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Abstract

A mixed graph is a graph that can be obtained from a simple undirected graph
by replacing some of the edges by arcs in precisely one of the two possible directions.
The Hermitian adjacency matrix of a mixed graph G of order n is the n×n matrix
H(G) = (hij), where hij = −hji = i (with i =

√
−1) if there exists an arc from

vi to vj (but no arc from vj to vi), hij = hji = 1 if there exists an edge (and no
arcs) between vi and vj , and hij = 0 otherwise (if vi and vj are neither joined by
an edge nor by an arc). We study the spectra of the Hermitian adjacency matrix
and the normalized Hermitian Laplacian matrix of general random mixed graphs,
i.e., in which all arcs are chosen independently with different probabilities (and an
edge is regarded as two oppositely oriented arcs joining the same pair of vertices).
For our first main result, we derive a new probability inequality and apply it to
obtain an upper bound on the eigenvalues of the Hermitian adjacency matrix. Our
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second main result shows that the eigenvalues of the normalized Hermitian Lapla-
cian matrix can be approximated by the eigenvalues of a closely related weighted
expectation matrix, with error bounds depending on the minimum expected degree
of the underlying undirected graph.

Keywords: general random mixed graphs; random Hermitian adjacency matrix;
random normalized Hermitian Laplacian matrix; spectra

Mathematics Subject Classifications: 05C50, 15A18

1 Introduction

A Hermitian matrix (also sometimes called self-adjoint matrix ) is a complex square matrix
that is equal to its own conjugate transpose, i.e., the (i, j)-th element is equal to the
complex conjugate of the (j, i)-th element, for all indices i and j. The purpose of this
paper is to study the spectra of the Hermitian adjacency matrix and the normalized
Hermitian Laplacian matrix of general random mixed graphs. Before we give the other
necessary definitions and present our results, we start off with a short overview and some
background on related work.

1.1 Background and related work

Spectra of the adjacency matrix and the normalized Laplacian matrix of graphs have
many applications in graph theory. For example, the spectrum of the adjacency matrix of
a graph is related to its connectivity and the number of occurrences of specific subgraphs,
and also to its chromatic number and its independence number. The spectrum of the
normalized Laplacian matrix is related to diffusion on graphs, random walks on graphs
and the Cheeger constant. For more details on these notions, and for more applications
of spectra of the adjacency matrix and the normalized Laplacian matrix, we refer the
interested reader to two monographs [5, 12].

Also for random graphs, spectra of their adjacency matrix and their normalized Lapla-
cian matrix are well-studied (See, e.g., [2, 6, 7, 9, 10, 13, 14, 17, 18]). We next present
a brief account of some of the results that were obtained for random graphs. We re-
frain from giving an exhaustive overview, and we refer the reader to the sources for more
background, and for terminology and notation.

Given a graph G of order n, let µ1, . . . , µn be the eigenvalues of the adjacency matrix
of G in nonincreasing order. Adopting the Erdős-Rényi random graph model G(n, p),
Füredi and Komlós [18] showed that asymptotically almost surely µ1 = (1 + o(1))np and
max{µ2,−µn−1} 6 (2 + o(1))

√
np(1− p) provided np(1− p)� log6 n. Here the notation

o(1) is used for a quantity (depending on n) that goes to 0 as n goes to infinity. These
results were extended to sparse random graphs [14, 22] and general random matrices
[13, 18]. Tropp [29] determined probability inequalities for sums of independent random
self-adjoint matrices. Alon, Krivelevich, and Vu [2] studied the concentration of the s-th
largest eigenvalue of a random symmetric matrix with independent random entries of
absolute value at most one. Friedman et al. [15, 16, 17] proved that the second largest
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eigenvalue (in absolute value) of random d-regular graphs is almost surely (2+o(1))
√
d− 1

for any d > 4. Chung, Lu, and Vu [7] studied spectra of the adjacency matrix of random
power law graphs, and spectra of the normalized Laplacian matrix of random graphs
with given expected degrees. Their results on random graphs with given expected degree
sequences were supplemented by Coja-Oghlan et al. [9, 10] for sparse random graphs. Lu
and Peng [24, 25] studied spectra of the adjacency matrix and the normalized Laplacian
matrix of edge-independent random graphs, as well as spectra of the normalized Laplacian
matrix of random hypergraphs. Oliveira [26] considered the problem of approximating the
spectra of the adjacency matrix and the normalized Laplacian matrix of random graphs.
His results were improved by Chung and Radcliffe [8].

The purpose of our paper is to extend these studies to general random mixed graphs.

1.2 General random mixed graphs

A graph is called a mixed graph if it contains both directed and undirected edges. We use
G = (V (G), E(G), A(G)) to denote a mixed graph with a set V (G) of vertices, a set E(G)
of (undirected) edges, and a set A(G) of arcs (directed edges). We define the underlying
graph of G, denoted by Γ(G), as the graph with vertex set V (Γ(G)) = V (G), and edge
set

E(Γ(G)) = {vivj | vivj ∈ E(G) or (vi, vj) ∈ A(G) or (vj, vi) ∈ A(G)}.

We adopt the terminology and notation of Liu and Li in [23], and define the Hermitian
adjacency matrix of a mixed graph G of order n to be the n×n matrix H(G) = (hij)n×n,
where

hij =


1, if vivj ∈ E(G);
i, if (vi, vj) ∈ A(G) and (vj, vi) /∈ A(G);
−i, if (vi, vj) /∈ A(G) and (vj, vi) ∈ A(G);

0, otherwise.

Here, i =
√
−1. This matrix, that is indeed Hermitian, as one easily sees, was also in-

troduced independently by Guo and Mohar in [20]. We denote by λi(H(G)) the i-th largest
eigenvalue ofH(G) (multiplicities counted). We use {λ1(H(G)), λ2(H(G)), . . . , λn(H(G))}
to denote the spectrum of H(G) in nonincreasing order. The set of these eigenvalues is
called the Hermitian adjacency spectrum (or briefly H-spectrum) of G. Let V (G) =
{v1, v2, . . . , vn}, and let D(G) = diag(d1, d2, . . . , dn) be a diagonal matrix, in which di
is the degree of the vertex vi in the underlying graph Γ(G). Then the matrix L(G) =
D(G) − H(G) is called the Hermitian Laplacian matrix of G, and the matrix L(G) =

I−D(G)−
1
2H(G)D(G)−

1
2 is called the normalized Hermitian Laplacian matrix of G. Here

I is the n×n identity matrix. We denote by λi(L(G)) the i-th largest eigenvalue of L(G)
(multiplicities counted). We use {λ1(L(G)), λ2(L(G)), . . . , λn(L(G))} to denote the spec-
trum of L(G) in nonincreasing order. The set of these eigenvalues is called the normalized
Hermitian Laplacian spectrum of G.

If we regard (replace) each edge vivj ∈ E(G) in G = (V (G), E(G), A(G)) as (by) two
oppositely directed arcs (vi, vj) and (vj, vi), then G is a directed graph. Throughout this
paper, we regard mixed graphs as directed graphs, in the above sense. Next, we give the
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definition of a general random mixed graph Ĝn(pij). Let Kn be a complete graph on n
vertices. The complete directed graph DKn is the graph obtained from Kn by replacing
each edge of Kn by two oppositely directed arcs. Let pij be a function of n such that
0 < pij < 1 (i 6= j). We always assume that pii = 0 for all indices i. The random mixed

graph model Ĝn(pij) consists of all random mixed graphs Ĝn(pij) in which each arc (vi, vj)
with i 6= j is chosen randomly and independently, with probability pij from the set of
arcs of DKn, where we let the vertex set be {v1, v2, . . . , vn}. Here the probabilities pij for

different arcs are not assumed to be equal, that is, Ĝn(pij) is an arc-independent random

mixed graph of order n. Then the Hermitian adjacency matrix of Ĝn(pij), denoted by

H(Ĝn(pij)) = (hij) (or Hn, for brevity), satisfies that:

• Hn is a random Hermitian matrix, with hii = 0 for 1 6 i 6 n;

• the upper-triangular entries hij, 1 6 i < j 6 n are independent random variables,
which take value 1 with probability pijpji, i with probability pij(1 − pji), −i with
probability (1− pij)pji, and 0 with probability (1− pij)(1− pji).

If A is a random n×n matrix, we write E(A) to denote the coordinate-wise expectation
of A, so E(A)ij = E(Aij). Similarly, Var(A) = E((A−E(A))2). We use EHn as shorthand
for E(Hn), and note that it is obvious that (EHn)ij = E(hij) = pijpji + i(pij − pji).

1.3 Our main results

In this paper we study the spectra of the Hermitian adjacency matrix and the normalized
Hermitian Laplacian matrix of general random mixed graphs. Throughout adopting the
above notation and terminology, our main results can be stated as follows.

For the first theorem, we use ∆(Γ(Ĝn(pij))) to denote the maximum expected degree of

the underlying graph of Ĝn(pij). Hence, by straightforward calculations, ∆(Γ(Ĝn(pij))) =
max16i6n

∑n
j=1(pij + pji − pijpji).

Theorem 1. Let Ĝn(pij) and Hn = (hij) be defined as above, and let ∆ = ∆(Γ(Ĝn(pij))).
Let ε > 0 be an arbitrarily small constant, chosen such that for n sufficiently large,
∆ > 4

9
ln(2n/ε). Then with probability at least 1−ε, for n sufficiently large, the eigenvalues

of Hn satisfy

|λi(Hn)| 6 max
16i6n

n∑
j=1

√
p2ijp

2
ji + (pij − pji)2 + 2

√
∆ ln(2n/ε)

for all 1 6 i 6 n.

Applying Theorem 1 with ε = 1
n
, we immediately obtain the following corollaries.

Corollary 2. Let Ĝn(pij) and Hn = (hij) be defined as in Theorem 1, and let ∆ =

∆(Γ(Ĝn(pij))). If ∆ > 8
9

ln(
√

2n), then with probability at least 1 − 1
n

= 1 − o(1), the
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eigenvalues of Hn satisfy

|λi(Hn)| 6 max
16i6n

n∑
j=1

√
p2ijp

2
ji + (pij − pji)2 + 2

√
2∆ ln(

√
2n)

for all 1 6 i 6 n.

In particular, consider the case that pij = p, with p ∈ (0, 1) for i 6= j and 0 for i = j.

We denote this graph by Ĝn(p) and define

β :=
2
√

2∆ ln(
√

2n)

max16i6n
∑n

j=1

√
p2ijp

2
ji + (pij − pji)2

=
2
√

2(2p− p2)(n− 1) ln(
√

2n)

p2(n− 1)

= 2
√

2 ·

√
2− p
p3
· ln(
√

2n)

n− 1
.

• If p is a constant, then β → 0 as n→∞.
• If p→ 1, then β → 0 as n→∞.
• Let p = 1

nl
. If 0 < l < 1

3
, then β → 0 as n→∞; if l > 1

3
, then β →∞ as n→∞.

Corollary 3. For Ĝn(p), if (n − 1)(2p − p2) > 8
9

ln(
√

2n), then with probability at least
1− 1

n
= 1− o(1), we have

|λi(Hn)| 6 (1 + o(1))(n− 1)p2, for all 1 6 i 6 n,

when p is a constant or p→ 1 or p = 1
nl

, 0 < l < 1
3
.

In the next theorem, we assume that V (Ĝn(pij)) = {v1, v2, . . . , vn}, and we let Dn =
diag(d1, d2, . . . , dn) denote the diagonal matrix in which di is the degree of the vertex vi
in the underlying graph of Ĝn(pij). We let EDn denote the coordinate-wise expectation

of Dn. Recall that Ln = In−D−1/2n HnD
−1/2
n denotes the normalized Hermitian Laplacian

matrix of Ĝn(pij), where In denotes the n×n identity matrix. We let δ(Γ(Ĝn(pij))) denote

the minimum expected degree of the underlying graph of Ĝn(pij). Hence, δ(Γ(Ĝn(pij))) =
min16i6n

∑n
j=1(pij + pji − pijpji).

Theorem 4. Let Ĝn(pij), Hn, Dn and Ln be defined as above, and let δ = δ(Γ(Ĝn(pij))).
Let ε > 0 be an arbitrarily small constant. Then there exists a constant k = k(ε) such

that if δ > k lnn, then with probability at least 1− ε, the eigenvalues of Ln and L̃n satisfy

|λi(Ln)− λi(L̃n)| 6 7

√
ln(4n/ε)

δ

for all 1 6 i 6 n, where L̃n = In − (EDn)−1/2(EHn)(EDn)−1/2.
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Applying Theorem 4 with ε = 1
n
, we immediately obtain the following corollaries.

Corollary 5. Let Ĝn(pij), Hn, Dn and Ln be defined as in Theorem 4, and let δ =

δ(Γ(Ĝn(pij))). If δ � lnn, then with probability at least 1− 1
n

= 1− o(1), the eigenvalues

of Ln and L̃n satisfy

|λi(Ln)− λi(L̃n)| 6 7

√
2 ln(2n)

δ
= o(1)

for all 1 6 i 6 n, where L̃n = In − (EDn)−1/2(EHn)(EDn)−1/2.

If Jn is the n × n all-ones matrix, then for Ĝn(p), EHn = p2(Jn − In), EDn = (n −
1)(2p− p2)In and L̃n = In − p

(n−1)(2−p)(Jn − In). Then we have the following.

Corollary 6. For Ĝn(p), if (n− 1)(2p− p2)� lnn, then with probability at least 1− 1
n

=
1− o(1), we have∣∣∣∣λi(Ln)− λi

(
In −

p

(n− 1)(2− p)
(Jn − In)

)∣∣∣∣ 6 7

√
2 ln(2n)

(n− 1)(2p− p2)
= o(1)

for all 1 6 i 6 n.

The spectrum of In− p
(n−1)(2−p)(Jn−In) is {1− p

2−p , 1+ p
(n−1)(2−p)}, where 1+ p

(n−1)(2−p)
has multiplicity n − 1. From Corollary 6, we see that, if (n − 1)(2p − p2) � lnn and
p → 0, then with high probability all eigenvalues of Ln are close to 1; otherwise, if
(n− 1)(2p− p2)� lnn and p9 0, all eigenvalues of Ln except λmin(Ln) are close to 1.

We postpone the proofs of Theorem 1 and Theorem 4 to Section 3. In the next section,
we state some existing results and prove an auxiliary new result that we need in our proof
of Theorem 1.

2 Preliminaries and Auxiliary Results

We start with some additional terminology and notation that we will use throughout the
paper.

2.1 Additional terminology and notation

We let Cn×n
Herm denote the set of n×n Hermitian matrices, which is a subset of the set Cn×n

of all n×n matrices with complex entries. For each matrix M ∈ Cn×n, the spectral radius
of M is the nonnegative real number ρ(M) = max{|λi(M)| : 1 6 i 6 n}, where λi(M)
(1 6 i 6 n) are all eigenvalues of M . We use λmax(M) to denote the largest eigenvalue of
M . The set {λi(M) : 1 6 i 6 n} is called the spectrum of M , and denoted by spec(M).
The spectral norm ‖M‖ is the largest singular value of M , i.e., we have

‖M‖ =
√
λmax(M∗M).
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Here M∗ is the conjugate transpose of M . The Spectral Theorem for Hermitian matri-
ces states that all M ∈ Cn×n

Herm have n real eigenvalues (possibly with repetitions) that
correspond to an orthonormal set of eigenvectors.

When M ∈ Cn×n
Herm, we have ‖M‖ = max{|λi(M)| : 1 6 i 6 n}. Then ρ(M) = ‖M‖ =

max{λmax(M), λmax(−M)}. We use Tr(M) (the trace of M) to denote the sum of the
eigenvalues of M .

We will use the notation A � 0 to indicate that A is positive semidefinite, i.e., A ∈
Cn×n
Herm and its eigenvalues are nonnegative, and use the notation A � 0 to indicate that

A is positive definite, i.e., A ∈ Cn×n
Herm and its eigenvalues are positive, where 0 is the

zero matrix of the same size as A. With � we denote the positive semidefinite order on
Hermitian matrices, as follows. Given two Hermitian matrices A and B, we use A � B
or B � A to indicate that B − A � 0.

Let f : C → C be an entire analytic function with a power-series representation
f(x) ≡

∑∞
n=0 anx

n (x ∈ C). If all an are real, the expression:

f(A) ≡
∞∑
n=0

anA
n (A ∈ Cd×d

Herm)

corresponds to a mapping from Cd×d
Herm to itself. We note that notions of convergence are

as in [21]. The Spectral Mapping Theorem states that each eigenvalue of f(A) is equal to
f(λ) with λ ∈ spec(A), i.e.,

spec(f(A)) = f(spec(A)). (2.1)

In the sequel, we use the following lemma applied to the matrix exponential, to be defined
shortly.

Lemma 7 (Lieb [29]). Let f, g : R → R, and suppose there is a subset S ⊆ R with
f(a) 6 g(a) for all a ∈ S. If A is a Hermitian matrix with all eigenvalues contained in
S, then f(A) � g(A).

In our proofs, we make use of the matrix exponential, defined as exp(A) =
∑∞

n=0
1
n!
An.

From the Spectral Mapping Theorem we know that exp(A) is always positive definite
when A is Hermitian, and that exp(A) converges for all choices of A. By Lemma 7, we
have:

for any A ∈ Cd×d
Herm, I + A � eA. (2.2)

Moreover, we shall require brief use of the matrix logarithm. The matrix logarithm is
defined as the functional inverse of the matrix exponential:

for any A ∈ Cd×d
Herm, log(eA) := A. (2.3)

This formula defines the logarithm of a positive definite matrix. In general, if B = exp(A),
we say that A is the logarithm of B. As our matrices will be Hermitian, it is sufficient for
uniqueness of this function to require that the logarithm also be Hermitian. The matrix
logarithm is monotone with respect to the positive semidefinite order (See [4]):

for any A,B ∈ Cd×d
Herm, if A � 0, B � 0 and A � B, then log(A) � log(B). (2.4)

Any notation not mentioned here pertaining to matrices is as in [21].
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2.2 Auxiliary concentration results

We shall require the following concentration inequalities in order to prove our main the-
orems. Various matrix concentration inequalities have been derived by many authors,
including Ahlswede and Winter [1], Cristofides and Markström [11], Oliveira [26], Gross
[19], Recht [28], Tropp [29], and Chung and Radcliffe [8]. In [8], Chung and Radcliffe give
a short proof for the following relatively simple version that is particularly suitable for
random graphs.

Theorem 8 ([8]). Let X1, X2, . . . , Xm be independent random n×n Hermitian matrices.
Moreover, assume that ‖Xi−E(Xi)‖ 6 c for all i. Let X =

∑m
i=1Xi. Then for any a > 0,

Pr(‖X − E(X)‖ > a) 6 2n exp
(
− a2

2‖
∑m

i=1 Var(Xi)‖+ 2ac/3

)
.

A strengthened version of Theorem 8 that we need for one of our proofs in Section 3,
is as follows.

Theorem 9. Let X1, X2, . . . , Xm be independent random n×n Hermitian matrices. More-
over, assume that ‖Xi‖ 6 c for all i. Let X =

∑m
i=1Xi. Then

Pr(λmax(X) > a) 6 n exp

(
− (a− ‖E(X)‖)2

2‖
∑m

i=1 E(X2
i )‖+ 2c

3
(a− ‖E(X)‖)

)
for a > ‖E(X)‖.

In particular,

Pr(‖X‖ > a) 6 2n exp

(
− (a− ‖E(X)‖)2

2‖
∑m

i=1 E(X2
i )‖+ 2c

3
(a− ‖E(X)‖)

)
for a > ‖E(X)‖. (2.5)

Before we present our proof of Theorem 9, we will first show that Theorem 9 implies
Theorem 8. For this purpose, let Xi (1 6 i 6 m) be as in Theorem 8. Let X ′i = Xi−E(Xi)
and X ′ =

∑m
i=1X

′
i = X − E(X). Then E(X ′) = 0. From the hypothesis of Theorem 8,

we see that
‖X ′i‖ 6 c for all i ∈ {1, . . . ,m}.

We also have ∥∥∥∥∥
m∑
i=1

E(X ′2i )

∥∥∥∥∥ =

∥∥∥∥∥
m∑
i=1

E(Xi − E(Xi))
2

∥∥∥∥∥
=

∥∥∥∥∥
m∑
i=1

Var(Xi)

∥∥∥∥∥.
Applying Theorem 9, we get that for a > 0 = ‖E(X ′)‖,

Pr(‖X − E(X)‖ > a) = Pr(‖X ′‖ > a)
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6 2n exp

(
− (a− ‖E(X ′)‖)2

2‖
∑m

i=1 E(X ′2i )‖+ 2c
3

(a− ‖E(X ′)‖)

)

= 2n exp

(
− a2

2‖
∑m

i=1 Var(Xi)‖+ 2ac/3

)
.

This shows that Theorem 9 implies Theorem 8.

2.3 The proof of Theorem 9

We are now going to prove Theorem 9. For our proof, we will rely on Lemma 7 and the
following known result.

Lemma 10 ([29]). Consider a finite sequence {Xi}mi=1 of independent, random, Hermitian
matrices. Then

E
[
Tr

(
exp

( m∑
i=1

θXi

))]
6 Tr

(
exp

( m∑
i=1

logE(exp(θXi))
))

for any constant θ ∈ R.

Proof of Theorem 9. We define

g(x) = 2
∞∑
k=2

xk−2

k!
=

2(ex − 1− x)

x2
,

and first show the following facts about g, followed by short justifications for the state-
ments.

• g(0) = 1. In fact,

g(0) = lim
x→0

2(ex − 1− x)

x2
= lim

x→0

2(ex − 1)

2x
= lim

x→0

ex

1
= 1.

• g(x) is monotone increasing for x > 0. Note that for x 6= 0, g′(x) = 2x−3((x−2)ex+
x + 2), and so it suffices to show that h(x) = (x − 2)ex + x + 2 satisfies h(x) > 0
for all x ∈ R. Clearly, h(0) = 0 and h′(x) = (x − 1)ex + 1. Hence, h′(0) = 0
and h′′(x) = xex, so h′′(x) < 0 for x < 0 and h′′(x) > 0 for x > 0. Therefore,
h′(x) is monotone decreasing in x ∈ (−∞, 0] and h′(x) is monotone increasing in
x ∈ (0,+∞). So, h′(x) > h′(0) = 0 for all x ∈ R. Thus, h(x) is monotone increasing
for all x ∈ R. Indeed, h(x) > h(0) = 0 for all x ∈ R, as required.

• g(x) 6 1 for x < 0. In fact, g′(x) = 2x−3h(x) 6 0 if x < 0. So, the function g is
decreasing for x < 0. Thus, g(x) 6 g(0) = 1 for x < 0.
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• for x < 3, using k! > 2 · 3k−2, we obtain

g(x) = 2
∞∑
k=2

xk−2

k!
6

∞∑
k=2

xk−2

3k−2
=

1

1− x/3
. (2.6)

Recalling that g(x) is monotone increasing for x > 0, for 0 < x 6 c, we get g(x) 6 g(c).
Now let Xi (1 6 i 6 m) be as in the hypothesis of Theorem 9.

Given a real constant θ > 0, we have ‖θXi‖ 6 θc. Applying Lemma 7, we obtain that
g(θXi) � g(θc)I. Therefore, noting that ex = 1 + x+ 1

2
x2g(x), we have

eθXi = I + θXi +
1

2
θ2g(θXi)X

2
i

� I + θXi +
1

2
θ2g(θc)X2

i .
(2.7)

We now use that the expectation respects the positive semidefinite order (See [29]), i.e.,

for any A,B ∈ Cd×d
Herm, A � B almost surely implies EA � EB. (2.8)

Using (2.2), (2.7), and (2.8), we obtain

E(eθXi) � E(I + θXi +
1

2
θ2g(θc)X2

i )

= I + θE(Xi) +
1

2
θ2g(θc)E(X2

i )

� eθE(Xi)+
1
2
θ2g(θc)E(X2

i ).

(2.9)

Next, we prove the following claim related to the trace of the matrix exponential.

Claim 1. For the given matrices Xi,

E
[
Tr
(

exp
( m∑
i=1

θXi

))]
6 Tr

(
exp

(
θE(X) +

1

2
θ2g(θc)

m∑
i=1

E(X2
i )
))
. (2.10)

Proof of Claim 1. Here we work with the trace of the matrix exponential, Tr(exp) : A 7→
Tr(exp(A)). This trace exponential function is monotone with respect to the positive
semidefinite order, i.e.,

∀A,B ∈ Cd×d
Herm, A � B implies Tr(exp(A)) 6 Tr(exp(B)). (2.11)

See, e.g., [27], Section 2 for a short proof of this fact. Now, using Lemma 10, (2.3), (2.4),
(2.9) and (2.11), we obtain

E
[
Tr
(

exp
( m∑
i=1

θXi

))]
6 Tr

(
exp

( m∑
i=1

logE(exp(θXi))
))
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6 Tr
(

exp
( m∑
i=1

log eθE(Xi)+
1
2
θ2g(θc)E(X2

i )
))

= Tr
(

exp
( m∑
i=1

(
θE(Xi) +

1

2
θ2g(θc)E(X2

i )
)))

= Tr
(

exp
(
θE(X) +

1

2
θ2g(θc)

m∑
i=1

E(X2
i )
))
,

as required.
Note that exp(θλmax(X)) is a random variable. Then, by Markov’s inequality, for any

real constant a > 0,

Pr(λmax(X) > a) = Pr(eθλmax(X) > eθa) 6 e−θaE
(
eθλmax(X)

)
(2.12)

By (2.1), for any s > 0, and for any A ∈ Cd×d
Herm, the largest eigenvalue of esA is esλmax(A)

and all eigenvalues of esA are nonnegative. Hence,

exp(sλmax(A)) = λmax(exp(sA)) 6 Tr(exp(sA)). (2.13)

We need two more inequalities from matrix analysis, where the first one is usually
referred to as the Golden-Thompson inequality (See, e.g., [3]), and the second one can be
found, e.g., in [31].

∀d ∈ {1, 2, 3, . . .}, and any A,B ∈ Cd×d
Herm,Tr(eA+B) 6 Tr(eAeB). (2.14)

If A and B are n× n positive semidefinite Hermitian matrices, then

0 6 Tr(A ·B) 6 Tr(A) · λmax(B) 6 Tr(A) · Tr(B). (2.15)

Now, given a real constant a > ‖E(X)‖, for every real constant θ > 0, using (2.10),
(2.12), (2.13), (2.14), and (2.15), we obtain

Pr(λmax(X) > a) 6 e−θaE
(
eθλmax(X)

)
6 e−θaE

(
Tr(exp(θX)

)
= e−θaE

[
Tr(exp(

m∑
i=1

θXi))
]

6 e−θaTr
[

exp
(
θE(X) +

1

2
θ2g(θc)

m∑
i=1

E(X2
i )
)]

6 e−θaTr
[

exp
(
θE(X)

)
· exp

(1

2
θ2g(θc)

m∑
i=1

E(X2
i )
)]

6 e−θaλmax

(
exp

(
θE(X)

))
· Tr
[

exp
(1

2
θ2g(θc)

m∑
i=1

E(X2
i )
)]
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6 e−θaλmax

(
exp

(
θE(X)

))
· nλmax

[
exp

(1

2
θ2g(θc)

m∑
i=1

E(X2
i )
)]

= ne−θa
(

exp
(
θλmax(E(X))

))
· exp

(1

2
θ2g(θc)λmax

( m∑
i=1

E(X2
i )
))

= n exp
(
− θa+ θλmax(E(X)) +

1

2
θ2g(θc)λmax

( m∑
i=1

E(X2
i )
))

6 n exp

(
− θa+ θ‖E(X)‖+

1

2
θ2g(θc)

∥∥∥∥ m∑
i=1

E(X2
i )

∥∥∥∥).
The final inequality holds as ‖E(X)‖ > λmax(E(X)) and

∥∥∥ m∑
i=1

E(X2
i )
∥∥∥ > λmax(

m∑
i=1

E(X2
i )).

Recall that we assume a > ‖E(X)‖. Now take θ = a−‖E(X)‖
‖
∑m
i=1 E(X2

i )‖+
c
3
(a−‖E(X)‖) . Then,

clearly θc < 3. Using (2.6), we obtain

Pr(λmax(X) > a) 6 n exp

(
− θa+ θ‖E(X)‖+

1

2
θ2g(θc)

∥∥∥∥∥
m∑
i=1

E(X2
i )

∥∥∥∥∥
)

6 n exp

(
− θa+ θ‖E(X)‖+

θ2‖
∑m

i=1 E(X2
i )‖

2(1− θc
3

)

)

= n exp

(
− θ

[
a− ‖E(X)‖ − θ‖

∑m
i=1 E(X2

i )‖
2(1− θc

3
)

])

= n exp

(
− θ

[
a− ‖E(X)‖ − θ‖

∑m
i=1 E(X2

i )‖

2
(

1− a−‖E(X)‖
‖
∑m
i=1 E(X2

i )‖+
c
3
(a−‖E(X)‖) ·

c
3

)])

= n exp

(
− θ

[
a− ‖E(X)‖ − θ‖

∑m
i=1 E(X2

i )‖
2‖

∑m
i=1 E(X2

i )‖
‖
∑m
i=1 E(X2

i )‖+
c
3
(a−‖E(X)‖)

])

= n exp

(
− θ

[
a− ‖E(X)‖ − θ

2

(
‖

m∑
i=1

E(X2
i )‖+

c

3
(a− ‖E(X)‖)

)])

= n exp

(
− θ
[
a− ‖E(X)‖ − 1

2
(a− ‖E(X)‖)

])

= n exp

(
− θ

2
(a− ‖E(X)‖)

)

= n exp

(
− (a− ‖E(X)‖)2

2‖
∑m

i=1 E(X2
i )‖+ 2c

3
(a− ‖E(X)‖)

)
. (2.16)

This proves the first statement of Theorem 9. To obtain the norm bound (2.5) in the
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second statement of Theorem 9, recall that

for any Y ∈ Cn×n
Herm, ‖Y ‖ = max{λmax(Y ),−λmin(Y )} = max{λmax(Y ), λmax(−Y )}.

Using this, we next apply the inequality (2.16) to the sequence {−Xi}, i.e., we replace
the sequence {Xi} by the sequence {−Xi} in the above inequality (2.16). We obtain

Pr(λmax(−X) > a) 6 n exp

(
− (a− ‖E(−X)‖)2

2‖
∑m

i=1 E((−Xi)2)‖+ 2c
3

(a− ‖E(−X)‖)

)

= n exp

(
− (a− ‖E(X)‖)2

2‖
∑m

i=1 E(X2
i )‖+ 2c

3
(a− ‖E(X)‖)

)
.

Applying the union bound to the estimates for λmax(X) and −λmin(X), we obtain

Pr(‖X‖ > a) 6 2n exp

(
− (a− ‖E(X)‖)2

2‖
∑m

i=1 E(X2
i )‖+ 2c

3
(a− ‖E(X)‖)

)
.

This completes the proof of Theorem 9.

3 Proofs of Theorem 1 and Theorem 4

In this section, we provide proofs for the two main theorems of this paper, using Theo-
rem 8, Theorem 9, and a number of other known results.

3.1 The proof of Theorem 1

Before presenting our proof of Theorem 1, we recall one more known result that will be
used in the sequel of the paper.

Lemma 11 ([21]). Let M = (mij) be an n× n matrix. Then

ρ(M) 6 min

{
max
16i6n

n∑
j=1

|mij|, max
16j6n

n∑
i=1

|mij|

}
.

Proof of Theorem 1. Let Ĝn(pij) and Hn = (hij) be defined as before, and let ∆ =

∆(Γ(Ĝn(pij))). Recall that this implies that ∆ = max16i6n
∑n

j=1(pij + pji − pijpji).
For the indices i and j with 1 6 i, j 6 n, let H ij be the n× n matrix with a 1 in the

(i, j)-th position and a 0 everywhere else. Recall that hij takes value 1 with probability
pijpji, value i with probability pij(1−pji), value −i with probability (1−pij)pji, and value
0 with probability (1− pij)(1− pji). So, hji = hij, i.e., hji is the complex conjugate of hij.
Take Xij = hijH

ij + hjiH
ji = hijH

ij + hijH
ji. Then, Hn =

∑
16i<j6nXij. Now, we can

apply Theorem 9 to Hn if we derive a suitable upper bound c on ‖Xij‖. Note that Xij
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(1 6 i < j 6 n) are independent random n × n Hermitian matrices, and that, with the
choice c = 1,

‖Xij‖ = ‖hijH ij + hijH
ji‖ = |hij| < 1 = c.

Before applying Theorem 9, we first perform some additional calculations in order to
obtain upper bounds for ‖

∑
16i<j6n E(X2

ij)‖ and ‖EHn‖.
For all 1 6 i < j 6 n, we have

E(X2
ij) = E(hijH

ij + hijH
ji)2

= E[hij · hij](H ii +Hjj)

= E[|hij|2](H ii +Hjj)

= (pij + pji − pijpji)(H ii +Hjj).

We set pii = 0. Then,∥∥∥∥∥ ∑
16i<j6n

E(X2
ij)

∥∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

(
n∑
j=1

(pij + pji − pijpji)

)
H ii

∥∥∥∥∥
= max

i=1,...,n

n∑
j=1

(pij + pji − pijpji)

= ∆.

Recall that (EHn)ij = Ehij = pijpji + i(pij − pji), and in particular, EHn is a Hermitian
matrix. So, ‖EHn‖ = ρ(EHn). By Lemma 11, we have

‖EHn‖ = ρ(EHn)

6 min

{
max
16i6n

n∑
j=1

|Ehij|, max
16j6n

n∑
i=1

|Ehij|

}

6 max
16i6n

n∑
j=1

√
p2ijp

2
ji + (pij − pji)2.

Now, we take a = ‖EHn‖ +
√

4∆ ln(2n/ε). By the assumption that ∆ > 4
9

ln(2n/ε), we
obtain that a− ‖EHn‖ < 3∆. Applying Theorem 9, and using c = 1, we get

Pr(‖Hn‖ > a) 6 2n exp

(
− (a− ‖EHn‖)2

2‖
∑

16i<j6n E(X2
ij)‖+ 2c

3
(a− ‖EHn‖)

)

6 2n exp

(
− 4∆ ln(2n/ε)

4∆

)
= ε.

Thus, with probability at least 1− ε, we have that for all 1 6 i 6 n,

|λi(Hn)| 6 ‖Hn‖
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6 a

= ‖EHn‖+
√

4∆ ln(2n/ε).

This completes the proof of Theorem 1.

3.2 The proof of Theorem 4

Before presenting the proof of Theorem 4, we recall some known results that will be used
in the sequel of the paper.

Lemma 12 (Weyl [30]). Let X, Y and Z be n×n Hermitian matrices such that X = Y +
Z. Suppose that X, Y, Z have eigenvalues λ1(X) > · · · > λn(X), λ1(Y ) > · · · > λn(Y ),
λ1(Z) > · · · > λn(Z), respectively. Then for i = 1, 2, . . . , n the following inequalities hold:

λi(Y ) + λn(Z) 6 λi(X) 6 λi(Y ) + λ1(Z).

We also use the following concentration result. It involves a variation on the Chernoff
bound, and can, e.g., be found as Lemma A in [6].

Lemma 13. Let X1, X2, . . . , Xm be independent random variables satisfying |Xi| 6 c for
all i. Let X =

∑m
i=1Xi. Then for any a > 0,

Pr(|X − E(X)| > a) 6 exp
(
− a2

2
∑m

i=1 Var(Xi) + 2ac/3

)
.

Finally, we will use the following min-max result due to Courant-Fischer (Theo-
rem 4.2.11 in [21]).

Lemma 14. Let A be an n × n Hermitian matrix with eigenvalues λ1 6 λ2 6 . . . 6 λn,
and let k be an integer with 1 6 k 6 n. Then

λk = min
w1,w2,...,wn−k∈Cn

max
x 6=0,x∈Cn

x⊥w1,w2,...,wn−k

x∗Ax

x∗x
.

Let G = (V (G), E(G), A(G)) be a mixed graph of order n. For brevity, we write D for

D(G), L for L(G) and L for L(G). Hence, L = I −D− 1
2HD−

1
2 = D−1/2LD−1/2. We are

first going to show that L is positive semidefinite, by deriving an alternative expression for
x∗Lx
x∗x

for an arbitrary nonzero complex n× 1 column vector x. After that, we are going to
expand the alternative expression in order to obtain an upper bound for the eigenvalues
of L, using Lemma 14.

In the following expansion, y = D−1/2x, N(vi) denotes the neighborhood of vi in the
underlying graph Γ(G), and

∑
e=vivj

denotes the sum over all unordered pairs {vi, vj} for

which vi and vj are adjacent in Γ(G).

x∗Lx
x∗x

=
x∗D−1/2LD−1/2x

x∗x
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=
y∗Ly

(D1/2y)∗(D1/2y)

=
y∗Ly

y∗Dy

=

(y∗1, y
∗
2, . . . , y

∗
n)


d1 −h12 · · · −h1n
−h21 d2 · · · −h2n

...
...

. . .
...

−hn1 −hn2 · · · dn



y1
y2
...
yn



(y∗1, y
∗
2, . . . , y

∗
n)


d1

d2
. . .

dn



y1
y2
...
yn


=

∑
vi∈V (G) di|yi|2 −

∑
vi 6=vj hijy

∗
i yj∑

vi∈V (G) di|yi|2

=

∑
vi

∑
vj∈N(vi)

|yj|2 −
∑

vi 6=vj hijy
∗
i yj∑

vi∈V (G) di|yi|2

=

∑
e=vivj

(|yi|2 + |yj|2)−
∑

e=vivj
(hijy

∗
i yj + hjiyiy

∗
j )∑

vi∈V (G) di|yi|2

=

∑
e=vivj

(|yi|2 + |yj|2)−
∑

e=vivj
(hijy

∗
i yj + h∗ijyiy

∗
j )∑

vi∈V (G) di|yi|2

=

∑
e=vivj

(yi − hijyj)(y∗i − h∗ijy∗j )∑
vi∈V (G) di|yi|2

=

∑
e=vivj

(yi − hijyj)(yi − hijyj)∗∑
vi∈V (G) di|yi|2

=

∑
e=vivj

|yi − hijyj|2∑
vi∈V (G) di|yi|2

.

Before we continue our calculations, we note that the derived expression for x∗Lx
x∗x

im-
plies that L is positive semidefinite. Next, we are going to expand the obtained expression
for x∗Lx

x∗x
, using the known fact that

|f(x)− f(y)|2 6 2(|f(x)|2 + |f(y)|2), (3.1)

where equality holds if and only if f(x) = −f(y).
We split

∑
e=vivj

in the above expression by distinguishing undirected edges (or pairs

of oppositely oriented arcs), denoted as vi ↔ vj, and arcs, denoted as vi → vj if the
orientation is from vi to vj, and as vi ← vj if the orientation is from vj to vi. Adopting
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this notation, and using (3.1), we obtain∑
e=vivj

|yi − hijyj|2 =
∑
vi↔vj

|yi − yj|2 +
∑

vi→vj or vi←vj

|yi − hijyj|2

6
∑
vi↔vj

2(|yi|2 + |yj|2) +
∑

vi→vj or vi←vj

2(|yi|2 + |hijyj|2)

=
∑
vi↔vj

2(|yi|2 + |yj|2) +
∑

vi→vj or vi←vj

2(|yi|2 + |yj|2)

= 2

( ∑
vi↔vj

(|yi|2 + |yj|2) +
∑

vi→vj or vi←vj

(|yi|2 + |yj|2)

)
.

We also obtain∑
vi∈V (G)

di|yi|2 =
∑
vi

∑
vj∈N(vi)

|yj|2

=
∑
e=vivj

(|yi|2 + |yj|2)

=
∑
vi↔vj

(|yi|2 + |yj|2) +
∑

vi→vj or vi←vj

(|yi|2 + |yj|2).

Therefore, using the latter two expressions and applying Lemma 14, we get the following
upper bound on the eigenvalues of L.

λi(L) 6 sup
x

∑
e=vivj

|yi − hijyj|2∑
vi∈V (G) di|yi|2

6 2.

This shows that the normalized Hermitian Laplacian spectrum is in [0, 2], and hence that
‖I − L‖ 6 1. We will use this conclusion near the end of the proof of Theorem 4. We
now have all the ingredients to present our proof of Theorem 4.

Proof of Theorem 4. Let Ĝn(pij) and Hn = (hij) be defined as before, and let δ =

δ(Γ(Ĝn(pij))). Recall that this implies that δ = min16i6n
∑n

j=1(pij + pji − pijpji).
For each vertex vi of Ĝn(pij), we let di denote the degree of vi in the underlying

graph Γ(Ĝn(pij)), and we use ti = E(di) to denote the expected degree of vi, so EDn =

diag(E(d1),E(d2), . . . ,E(dn)) = diag(t1, t2, . . . , tn). This means that the matrix L̃n =
In− (EDn)−1/2(EHn)(EDn)−1/2 can be considered as the “expected Laplacian matrix” of

Ĝn(pij). Let Cn = In − (EDn)−1/2Hn(EDn)−1/2. Then, clearly

‖Ln − L̃n‖ 6 ‖Cn − L̃n‖+ ‖Ln − Cn‖ = ‖L̃n − Cn‖+ ‖Cn − Ln‖.

In the next stages, we derive bounds for each of the last two terms separately.
We first consider L̃n − Cn = (EDn)−1/2(Hn − EHn)(EDn)−1/2. Let

Yij = (EDn)−1/2[(hij − Ehij)H ij + (hji − Ehji)Hji](EDn)−1/2
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=
(hij − Ehij)H ij + (hij − Ehij)Hji

√
titj

.

Then, L̃n−Cn =
∑

16i<j6n Yij. We are going to apply Theorem 8 to obtain an upper bound

for ‖L̃n − Cn‖. Before we can do so, we have to perform some preliminary calculations
in order to obtain an upper bound c0 for ‖Yij − E(Yij)‖, and a suitable upper bound for
‖
∑

16i<j6n Var(Yij)‖. First of all, note that for all 1 6 i < j 6 n,

E(Yij) = E

[
(hij − Ehij)H ij + (hij − Ehij)Hji

√
titj

]
= 0.

We set E(Yii) = 0. Then,

‖Yij − E(Yij)‖ = ‖Yij‖

=
‖(hij − Ehij)H ij + (hij − Ehij)Hji‖

√
titj

=
‖(hij − Ehij)H ij + (hij − Ehij)Hji‖

√
titj

=
|hij − Ehij|√

titj

=
|hij − [pijpji + i(pij − pji)]|√

titj

=



√
(1−pijpji)2+(pij−pji)2√

titj
, for hij = 1,

√
(pijpji)2+(1−(pij−pji))2√

titj
, for hij = i,

√
(pijpji)2+(1+(pij−pji))2√

titj
, for hij = −i,

√
(pijpji)2+(pij−pji)2√

titj
, for hij = 0.

6



√
2√
titj
, for hij = 1,

√
4√
titj
, for hij = i,

√
4√
titj
, for hij = −i,

1√
titj
, for hij = 0.

6
2
√
titj

6
2

δ
.

So, we are going to use c0 = 2
δ
. Next, we consider Var(Yij) for all 1 6 i < j 6 n, and

obtain

Var(Yij) = E((Yij − E(Yij))
2
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= EY 2
ij

=
E[(hij − Ehij)H ij + (hij − Ehij)Hji]2

titj

=
E[(hij − Ehij)(hij − Ehij)](H ii +Hjj)

titj

=
E[(hij − Ehij)(hij − Ehij)](H ii +Hjj)

titj

=
Var(hij)(H

ii +Hjj)

titj

=
(pij + pji + pijpji − p2ij − p2ji − p2ijp2ji)(H ii +Hjj)

titj
.

We also have Var(Yii) = EY 2
ii = 0 as pii = 0. Therefore,∥∥∥∥∥ ∑

16i<j6n

Var(Yij)

∥∥∥∥∥ =

∥∥∥∥∥ ∑
16i<j6n

EY 2
ij

∥∥∥∥∥
=

∥∥∥∥∥
n∑
i=1

n∑
j=1

(pij + pji + pijpji − p2ij − p2ji − p2ijp2ji)H ii

titj

∥∥∥∥∥
= max

i=1,...,n

n∑
j=1

pij + pji + pijpji − p2ij − p2ji − p2ijp2ji
titj

= max
i=1,...,n

n∑
j=1

pij + pji − pijpji + 2pijpji − p2ij − p2ji − p2ijp2ji
titj

= max
i=1,...,n

n∑
j=1

pij + pji − pijpji − (pij − pji)2 − p2ijp2ji
titj

6 max
i=1,...,n

n∑
j=1

pij + pji − pijpji
titj

6 max
i=1,...,n

1

δ

n∑
j=1

pij + pji − pijpji
ti

=
1

δ
.

For the final equality, we used that di =
∑n

j=1 |hij|, so ti = E(di) =
∑n

j=1 E|hij| =∑n
j=1[pijpji + pij(1− pji) + (1− pij)pji] =

∑n
j=1(pij + pji− pijpji). Now, in order to apply

Theorem 8, we take a =
√

4 ln(4n/ε)
δ

, and we let k be large enough so that δ > k lnn

implies a < 1 (in particular, choosing k > 4(1 + ln(4/ε)) is sufficient). Now, noting that
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E(L̃n − Cn) = 0, applying Theorem 8, we obtain

Pr(‖L̃n − Cn‖ > a) 6 2n exp

(
− a2

2‖
∑

16i<j6n Var(Yij)‖+ 2c0a/3

)

6 2n exp

(
−

4 ln(4n/ε)
δ

2/δ + 4a/3δ

)

= 2n exp

(
− 4 ln(4n/ε)

2 + 4a/3

)

6 2n exp

(
− 4 ln(4n/ε)

4

)
=
ε

2
.

So, with probability at least 1− ε
2
, ‖L̃n − Cn‖ 6 a. For the second term, we first rewrite

Cn − Ln, as follows.

Cn − Ln =In − (EDn)−1/2Hn(EDn)−1/2 − In +D−1/2n HnD
−1/2
n

=D−1/2n HnD
−1/2
n − (EDn)−1/2D1/2

n D−1/2n HnD
−1/2
n D1/2

n (EDn)−1/2

=In − Ln − (EDn)−1/2D1/2
n (In − Ln)D1/2

n (EDn)−1/2

=(In − Ln)− (In − Ln)D1/2
n (EDn)−1/2

− (EDn)−1/2D1/2
n (In − Ln)D1/2

n (EDn)−1/2 + (In − Ln)D1/2
n (EDn)−1/2

=(In − Ln)[In −D1/2
n (EDn)−1/2]

+ [In − (EDn)−1/2D1/2
n ](In − Ln)D1/2

n (EDn)−1/2.

Recalling that ‖In − Ln‖ 6 1, we obtain the following expression for ‖Cn − Ln‖.

‖Cn − Ln‖ 6‖In − Ln‖‖In −D1/2
n (EDn)−1/2‖

+ ‖In − (EDn)−1/2D1/2
n ‖‖In − Ln‖‖D1/2

n (EDn)−1/2‖
6‖In −D1/2

n (EDn)−1/2‖+ ‖In − (EDn)−1/2D1/2
n ‖‖D1/2

n (EDn)−1/2‖.

Next, we are going to obtain an upper bound for ‖In − D
1/2
n (EDn)−1/2‖. For this, we

will apply Lemma 13 to the random variables |hij| (in the role of Xi), and using the
observations that di =

∑n
j=1 |hij|, and ti = E(di) =

∑n
j=1 E|hij|. We first need some

preparation in order to obtain upper bounds for |hij| and
∑n

j=1 Var(|hij|).
Obviously, |hij| 6 1, so we can take c = 1, and

n∑
j=1

Var(|hij|) =
n∑
j=1

[E(|hij|2)− (E(|hij|))2]

the electronic journal of combinatorics 28(1) (2021), #P1.3 20



=
n∑
j=1

[pij + pji − pijpji − (pij + pji − pijpji)2]

6
n∑
j=1

(pij + pji − pijpji)

=
n∑
j=1

E|hij|

= ti.

Since we already used a above, with a =
√

4 ln(4n/ε)
δ

< 1, we are going to use a b instead

of an a when applying Lemma 13. We choose b =
√

3ti ln(4n/ε). Then, since a =√
4 ln(4n/ε)

δ
< 1, ti > δ > 4 ln(4n/ε), implying that b =

√
3ti ln(4n/ε) < ti. Applying

Lemma 13, we have for all i,

Pr(|di − ti| > b) 6 e
− b2

2(ti+b/3) < e
− 3ti ln(4n/ε)

3ti =
ε

4n
.

This implies that with probability at least 1 − o(1), for all 1 6 i 6 n, |di − ti| 6 b =√
3ti ln(4n/ε).
Next, we use the known fact that |

√
x−1| 6 |x−1| for any real number x > 0. Taking

x = di
ti
> 0, we obtain that with probability at least 1− ε

2
,

∣∣∣√di
ti
− 1
∣∣∣ 6 ∣∣∣di

ti
− 1
∣∣∣ =
|di − ti|

ti
6

√
3ti ln(4n/ε)

ti
6

√
3 ln(4n/ε)

δ
=

√
3

2
a.

Thus, we obtain

‖In −D1/2
n (EDn)−1/2‖ = max

i=1,2,...,n

∣∣∣√di
ti
− 1
∣∣∣ 6 √3

2
a

with probability at least 1− ε
2
. So, with probability at least 1− ε

2
,

‖Cn − Ln‖ 6 ‖In −D1/2
n (EDn)−1/2‖+ ‖In − (EDn)−1/2D1/2

n ‖‖D1/2
n (EDn)−1/2‖

6

√
3

2
a+

√
3

2
a

(√
3

2
a+ 1

)
=

3

4
a2 +

√
3a.

Combining the above bound with the bound we obtained for ‖Cn − L̃n‖, and using that
a < 1, we conclude that with probability at least 1− ε,

‖Ln − L̃n‖ 6 ‖Cn − L̃n‖+ ‖Cn − Ln‖

6 a+
3

4
a2 +

√
3a
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6
7

2
a

=
7

2

√
4 ln(4n/ε)

δ

= 7

√
ln(4n/ε)

δ
.

For the final step in our proof, we use Lemma 12, which states that for Hermitian matrices
M and N , maxk |λk(M)− λk(N)| 6 ‖M −N‖. Thus, with probability at least 1− ε, we
have that for all 1 6 i 6 n,

|λi(Ln)− λi(L̃n)| 6 ‖Ln − L̃n‖ 6 7

√
ln(4n/ε)

δ
.

This completes the proof of Theorem 4.
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