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Abstract

A graph is called Pt-free if it does not contain a t-vertex path as an induced
subgraph. While P4-free graphs are exactly cographs, the structure of Pt-free graphs
for t > 5 remains not well-undestood. On one hand, classic computational problems
such as Maximum Weight Independent Set (MWIS) and 3-Coloring are not
known to be NP-hard on Pt-free graphs for any fixed t. On the other hand, despite
significant effort, polynomial-time algorithms for MWIS in P6-free graphs [SODA
2019] and 3-Coloring in P7-free graphs [Combinatorica 2018] have been found
only recently. In both cases, the algorithms rely on deep structural insights into the
considered graph classes.

One of the main tools in the algorithms for MWIS in P5-free graphs [SODA
2014] and in P6-free graphs [SODA 2019] is the so-called Separator Covering Lemma
that asserts that every minimal separator in the graph can be covered by the union
of neighborhoods of a constant number of vertices. In this note we show that such
a statement generalizes to P7-free graphs and is false in P8-free graphs. We also
discuss analogues of such a statement for covering potential maximal cliques with
unions of neighborhoods.
Mathematics Subject Classifications: 05C69,05C75,05C85,68R10

1 Introduction

By Pt we denote a path on t vertices. A graph is H-free if it does not contain an induced
subgraph isomorphic to H.

We are interested in classifying the complexity of fundamental computational prob-
lems, such as Maximum Weight Independent Set (MWIS) or k-Coloring for fixed
or arbitrary k, on various hereditary graph classes, in particular onH-free graphs for small
fixed graphs H. As noted by Alekseev [1], MWIS is NP-hard on H-free graphs unless ev-
ery connected component of H is a tree with at most three leaves. Similarly, 3-Coloring
is known to be NP-hard on H-free graphs unless every connected component of H is a
path [11]. On the other hand, it would be consistent with our knowledge if all the re-
maining cases actually led to polynomial-time solvability. This remains still unknown in
spite of intensive work on the subject, which we review next.

That MWIS is polynomial-time solvable on P4-free graphs (also known as cographs)
follows from the observation that these graphs have bounded cliquewidth. A polynomial-
time algorithm for MWIS on P5-free graphs was proposed by Lokshtanov et al. [17],
which was followed by a polynomial-time algorithm on P6-free graphs due to the current
authors [13]. Both these works heavily rely on the approach of potential maximal cliques,
which of central interest in this work. It is also known that MWIS is polynomial-time
solvable on claw-free graphs [19, 21] and on fork-free graphs [18], where the claw is K1,3

and the fork is the claw with one edge subdivided once. For coloring problems, it is
known that 3-Coloring can be solved in polynomial time on P7-free graphs [3] and 4-
Coloring can be solved in polynomial time on P6-free graphs [8]. It is also known that
for every fixed k, k-Coloring is polynomial-time solvable on P5-free graphs [15].
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While the polynomial-time algorithms presented above are rather limited in generality,
much more encouraging results are known if the requirement of polynomial running time is
relaxed. In a very recent breakthrough, Gartland and Lokshtanov [10] have shown a quasi-
polynomial-time algorithm, with running time nO(log3 n), for MWIS on Pt-free graphs, for
every fixed t. The running time has been improved to nO(log2 n) by Pilipczuk et al. [20],
who also observed that the same technique can be used to give an nO(log2 n)-time algorithm
for 3-Coloring on Pt-free graphs, for every fixed t. Let us note that these results were
established after the announcement of this work, however they were inspired by techniques
introduced in an earlier line of work on subexponential-time algorithms for problems in
question [2, 6, 12]. It is still unknown whether MWIS can be solved in quasi-polynomial
time on H-free graphs whenever every connected component of H is a tree with at most
3 leaves, however Chudnovsky et al. [7] have given both a subexponential-time algorithm
and a quasi-polynomial-time approximation scheme in this setting.

The state-of-art presented above shows a large gap between cases where quasi-poly-
nomial-time algorithms are known, and cases where actual polynomial-time solvability
has been established. It seems that there is a certain lack of a deeper understanding of
the structure of Pt-free graphs for larger values of t, which prevents us from properly
exploiting this structure in algorithm design. In this note we take a closer look at one
property that appeared important in the algorithms for MWIS for P5-free and P6-free
graphs [17, 16, 13], namely the possibility to cover a minimal separator with a small
number of vertex neighborhoods.

Let G be a graph. For a set S ⊆ V (G), a connected component A of G − S is a full
component to S if NG(A) = S. A set S is a minimal separator if it admits at least two full
components. A set F ⊆

(
V (G)
2

)
\E(G) is a chordal completion if G+F := (V (G), E(G)∪F )

is chordal (i.e., does not contain an induced subgraph isomorphic to a cycle on at least
four vertices). A set Ω ⊆ V (G) is a potential maximal clique (PMC) if there exists an
(inclusion-wise) minimal chordal completion F of G such that Ω is a maximal clique of
G + F . Potential maximal cliques and minimal separators are tightly connected: for
example, a graph is chordal if and only if every minimal separator is a clique, and if Ω is
a PMC in G, then for every connected component D of G−Ω the set NG(D) is a minimal
separator with D being one of the full components.

A framework of Bouchitté and Todinca [4, 5], extended by Fomin, Todinca, and Vil-
langer [9], allows solving multiple computational problems (including MWIS) on graph
classes where graphs have only a polynomial number of PMCs. While P5-free graphs
do not have this property, the crucial insight of the work of Lokshtanov, Villanger and
Vatshelle [17] allows modifying the framework to work for P5-free graphs and, with more
effort, for P6-free graphs [13].

A simple, but crucial in [17], insight about the structure of P5-free graphs is the
following lemma.

Lemma 1 ([17]). Let G be a P5-free graph, let S be a minimal separator in G, and let
A and B be two full components of S. Then for every a ∈ A and b ∈ B it holds that
S ⊆ NG(a) ∪NG(b).
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The above statement is per se false in P6-free graphs, but the following variant is true
and turned out to be pivotal in [13]:

Lemma 2 (Lemma 4.5 of [13], Lemma 18 in the arXiv version). Let G be a P6-free
graph, let S be a minimal separator in G, and let A and B be two full components of S.
Then there exist nonempty sets A′ ⊆ A and B′ ⊆ B such that |A′| 6 3, |B′| 6 3, and
S ⊆ NG(A′) ∪NG(B′).

That is, every minimal separator in a P6-free graph has a dominating set of size at
most 6, contained in the union of two full components of this separator.

In Section 3 we extend the result to P7-free graphs as follows.

Theorem 3. Let G be a P7-free graph and let S be a minimal separator in G. Then there
exists a set S ′ ⊆ V (G) of size at most 22 such that S ⊆ NG[S ′].

Theorem 3 directly generalizes a statement proved by Lokshtanov et al. [16, Theo-
rem 1.3], which was an important ingredient of their quasi-polynomial-time algorithm for
MWIS in P6-free graphs.

Section 5 discusses a modified example from [16] that witnesses that no statement
analogous to Theorem 3 can be true in P8-free graphs. Furthermore, observe that in
the statements for P5-free and P6-free graphs the dominating set for the separator is
guaranteed to be contained in two full components of the separator. This is no longer the
case in Theorem 3 for a reason: in Section 5 we show examples of P7-free graphs where
any constant-size dominating set of a minimal separator needs to contain a vertex from
the said separator.

The intuition behind the framework of PMCs, particularly visible in the quasi-poly-
nomial-time algorithm for MWIS in P6-free graphs [16], is that potential maximal cliques
can serve as balanced separators of a graph. Here, X ⊆ V (G) is a balanced separator
of G if every connected component of G −X has at most |V (G)|/2 vertices. The quasi-
polynomial-time algorithm of [16] tried to recursively split the graph into significantly
smaller pieces by branching and deleting as large as possible pieces of such a PMC.
Motivated by this intuition, in Section 4 we generalize Theorem 3 to dominating potential
maximal cliques:

Theorem 4. Let G be a P7-free graph and let Ω be a potential maximal clique in G. Then
there exists a set Ω′ ⊆ V (G) of size at most 68 such that Ω ⊆ NG[Ω′].

Since every minimal separator is a subset of some potential maximal clique in a graph,
Theorem 4 generalizes Theorem 3. For the same reason, our examples for P8-free graphs
also prohibit extending Theorem 4 to P8-free graphs.

2 Preliminaries

For basic graph notation, we follow [13]. We outline here only nonstandard notation that
is not presented in the introduction.
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For a set X ⊆ V (G), by cc(G−X) we denote the family of connected components of
G−X. A set A is complete to a set B if every vertex of A is adjacent to every vertex of
B.

Potential maximal cliques. A set Ω ⊆ V (G) is a potential maximal clique (PMC) if:

(PMC1) none of the connected components of cc(G− Ω) is full to Ω; and

(PMC2) whenever uv is a non-edge with {u, v} ⊆ Ω, then there is a component D ∈
cc(G− Ω) such that {u, v} ⊆ N(D).

In the second condition, we will say that the component D covers the non-edge uv. As
announced in the introduction, we have the following.

Proposition 5 (Theorem 3.15 of [4]). For a graph G, a vertex subset Ω ⊆ V (G) is a
PMC if and only if there exists a minimal chordal completion F of G such that Ω is a
maximal clique in G+ F .

We will also need the following statement.

Lemma 6 (cf. Proposition 2.7 of [13], Proposition 8 of the arXiv version). For every
PMC Ω of G and every D ∈ cc(G− Ω), the set NG(D) is a minimal separator.

Modules. Let G be a graph. A setM ⊆ V (G) is a module of G if N(x)\M = N(y)\M
for every x, y ∈ M . Note that ∅, V (G) and all the singletons {x} for x ∈ V (G) are
modules; we call these modules trivial. A graph is prime if all its modules are trivial. A
module M of G is strong if M 6= V (G) and M does not overlap with any other module of
G, i.e., for every module M ′ of G we have either M ⊆M ′, or M ′ ⊆M , or M ∩M ′ = ∅.

A partition M of V (G) is a modular partition of G if M is a module of G for every
M ∈ M. The quotient graph G/M is a graph with the vertex setM and with M ′M ∈
E(G/M) if and only if m′m ∈ E(G) for all m′ ∈ M ′ and m ∈ M (since M ′ and M are
modules, m′m is an edge either for all pairs m′ ∈M ′ and m ∈M , or for none).

It is well-known (cf. [14, Lemma 2]) that if |V (G)| > 1 then the family of (inclusion-
wise) maximal strong modules of G forms a modular partition of G whose quotient graph
is either an independent set (if G is not connected), a clique (if the complement of G
is not connected), or a prime graph (otherwise). We denote this modular partition by
Mod(G) and we let Quo(G) := G/Mod(G). For D ⊆ V (G), we abbreviate Mod(G[D]) and
Quo(G[D]) with Mod(D) and Quo(D), respectively.

3 Covering minimal separators in P7-free graphs

This section is devoted to the proof of Theorem 3. We need the following two results
from [13].
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Lemma 7 (Bi-ranking Lemma, Lemma 4.1 of [13], Lemma 17 of the arXiv version). Sup-
pose X is a non-empty finite set and (X,61) and (X,62) are two quasi-orders. Suppose
further that every pair of two different elements of X is comparable either with respect to
61 or with respect to 62. Then there exists an element x ∈ X such that for every y ∈ X
we have either x 61 y or x 62 y.

Lemma 8 (Neighborhood Decomposition Lemma, Lemma 4.2 of [13], Lemma 18 of the
arXiv version). Suppose G is a graph and D ⊆ V (G) is subset of vertices such that
|D| > 2 and G[D] is connected. Suppose further that vertices p, q ∈ D respectively belong
to different elements Mp,M q of the modular partition Mod(D) such that Mp and M q are
adjacent in the quotient graph Quo(D). Then, for each vertex u ∈ N(D) at least one of
the following conditions holds:

(a) u ∈ N [p, q];

(b) there exists an induced P4 in G such that u is one of its endpoints, while the other
three vertices belong to D;

(c) Quo(D) is a clique and the neighborhood of u in D is the union of some collection of
maximal strong modules in D.

In particular, if Quo(D) is not a clique, then the last condition cannot hold.

Let G be a P7-free graph, let S be a minimal separator in G, and let A1 and A2 be the
vertex sets of two full components of S. If |Ai| = 1 for some i ∈ {1, 2}, then Theorem 3
holds by setting S ′ := Ai, so we may assume |A1|, |A2| > 1. For each i ∈ {1, 2}, fix
two different maximal strong modules Mp

i and M q
i of G[Ai] that are adjacent in Quo(Ai).

Furthermore, pick arbitrary pi ∈Mp
i and qi ∈M q

i .
For each i ∈ {1, 2}, we apply Lemma 8 to D := Ai and N(D) = S. We say that a

vertex x ∈ S is of type (a)i if x ∈ N(pi)∪N(qi). We say that a vertex x ∈ S is of type (b)i
if x is not of type (a)i and there is an induced P4 in G with x being one of the endpoints
and the other three vertices belonging to Ai. Finally, we say that a vertex x ∈ S is of
type (c)i if x is neither of type (a)i nor (b)i. Lemma 8 asserts that if there are vertices
of type (c)i, then Quo(Ai) is a clique and the neighborhood in Ai of every vertex of this
type is the union of a collection of maximal strong modules of G[Ai]. For α, β ∈ {a, b, c},
let Sαβ be the set of vertices x ∈ S that are of type (α)1 and (β)2.

We need the following claim.

Claim 9. Let i ∈ {1, 2} and let x, y ∈ S be of type (c)i. Then Ai ∩ (N(x) \ N(y)) is
complete to Ai ∩ (N(y) \N(x)).

Proof. By Lemma 8, Quo(Ai) is a clique and both Ai∩(N(x)\N(y)) and Ai∩(N(y)\N(x))
are the unions of some disjoint collections of maximal strong modules of G[Ai]. The claim
follows. y
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Since G is P7-free, Sbb = ∅. Furthermore, if we set Ra := {p1, q1, p2, q2}, then

Saa ∪ Sab ∪ Sac ∪ Sba ∪ Sca ⊆ N(Ra).

In the rest of the proof, we construct sets Rbc, Rcb and Rcc such that Sαβ ⊆ N [Rαβ] for
αβ ∈ {bc, cb, cc}. We will conclude that S ′ := Ra ∪Rbc ∪Rcb ∪Rcc satisfies the statement
of the lemma, because |Ra| = 4 and we will ensure that |Rbc|, |Rcb| 6 5 and |Rcc| 6 8.

We start with constructing the set Rbc. If Sbc = ∅, then we set Rbc = ∅. Otherwise,
let v ∈ Sbc be a vertex with inclusion-wise minimal set A2∩N(v). Furthermore, let w ∈ A2

be an arbitrary neighbor of v in A2; w exists since A2 is a full component of S. Also, let
v, u1, u2, u3 be vertices of an induced P4 with u1, u2, u3 ∈ A1; recall here that v is of type
(b)1. We set Rbc := {u1, u2, u3, v, w} and claim that Sbc ⊆ N [Rbc].

Assume the contrary, and let v′ ∈ Sbc \ N [Rbc]. By the choice of v and since w ∈
A2 ∩ (N(v) \ N(v′)), there exists w′ ∈ A2 ∩ (N(v′) \ N(v)). By Claim 9, ww′ ∈ E(G).
Then, v′ − w′ − w − v − u1 − u2 − u3 is an induced P7 in G, a contradiction.

Hence, we constructed Rbc ⊆ V (G) of size at most 5 such that Sbc ⊆ N [Rbc]. A
symmetric reasoning yields Rcb ⊆ V (G) of size at most 5 such that Scb ⊆ N [Rcb].

We are left with constructing Rcc. If Scc = ∅, then we take Rcc = ∅ and conclude. In
the remaining case, Scc is non-empty, so both Quo(A1) and Quo(A2) are cliques.

For each i ∈ {1, 2}, we define a quasi-order 6i on Scc as follows. For x, y ∈ Scc, x 6i y
if Ai ∩ N(x) ⊆ Ai ∩ N(y). An unordered pair xy ∈

(
Scc

2

)
is a butterfly if x and y are

incomparable both in 61 and in 62, that is, if each of the following four sets is nonempty:

A1 ∩ (N(x) \N(y)), A1 ∩ (N(y) \N(x)),

A2 ∩ (N(x) \N(y)), A2 ∩ (N(y) \N(x)).

See Figure 1 for an illustration.
Lemma 7 allows us to easily dominate subsets of Scc that do not contain any butterflies:

Claim 10. Let T ⊆ Scc be such that there is no butterfly xy with x, y ∈ T . Then there
exist vertices a1 ∈ A1 and a2 ∈ A2 such that T ⊆ N(a1) ∪N(a2).

Proof. If T = ∅, the claim is trivial, so assume otherwise. Let us focus on quasi-orders 61

and 62, restricted to T . Since there are no butterflies in T , the prerequisities of Lemma 7
are satisfied for (T,61) and (T,62). Hence, there exists x ∈ T with x 61 y or x 62 y for
every y ∈ T . For i ∈ {1, 2}, let ai be an arbitrary neighbor of x in Ai (it exists as Ai is
a full component of S). For every y ∈ T , there exists i ∈ {1, 2} such that x 6i y, hence
aiy ∈ E(G). We conclude that T ⊆ N(a1) ∪N(a2), as desired. y

If there is no butterfly at all, then we apply Claim 10 to T = Scc, obtaining vertices
a1, a2 and set Rcc = {a1, a2}. Thus, we are left with the case where at least one butterfly
exists.

Let xy be a butterfly with inclusion-wise minimal set

(A1 ∪ A2) ∩N({x, y}).
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SA1 A2

p1q1 p2 q2

x

y

ux
1 ux

2

uy
1 uy

2

Figure 1: A butterfly xy. The gray grid presents the partion of G[Ai] into maximal strong
modules.

Furthermore, pick the following four vertices

ux1 ∈A1 ∩ (N(x) \N(y)), uy1 ∈A1 ∩ (N(y) \N(x)),

ux2 ∈A2 ∩ (N(x) \N(y)), uy2 ∈A2 ∩ (N(y) \N(x)).

Claim 9 ensures that ux1u
y
1 ∈ E(G) and ux2u

y
2 ∈ E(G).

Set
R′ := {x, y, ux1 , u

y
1, u

x
2 , u

y
2}.

Let T := Scc \N [R′]. We claim the following:

Claim 11. There is no butterfly x′y′ with x′, y′ ∈ T .

Proof. Assume the contrary, and let x′y′ be a butterfly with x′, y′ ∈ T . By the minimality
of xy, as ux1 ∈ (A1 ∪ A2) ∩ N({x, y}) but ux1 /∈ (A1 ∪ A2) ∩ N({x′, y′}), there exists
w ∈ (A1 ∪ A2) ∩ (N({x′, y′}) \ N({x, y})). By symmetry, assume that w ∈ A1 and
x′w ∈ E(G); see Figure 2.

By Claim 9, wux1 ∈ E(G) and wuy1 ∈ E(G). If xy ∈ E(G), then x′−w−ux1−x−y−u
y
2−

p2 would be an induced P7 in G. Otherwise, if xy /∈ E(G), then x′−w−ux1−x−ux2−u
y
2−y

would be an induced P7 in G. As in both cases we have obtained a contradiction, this
finishes the proof. y

By Claim 11, we can apply Claim 10 to T and obtain vertices a1 ∈ A1 and a2 ∈ A2

with T ⊆ N(a1) ∪ N(a2). Hence, we can take Rcc := R′ ∪ {a1, a2}, thus concluding the
proof of Theorem 3.
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SA1 A2

p1q1 p2 q2

x

y

ux
1 ux

2

uy
1

uy
2

x′w

SA1 A2

p1q1 p2 q2

x

y

ux
1 ux

2

uy
1 uy

2

x′w

Figure 2: Two cases where a P7 appears in the proof of Claim 11.

4 Covering PMCs in P7-free graphs

We now prove the following statement which, together with Theorem 3 and Lemma 6,
immediately implies Theorem 4.

Lemma 12. Let G be a P7-free graph and let Ω be a potential maximal clique in G. Then
there exists a set Ω′ ⊆ Ω of size at most 2 and a set D′ ⊆ cc(G − Ω) of size at most 3
such that

Ω ⊆ N [Ω′] ∪
⋃
D∈D′

N(D).

Proof. Let D ⊆ cc(G−Ω) be an inclusion-wise minimal set of components of G−Ω such
that for every nonedge uv in Ω there exists a component D ∈ D that covers uv.

If D = ∅, then Ω is a clique in G and thus we can put Ω′ = {v} and D′ = ∅ for an
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arbitrary v ∈ Ω. Otherwise, pick any D ∈ D. By the minimality of D, there exists a
nonedge uv in Ω that is covered by D and by no other component of D \ {D}.

Assume that there is no component Dv ∈ D\{D} with v ∈ N(Dv). Then Ω\N(D) ⊆
N(v), so Ω ⊆ N(v) ∪N(D). Hence, we can set Ω′ = {v} and D′ = {D}. Symmetrically,
Lemma 12 holds if there is no component Du ∈ D \ {D} with u ∈ N(Du).

In the remaining case, pick arbitrary components Dv ∈ D \ {D} with v ∈ N(Dv) and
Du ∈ D \ {D} with u ∈ N(Du). Since D is the only component of D that covers uv,
we have u /∈ N(Dv) and v /∈ N(Du); in particular, Du 6= Dv. We claim that we can set
Ω′ = {u, v} and D′ = {D,Du, Dv}. That is, we claim that

Ω ⊆ N [u] ∪N [v] ∪N(D) ∪N(Du) ∪N(Dv). (1)

Assume the contrary, and let x ∈ Ω be such that xu /∈ E(G), xv /∈ E(G), x /∈ N(D),
x /∈ N(Du), and x /∈ N(Dv).

Since xu is a nonedge of Ω, there exists Dxu ∈ D that covers xu. Similarly, there
exists Dxv ∈ D that covers xv. By the choice of x, we have Dxu, Dxv /∈ {D,Du, Dv}.
Further, since D is the only component of D covering uv, v /∈ N(Dxu) and u /∈ N(Dxv);
in particular, Dxu 6= Dxv. See Figure 3.

Let yu be an arbitrary neighbor of u in Du, let yv be an arbitrary neighbor of v in Dv,
let Pu be a shortest path from u to x with all internal vertices in Dxu, and let Pv be a
shortest path from v to x with all internal vertices inDxv. Then, yu−u−Pu−x−Pv−v−yv
is an induced path with at least 7 vertices, a contradiction. This proves (1) and concludes
the proof of Lemma 12.

5 Examples

In this section we discuss two examples showing tightness of the statement of Theorem 3:
we show that it cannot be generalized to P8-free graphs and that a small dominating set
of a minimal separator may need to contain elements of the said separator. The examples
are modifications of a corresponding example presented in the conclusions of [16].

First example. Consider the following graph G. We create three sets of n vertices
each, A1 = {aj1 | 1 6 j 6 n}, A2 = {aj2 | 1 6 j 6 n}, and S = {sj | 1 6 j 6 n}. We
set V (G) = A1 ∪ A2 ∪ S. For the edge set of G, we turn A1 and A2 into cliques and add
edges sjaj1 and sjaj2, for all 1 6 j 6 n. This concludes the description of the graph G;
see Figure 4. Note that S is a minimal separator in G with A1 and A2 being two full
components of S.

First, note that for every v ∈ V (G), |N [v] ∩ S| = 1. Thus, any set dominating S has
to contain at least n vertices.

Second, note that G is P8-free. To see this, let P be an induced path in G. Since
A1 and A2 are cliques, P contains at most two vertices from each Ai, i ∈ {1, 2}, and
these vertices are consecutive on P . Since S is an independent set in G, P cannot contain
more than one vertex of S in a row. Hence, P contains at most three vertices of S.
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Ω

D

Du Dv

Dxu Dxv

u v

x

yu yv

Figure 3: A P7 in the proof of Lemma 12. N(D) is the horizontal box inside Ω marked
with north-east strips and N(Du) ∪N(Dv) consist of two vertical boxes inside Ω marked
with north-west strips. Note that N(Du)∩N(Dv) may be nonempty, which is not depicted
on the figure.

Consequently |V (P )| 6 7, as desired. Note that if n > 3, then there is an induced P7 in
G, for example s1 − a11 − a21 − s2 − a22 − a32 − s3.

Second example. Here, let us modify the graph G from the first example by turning
S into a clique. Still, S is a minimal separator in G with A1 and A2 being two full
components of S.

First, note that for every v ∈ A1 ∪ A2, we still have |N [v] ∩ S| = 1. Thus, any set
dominating S that is disjoint with S has to contain at least n vertices.

Second, note that G is P7-free. To see this, observe that G can be partitioned into
three cliques, A1, A2, and S, and any induced path in G contains at most two vertices
from each of the cliques. Note that if n > 3, then there is an induced P6 in G, for example
a31 − a11 − s1 − s2 − a22 − a32.

While the two examples above refute the possibility of covering a minimal separator
or a PMC by a constant number of vertex neighborhoods, they do not refute a weaker
statement such as the one of Lemma 12: covering a PMC with a constant number of
vertex or component neighborhoods. We were not able to construct a counterexample to
such a statement. On the contrary, we conjecture the following:

Conjecture 13. For every integer t > 2 there exists an integerMt such that for every Pt-
free graph G and every PMC Ω in G, there exists a setX ⊆ V (G) and a set D ⊆ cc(G−Ω),
both of size at most Mt, such that Ω ⊆ N [X] ∪

⋃
D∈DN(D).
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Figure 4: The first example for n = 5. In the second example we turn S into a clique.

Lemma 12 provides the proof for t = 7 with M7 = 3.
In support of the above conjecture let us recall the following technical statement of [16]:

Lemma 14 (rephrasing of Lemma 3.3 of [16]). Let H be a graph on nH vertices and mH

edges. Then, for every graph G, every PMC Ω in G, and every probabilistic distribution
µ on Ω, there exists at least one of the following:

1. a vertex v ∈ V (G) with µ(N [v] ∩ Ω) > 1
2n2

H
;

2. a component D ∈ cc(G− Ω) with µ(N(D)) > 1
2nHmH

; or

3. an induced subgraph of G isomorphic to a subdivision of H.

Observe that an iterative application of Lemma 14 with H = Pt to a Pt-free graph G
and a PMC Ω yields a weaker version of Conjecture 13:

Lemma 15. For every t, every Pt-free graph G, and every PMC Ω in G, there exists
a set X ⊆ V (G) and a set D ⊆ cc(G − Ω), both of size O(t2 log |Ω|), such that Ω ⊆
N [X] ∪

⋃
D∈DN(D).

Proof. We compute X and D via the following process, initiated with X = ∅ and D = ∅.
At each step, givenX ⊆ V (G) andD ⊆ cc(G−Ω), compute A := Ω\(N [X]∪

⋃
D∈DN(D)).

If A = ∅, then stop, returning X and D. Otherwise, apply Lemma 14 to H = Pt, G, Ω,
and µ being a uniform distribution over A. Since G is Pt-free, Lemma 14 finds a vertex
v with µ(N [v] ∩ Ω) > 1/2t2 or a component D ∈ cc(G − Ω) with µ(N(D)) > 1/2t2. In
the first case, add v to X, and in the second case, add D to D, and go to the next step.
Observe that by the choice of µ, in the next iteration of the process the set A is smaller
by at least a factor of (1− 1/2t2), proving the final bound on |X| and |D|.

However, we remark that it is unclear whether a positive resolution of Conjecture 13
would have any application for polynomial-time algorithms in the class of Pt-free graphs.
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