

t

)
< m+

1

3
(
m

2
(r − 1) +

m

2
(r − 2)) +

m(
r
2

)(2r −
(
r

3

)
−
(
r

2

)
− r − 1)

=
m

3
(r − 3/2) +

m(
r
2

)(2r −
(
r

3

)
− r − 1)

=
m(
r
2

)(2r −
(
r

3

)
− r − 1 +

r − 3/2

3

(
r

2

)
)

=
m(
r
2

)(2r + r2/12− 13r/12− 1).

We will prove that this is less than the number of cliques in aKr+1 ∪ C(b); i.e., that

a(2r+1 − r − 2) + k̃(C(b))−
a
(
r+1
2

)
+ b(

r
2

) (2r + r2/12− 13r/12− 1) > 0.

For fixed r and b, the left side of this inequality is a linear function of a. The coefficient
of a depends only on r. For r > 7, we will show that the inequality holds when a = 1.
Then the special case b = 0 implies that the coefficient of a is positive and therefore that
the inequality holds for a > 1.

2r+1 − r − 2 + k̃(C(b))−
(
r+1
2

)
+ b(

r
2

) (2r + r2/12− 13r/12− 1)

= 2r

(
2− r + 1

r − 1
− b(

r
2

))− r − 2 +

(
r+1
2

)
+ b(

r
2

) (r2/12− 13r/12− 1) + k̃(C(b))

> 2r

(
1− 2

r − 1
−
(
c+1
2

)
− 1(

r
2

) )
− r − 2 +

(
r+1
2

)
+
(
c
2

)(
r
2

) (r2/12− 13r/12− 1) + 2c − c− 1
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>



2r(1− 2
r−1 −

(r−2
2 )−1
(r
2)

)− r − 2 +
(r+1

2 )+(1
2)

(r
2)

(r2/12− 13r/12− 1) 1 6 c 6 r − 3

−r − 2 +
(r+1

2 )+(r−2
2 )

(r
2)

(r2/12− 13r/12− 1) + 2r−2 − (r − 2)− 1 c = r − 2

2r(−2/r)− r − 2 +
(r+1

2 )+(r−1
2 )

(r
2)

(r2/12− 13r/12− 1) + 2r−1 − r c = r − 1

2r(−2(2r−1)
r(r−1) )− r − 2 +

(r+1
2 )+(r

2)
(r
2)

(r2/12− 13r/12− 1) + 2r − r − 1 c = r

> 0 for r > 7.

For 3 6 r 6 6 we will use the fact that k3(G) 6 k3(aKr+1 ∪ C(b)), which we proved in
[14] for r 6 8. It is enough to show

∑
t>4 kt(G) <

∑
t>4 kt(aKr+1 ∪ C(b)), as it implies

k̃(G) = m+ k3(G) +
∑
t>4

kt(G) < m+ k3(aKr+1 ∪ C(b)) +
∑
t>4

kt(aKr+1 ∪ C(b))

= k̃(aKr+1 ∪ C(b)).

By assumption,
∑

e∈E(G) kt(e) 6
∑

e∈E(G)

(
r−2
t−2

)
for every t > 4, so

∑
t>4

kt(G) =
∑
t>4

1(
t
2

) ∑
e∈E(G)

kt(e)

6
∑
t>4

1(
t
2

) ∑
e∈E(G)

(
r − 2

t− 2

)
=

m(
r
2

)∑
t>4

(
r

t

)
=

m(
r
2

)(2r −
(
r

3

)
−
(
r

2

)
− r − 1).

We will use this inequality together with the fact that∑
t>4

kt(aKr+1 ∪ C(b)) >
∑
t>4

kt(aKr+1) = a(2r+1 −
(
r + 1

3

)
−
(
r + 1

2

)
− (r + 1)− 1).

Taking a = 1,∑
t>4

kt(Kr+1 ∪ C(b))−
∑
t>4

kt(G)

> (2r+1 −
(
r + 1

3

)
−
(
r + 1

2

)
− (r + 1)− 1)−

(
r+1
2

)
+ b(

r
2

) (2r −
(
r

3

)
−
(
r

2

)
− r − 1)

=


1 r = 3

(26− b)/6 r = 4

(65− 3b)/5 r = 5

2(249− 11b)/15 r = 6

> 0, using the fact that b 6

(
r + 1

2

)
− 1 6 20.

As in the r > 7 case, the inequality holds for a > 1 since it holds for a = 1.
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Theorem 22. If every cluster T in G ∈ GC(m, r) either (1) is unfoldable, i.e., k̃(G) >
k̃(GT ), or (2) has e(R) > r − 2 and |T | 6 r/2, then G is not extremal.

Proof. Lemma 16 states that the unfoldable clusters have |T | 6 log2(s), which implies
the second inequality of

2|T |+ 1 6 |T |+ 2|T | 6 r + 1,

so |T | 6 r/2 for every cluster of G. Lemma 19 shows that less than half the edges are
tight. Lemma 20 shows that for every t > 4,

∑
e∈E(G) kt(e) 6

∑
e∈E(G)

(
r−2
t−2

)
. Therefore the

hypotheses of Lemma 21 are satisfied, so k̃(G) =
∑

t>2
1

(t
2)

∑
e∈E(G) kt(e) < g(m, r).

5 Proof of the Main Theorem

Lemma 23. Given 1 6 m1 6 m2, let Gi = aiKr+1 ∪ C(bi), where mi = ai
(
r+1
2

)
+ bi. Set

m = m1+m2 and let G = aKr+1∪C(b), where m = a
(
r+1
2

)
+b. Then k̃(G) > k̃(G1)+k̃(G2),

with strict inequality unless G1 ∪G2 is an extremal graph according to the main theorem.

Proof. Reasonably straightforward with the help of Lemma 11 of [14].

Main Theorem. For all m, r ∈ N, write m = a
(
r+1
2

)
+ b with 0 6 b <

(
r+1
2

)
. If G is a

graph on m edges with ∆(G) 6 r, then

k̃(G) 6 k̃(aKr+1 ∪ C(b)), (2)

with equality if and only if (disregarding isolated vertices) G = aKr+1 ∪ C(b) or G =
aKr+1 ∪Kc ∪K2 (where b =

(
c
2

)
+ 1).

Proof. We disregard isolated vertices because they do not affect the number of edges,
maximum degree, or number of cliques. For r = 1, the theorem is trivial as mK2 is the
only possible graph. For r = 2, it is almost as trivial, as we have k̃(G) 6 m + a. The
graphs G ∈ G(m, 2) that achieve equality have k3(G) = a so are G = aKr+1 ∪ C(b) and,
when b = 2, G = aK3 ∪ 2K2.

For r > 3, we use induction on m. The Kruskal-Katona Theorem (Proposition 1)
implies the theorem for m 6

(
r+1
2

)
, i.e. a = 0. By Lemma 23, if G is disconnected, then

by induction on a component C and G[V (G) \C], we have k̃(G) 6 k̃(aKr+1 ∪ C(b)), with
equality if and only if G = aKr+1 ∪ C(b) (or, if d = 1, G = aKr+1 ∪ Kc ∪ K2, where
b =

(
c
2

)
+ d). Henceforth we assume G is connected.

If G contains a cluster T of any of the following types, then we use a local move to
show G is not extremal:

1. k̃(G) < k̃(GT ) and e(B) > e(R): then consider the folding GT of G at T . Let

m′ = e(GT ) (which is at most m). Then GT ∪ (m −m′)K2 ∈ G(m, r) has k̃(GT ∪
(m−m′)K2) > k̃(GT ) > k̃(G), so G is not extremal.
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2. e(B) < e(R) 6 r: then by Corollary 12, the colex folding G′T of G at T has at

least as many cliques as G and is disconnected. If k̃(G) = k̃(G′T ) = f(m, r), then
G′T = aKr+1∪C(b) (or, if d = 1, G′T = aKr+1∪Kc∪K2). This is impossible because
G was connected, so G′T cannot contain a Kr+1. Therefore G is not extremal.

3. e(B) < e(R) and |T | > r−1
2

: then a partial folding of G at T shows G is not extremal,
by Lemma 13.

Otherwise, each cluster of G has none of the above types, so has either

1. k̃(G) > k̃(GT ), or

2. e(R) > r + 1 and |T | 6 r−2
2

.

In this case, Theorem 22 shows G is not extremal.

6 Open Problems

There is a broad class of similar problems where one determines

mexT (m,F ) = max{nT (G) : G is a graph with m edges not containing a copy of F},

where nT (G) is the number of copies of T in G. Conjecture 2 concerns mexKt(m,K1,r+1).
There are many natural problems of this form. They are the edge analogues of the
problems introduced by Alon and Shikhelman in [1]. They define

exT (n, F ) = max{nT (G) : G is a graph on n vertices not containing a copy of F}

and solve many problems of this form.
After the preparation of this paper, Chakraborti and Chen [3] announced a proof of

Conjecture 2.
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