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1 Introduction

Call a set S in a matroid M a claw of M if S is both a flat and an independent set of
M. A k-claw is a claw of size k. These objects were introduced by Bonamy et al. [2]
and studied by Nelson and Nomoto [3]; both of these papers consider the structure of
3-claw-free binary matroids.

Here we deal with general matroids, and address the simple extremal question of
determining the smallest simple rank-r matroids omitting a given claw; we solve this
problem and characterize the tight examples.

Theorem 1.8 of [3] shows that, for » > 4, the unique smallest simple rank-r binary
matroid with no 3-claw is the direct sum of two binary projective geometries of ranks
|7/2] and [r/2]. We show that, perhaps surprisingly, the exact same construction is
also extremal for general matroids, and that its natural generalization is still extremal for
excluding larger claws. For integers » > 1 and ¢ > 1, let M,, denote the matroid that is
the direct sum of ¢ (possibly empty) binary projective geometries, whose ranks sum to r
and pairwise differ by at most 1. We prove the following, which was conjectured for the
special case of binary matroids in [3].

Theorem 1. Let r,t > 1 be integers. If M is a simple rank-r matroid with no (t+1)-claw,
then |M| > |M,.|. If equality holds and r > 2t, then M = M, ;.

Note that for » < ¢, the matroid M, ; is free and therefore the theorem is trivial. For
t <r < 2t, there is a rather tame family of exceptional tight examples, which we describe
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in Theorem 8. Omne can also ask a similar question with ‘simple’ relaxed to ‘loopless’.
(One must still insist that M is loopless, since any matroid with a loop has no claw.) In
this case the answer is much less interesting; the direct sum of r — ¢ parallel pairs and ¢
coloops has 2r — t elements and is the unique smallest loopless rank-r matroid with no
(t + 1)-claw, this is a consequence of Lemma 7 below.

Graph Theory. The study of the structure of 3-claw-free binary matroids in [2, 3]
was motivated by structural results in graph theory. In the context of these works, the
graph-theoretic notions of induced subgraphs, cliques, chromatic number and forests have
analogies in the setting of simple binary matroids: cliques are analogous to projective
geometries in the sense of being maximal with a given rank, while claws correspond to
induced forests. A graph-theoretic analogue of Theorem 1 using this correspondence
would characterize graphs on r vertices with minimum number of edges and no induced
forests of given size. From the matroidal point of view, the natural measure of the size of
a forest is the number of edges, but there seem to exist no direct analogue of Theorem 1
using this measure. Defining the size of a forest as the number of its vertices works much
better, as follows.

Let G,,+ denote the graph on n vertices which is a disjoint union of ¢ complete sub-
graphs, whose sizes pairwise differ by at most one. Turan’s classical theorem [5] is equiv-
alent to the statement that |E(G)| > |E(Gp.)| for every graph G on n vertices with
no stable set of size t + 1. This observation implies that the following graph-theoretic
analogue of Theorem 1 generalizes Turan’s theorem for n > 3t.

Theorem 2. Let n,t > 1 be integers such that n > 3t. If G is a graph on n vertices
having no forest on 2t + 1 wvertices as an induced subgraph, then |E(G)| = |E(Gn.)|. If
n = 4t, then the equality holds only if G is isomorphic to Gy, ;.

We give a short proof of Theorem 2, obtained by adapting one of the standard proofs
of Turan’s theorem, in Section 4.

Triangle-free matroids. The extremal examples in Theorem 1 have many triangles, and
our proof techniques analyze triangles closely. It seems plausible that if M is required
to be triangle-free, then the sparsest examples, instead of projective geometries, come
from binary affine geometries, which are triangle-free and have 2-claws but no 3-claws.
(An affine geometry AG(r — 1, 2) is obtained from a projective geometry PG(r — 1,2) by
deleting a hyperplane.) This leads us to conjecture the following.

Conjecture 3. Let ¢,r be integers with ¢ > 1 and t|r. If M is a simple triangle-free
matroid with no (2t + 1)-claw, then | M| > ¢27/¢~1.

This conjectured bound holds with equality when M is the direct sum of ¢ copies of
a rank-(r/t) binary affine geometry; these should be the only cases where equality holds.
We prove this in the easy case where ¢t = 1; see Lemma 16.

In what follows, we use the notation of Oxley [4]; flats of a matroid of rank 1 and 2
are points and lines respectively. We additionally write |M| for E(M). A simplification
of M is any matroid obtained from M by deleting all loops and all but one element from
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each parallel class. All such matroids are clearly isomorphic; we write si(M) for a generic
matroid isomorphic to a simplification of M, and write (M) for |si(M)|, the number of
points of M. A family X of sets are skew in a matroid M if ry (UX) = Y p ru(X),
and we say that a set X is skew to a set Y if {X,Y} is a skew family: i.e. ry(XUY) =
(X)) +ru(Y).

2 The Bound

In this section we give the easy proof of the lower bound in Theorem 1. Our first lemma
shows that the property of being (¢ 4 1)-claw-free is essentially closed under contraction;
if F'is a k-claw of some simplification of M, call F' a k-pseudoclaw of M.

Lemma 4. Let k > 1. If M is a simple matroid and X C E(M), then every k-pseudoclaw
of M/ X is a k-claw of M.

Proof. Let M’ = (M/X)\P be a simplification of M/X, and suppose that M’ has a k-
claw F. Since F' is independent in M/X, it is independent in M, and is skew to X in
M. Since F'is a flat of M /X, we have @ = clyp(F) — F =cly(XUF)—(FUXUP)D
(cly(F) —F) — (X UP), giving cly (F) —F C X UP.

The sets cly(F) and X are skew in M, so cly(F) — F C P. Suppose that e €
(cly(F) — F) N P. Then there exists ¢ € E(M’) parallel to e in M/X; since ¢ €
cly(F) — X C clyyx(F) we also have e € clyx(F) and so e € clyy(F) = F, contrary
to the choice of e. It follows that cly/(F) — F intersects neither X nor P so is empty;
therefore F' is a k-claw of M. O

Let f(r,t) = |M,,|. Since a rank-n projective geometry has 2" — 1 elements, we clearly
have f(r,t) = (t — )2/ 4 a2["/1V — ¢ where a € {0,...,t — 1} is the integer with a = r
(mod t). More importantly for our purposes, we can define f recursively; it is easy to
check that f(r,t) =r forall 0 <r < tand f(r,t) =2f(r —t,t) +t for r > t. We use this
recurrence and the previous lemma to prove the lower bound in our main theorem.

Theorem 5. Ift > 1 is an integer and M is a simple rank-r matroid with no (t+1)-claw,
then |M| = f(r,t).

Proof. Let M be a counterexample for which r + | M| is minimized. If M is a free matroid
then clearly r < t, in which case f(r,t) = r < |M| so M is not a counterexample.
Therefore M has a non-coloop e.

Since |M\e| < |M| < f(r,t) but M\e is not a counterexample, there must be a
(t + 1)-claw S" in M\e. Now the matroid M|cly(S’) has rank ¢t + 1 and has at most
t + 2 elements, so has at most one circuit. There is thus a t-element subset S of cly/(.S”)
containing at most |C'| — 2 elements of each C' circuit of M; this set S is a t-claw.

If there is some rank-(¢ 4 1) flat ' containing S for which |F' — S| = 1, then F'is a
(t + 1)-claw. Therefore every such flat satisfies |F' — S| > 2; since S is a flat, it follows
that every parallel class of M /S has size at least 2. Moreover, si(M/S) is a rank-(r — t)
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matroid that by Lemma 4 has no (¢ +1)-claw; inductively we have |si(M/S)| = f(r—t,t).
Now
[M] = |S| + [M/S] =t +2|si(M/S)| > t + 2f(r = t,1) = f(r,?),

as required. N

3 Equality

We now characterize matroids for which the bound in Theorem 5 holds with equality. This
requires two lemmas; the first (which uses Tutte’s characterization of binary matroids as
those with no Uy 4-minor [6]) corresponds to the case ¢t = 1 of Theorem 5.

Lemma 6. If M is a simple rank-r matroid with no 2-claw, then |M| > 2" —1. If equality
holds then M = PG(r — 1,2).

Proof. Let M be a minor-minimal counterexample. Clearly r(M) > 3. Let e € E(M)
and let H be a hyperplane of M not containing e. Since M|H has no 2-claw, we have
|H| > 2"~! — 1 by the minimality of M. For each x € H, the line spanned by = and e
contains an element of E(M) — {e,x}, and these lines pairwise intersect only in e, so we
see that |[M| > 2|H|+ 1 > 2" — 1 as required.

If |M| = 2" — 1, then equality holds above, so |H| = 2"~! — 1 and thus M|H = PG(r —
2,2). Moreover, for each z € H we have |cly({e,z})| = 3and E(M) = Uzen(clyr({e, z})),
which implies that si(M/e) = M|H = PG(r — 2,2) so M/e is binary. The choice of e
was arbitrary, so M /e is binary for all e; since r > 3 this gives that M has no Us 4-minor
so is binary. Since M is simple with 2" — 1 elements, this implies M = PG(r — 1,2), a
contradiction. O

Note that if ¢ < r < 2t then |M, ;| = 2r—t. In this range, the matroids M, ; are not the
only ones satisfying the bound in Theorem 5 with equality. The other examples include
direct sums of circuits and coloops, and the matroid M, , is the special case where all
these circuits are triangles. The following lemma shows that these are the only examples.
It also implies the characterization of the smallest (¢ 4 1)-claw-free matroids that are not
required to be simple that was claimed in the introduction.

Lemma 7. Let r >t > 1 be integers. If M is a loopless rank-r matroid with no (t + 1)-
claw, then |M| > 2r — t. If equality holds, then M is the direct sum of r —t circuits and
some number of coloops.

Proof. Suppose first that every circuit of M* has at most two elements. Then, since M*
is coloopless, it is the direct sum of loops and parallel classes of size at least two; let
P be its set of parallel classes, so r(M*) = |P| and r = |M| — |P|. Let U be a set
comprising exactly two elements from each P € P. Since r(M*|U) = r(M*), the set
(E —U) is independent in M, and since M*|U is coloopless, the set (E — U) is also a
flat of M, so is a claw of M. By hypothesis, it follows that ¢t > |E — U| = |M| — 2|P]|.
Therefore 2r —t < 2(|M|—|P|) — (|M| —2|P|) = | M|, as required. If equality holds, then
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t = |M|—2|P| =r—|P|, so |P| =r —t. By the definition of P, each P € P is a circuit
of M, and each other element of M is a coloop; this gives the required structure.

We may therefore assume M™* has a circuit C' of size at least 3. Let B be a basis of M*
containing all but one element of C'. Since M* has no coloops, for each x € B, there is a
circuit C,, of M* for which z € C,, and |C, N B| = |C,| — 1; choose the C,, so that C, = C
for each x € C. Let X = U,cxC,. Since each C} contains only one element outside B
and the element of C' — B is chosen at least twice, we have |X| < 2r(M™).

By construction, the set X contains a basis and, since X is a union of circuits of
M*, the matroid M*|X has no coloops. Let Y = E(M) — X; by construction the set
Y is independent in M, and M/Y has no loops, so Y is a flat, and thus a claw, of
M. Hence |Y| < t and so |X| > |M| —t. By our upper bound on |X|, this gives
|M| —t < 2r(M*) =2(|]M| —r) and so |M| > 2r — t, as required. O

We are now ready to strengthen Theorem 5 with an equality characterisation. Note
that both outcomes in the equality case imply that M has a t-claw.

Theorem 8. Let t > 1. If M is a simple rank-r matroid with no (t + 1)-claw, then
|M| = f(r,t). If equality holds, then either

o M =M.y, or

o t <r <2t and M 1is the direct sum of coloops and exactly r — t circuits, not all of
which are triangles.

Proof. Consider a counterexample M for which |M|+ r is minimized. Clearly r > t, as
otherwise |M| > r = f(r,t) and there is nothing to prove. Therefore M is not a free
matroid, since otherwise any (¢ + 1)-element subset of E (M) is a claw.

Claim 9. M has a t-claw.

Subproof: Let e be a non-coloop of M; by the minimality of M, the matroid M\e has a
(t + 1)-claw F; now M|cly/(F) has rank at least ¢ + 1 and has at most ¢ + 2 elements, so
has at most one circuit. There is thus a t-element subset of cly/(F') that contains at most
|C| — 2 elements of each circuit C' of M|cly(F); this set is a t-claw of M. |

Call a t-claw S of M generic if no four-point line of M intersects S, and exactly
f(r —t,t) triangles of M intersect S. Let S be a t-claw of M, chosen not to be generic if
such a choice is possible.

Claim 10. |M| = f(r,t), each parallel class of M /S has size 2, and e(M/S) = f(r—t,t).

Subproof: The matroid M /S has rank r — t and, by Lemma 4, has no (¢ + 1)-pseudoclaw.
Therefore si(M/S) has no (t+1)-claw, so e(M/S) = f(r—t,t). Moreover, if some parallel
class Y of M/S has size 1, then SUY is a (¢ + 1)-claw of M, so every parallel class of
M/S has size at least 2, giving |M /S| > 2¢(M/S). Therefore

f(?“,t) Z |M| 225(M/S)+|S| >2f(7“—t,t)+t:f(7",t).

Equality holds throughout, which gives the claim. [ |
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The matroid si(M/S) has no (¢t + 1)-claw and has f(r — ¢,t) elements, so inductively
satisfies one of the conclusions of the theorem. For each component N of M/S, the
matroid si(/V) is either a circuit or a binary projective geometry.

Claim 11. Let ey, eo € E(M/S). If e; and ey are in different components, then M/S has
a t-pseudoclaw containing e; and es. If e; and ey are in the same component, then there
is a (t—1)-element set U such that UU{e1} and UU{es} are both t-pseudoclaws of M/S.

Subproof: We first argue that M /S has a t-pseudoclaw. Since si(M/S) satisfies one of the
outcomes of the theorem, this only fails if si(M/S) = M,_;; and r — ¢ < t. If this holds
then |M| = f(r,t) = 2r — t and M satisfies the hypothesis of Lemma 7, so is the direct
sum of coloops and r — t circuits. If these circuits are all triangles then M = M, ;, and
otherwise M satisfies the second outcome of the theorem; both are contrary to the choice
of M as a counterexample. Therefore M /S has a t-pseudoclaw.

Since every component of si(M/S) is a circuit or projective geometry, given any pseu-
doclaw K of M and any e, €’ in the same component of M/S for which e € K and ¢’ ¢ K,
the set (K —e) U {¢'} is also a pseudoclaw. Since M/S has at least one t-pseudoclaw,
both conclusions of the claim easily follow. [ |

The above claim implies in particular that every element of M /S is in a t-pseudoclaw.

Claim 12. For each t-pseudoclaw U of M /S, there is a bijection vy from U to S so that
for each e € U, the flat T, = cly(e, v (e)) is a triangle of M, and so that M| cly (SUU) =
@eEU(M|Te) .

Subproof: Since the closure of U in M/S is obtained from U by extending each element
of U once in parallel, we have |cly (S UU)| = |S| 4 2|U| = 3t. By Lemma 7, it follows
that the simple rank-2¢ matroid M’ = M| cly/(S U U) is the direct sum of ¢ circuits and
some set of coloops, and therefore that is precisely the direct sum of ¢ triangles. Since S
is a t-claw of M’ and U is a t-pseudoclaw of M’/S, both S and U must be transversals of
this set of triangles. The claim follows. [ |

Every element e of M/S is contained in a t-pseudoclaw, so the above claim implies
that each such e is in exactly one triangle that intersects S. Write ¢(e) for the unique
element of S for which e and v (e) are contained in a triangle; we have ¢y (e) = ¢ (e) for
each t-pseudoclaw U of M /S containing e.

Since S is a claw and no rank-1 flat of M/S has more than two elements, no line of M
that intersects S has more than three elements. Moreover, each e € E(M/S) is in exactly
one triangle of M that intersects S, so the number of triangles of M that intersect S is
exactly $|M/S| = 1(2e(M/S)) = f(r —t,t). Therefore S is generic. It follows from the
choice of S that every t-claw of M is generic.

Claim 13. For all ey, eo € E(M/S), we have ¥(e1) = ¥ (e2) if and only if e; and ey are
in the same component of M/S. Moreover, M/S has ezxactly t components.
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Subproof: Suppose that e; and e; are in the same component of M/S. By Claim 11, there
is a set U C E(M/S) such that U U {e;} and U U {es} are both t-pseudoclaws of M/S.
For each i € {1,2}, there is a bijection v; = Yyy(e,y from U U {e;} to S, and moreover
for each e € U we have 9;(e) = 9(e) = 12(e). Therefore ¢ and 15 agree on all t — 1
elements of U; thus 1 (e1) = 11 (e2) and so (ey) = ¥(e2).

Suppose now that e; and ey are in different components of M /S. By Claim 11 there is
a t-pseudoclaw U containing e; and es. Since vy is a bijection we have 1(e1) = ¥y (ey) #
Yy (es) = 1(eq), as required.

It follows from the first part that the image of ¢ has size equal to the number of
components of M/S. But clearly the image of 1) contains the image of 1y, which is equal
to S, for each t-pseudoclaw U. Therefore ¢ has image S, so M/S has exactly |S| =t
components. [

Let N be the set of components of M/S. By Claim 13, for each N € N there is
some ¢ (N) for which 9 (e) = )(N) for each e € E(N). Since |S| = |N| = ¢, the t-tuple
P(N): N € N is a permutation of S. For each N € N, let N = M|(E(N) Uy (N)).

Claim 14. If N € N and L is a line of M intersecting E(N), then either |L| = 2, or
|L| =3 and L C E(N).

Subproof: Let U be a t-pseudoclaw of M /S containing an element e € E(N) N L. Note
that U is a generic t-claw in M, which gives |L| < 3.

Suppose that [L| = 3. Note that 1 = ryys(e) < rays(L —S) < ry(L) = 2. If
ryys(L—S) = 2 then L is a triangle of M /S that intersects the component N of M/S,
so obviously L € E(N). If rys(L —S) =1 then L C cly(SU{e}) C cly(SUU), so 12
gives L = clps({e,v(e)}). Since L — 9(e) is a two-element rank-1 set in M /S, the third

~

element of L is the element of N parallel to e, so L C E(N) as required. [ |

For each N € N and e € E(N), let 7(e) be the number of 3-element lines of M
containing e, and let o(e) be the number of elements of F(N\e) that are not in a 3-
element line of M with e. By the previous claim we have 27(e) + o(e) = |N\e| = | N|.

Claim 15. For each N € N, every line of E(N) has size 3.

Subproof: Suppose not, so there is some e € E(N) for which o(e) > 0. Let U be a t-
pseudoclaw of M /S containing e. Since U is a generic t-claw of M, we have Y ., 7(u) =
f(r—t,t), so

M| =15+ ) IN|

NeN

=t+ ) (27(u) + o(u))

uelU

=t+2f(r—t.t)+ > o(u)

uelU

> f(r,t) +o(e).
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Since |M| = f(r,t) and o(e) > 0, this is a contradiction. |

Let N € NV. It is clear, since N is obtained from N /¢(N) by ¢t— 1 successive extension-
contraction operations, that r(N) < r(N) — 1. The matroid si(/V) is a circuit or a binary
projective geometry, so

IN| = |N|+1<22®) 1) 41 =27MF 1 <o) _q,

By Claim 15 and Lemma 6 we have \]V | > or(N) _ 1, so equality holds and therefore each
matroid N is a binary projective geometry of rank r(N) + 1. The sets E(N) : N € N
partition E(M), so

r< Y r(N) =D (r(N) +1) =r(M/S) + N =t +7r(M/S) =1,

NeN Ne~N

so equality holds throughout, and the sets { £ (]v ): N € N} are skew in M. Thus M is
the direct sum of t nonempty binary projective geometries. If M has components of ranks
r1, 9 With r9 > r1 + 2, then deleting both and replacing them with projective geometries
of rank ro — 1 and r; + 1 respectively gives a matroid M’ with no (¢ + 1)-claw satisfying

|M| _ |M/| — 27‘2 + 27’1 _ 27"2—1 . 27‘1+l — 27"2—1 . 27‘1+l > O,

which contradicts the minimality of |M]|. Tt follows that no two components of M have
ranks differing by more than 1, so M = M, ,, contrary to the choice of M as a counterex-
ample. O

Finally, we prove the t = 1 case of Conjecture 3 as promised.

Lemma 16. If M is a simple rank-r triangle-free matroid with no 3-claw, then |M| >
2r=L If equality holds, then M = AG(r — 1,2).

Proof. We may assume that » > 3. We first show that every triple of distinct elements
of M is contained in a four-element circuit; indeed, given such a triple I, since [ is not a
triangle or a 3-claw, we have ry,(I) = 3 and cly/ (1) # I. Thus there is some x € cly(I)—1.
Since M is triangle-free, no pair of elements of I spans x, so I U{x} is a 4-element circuit.

Let e € E(M). Since M is triangle-free, the matroid M/e is simple. If M/e has
a 2-claw I, then I U {e} is clearly a 3-claw of M; therefore M/e is 2-claw-free and so
|M/e| > 271 — 1 by Lemma 6. It follows that |M] > 2! as required.

If equality holds, then M/e = PG(r — 2,2) so M /e is binary. This holds for arbitrary
e € E(M); it follows (since r > 3) that M has no U, 4-minor so is also binary. A simple
rank-r triangle-free binary matroid has at most 2"~! elements and equality holds only for
binary affine geometries (see [1], for example); therefore M = AG(r — 1,2). O
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4 Graphs

Let g : N x N — N be defined recursively by

e g(n,t) =0 for n < 2t,

e g(n,t) =3(n—2t) for 2t < n < 4t,

o g(n,t)=g(n—1,t)+ [%] — 1, for n > 4t.

It is easy to check that |E(G,.)| = g(n,t) for n > 3t (although not for smaller n).
The recursion for n > 4t in fact also holds when 3t < n < 4¢. Thus the next theorem
implies Theorem 2.

Theorem 17. Let n,t > 1 be integers. Let G be a simple graph on n vertices such that
no forest on 2t + 1 vertices is an induced subgraph of G. Then

[E(G)] = g(n,1).

If equality holds and n < 4t, then every component of G is a complete graph on 1,3 or 4
vertices. If equality holds and n > 4t, then G s isomorphic to G, ;.

Proof. We prove the theorem by induction on |V(G)|. We may clearly assume that
n > 2t + 1, as otherwise the result is easy. Let v be a vertex of G of maximum degree.

If deg(v) < 2, every component of G is a path or a cycle. Let S be the set of vertices
of cycles of GG, and b be the number of cycles of G; note that b < %|S| < %n Clearly G
contains an induced forest on n — b vertices, so n — b < 2¢. This gives n < 2t + %, so
n < 3t, which in turn implies that g(n,t) = 3(n — 2t) < 3b. On the other hand, we have
|E(G[S])] = [5], so

|E(G)| = [E(G[S])] = |S] = 3b = g(n, 1),

giving the bound. If equality holds, then E(G) = E(G[S]) and b = £|S|, so every

component of GG is an isolated vertex or triangle. We have argued that n < 3t; thus G

has the claimed structure. We may therefore assume that deg(v) > 3.
Let X C V(@) be maximal so that G[X] is a forest, so |X| < 2¢t. Let Z be the set of

non-isolated vertices of G[X]. As G[X U {w}] contains a cycle for every w € V(G) \ X,
every such w has at least two neighbors in Z. Thus

> deg(z) = 2]+ 2IV(G) = X| > |Z| +2(n — 2t).
z2€Z

Hence there exists zo € Z such that deg(zg) = 2(n—2t)/|Z|+1 > (n—2t)/t+1 =n/t—1;
thus deg(v) > [2] — 1 by the choice of v.

By the above, we can assume that deg(v) > max(3,[%] —1). Let H = G —v. It
follows that

[E(G)| = [E(H)| + deg(v) = g(n — 1,1) + max(3, [$] — 1) = g(n, 1);
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the last equality is easy to check. This gives the desired bound.

Suppose now that |E(G)| = g(n,t). Then deg(v) = max(3, [}#] — 1), and |E(H)| =
g(n — 1,t). Call a component of H with at least two vertices big. By the induction
hypothesis, every component of H is a complete graph. Therefore, H[X] is a maximal
induced forest in H if and only if X contains at least one vertex from every component
of H and exactly two vertices from every big component. It follows that |X| = 2t for
every such X. (Otherwise we could remove any edge from H to get a graph containing
no (2t + 1)-vertex induced forest and with fewer than g(n — 1,t) edges.)

If each big component of H contains a non-neighbour of v, then we can choose a set
X as above so that X U{v} induces a forest on 2t + 1 vertices, a contradiction. Therefore
H has a big component C' such that v is complete to C. By the induction hypothesis,
each big component of H has at least max(3, [#]| — 1) = deg(v) vertices; it follows that
[V(C)| = deg(v) = max(3,[%] — 1), and that G is obtained from H by adding a new
vertex with neighbourhood V' (C).

If 2t +1 < n < 4t, then |V(C)| = deg(v) = max(3,[2] —1) = 3, so G is obtained from
H by adding a vertex complete to a component on three vertices; thus, every component
of GG is complete with 1, 3 or 4 vertices. If n < 4t then this implies that G has the claimed
structure. If n = 4¢ then |E(G)| = g(4t,t) = 6t = 3|V(G)| and G has maximum degree 3.
This implies that every vertex of G has degree three, and so G is isomorphic to Gy 4, as
required. If n > 4, then H is isomorphic to G,_14, so |V(C)| = deg(v) = [2] -1 = [2].
Thus C'is a smallest component of H, so GG is isomorphic to G, ;, as required.
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