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1 Introduction

Call a set S in a matroid M a claw of M if S is both a flat and an independent set of
M . A k-claw is a claw of size k. These objects were introduced by Bonamy et al. [2]
and studied by Nelson and Nomoto [3]; both of these papers consider the structure of
3-claw-free binary matroids.

Here we deal with general matroids, and address the simple extremal question of
determining the smallest simple rank-r matroids omitting a given claw; we solve this
problem and characterize the tight examples.

Theorem 1.8 of [3] shows that, for r > 4, the unique smallest simple rank-r binary
matroid with no 3-claw is the direct sum of two binary projective geometries of ranks
br/2c and dr/2e. We show that, perhaps surprisingly, the exact same construction is
also extremal for general matroids, and that its natural generalization is still extremal for
excluding larger claws. For integers r > 1 and t > 1, let Mr,t denote the matroid that is
the direct sum of t (possibly empty) binary projective geometries, whose ranks sum to r
and pairwise differ by at most 1. We prove the following, which was conjectured for the
special case of binary matroids in [3].

Theorem 1. Let r, t > 1 be integers. If M is a simple rank-r matroid with no (t+1)-claw,
then |M | > |Mr,t|. If equality holds and r > 2t, then M ∼= Mr,t.

Note that for r 6 t, the matroid Mr,t is free and therefore the theorem is trivial. For
t < r < 2t, there is a rather tame family of exceptional tight examples, which we describe
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in Theorem 8. One can also ask a similar question with ‘simple’ relaxed to ‘loopless’.
(One must still insist that M is loopless, since any matroid with a loop has no claw.) In
this case the answer is much less interesting; the direct sum of r − t parallel pairs and t
coloops has 2r − t elements and is the unique smallest loopless rank-r matroid with no
(t+ 1)-claw, this is a consequence of Lemma 7 below.

Graph Theory. The study of the structure of 3-claw-free binary matroids in [2, 3]
was motivated by structural results in graph theory. In the context of these works, the
graph-theoretic notions of induced subgraphs, cliques, chromatic number and forests have
analogies in the setting of simple binary matroids: cliques are analogous to projective
geometries in the sense of being maximal with a given rank, while claws correspond to
induced forests. A graph-theoretic analogue of Theorem 1 using this correspondence
would characterize graphs on r vertices with minimum number of edges and no induced
forests of given size. From the matroidal point of view, the natural measure of the size of
a forest is the number of edges, but there seem to exist no direct analogue of Theorem 1
using this measure. Defining the size of a forest as the number of its vertices works much
better, as follows.

Let Gn,t denote the graph on n vertices which is a disjoint union of t complete sub-
graphs, whose sizes pairwise differ by at most one. Turán’s classical theorem [5] is equiv-
alent to the statement that |E(G)| > |E(Gn,t)| for every graph G on n vertices with
no stable set of size t + 1. This observation implies that the following graph-theoretic
analogue of Theorem 1 generalizes Turán’s theorem for n > 3t.

Theorem 2. Let n, t > 1 be integers such that n > 3t. If G is a graph on n vertices
having no forest on 2t + 1 vertices as an induced subgraph, then |E(G)| > |E(Gn,t)|. If
n > 4t, then the equality holds only if G is isomorphic to Gn,t.

We give a short proof of Theorem 2, obtained by adapting one of the standard proofs
of Turan’s theorem, in Section 4.

Triangle-free matroids. The extremal examples in Theorem 1 have many triangles, and
our proof techniques analyze triangles closely. It seems plausible that if M is required
to be triangle-free, then the sparsest examples, instead of projective geometries, come
from binary affine geometries, which are triangle-free and have 2-claws but no 3-claws.
(An affine geometry AG(r− 1, 2) is obtained from a projective geometry PG(r− 1, 2) by
deleting a hyperplane.) This leads us to conjecture the following.

Conjecture 3. Let t, r be integers with t > 1 and t|r. If M is a simple triangle-free
matroid with no (2t+ 1)-claw, then |M | > t2r/t−1.

This conjectured bound holds with equality when M is the direct sum of t copies of
a rank-(r/t) binary affine geometry; these should be the only cases where equality holds.
We prove this in the easy case where t = 1; see Lemma 16.

In what follows, we use the notation of Oxley [4]; flats of a matroid of rank 1 and 2
are points and lines respectively. We additionally write |M | for E(M). A simplification
of M is any matroid obtained from M by deleting all loops and all but one element from
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each parallel class. All such matroids are clearly isomorphic; we write si(M) for a generic
matroid isomorphic to a simplification of M , and write ε(M) for | si(M)|, the number of
points of M . A family X of sets are skew in a matroid M if rM(∪X ) =

∑
X∈X rM(X),

and we say that a set X is skew to a set Y if {X, Y } is a skew family: i.e. rM(X ∪ Y ) =
rM(X) + rM(Y ).

2 The Bound

In this section we give the easy proof of the lower bound in Theorem 1. Our first lemma
shows that the property of being (t+ 1)-claw-free is essentially closed under contraction;
if F is a k-claw of some simplification of M , call F a k-pseudoclaw of M .

Lemma 4. Let k > 1. If M is a simple matroid and X ⊆ E(M), then every k-pseudoclaw
of M/X is a k-claw of M .

Proof. Let M ′ = (M/X)\P be a simplification of M/X, and suppose that M ′ has a k-
claw F . Since F is independent in M/X, it is independent in M , and is skew to X in
M . Since F is a flat of M/X, we have ∅ = clM ′(F )− F = clM(X ∪ F )− (F ∪X ∪ P ) ⊇
(clM(F )− F )− (X ∪ P ), giving clM(F )− F ⊆ X ∪ P .

The sets clM(F ) and X are skew in M , so clM(F ) − F ⊆ P . Suppose that e ∈
(clM(F ) − F ) ∩ P . Then there exists e′ ∈ E(M ′) parallel to e in M/X; since e′ ∈
clM(F ) − X ⊆ clM/X(F ) we also have e ∈ clM/X(F ) and so e ∈ clM ′(F ) = F , contrary
to the choice of e. It follows that clM(F ) − F intersects neither X nor P so is empty;
therefore F is a k-claw of M .

Let f(r, t) = |Mr,t|. Since a rank-n projective geometry has 2n−1 elements, we clearly
have f(r, t) = (t− a)2br/tc + a2dr/te − t, where a ∈ {0, . . . , t− 1} is the integer with a ≡ r
(mod t). More importantly for our purposes, we can define f recursively; it is easy to
check that f(r, t) = r for all 0 6 r 6 t and f(r, t) = 2f(r− t, t) + t for r > t. We use this
recurrence and the previous lemma to prove the lower bound in our main theorem.

Theorem 5. If t > 1 is an integer and M is a simple rank-r matroid with no (t+1)-claw,
then |M | > f(r, t).

Proof. Let M be a counterexample for which r+ |M | is minimized. If M is a free matroid
then clearly r 6 t, in which case f(r, t) = r 6 |M | so M is not a counterexample.
Therefore M has a non-coloop e.

Since |M\e| < |M | 6 f(r, t) but M\e is not a counterexample, there must be a
(t + 1)-claw S ′ in M\e. Now the matroid M | clM(S ′) has rank t + 1 and has at most
t + 2 elements, so has at most one circuit. There is thus a t-element subset S of clM(S ′)
containing at most |C| − 2 elements of each C circuit of M ; this set S is a t-claw.

If there is some rank-(t + 1) flat F containing S for which |F − S| = 1, then F is a
(t + 1)-claw. Therefore every such flat satisfies |F − S| > 2; since S is a flat, it follows
that every parallel class of M/S has size at least 2. Moreover, si(M/S) is a rank-(r − t)
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matroid that by Lemma 4 has no (t+1)-claw; inductively we have | si(M/S)| > f(r−t, t).
Now

|M | = |S|+ |M/S| > t+ 2| si(M/S)| > t+ 2f(r − t, t) = f(r, t),

as required.

3 Equality

We now characterize matroids for which the bound in Theorem 5 holds with equality. This
requires two lemmas; the first (which uses Tutte’s characterization of binary matroids as
those with no U2,4-minor [6]) corresponds to the case t = 1 of Theorem 5.

Lemma 6. If M is a simple rank-r matroid with no 2-claw, then |M | > 2r−1. If equality
holds then M ∼= PG(r − 1, 2).

Proof. Let M be a minor-minimal counterexample. Clearly r(M) > 3. Let e ∈ E(M)
and let H be a hyperplane of M not containing e. Since M |H has no 2-claw, we have
|H| > 2r−1 − 1 by the minimality of M . For each x ∈ H, the line spanned by x and e
contains an element of E(M)− {e, x}, and these lines pairwise intersect only in e, so we
see that |M | > 2|H|+ 1 > 2r − 1 as required.

If |M | = 2r−1, then equality holds above, so |H| = 2r−1−1 and thus M |H ∼= PG(r−
2, 2). Moreover, for each x ∈ H we have | clM({e, x})| = 3 and E(M) = ∪x∈H(clM({e, x})),
which implies that si(M/e) ∼= M |H ∼= PG(r − 2, 2) so M/e is binary. The choice of e
was arbitrary, so M/e is binary for all e; since r > 3 this gives that M has no U2,4-minor
so is binary. Since M is simple with 2r − 1 elements, this implies M ∼= PG(r − 1, 2), a
contradiction.

Note that if t < r < 2t then |Mr,t| = 2r−t. In this range, the matroids Mr,t are not the
only ones satisfying the bound in Theorem 5 with equality. The other examples include
direct sums of circuits and coloops, and the matroid Mr,t is the special case where all
these circuits are triangles. The following lemma shows that these are the only examples.
It also implies the characterization of the smallest (t+ 1)-claw-free matroids that are not
required to be simple that was claimed in the introduction.

Lemma 7. Let r > t > 1 be integers. If M is a loopless rank-r matroid with no (t + 1)-
claw, then |M | > 2r − t. If equality holds, then M is the direct sum of r − t circuits and
some number of coloops.

Proof. Suppose first that every circuit of M∗ has at most two elements. Then, since M∗

is coloopless, it is the direct sum of loops and parallel classes of size at least two; let
P be its set of parallel classes, so r(M∗) = |P| and r = |M | − |P|. Let U be a set
comprising exactly two elements from each P ∈ P . Since r(M∗|U) = r(M∗), the set
(E − U) is independent in M , and since M∗|U is coloopless, the set (E − U) is also a
flat of M , so is a claw of M . By hypothesis, it follows that t > |E − U | = |M | − 2|P|.
Therefore 2r− t 6 2(|M |− |P|)− (|M |− 2|P|) = |M |, as required. If equality holds, then
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t = |M | − 2|P| = r − |P|, so |P| = r − t. By the definition of P , each P ∈ P is a circuit
of M , and each other element of M is a coloop; this gives the required structure.

We may therefore assume M∗ has a circuit C of size at least 3. Let B be a basis of M∗

containing all but one element of C. Since M∗ has no coloops, for each x ∈ B, there is a
circuit Cx of M∗ for which x ∈ Cx and |Cx ∩B| = |Cx| − 1; choose the Cx so that Cx = C
for each x ∈ C. Let X = ∪x∈XCx. Since each Cx contains only one element outside B
and the element of C −B is chosen at least twice, we have |X| < 2r(M∗).

By construction, the set X contains a basis and, since X is a union of circuits of
M∗, the matroid M∗|X has no coloops. Let Y = E(M) − X; by construction the set
Y is independent in M , and M/Y has no loops, so Y is a flat, and thus a claw, of
M . Hence |Y | 6 t and so |X| > |M | − t. By our upper bound on |X|, this gives
|M | − t < 2r(M∗) = 2(|M | − r) and so |M | > 2r − t, as required.

We are now ready to strengthen Theorem 5 with an equality characterisation. Note
that both outcomes in the equality case imply that M has a t-claw.

Theorem 8. Let t > 1. If M is a simple rank-r matroid with no (t + 1)-claw, then
|M | > f(r, t). If equality holds, then either

• M ∼= Mr,t, or

• t < r < 2t and M is the direct sum of coloops and exactly r − t circuits, not all of
which are triangles.

Proof. Consider a counterexample M for which |M | + r is minimized. Clearly r > t, as
otherwise |M | > r = f(r, t) and there is nothing to prove. Therefore M is not a free
matroid, since otherwise any (t+ 1)-element subset of E(M) is a claw.

Claim 9. M has a t-claw.

Subproof: Let e be a non-coloop of M ; by the minimality of M , the matroid M\e has a
(t+ 1)-claw F ; now M | clM(F ) has rank at least t+ 1 and has at most t+ 2 elements, so
has at most one circuit. There is thus a t-element subset of clM(F ) that contains at most
|C| − 2 elements of each circuit C of M | clM(F ); this set is a t-claw of M . �

Call a t-claw S of M generic if no four-point line of M intersects S, and exactly
f(r− t, t) triangles of M intersect S. Let S be a t-claw of M , chosen not to be generic if
such a choice is possible.

Claim 10. |M | = f(r, t), each parallel class of M/S has size 2, and ε(M/S) = f(r− t, t).

Subproof: The matroid M/S has rank r− t and, by Lemma 4, has no (t+ 1)-pseudoclaw.
Therefore si(M/S) has no (t+1)-claw, so ε(M/S) > f(r−t, t). Moreover, if some parallel
class Y of M/S has size 1, then S ∪ Y is a (t + 1)-claw of M , so every parallel class of
M/S has size at least 2, giving |M/S| > 2ε(M/S). Therefore

f(r, t) > |M | > 2ε(M/S) + |S| > 2f(r − t, t) + t = f(r, t).

Equality holds throughout, which gives the claim. �
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The matroid si(M/S) has no (t+ 1)-claw and has f(r − t, t) elements, so inductively
satisfies one of the conclusions of the theorem. For each component N of M/S, the
matroid si(N) is either a circuit or a binary projective geometry.

Claim 11. Let e1, e2 ∈ E(M/S). If e1 and e2 are in different components, then M/S has
a t-pseudoclaw containing e1 and e2. If e1 and e2 are in the same component, then there
is a (t−1)-element set U such that U ∪{e1} and U ∪{e2} are both t-pseudoclaws of M/S.

Subproof: We first argue that M/S has a t-pseudoclaw. Since si(M/S) satisfies one of the
outcomes of the theorem, this only fails if si(M/S) ∼= Mr−t,t and r − t < t. If this holds
then |M | = f(r, t) = 2r − t and M satisfies the hypothesis of Lemma 7, so is the direct
sum of coloops and r − t circuits. If these circuits are all triangles then M ∼= Mr,t, and
otherwise M satisfies the second outcome of the theorem; both are contrary to the choice
of M as a counterexample. Therefore M/S has a t-pseudoclaw.

Since every component of si(M/S) is a circuit or projective geometry, given any pseu-
doclaw K of M and any e, e′ in the same component of M/S for which e ∈ K and e′ /∈ K,
the set (K − e) ∪ {e′} is also a pseudoclaw. Since M/S has at least one t-pseudoclaw,
both conclusions of the claim easily follow. �

The above claim implies in particular that every element of M/S is in a t-pseudoclaw.

Claim 12. For each t-pseudoclaw U of M/S, there is a bijection ψU from U to S so that
for each e ∈ U , the flat Te = clM(e, ψU(e)) is a triangle of M , and so that M | clM(S∪U) =
⊕e∈U(M |Te).

Subproof: Since the closure of U in M/S is obtained from U by extending each element
of U once in parallel, we have | clM(S ∪ U)| = |S| + 2|U | = 3t. By Lemma 7, it follows
that the simple rank-2t matroid M ′ = M | clM(S ∪ U) is the direct sum of t circuits and
some set of coloops, and therefore that is precisely the direct sum of t triangles. Since S
is a t-claw of M ′ and U is a t-pseudoclaw of M ′/S, both S and U must be transversals of
this set of triangles. The claim follows. �

Every element e of M/S is contained in a t-pseudoclaw, so the above claim implies
that each such e is in exactly one triangle that intersects S. Write ψ(e) for the unique
element of S for which e and ψ(e) are contained in a triangle; we have ψU(e) = ψ(e) for
each t-pseudoclaw U of M/S containing e.

Since S is a claw and no rank-1 flat of M/S has more than two elements, no line of M
that intersects S has more than three elements. Moreover, each e ∈ E(M/S) is in exactly
one triangle of M that intersects S, so the number of triangles of M that intersect S is
exactly 1

2
|M/S| = 1

2
(2ε(M/S)) = f(r − t, t). Therefore S is generic. It follows from the

choice of S that every t-claw of M is generic.

Claim 13. For all e1, e2 ∈ E(M/S), we have ψ(e1) = ψ(e2) if and only if e1 and e2 are
in the same component of M/S. Moreover, M/S has exactly t components.
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Subproof: Suppose that e1 and e2 are in the same component of M/S. By Claim 11, there
is a set U ⊆ E(M/S) such that U ∪ {e1} and U ∪ {e2} are both t-pseudoclaws of M/S.
For each i ∈ {1, 2}, there is a bijection ψi = ψU∪{ei} from U ∪ {ei} to S, and moreover
for each e ∈ U we have ψ1(e) = ψ(e) = ψ2(e). Therefore ψ1 and ψ2 agree on all t − 1
elements of U ; thus ψ1(e1) = ψ1(e2) and so ψ(e1) = ψ(e2).

Suppose now that e1 and e2 are in different components of M/S. By Claim 11 there is
a t-pseudoclaw U containing e1 and e2. Since ψU is a bijection we have ψ(e1) = ψU(e1) 6=
ψU(e2) = ψ(e2), as required.

It follows from the first part that the image of ψ has size equal to the number of
components of M/S. But clearly the image of ψ contains the image of ψU , which is equal
to S, for each t-pseudoclaw U . Therefore ψ has image S, so M/S has exactly |S| = t
components. �

Let N be the set of components of M/S. By Claim 13, for each N ∈ N there is
some ψ(N) for which ψ(e) = ψ(N) for each e ∈ E(N). Since |S| = |N | = t, the t-tuple

ψ(N) : N ∈ N is a permutation of S. For each N ∈ N , let N̂ = M |(E(N) ∪ ψ(N)).

Claim 14. If N ∈ N and L is a line of M intersecting E(N), then either |L| = 2, or

|L| = 3 and L ⊆ E(N̂).

Subproof: Let U be a t-pseudoclaw of M/S containing an element e ∈ E(N) ∩ L. Note
that U is a generic t-claw in M , which gives |L| 6 3.

Suppose that |L| = 3. Note that 1 = rM/S(e) 6 rM/S(L − S) 6 rM(L) = 2. If
rM/S(L − S) = 2 then L is a triangle of M/S that intersects the component N of M/S,
so obviously L ⊆ E(N). If rM/S(L− S) = 1 then L ⊆ clM(S ∪ {e}) ⊆ clM(S ∪ U), so 12
gives L = clM({e, ψ(e)}). Since L − ψ(e) is a two-element rank-1 set in M/S, the third

element of L is the element of N parallel to e, so L ⊆ E(N̂) as required. �

For each N ∈ N and e ∈ E(N), let τ(e) be the number of 3-element lines of M

containing e, and let σ(e) be the number of elements of E(N̂\e) that are not in a 3-

element line of M with e. By the previous claim we have 2τ(e) + σ(e) = |N̂\e| = |N |.

Claim 15. For each N ∈ N , every line of E(N̂) has size 3.

Subproof: Suppose not, so there is some e ∈ E(N) for which σ(e) > 0. Let U be a t-
pseudoclaw of M/S containing e. Since U is a generic t-claw of M , we have

∑
u∈U τ(u) =

f(r − t, t), so

|M | = |S|+
∑
N∈N

|N |

= t+
∑
u∈U

(2τ(u) + σ(u))

= t+ 2f(r − t, t) +
∑
u∈U

σ(u)

> f(r, t) + σ(e).
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Since |M | = f(r, t) and σ(e) > 0, this is a contradiction. �

Let N ∈ N . It is clear, since N is obtained from N̂/ψ(N) by t−1 successive extension-

contraction operations, that r(N) 6 r(N̂)− 1. The matroid si(N) is a circuit or a binary
projective geometry, so

|N̂ | = |N |+ 1 6 2(2r(N) − 1) + 1 = 2r(N)+1 − 1 6 2r(N̂) − 1.

By Claim 15 and Lemma 6 we have |N̂ | > 2r(N̂) − 1, so equality holds and therefore each

matroid N̂ is a binary projective geometry of rank r(N) + 1. The sets E(N̂) : N ∈ N
partition E(M), so

r 6
∑
N∈N

r(N̂) =
∑
N∈N

(r(N) + 1) = r(M/S) + |N | = t+ r(M/S) = r,

so equality holds throughout, and the sets {E(N̂) : N ∈ N} are skew in M . Thus M is
the direct sum of t nonempty binary projective geometries. If M has components of ranks
r1, r2 with r2 > r1 + 2, then deleting both and replacing them with projective geometries
of rank r2 − 1 and r1 + 1 respectively gives a matroid M ′ with no (t+ 1)-claw satisfying

|M | − |M ′| = 2r2 + 2r1 − 2r2−1 − 2r1+1 = 2r2−1 − 2r1+1 > 0,

which contradicts the minimality of |M |. It follows that no two components of M have
ranks differing by more than 1, so M ∼= Mr,t, contrary to the choice of M as a counterex-
ample.

Finally, we prove the t = 1 case of Conjecture 3 as promised.

Lemma 16. If M is a simple rank-r triangle-free matroid with no 3-claw, then |M | >
2r−1. If equality holds, then M ∼= AG(r − 1, 2).

Proof. We may assume that r > 3. We first show that every triple of distinct elements
of M is contained in a four-element circuit; indeed, given such a triple I, since I is not a
triangle or a 3-claw, we have rM(I) = 3 and clM(I) 6= I. Thus there is some x ∈ clM(I)−I.
Since M is triangle-free, no pair of elements of I spans x, so I ∪{x} is a 4-element circuit.

Let e ∈ E(M). Since M is triangle-free, the matroid M/e is simple. If M/e has
a 2-claw I, then I ∪ {e} is clearly a 3-claw of M ; therefore M/e is 2-claw-free and so
|M/e| > 2r−1 − 1 by Lemma 6. It follows that |M | > 2r−1 as required.

If equality holds, then M/e ∼= PG(r− 2, 2) so M/e is binary. This holds for arbitrary
e ∈ E(M); it follows (since r > 3) that M has no U2,4-minor so is also binary. A simple
rank-r triangle-free binary matroid has at most 2r−1 elements and equality holds only for
binary affine geometries (see [1], for example); therefore M ∼= AG(r − 1, 2).
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4 Graphs

Let g : N× N→ N be defined recursively by

• g(n, t) = 0 for n < 2t,

• g(n, t) = 3(n− 2t) for 2t 6 n 6 4t,

• g(n, t) = g(n− 1, t) +
⌈
n
t

⌉
− 1, for n > 4t.

It is easy to check that |E(Gn,t)| = g(n, t) for n > 3t (although not for smaller n).
The recursion for n > 4t in fact also holds when 3t < n 6 4t. Thus the next theorem
implies Theorem 2.

Theorem 17. Let n, t > 1 be integers. Let G be a simple graph on n vertices such that
no forest on 2t+ 1 vertices is an induced subgraph of G. Then

|E(G)| > g(n, t).

If equality holds and n < 4t, then every component of G is a complete graph on 1, 3 or 4
vertices. If equality holds and n > 4t, then G is isomorphic to Gn,t.

Proof. We prove the theorem by induction on |V (G)|. We may clearly assume that
n > 2t+ 1, as otherwise the result is easy. Let v be a vertex of G of maximum degree.

If deg(v) 6 2, every component of G is a path or a cycle. Let S be the set of vertices
of cycles of G, and b be the number of cycles of G; note that b 6 1

3
|S| 6 1

3
n. Clearly G

contains an induced forest on n − b vertices, so n − b 6 2t. This gives n 6 2t + n
3
, so

n 6 3t, which in turn implies that g(n, t) = 3(n− 2t) 6 3b. On the other hand, we have
|E(G[S])| = |S|, so

|E(G)| > |E(G[S])| = |S| > 3b > g(n, t),

giving the bound. If equality holds, then E(G) = E(G[S]) and b = 1
3
|S|, so every

component of G is an isolated vertex or triangle. We have argued that n 6 3t; thus G
has the claimed structure. We may therefore assume that deg(v) > 3.

Let X ⊆ V (G) be maximal so that G[X] is a forest, so |X| 6 2t. Let Z be the set of
non-isolated vertices of G[X]. As G[X ∪ {w}] contains a cycle for every w ∈ V (G) \X,
every such w has at least two neighbors in Z. Thus∑

z∈Z

deg(z) > |Z|+ 2|V (G)−X| > |Z|+ 2(n− 2t).

Hence there exists z0 ∈ Z such that deg(z0) > 2(n−2t)/|Z|+1 > (n−2t)/t+1 = n/t−1;
thus deg(v) >

⌈
n
t

⌉
− 1 by the choice of v.

By the above, we can assume that deg(v) > max(3, dn
t
e − 1). Let H = G − v. It

follows that

|E(G)| = |E(H)|+ deg(v) > g(n− 1, t) + max(3, dn
t
e − 1) = g(n, t);
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the last equality is easy to check. This gives the desired bound.
Suppose now that |E(G)| = g(n, t). Then deg(v) = max(3, dn

t
e − 1), and |E(H)| =

g(n − 1, t). Call a component of H with at least two vertices big. By the induction
hypothesis, every component of H is a complete graph. Therefore, H[X] is a maximal
induced forest in H if and only if X contains at least one vertex from every component
of H and exactly two vertices from every big component. It follows that |X| = 2t for
every such X. (Otherwise we could remove any edge from H to get a graph containing
no (2t+ 1)-vertex induced forest and with fewer than g(n− 1, t) edges.)

If each big component of H contains a non-neighbour of v, then we can choose a set
X as above so that X ∪{v} induces a forest on 2t+ 1 vertices, a contradiction. Therefore
H has a big component C such that v is complete to C. By the induction hypothesis,
each big component of H has at least max(3, dn

t
e − 1) = deg(v) vertices; it follows that

|V (C)| = deg(v) = max(3, dn
t
e − 1), and that G is obtained from H by adding a new

vertex with neighbourhood V (C).
If 2t+1 6 n 6 4t, then |V (C)| = deg(v) = max(3, dn

t
e−1) = 3, so G is obtained from

H by adding a vertex complete to a component on three vertices; thus, every component
of G is complete with 1, 3 or 4 vertices. If n < 4t then this implies that G has the claimed
structure. If n = 4t then |E(G)| = g(4t, t) = 6t = 3

2
|V (G)| and G has maximum degree 3.

This implies that every vertex of G has degree three, and so G is isomorphic to G4t,t, as
required. If n > 4t, then H is isomorphic to Gn−1,t, so |V (C)| = deg(v) = dn

t
e−1 = bn−1

t
c.

Thus C is a smallest component of H, so G is isomorphic to Gn,t, as required.
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[2] M. Bonamy, F. Kardoš, T. Kelly, P. Nelson, L. Postle. The structure of binary
matroids with no induced claw or Fano plane restriction. Advances in Combinatorics.
10.19086/aic.10256, 2019.

[3] P. Nelson, K. Nomoto. The structure of claw-free binary matroids.
arXiv:1807.11543

[4] J. G. Oxley. Matroid Theory (second edition). Oxford University Press, New York,
2011.

[5] P. Turán. On an extremal problem in graph theory. Matematikai és Fizikai Lapok
436–452, 1941.

[6] W.T. Tutte. Lectures on matroids. Journal of Research of the National Bureau of
Standards, 1–47, 1965.

the electronic journal of combinatorics 28(1) (2021), #P1.31 10

https://arxiv.org/abs/1807.11543

	Introduction
	The Bound
	Equality
	Graphs

