Cycle decompositions of complete digraphs

A. C. Burgess *
Department of Mathematics and Statistics
University of New Brunswick
Saint John, NB E2L 4L5
Canada

P. Danziger ${ }^{\dagger}$
Department of Mathematics
Ryerson University
Toronto, ON M5B 2K3
Canada

M. T. Javed
Department of Computer Science
Ryerson University
Toronto, ON M5B 2K3
Canada

Submitted: Oct 3, 2018; Accepted: Oct 21, 2020; Published: Feb 12, 2021
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this paper, we consider the problem of decomposing the complete directed graph K_{n}^{*} into cycles of given lengths. We consider general necessary conditions for a directed cycle decomposition of K_{n}^{*} into t cycles of lengths $m_{1}, m_{2}, \ldots, m_{t}$ to exist and provide a powerful construction for creating such decompositions in the case where there is one 'large' cycle. Finally, we give a complete solution in the case when there are exactly three cycles of lengths $\alpha, \beta, \gamma \neq 2$. Somewhat surprisingly, the general necessary conditions turn out not to be sufficient in this case. In particular, when $\gamma=n, \alpha+\beta>n+2$ and $\alpha+\beta \equiv n(\bmod 4), K_{n}^{*}$ is not decomposable.

Mathematics Subject Classifications: 05C51, 05B30, 05C20, 05C38

1 Introduction

Let G be a graph and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{r}\right\}$ be a collection of subgraphs of G. We say that \mathcal{H} decomposes G if the edges of the graphs in \mathcal{H} partition the edges of G. In this case, we write $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{r}$. If $H_{1} \cong H_{2} \cong \cdots \cong H_{r} \cong H$, we refer to an

[^0]H-decomposition of G; in this case, we call the decomposition uniform. An oft-studied case is that G is the complete graph K_{n} and each element of \mathcal{H} is a cycle. It is easy to see that if n is even, then there can be no cycle decomposition of K_{n}. In this case, it is common instead to consider $K_{n}-I$ the complete graph with the edges of a 1-factor I removed. We will use C_{m} to denote a cycle of length m.

The existence question for cycle decompositions of complete graphs has a history dating to the mid-1800s; among the first landmark results were Kirkman's 1847 proof that K_{n} has a C_{3}-decomposition if and only if $n \equiv 1 \operatorname{or} 3(\bmod 6)$ [6] and Walecki's construction of Hamilton cycle decompositions of the complete graph [8]. The existence problem for uniform cycle decomposition of K_{n} and $K_{n}-I$ was only settled over a century later $[2,9]$.

Theorem 1 ([2, 9]). Let $n, k \geqslant 3$ be integers. There exists a C_{m}-decomposition of K_{n} if and only if n is odd and $k \left\lvert\, \frac{n(n-1)}{2}\right.$. There exists a C_{m}-decomposition of $K_{n}-I$ if and only if n is even and $m \left\lvert\, \frac{n(n-2)}{2}\right.$.

A more general question is the existence of possibly non-uniform cycle decompositions of K_{n} or $K_{n}-I$. It was conjectured by Alspach [1] in 1981 that the obvious necessary conditions for the existence of such a decomposition were sufficient. Alspach's conjecture was finally verified in a 2014 paper by Bryant, Horsley and Pettersson [5].

Theorem 2 ([5]). Let $n \geqslant 3$ be an integer, and let G_{n} denote K_{n} if n is odd, and $K_{n}-I$ if n is even. Let $\mathcal{H}=\left\{C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{r}}\right\}$. Then \mathcal{H} decomposes G_{n} if and only if $3 \leqslant m_{i} \leqslant n$ for each $i=1,2, \ldots, r$ and $m_{1}+m_{2}+\cdots+m_{r}=n\left\lfloor\frac{n-1}{2}\right\rfloor$.

More recently, Bryant, Horsley, Maenhaut and Smith [4] have extended this result, finding necessary and sufficient conditions for the existence of a cycle decomposition of the complete multigraph λK_{n}.

Theorem 3 ([4]). Let $\mathcal{C}=\left\{C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{r}}\right\}$. Then \mathcal{C} decomposes λK_{n} if and only if the following conditions all hold:

1. $\lambda(n-1)$ is even;
2. $2 \leqslant m_{1}, m_{2}, \ldots, m_{r} \leqslant n$;
3. $m_{1}+m_{2}+\cdots+m_{r}=\lambda\binom{n}{2}$;
4. $\max \left(m_{1}, m_{2}, \ldots, m_{r}\right)+r-2 \leqslant \frac{\lambda}{2}\binom{n}{2}$ when λ is even; and
5. $\sum_{m_{i}=2} m_{i} \leqslant(\lambda-1)\binom{n}{2}$ when λ is odd.

Also, \mathcal{C} decomposes $\lambda K_{n}-I$ if and only if the following conditions all hold:

1. $\lambda(n-1)$ is odd;
2. $2 \leqslant m_{1}, m_{2}, \ldots, m_{r} \leqslant n$;
3. $m_{1}+m_{2}+\cdots+m_{r}=\lambda\binom{n}{2}-\frac{n}{2}$; and
4. $\sum_{m_{i}=2} m_{i} \leqslant(\lambda-1)\binom{n}{2}$.

In this paper, we consider an alternative generalization of Alspach's conjecture, to cycle decompositions of the complete symmetric digraph.

For a graph G, we let G^{*} denote the digraph formed from G by replacing each edge $\{x, y\}$ with two arcs $x y$ and $y x$. In particular, K_{n}^{*} denotes the complete symmetric digraph on n vertices. We will use \vec{P}_{k} to denote a directed path on k vertices, and \vec{C}_{k} a directed cycle of length k. We use $\left[u_{1}, u_{2}, \ldots, u_{k}\right]$ to denote a directed path with arcs $u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{k-1} u_{k}$ and ($u_{1}, u_{2}, \ldots, u_{k}$) to denote a directed cycle with arcs $u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{k-1} u_{k}$ together with $u_{k} u_{1}$.

The case of uniform cycle decomposition of K_{n}^{*} was settled by Alspach, Gavlas, Šajna and Verrall [3].

Theorem 4 ([3]). Let $n, m \geqslant 2$ be integers. There is a \vec{C}_{m}-decomposition of K_{n}^{*} if and only if $m \mid n(n-1)$ and $(n, m) \notin\{(4,4),(6,3),(6,6)\}$.

Let \mathcal{C} denote a collection of r directed cycles of lengths $m_{1}, m_{2}, \ldots, m_{r}$. It is clear that by ignoring the direction on the arcs, any \mathcal{C}-decomposition of K_{n}^{*} yields a \mathcal{C}-decomposition of $2 K_{n}$. Thus, any such decomposition must satisfy the conditions of Theorem 3 with $\lambda=2$, giving the following necessary conditions:
Lemma 5. Let $\mathcal{C}=\left\{\vec{C}_{m_{1}}, \vec{C}_{m_{2}}, \ldots, \vec{C}_{m_{r}}\right\}$. If \mathcal{C} decomposes K_{n}^{*}, then:

1. $2 \leqslant m_{1}, m_{2}, \ldots, m_{r} \leqslant n$;
2. $m_{1}+m_{2}+\cdots+m_{r}=n(n-1) ;$ and
3. $\max \left(m_{1}, m_{2}, \ldots, m_{r}\right)+r-2 \leqslant\binom{ n}{2}$

In light of Theorem 3, one possible method of constructing directed cycle decompositions of K_{n}^{*} would be to orient the edges in a cycle decomposition of $2 K_{n}$. However, it is worth noting that the methods of [4] for $2 K_{n}$ do not in general produce decompositions whose cycles can be oriented to give a directed cycle decomposition of K_{n}^{*}. In fact, as we shall see in Theorem 24, the necessary conditions stated in Lemma 5 are not also sufficient in all cases.

Definition 6. A nondecreasing list $M=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ of nonnegative integers will be called n-admissible if it satisfies conditions 1-3 of Lemma 5 . We refer to a directed cycle decomposition of K_{n}^{*} corresponding to the admissible list M as an M-decomposition of K_{n}^{*}.

Using the notation of [4] and [5], for a given n-admissible list M, we let $\nu_{i}(M)$ denote the number of instances of i in M. It is worth noting that one of the major differences in decomposing K_{n}^{*} (or λK_{n}) rather than K_{n} is the possibility of cycles of length 2. Further, if there are cycles of length 2 in a decomposition of K_{n}^{*}, removing them corresponds to
removing edges from the underlying undirected graph, K_{n}. Thus directed cycle decomposition of K_{n}^{*} can be seen as a directed cycle decomposition of G^{*} into cycles of lengths greater than 2 , where G is an arbitrary graph of order n. This observation leads to a strategy for decomposing K_{n}^{*}.

Definition 7. We say that a directed cycle \vec{C} decouples the arc $x y$ if \vec{C} contains $y x$ but not $x y$. If $\mathcal{C}=\left\{\vec{C}_{m_{1}}, \vec{C}_{m_{2}}, \ldots, \vec{C}_{m_{r}}\right\}$ is a collection of pairwise edge-disjoint cycles, we say that an arc $x y$ is decoupled by \mathcal{C} if $y x$ is contained in a cycle of \mathcal{C} but $x y$ is not.

The following is an obvious consequence of Definition 7 .
Lemma 8. Let $\mathcal{C}=\left\{\vec{C}_{m_{1}}, \vec{C}_{m_{2}}, \ldots, \vec{C}_{m_{r}}\right\}$ be a set of pairwise edge-disjoint directed cycles in K_{n}^{*}. There is a \vec{C}_{2}-decomposition of $K_{n}^{*}-\mathcal{C}$ if and only if \mathcal{C} leaves no arc decoupled.

For convenience of notation, we will henceforth let $\nu=\nu_{2}(M)$ denote the number of cycles of length 2 in the list M. In light of Lemma 8 , it will sometimes be convenient to list only the cycle lengths which are greater than 2 , particularly when a decomposition is to contain many 2 -cycles. Therefore, we make the following definition.

Definition 9. Let M be an n-admissible list. The associated canonical list is the nondecreasing list \hat{M} formed from M by removing all instances of 2 from M. Note that the sum of the entries in \hat{M} is $n(n-1)-2 \nu$.

In this paper, we give further results on cycle decompositions of K_{n}^{*}. In Section 2, we give general constructions and show sufficiency of the necessary conditions in certain cases. In Section 3, we determine necessary and sufficient conditions for the existence of an M-decomposition of K_{n}^{*} when $\nu \geqslant|M|-3$, summarized in Theorem 24. As we will see, the necessary conditions of Lemma 5 turn out not to be sufficient in general. In particular, in Lemma 23 we exhibit a family of n-admissible lists for which K_{n}^{*} admits no M-decomposition.

2 General constructions

We begin by noting some easy consequences of conditions 2 and 3 of Lemma 5 .
Lemma 10. Let M be an n-admissible list with associated canonical list $\hat{M}=\left(m_{1}\right.$, $\left.\ldots, m_{r}\right)$. Then

1. $m_{1}+\cdots+m_{r-1} \equiv m_{r}(\bmod 2)$
2. $m_{1}+\cdots+m_{r-1} \geqslant m_{r}+2(r-2)$. Hence when $r \geqslant 3, m_{1}+\cdots+m_{r-1}>m_{r}$.

Conversely, given a list $\hat{M}=\left(m_{1}, \ldots, m_{r}\right)$ with $3 \leqslant m_{i} \leqslant n$ for each $i \in\{1, \ldots, r\}$ and $m_{1}+\cdots+m_{r} \leqslant n(n-1)$, if \hat{M} satisfies conditions 1 and 2 above, then \hat{M} is the associated canonical list of some n-admissible list M.

Note that the case where equality holds in condition 2 corresponds with the case where equality holds in condition 3 of Lemma 5 .

We now give some constructions of cycle decompositions of K_{n}^{*} from known decompositions of complete graphs or complete symmetric digraphs.

Theorem 11. Let $M=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ be an n-admissible list, where $\nu_{k}(M)$ is even for each $3 \leqslant k \leqslant n$. If either

1. n is odd and either $\nu=0$ or $\nu \geqslant 3$; or
2. n is even and either $\nu=\frac{n}{2}$ or $\nu \geqslant \frac{n}{2}+3$,
then K_{n}^{*} is M-decomposable.
Proof. We form a new list M^{\prime} which decomposes K_{n}. We then form the corresponding directed graph K_{n}^{*}, using some of the cycles from K_{n} to form 2-cycles in K_{n}^{*}. We consider two cases according to the parity of n.

First, suppose that n is odd. Let $s \in\{0,4,5\}$ be such that $\nu \equiv s(\bmod 3)$. Let M^{\prime} be the nondecreasing list satisfying that, for $i \in\{3,4, \ldots, n\}$,

$$
\nu_{i}\left(M^{\prime}\right)= \begin{cases}\frac{1}{2} \nu_{3}(M)+\frac{1}{3}(\nu-s), & \text { if } i=3 \\ \frac{1}{2} \nu_{s}(M)+1, & \text { if } i=s \neq 0 \\ \frac{1}{2} \nu_{i}(M), & \text { otherwise }\end{cases}
$$

Since $m_{1}+m_{2}+\cdots m_{r}=n(n-1)$, it follows that the sum of the entries of M^{\prime} is $\binom{n}{2}$, and so by Theorem $2, K_{n}$ is M^{\prime}-decomposable. From such a decomposition, take $\frac{\nu_{i}(M)}{2}$ cycles of length i for each $3 \leqslant i \leqslant n$, and orient them both ways to obtain $\nu_{i}(M)$ directed cycles of length i. Each edge in the remaining cycles can be directed both ways to form a directed 2 -cycle, giving $\nu_{2}(M)$ in total. It is easy to see that we obtain an M-decomposition of K_{n}^{*}.

The case where n is even is similar. Again, let $s \in\{0,4,5\}$ such that $\nu \equiv s+\frac{n}{2}$ $(\bmod 3)$. Let M^{\prime} be the nondecreasing list satisfying that, for $i \in\{3,4, \ldots, n\}$

$$
\nu_{i}\left(M^{\prime}\right)= \begin{cases}\frac{1}{2} \nu_{3}(M)+\frac{1}{3}\left(\nu-s-\frac{n}{2}\right), & \text { if } i=3 \\ \frac{1}{2} \nu_{s}(M)+1, & \text { if } i=s \neq 0 \\ \frac{1}{2} \nu_{i}(M), & \text { otherwise }\end{cases}
$$

In this case, we note that $K_{n}-I$ is M^{\prime}-decomposable, and proceed as before, except that the edges of the 1 -factor I are also directed both ways to form $\frac{n}{2}$ directed 2-cycles.

Lemma 12. Let M be an n-admissible list and M^{\prime} an n^{\prime}-admissible list, where $n<n^{\prime}$. If $\nu_{k}(M)=\nu_{k}\left(M^{\prime}\right)$ for each $k \geqslant 3$ and there exists an M-decomposition of K_{n}^{*}, then there exists an M^{\prime}-decomposition of $K_{n^{\prime}}^{*}$.

Proof. Decompose $K_{n^{\prime}}^{*}=K_{n}^{*} \oplus K_{n^{\prime}-n}^{*} \oplus K_{n, n^{\prime}-n}^{*}$. Decomposing K_{n}^{*} into directed cycles of lengths given in M, it is easy to see that no arc of $K_{n^{\prime}}^{*}$ is left decoupled. Since all remaining directed cycles to be formed are of length 2 , the result follows by Lemma 8.

In the remainder of this section, we will give constructions which give directed cycle decomposition in a wide array of cases. Before proceeding, we note the following result which settles existence in the case that the canonical list has size at most 2.

Theorem 13. Let $M=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. Suppose M has at most two cycle lengths other than 2, i.e. $\nu \geqslant r-2$. There is an M-decomposition of K_{n}^{*} if and only if M is n-admissible.

Proof. It is easy to see that if $\nu=r$ (i.e. $M=(2,2, \ldots, 2)$), an M-decomposition of K_{n}^{*} exists. Also, note that conditions 2 and 3 of Lemma 5 imply that no n-admissible list has $\nu=r-1$.

Finally, if M is an n-admissible list with $\nu=r-2$, its canonical list has the form $\hat{M}=\left(m_{r-1}, m_{r}\right)$. By condition 3 of Lemma 5 and since M is non-decreasing, $m_{r-1}+r-2 \leqslant$ $m_{r}+r-2 \leqslant \frac{n(n-1)}{2}$. But condition 2 implies that $2(r-2)+m_{r-1}+m_{r}=n(n-1)$, i.e. $\left(m_{r-1}+r-2\right)+\left(m_{r}+r-2\right)=n(n-1)$, so it must be that $m_{r-1}+r-2=m_{r}+r-2=\frac{n(n-1)}{2}$, and hence $m_{r-1}=m_{r}$. In this case, it is easy to see that an M-decomposition of K_{n}^{*} exists.

Recall that condition 3 of Lemma 5 states that in an n-admissible list M of size t with maximum entry m, we have that $m+t-2 \leqslant\binom{ n}{2}$. Written in terms of the canonical list $\hat{M}=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$, the total number of cycles is $t=r+\nu$, so this condition becomes $m_{r}+r+\nu-2 \leqslant\binom{ n}{2}$. The next result shows that if equality holds, then an M-decomposition does indeed exist.

Lemma 14. Let M be an n-admissible list with associated canonical list $\hat{M}=\left(m_{1}, m_{2}\right.$, $\left.\ldots, m_{r}\right)$. If

$$
m_{r}+r+\nu-2=\binom{n}{2}
$$

then K_{n}^{*} is M-decomposable.
Proof. First, suppose that $m_{r-1}=m_{r}$. Since M is n-admissible and contains ν entries equal to 2 , counting edges we have that
$2 \nu+m_{1}+m_{2}+\cdots+m_{r}=2 \nu+m_{1}+m_{2}+\cdots+m_{r-2}+2 m_{r}=n(n-1)=2\left(m_{r}+r+\nu-2\right)$.
Rearranging gives $m_{1}+m_{2}+\cdots+m_{r-2}=2(r-2)$, and since $m_{i} \geqslant 3$ for each $i \in$ $\{1,2, \ldots, r-2\}$, it follows that $r=2$, which was dealt with in Theorem 13.

Now suppose $m_{r-1}<m_{r}$. Let the vertex set of K_{n}^{*} be \mathbb{Z}_{n}. We form the cycles of lengths $m_{1}, m_{2}, \ldots, m_{r}$. An illustration of this construction can be found in Figure 1.

Figure 1: A $(2, \ldots, 2,4,5,7,12)$-decomposition of K_{12}^{*}
Let $\vec{C}_{m_{r}}=\left(m_{r}-1, m_{r}-2, \ldots, 2,1,0\right)$ be the directed cycle of length m_{r}. Define $\ell_{0}=1, \ell_{r-1}=m_{r}-1$, and for $i=1,2, \ldots, r-2$, let $\ell_{i}=\left(\sum_{j=1}^{i} m_{j}\right)-(2 i-1)$. Note that, since $n(n-1)=2\left(m_{r}+r+\nu-2\right)=2 \nu+m_{1}+m_{2}+\cdots+m_{r}$,

$$
\begin{aligned}
\ell_{r-2} & =\left(m_{1}+m_{2}+\cdots+m_{r-2}\right)-(2(r-2)-1) \\
& =\left(m_{r}-m_{r-1}+2 r-4\right)-(2 r-5) \\
& =m_{r}-m_{r-1}+1 .
\end{aligned}
$$

Hence, $\ell_{i}-\ell_{i-1}=m_{i}-2$ for each $i=1, \ldots, r-1$. For $i=1,2, \ldots, r-1$, define the m_{i}-cycle

$$
\vec{C}_{m_{i}}=\left(0, \ell_{i-1}, \ell_{i-1}+1, \ell_{i-1}+2, \ldots, \ell_{i}\right)
$$

It is easy to verify that $\vec{C}_{m_{i}}$ has length $\ell_{i}-\ell_{i-1}+2=m_{i}$.
Note that the cycles $\vec{C}_{m_{1}}, \ldots, \vec{C}_{m_{r-1}}, \vec{C}_{m_{r}}$ leave no decoupled arc, and the result follows by Lemma 8.
Theorem 15. Let M be an n-admissible list with associated canonical list $\hat{M}=$ $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. Let $S=\left(s_{0}, s_{1}, \ldots, s_{r-2}, s_{r-1}, s_{r}\right)$ be a sequence of non-negative integers with $s_{0}=s_{r-1}=s_{r}=0$, and let s be the sum of the entries of S. If M is an n-admissible list such that:

1. $m_{r}+r+\nu-2=\binom{n}{2} ;$ and
2. $m_{r}+s \leqslant n$,
then K_{n}^{*} is M^{\prime}-decomposable, where $\hat{M}^{\prime}=\left(m_{\sigma(1)}^{\prime}, m_{\sigma(2)}^{\prime}, \ldots, m_{\sigma(r)}^{\prime}\right)$ such that $m_{i}^{\prime}=m_{i}+$ $s_{i-1}+s_{i}$ for each $i \in\{1, \ldots, r\}$ and σ is a permutation which ensures that \hat{M}^{\prime} is in nondecreasing order.

Proof. We proceed in a similar manner to the proof of Lemma 14, except that we add s vertices x_{1}, \ldots, x_{s} to the cycles in \hat{M}, and modify the cycles $\vec{C}_{m_{i}}, 1 \leqslant i \leqslant r$, from that lemma as follows.

Let ℓ_{i} and $\vec{C}_{m_{r}}$ be as defined as in the proof of Lemma 14. For $i \in\{0,1, \ldots, r\}$, let $s_{i}^{\prime}=s_{0}+s_{1}+\cdots+s_{i}$. We define directed paths

$$
P_{i}=\left[0, x_{s_{i-1}^{\prime}+1}, x_{s_{i-1}^{\prime}+2}, \ldots, x_{s_{i}^{\prime}}, \ell_{i}\right] .
$$

Note that if $s_{i}=0$, we take $P_{i}=\left[0, \ell_{i}\right]$ of length 1 . We also define Q_{i} to be the reversal of P_{i}, i.e. if $s_{i} \neq 0$ then

$$
Q_{i}=\left[\ell_{i}, x_{s_{i}^{\prime}}, x_{s_{i}^{\prime}-1}, \ldots, x_{s_{i-1}^{\prime}+1}, 0\right],
$$

and $Q_{i}=\left[\ell_{i}, 0\right]$ otherwise. Now, define $\vec{C}_{m_{1}}$ as the concatenation of the path $\left[0,1, \ldots, \ell_{1}\right]$ and Q_{1}. For $i \in\{2, \ldots, r-2\}$, define $\vec{C}_{m_{i}}$ as the concatenation of the paths P_{i-1}, $\left[\ell_{i-1}, \ell_{i-1}+1, \ldots, \ell_{i}\right]$ and Q_{i}. Finally, define $\vec{C}_{m_{r-1}}$ as the concatenation of P_{r-2} and $\left[\ell_{r-2}, \ell_{r-2}+1, \ldots, \ell_{r-1}, 0\right]$ (recall that $\ell_{r-1}=m_{r}-1$). See Figure 2.

It is clear that these cycles leave no decoupled arcs, so the result follows by Lemma 8.

Figure 2: A $(2, \ldots, 2,5,9,10,12)$-decomposition of K_{16}^{*} formed using Theorem 15 with $\hat{M}=(4,5,7,12), S=(0,1,3,0,0)$.

Note that although the statements of Lemma 14 and Theorem 15 are written so that the cycle lengths m_{1}, \ldots, m_{r} are in non-decreasing order, this is not actually required in the proof, as long as $m_{r} \geqslant \max _{1 \leqslant i \leqslant r-1}\left\{m_{i}\right\}$.

Theorem 16. Let H be an n-admissible list with associated canonical list $\hat{H}=\left(h_{1}, \ldots, h_{r}\right)$ such that $r \geqslant 3, h_{r} \geqslant 2(r-1), h_{1}+\cdots+h_{r} \leqslant 2(n+r-2)$, and, if r is even, $r \neq 4$ and $h_{1} \leqslant r$. Then K_{n}^{*} is H-decomposable.

Proof. We begin by defining a list $K=\left(k_{1}, k_{2}, \ldots, k_{r}\right)$ by permuting the elements of \hat{H} with the purpose of ensuring that K satisfies the inequalities (1) and (2) below, while retaining the property that $k_{r} \geqslant \max _{1 \leqslant i \leqslant r-1}\left\{k_{i}\right\}$.
(1) If r is odd, then $k_{1}+k_{3}+\cdots+k_{r-2}+k_{r} \geqslant k_{2}+k_{4}+\cdots+k_{r-1}+(r+1)$.
(2) If r is even, then $k_{2}+k_{4}+\cdots+k_{r-2}+k_{r} \geqslant k_{1}+k_{3}+\cdots+k_{r-1}+(r-2)$.

If r is odd, take $k_{r}=h_{r}$, and define k_{1}, \ldots, k_{r-1} by

$$
\left(k_{2}, k_{4}, \ldots, k_{r-1}\right)=\left(h_{1}, h_{2}, \ldots, h_{(r-1) / 2}\right)
$$

and

$$
\left(k_{1}, k_{3}, \ldots, k_{r-2}\right)=\left(h_{(r+1) / 2}, h_{(r+3) / 2}, \ldots, h_{r-1}\right) .
$$

This ensures that the elements of $\left(k_{1}, \ldots, k_{r}\right)$ with odd index are greater than or equal to those with even index, i.e. $k_{2 i-1} \geqslant k_{2 i}$ for $i \in\{1, \ldots,(r-1) / 2\}$. Since $k_{r} \geqslant 2(r-1)$, it is now easy to see that (1) is satisfied.

If r is even, take $k_{r}=h_{r}, k_{r-1}=h_{4}, k_{r-2}=h_{3}, k_{r-3}=h_{2}$ and $k_{1}=h_{1}$, and define k_{2}, \ldots, k_{r-4} so that

$$
\left(k_{3}, k_{5}, \ldots, k_{r-5}\right)=\left(h_{5}, h_{6} \ldots, h_{(r+2) / 2}\right)
$$

and

$$
\left(k_{2}, k_{4}, \ldots, k_{r-4}\right)=\left(h_{(r+4) / 2}, h_{(r+6) / 2}, \ldots, h_{r-1}\right) .
$$

Thus, $k_{r}=\max \left\{k_{1}, \ldots, k_{r}\right\}, k_{r-2} \geqslant k_{r-3}, k_{r-4} \geqslant k_{r-1}$, and $k_{2 i} \geqslant k_{2 i+1}$ for $i \in\{1, \ldots,(r-$ 6) $/ 2\}$. Since the elements of H are written in nondecreasing order, using the assumptions that $k_{r}=h_{r} \geqslant 2(r-1)$ and $k_{1}=h_{1} \leqslant r$, it is now easy to check that (2) is satisfied.

We now define lists $\left(m_{1}, \ldots, m_{r}\right)$ and $\left(s_{0}, \ldots, s_{r}\right)$ of integers with $m_{r} \geqslant \max _{1 \leqslant i \leqslant r-1}\left\{m_{i}\right\}$ satisfying the conditions of Theorem 15, such that for each $i \in\{1, \ldots, r\}, k_{i}=m_{i}+s_{i-1}+$ s_{i}. The inequalities (1) and (2) will ensure that $m_{r-2} \geqslant 3$.

Note that by Lemma 10 and the assumptions that $k_{r}=h_{r} \geqslant 2(r-1)$ and $r \geqslant 3$, we have

$$
3(r-1) \leqslant k_{r}+2(r-2) \leqslant k_{1}+\cdots+k_{r-1} .
$$

Thus, we can find integers m_{1}, \ldots, m_{r} such that $3 \leqslant m_{i} \leqslant k_{i}$ for each $i \in\{1, \ldots, r\}$ and $m_{1}+\cdots+m_{r-1}=k_{r}+2(r-2)$. Specifically, define

$$
t=\frac{k_{1}+k_{2}+\cdots+k_{r-1}-k_{r}-2(r-2)}{2}
$$

and note that t is a non-negative integer by Lemma 10 .
We define a sequence of non-negative integers $s_{0}, s_{1}, s_{2}, \ldots, s_{r}$ by $s_{0}=s_{r-1}=s_{r}=0$, for $i \in\{1,2, \ldots, r-3\}$, set

$$
s_{i}=\min \left\{k_{i}-s_{i-1}-3, t-\left(s_{1}+\cdots+s_{i-1}\right)\right\},
$$

and define $s_{r-2}=t-\left(s_{1}+\cdots+s_{r-3}\right)$. It is evident from the definition that $s_{i-1}+s_{i} \leqslant k_{i}-3$ for each $i \in\{1, \ldots, r-3\}$ and $s_{1}+s_{2}+\cdots+s_{r}=t$.

We now show by induction that $s_{i} \geqslant 0$ for each $0 \leqslant i \leqslant r$. First note that $s_{0}=$ $0 \geqslant 0$ and $s_{1}=\min \left\{k_{1}-3, t\right\} \geqslant 0$. Now suppose that $i>1$ and assume as the inductive hypothesis that $s_{j} \geqslant 0$ for each $0 \leqslant j<i$. Firstly, if $s_{i}=k_{i}-s_{i-1}-3$ then $s_{i-1}+s_{i-2} \leqslant k_{i-1}-3$, so $s_{i-1} \leqslant k_{i-1}-3$, which implies that $k_{i}-s_{i-1}-3 \geqslant 0$, since $k_{i} \geqslant k_{i-1}$. Alternatively if $s_{i}=t-\left(s_{1}+\cdots+s_{i-1}\right)$, then by the definition of s_{i-1}, $s_{i-1} \leqslant t-\left(s_{1}+\cdots+s_{i-2}\right)$ which implies $t-\left(s_{1}+\cdots+s_{i-1}\right) \geqslant 0$. Hence, noting that $s_{r-1}=s_{r}=0$, each $s_{i} \geqslant 0$.

For each $i \in\{1, \ldots, r\}$, set $m_{i}=k_{i}-s_{i-1}-s_{i}$. By choice of s_{r-2}, it is easy to see that

$$
s=\sum_{i=1}^{r-1} s_{i}=t
$$

and hence

$$
\sum_{i=1}^{r-1} m_{i}=\sum_{i=1}^{r-1} k_{i}-2 \sum_{i=1}^{r-1} s_{i}=\sum_{i=1}^{r-1} k_{i}-2 t=k_{r}+2(r-2)=m_{r}+2(r-2) .
$$

It is now easy to check that $\left(m_{1}, \ldots, m_{r}\right)$ satisfy conditions 1 and 2 of Lemma 10. Also, since $m_{i} \leqslant k_{i}$ for each $i \in\{1, \ldots, r\}$, we have that each $m_{i} \leqslant k_{i} \leqslant n$, and $m_{1}+\cdots+m_{r} \leqslant$ $k_{1}+\cdots+k_{r} \leqslant n(n-1)$. Thus, to show that (m_{1}, \ldots, m_{r}) can be viewed as the (suitably ordered) canonical list of an n-admissible list M, we need only to show that $m_{i} \geqslant 3$ for each $i \in\{1, \ldots, r\}$. This is clear if $1 \leqslant i \leqslant r-3$ since $s_{i} \leqslant k_{i}-s_{i-1}-3$, and if $i=r$ since $m_{r}=k_{r}$.

For $i=r-2$, we have

$$
m_{r-2}=k_{r-2}-s_{r-3}-s_{r-2} .
$$

If $s_{r-2}=0$, then $m_{r-2}=k_{r-2}-s_{r-3} \geqslant k_{r-3}-s_{r-3} \geqslant m_{r-3} \geqslant 3$. Otherwise,

$$
\begin{aligned}
m_{r-2} & =k_{r-2}-s_{r-3}-s_{r-2} \\
& =k_{r-2}-s_{r-3}-\left(t-\left(s_{1}+s_{2}+\cdots+s_{r-3}\right)\right) \\
& =k_{r-2}-t+s_{1}+s_{2}+\cdots+s_{r-4} .
\end{aligned}
$$

To bound the value of m_{r-2}, we rewrite this quantity in terms of k_{1}, \ldots, k_{r}. Note that for each $j \in\{1, \ldots, r-3\}$, if $s_{j}=t-\left(s_{1}+\cdots+s_{j-1}\right)$, then $s_{j+1}=0$. Hence the condition $s_{r-2} \neq 0$ implies that $s_{j}=k_{j}-s_{j-1}-3$ for each $j \in\{1, \ldots, r-3\}$. Thus

$$
\begin{aligned}
& s_{1}+\cdots+s_{r-4}=\sum_{i=1}^{r-4}\left(k_{i}-s_{i-1}-3\right) \\
& =\left(k_{1}-3\right)+\left[\left(k_{2}-3\right)-\left(k_{1}-3\right)\right]+\left[\left(k_{3}-3\right)-\left(k_{2}-3\right)+\left(k_{1}-3\right)\right]+\cdots \\
& +\left[\left(k_{r-4}-3\right)+\cdots+(-1)^{r-5}\left(k_{1}-3\right)\right] \\
& = \begin{cases}k_{1}+k_{3}+\cdots+k_{r-4}-3(r-3) / 2 & \text { if } r \text { is odd } \\
k_{2}+k_{4}+\cdots+k_{r-4}-3(r-4) / 2 & \text { if } r \text { is even. }\end{cases}
\end{aligned}
$$

If r is odd, it follows that

$$
\begin{aligned}
m_{r-2} & =k_{r-2}-t+s_{1}+\cdots+s_{r-4} \\
& =k_{1}+k_{3}+\cdots+k_{r-4}+k_{r-2}-\frac{3(r-3)}{2}-\frac{k_{1}+k_{2}+\cdots+k_{r-1}-k_{r}-2(r-2)}{2} \\
& =\frac{k_{1}+k_{3}+\cdots+k_{r-2}+k_{r}}{2}-\frac{k_{2}+k_{4}+\cdots+k_{r-1}}{2}-\frac{r-5}{2} \\
& \geqslant 3,
\end{aligned}
$$

since $k_{1}+k_{3}+\cdots+k_{r-2}+k_{r} \geqslant k_{2}+k_{4}+\cdots+k_{r-1}+r+1$.
If r is even, then

$$
\begin{aligned}
m_{r-2} & =k_{r-2}-t+s_{1}+\cdots+s_{r-4} \\
& =k_{2}+k_{4}+\cdots+k_{r-4}+k_{r-2}-\frac{3(r-4)}{2}-\frac{k_{1}+k_{2}+\cdots+k_{r-1}-k_{r}-2(r-2)}{2} \\
& =\frac{k_{2}+k_{4}+\cdots+k_{r-2}+k_{r}}{2}-\frac{k_{1}+k_{3}+\cdots+k_{r-1}}{2}-\frac{r-8}{2} \\
& \geqslant 3
\end{aligned}
$$

since $k_{2}+k_{4}+\cdots+k_{r-2}+k_{r} \geqslant k_{1}+k_{3}+\cdots+k_{r-1}+r-2$.
Finally, we show that $m_{r-1} \geqslant 3$. Since $s_{r-1}=0$ and by construction $k_{r-1} \geqslant k_{r-2}$, we have that

$$
m_{r-1}=k_{r-1}-s_{r-2} \geqslant k_{r-2}-s_{r-2}-s_{r-3}=m_{r-2} \geqslant 3 .
$$

We now show that the list satisfies Condition 2 of Theorem 15, i.e. that $m_{r}+s \leqslant n$. Since

$$
s=\sum_{i=1}^{r-1} s_{i}=\sum_{i=1}^{r-1}\left(k_{i}-m_{i}-s_{i-1}\right)=\left(\sum_{i=1}^{r-1} k_{i}\right)-\left(k_{r}+2(r-2)\right)-s,
$$

we have

$$
2 s=\left(\sum_{i=1}^{r} k_{i}\right)-2 k_{r}-2(r-2),
$$

giving

$$
s=\frac{1}{2}\left(\sum_{i=1}^{r} k_{i}\right)-k_{r}-r+2 \leqslant(n+r-2)-k_{r}-r+2=n-k_{r},
$$

so that $m_{r}+s=k_{r}+s \leqslant n$.
The result now follows by applying Theorem 15 , taking $\hat{M}^{\prime}=K$.
We note that the conclusion of Theorem 16 holds whenever $r \geqslant 3, h_{r} \geqslant 2(r-1)$, $h_{1}+\cdots+h_{r} \leqslant 2(n+r-2)$ and there is a reordering of the $h_{i}, 1 \leqslant i<r$, so that inequalities (1) and (2) are satisfied. In particular, when r is even, the conditions $r \neq 4$ and $h_{1} \leqslant r$ may be dropped if (2) holds in the reordering of the h_{i}.

Recall that a directed cycle decomposition of K_{n}^{*} can be considered as a decomposition of G^{*} into directed cycles of lengths greater than 2 for some graph G of order n. Theorem 16 applies when the underlying (undirected) graph G formed by cycles not of length
two is sparse. In particular, it solves all cases where G has one vertex of degree $r \geqslant 5$ ($r \geqslant 3$ if r is odd) and all the rest of degree at most three, and which is a subdivision of a Hamiltonian graph. It thus gives a solution in all cases where G can be decomposed into subgraphs which either have this form or are 2-regular.

3 Admissible lists with three cycles of length greater than 2

Recall that Theorem 13 states that K_{n}^{*} is M-decomposable whenever M is an admissible list containing at most two cycles of length greater than 2 . In this section we give necessary and sufficient conditions for the existence of an M-decomposition of K_{n}^{*} in the case that the associated canonical list \hat{M} has size 3 . We begin by noting the following special case of Lemma 10.

Lemma 17. If M is an n-admissible list with associated canonical list $\hat{M}=(\alpha, \beta, \gamma)$, then $\alpha+\beta \equiv \gamma(\bmod 2)$ and $\alpha+\beta>\gamma$.

For the case that $\alpha+\beta+\gamma \leqslant 2(n+1)$, sufficiency follows directly from Theorem 16. Specifically, we have the following lemma.

Lemma 18. Let M be an n-admissible list with associated canonical list $\hat{M}=(\alpha, \beta, \gamma)$. If $\alpha+\beta+\gamma \leqslant 2(n+1)$, then K_{n}^{*} is M-decomposable.

Proof. Note that the conditions of Theorem 16 when $r=3$ are that $\alpha+\beta+\gamma \leqslant 2(n+1)$ (as in the assumption) and $\gamma \geqslant 4$. However, if $\gamma=3$, then $\alpha=\beta=\gamma=3$, so that $\alpha+\beta \not \equiv \gamma(\bmod 2)$, in contradiction to Lemma 17.

If $\hat{M}=(\alpha, \beta, \gamma)$ and $\alpha+\beta+\gamma>2(n+1)$, the existence of an M-decomposition of K_{n}^{*} depends on the value of γ as well as the congruence classes of $\alpha+\beta$ and γ modulo 4 .

Lemma 19. Let M be an n-admissible list with associated canonical list $\hat{M}=(\alpha, \beta, \gamma)$. If $\alpha+\beta+\gamma>2(n+1)$ and $\alpha+\beta \not \equiv \gamma(\bmod 4)$, then K_{n}^{*} is M-decomposable.

Proof. We construct directed cycles of lengths α, β and γ, leaving no decoupled arcs, so that the remaining arcs can be used to form directed 2-cycles by Lemma 8. By Lemma 12, it is sufficient to consider the case $\gamma=n$.

Let $\vec{C}_{n}=(0, n-1, n-2, \ldots, 1)$. To construct \vec{C}_{α} and \vec{C}_{β}, we must use the decoupled arcs along the directed cycle $\vec{C}=(0,1, \ldots, n-1)$, together with $t=(\alpha+\beta-n) / 2$ further pairs of arcs. Note that t is odd and $t>1$.

We first form the cycle of length β. Let $\ell=n-\beta$. If $t=3$, let

$$
\vec{C}_{\beta}=(0, \ell+3, \ell+4, \ell+1, \ell+2, \ell+5, \ell+6, \ell+7, \ldots, n-1) .
$$

Otherwise, we build \vec{C}_{β} by concatenating directed paths. Let

$$
P=[0, \ell+3, \ell+4, \ell+1, \ell+2] .
$$

For each $i=0,1, \ldots,(t-5) / 2$, let

$$
P_{i}=[\ell+4 i+2, \ell+4 i+7, \ell+4 i+8, \ell+4 i+5, \ell+4 i+6] .
$$

Note that:

- The initial vertex of P_{0} is $\ell+2$, the terminal vertex of P.
- For each $i=1,2, \ldots,(t-5) / 2$, the terminal vertex of P_{i-1} and the initial vertex of P_{i} coincide. Moreover, the paths $P, P_{0}, P_{1}, \ldots, P_{(t-5) / 2}$ are pairwise internally vertex-disjoint, so that the concatenation $P P_{0} P_{1} \cdots P_{(t-5) / 2}$ is a path.
- Each P_{i} and P uses two arcs of \vec{C} and two other arcs. In total, these paths contain $(t-1) \operatorname{arcs}$ of \vec{C} and decouple $(t-1)$ further arcs.

Next let $Q=[\ell+2 t-4, \ell+2 t-1]$. Note that the initial vertex of Q is the terminal vertex of $P_{(t-5) / 2}$, and the terminal vertex of Q is $\ell+2 t-1=\alpha-1 \leqslant n-1$, which has not occurred in any of the paths so far. Finally, let $Q^{\prime}=[\ell+2 t-1, \ell+2 t, \ldots, \ell+2 t-1+(n-2 t-\ell+1)]$. Since the terminal vertex of Q^{\prime} is $\ell+2 t-1+n-2 t-\ell+1=n=0$, it is now easy to see that the concatenation

$$
P P_{0} P_{1} \cdots P_{(t-5) / 2} Q Q^{\prime}
$$

forms a directed cycle of length

$$
4+4(t-3) / 2+1+(n-2 t-\ell+1)=n-\ell=\beta
$$

Figure 3: An illustration of the construction of Lemma 19. Here $\alpha=11, \beta=15$, $\gamma=16=n$.

It is not difficult to show that the remaining decoupled arcs form a cycle of length α; see Figure 3.

Lemma 20. Let M be an n-admissible list with associated canonical list $\hat{M}=(\alpha, \beta, \gamma)$. If $\alpha+\beta+\gamma>2(n+1), \alpha+\beta \equiv \gamma(\bmod 4)$ and $\gamma<n$, then K_{n}^{*} is M-decomposable.

Proof. First, note that $\alpha \geqslant 4$, as otherwise $2(n+1)<\alpha+\beta+\gamma \leqslant 3+\beta+(n-1)=\beta+n+2$, implying $\beta>n$. Let M^{\prime} be the $(n-1)$-admissible list with associated canonical list $\hat{M}^{\prime}=(\alpha-1, \beta-1, \gamma)$.

Since $\alpha+\beta+\gamma>2(n+1)$, we have that $(\alpha-1)+(\beta-1)+\gamma>2 n$, and so by Lemma $19, K_{n-1}^{*}$ is M^{\prime}-decomposable. Consider the cycles $\vec{C}_{\alpha-1}, \vec{C}_{\beta-1}$ and \vec{C}_{γ} in the decomposition constructed by Lemma 19. It is easy to see that there exist arcs $x y$ and $y x$ with $x y \in \vec{C}_{\alpha-1}$ and $y x \in \vec{C}_{\beta-1}$. Add a new vertex z, and replace arcs $x y$ and $y x$ with directed paths $x z y$ and $y z x$. We thus obtain three cycles of lengths α, β and γ in K_{n}^{*} which between them leave no arc decoupled. The result follows by Lemma 12.

Note that the conditions of Lemma 20 require that the largest cycle be nonHamiltonian. Indeed, if $\gamma=n$ but all other conditions remain the same as those of Lemma 20, no M-decomposition exists. To prove this result, we will exploit a connection between an M-decomposition with $\hat{M}=(\alpha, \beta, n)$ and perfect 1 -factorizations, which we now define.

Definition 21. A 1-factorization \mathcal{F} of a graph G is a perfect 1 -factorization if, for any two 1-factors F_{1} and F_{2} in $\mathcal{F}, F_{1} \cup F_{2}$ is a Hamiltonian cycle.

We will need the following result on perfect 1-factorizations of cubic bipartite graphs, due to Kotzig and Labelle [7].

Lemma 22 ([7]). Let G be a cubic bipartite graph with bipartition (X, Y), where $|X|=$ $|Y|=t$. If G admits a perfect 1-factorization, then t is odd.

Lemma 23. Let M be an n-admissible list with associated canonical list $\hat{M}=(\alpha, \beta, n)$. If $\alpha+\beta+n>2(n+1)($ i.e. $\alpha+\beta>n+2)$ and $\alpha+\beta \equiv n(\bmod 4)$, then K_{n}^{*} is not M-decomposable.
Proof. Suppose that such a decomposition exists, and let $\vec{C}=(n-1, n-2, \ldots, 1,0)$ be the directed n-cycle in the decomposition. Colour the edges of the directed α-cycle green and those of the directed β-cycle red, and without loss of generality, suppose that the arc 01 is green. Note that each arc of $\overleftarrow{C}=(0,1, \ldots, n-1)$, the reversal of \vec{C}, must be coloured green or red; in fact, \overleftarrow{C} is partitioned into an equal number of green and red directed paths, say $G_{0}, G_{1}, \ldots, G_{t-1}$ and $R_{0}, R_{1}, \ldots, R_{t-1}$, where the green path G_{i} has initial and terminal vertices x_{i} and y_{i}, and the red path R_{i} has initial and terminal vertices y_{i} and x_{i+1} (where $x_{t+1}=x_{0}$), and $t=\frac{1}{2}(\alpha+\beta-n)$ is the number of edges of K_{n}^{*} which are in the cycles of length α and β but not in \overleftarrow{C}.

We form a bipartite graph B with partite sets $\left\{x_{0}, x_{1}, \ldots, x_{t-1}\right\}$ and $\left\{y_{0}, y_{1}, \ldots, y_{t-1}\right\}$ as follows. For $i=0,1, \ldots, t-1$, we join x_{i} to y_{i}, forming a 1 -factor F_{1} of B, and y_{i} to x_{i+1} (computing subscripts modulo t), forming a second 1-factor F_{2} of B. Also, join y_{i} to x_{j}, where $y_{i} x_{j}$ is an arc of the green cycle; these edges form a third 1-factor F_{3} of B. Note that $j \neq i+1$, as otherwise the α-cycle in the decomposition must be $\left(y_{i}, y_{i}+1, \ldots, y_{i+1}\right)$, implying $t=1$ and hence $\alpha+\beta-n=2 \equiv 2(\bmod 4)$. An example of the α - and β-cycles together with the associated cubic bipartite graph can be found in Figure 4.

Figure 4: Directed α - and β-cycles together with the associated cubic bipartite graph
It is clear that B is a cubic bipartite graph. We show that $\left\{F_{1}, F_{2}, F_{3}\right\}$ is a perfect 1-factorization of B. First, notice that $F_{1} \cup F_{2}$ induces the Hamiltonian cycle $\left(x_{0}, y_{0}, x_{1}, y_{1}, \ldots, x_{t-1}, y_{t-1}\right)$. Next, consider the green α-cycle in the decomposition. Replacing the arcs of each G_{i} with a single arc $x_{i} y_{i}$ and disregarding direction, we obtain a cycle whose edges correspond to those of F_{1} and F_{3}, and so $F_{1} \cup F_{3}$ induces a Hamiltonian cycle in B. In a similar way, looking at the red β-cycle shows that $F_{2} \cup F_{3}$ induces a Hamiltonian cycle in B.

By Lemma 22, the existence of a perfect 1-factorization of B implies that t is odd, contradicting the fact that $\alpha+\beta-n \equiv 0(\bmod 4)$.

Summarizing the results of this section, we have the following complete result for canonical lists of size at most three.

Theorem 24. Let $M=(2,2, \ldots, 2, \alpha, \beta, \gamma)$, where $2<\alpha \leqslant \beta \leqslant \gamma \leqslant n$. The complete symmetric digraph K_{n}^{*} is M-decomposable if and only if M is n-admissible and it is not the case that $\alpha+\beta>n+2, \gamma=n$ and $\alpha+\beta \equiv n(\bmod 4)$.

One immediate consequence is the following result regarding cycle decomposition of certain 3-regular digraphs.

Corollary 25. Let $\alpha, \beta, \gamma \geqslant 3$ be integers with $\alpha+\beta>\gamma+2$ and $\alpha+\beta \equiv \gamma(\bmod 4)$. If G is a 3-regular graph with γ vertices and $(\alpha+\beta+\gamma) / 2$ edges, then G^{*} is not (α, β, γ) decomposable.

4 Conclusion

In this paper, we have made progress on the problem of decomposing a complete symmetric digraph into cycles of given lengths. Theorem 16 shows that if the greatest cycle length
and the number of 2 -cycles in an n-admissible list M are both large enough, then K_{n}^{*} admits an M-decomposition.

In the case that there are at most three cycles of length greater than 2 , we have given a complete solution (Theorem 24). Notably, there is a family of n-admissible lists M, namely those with $\hat{M}=(\alpha, \beta, n)$ where $\alpha+\beta>n+2$ and $\alpha+\beta \equiv n(\bmod 4)$, for which $2 K_{n}$ is decomposable but K_{n}^{*} is not. This result implies that no cubic graph G of order n exists such that G^{*} is decomposable into three cycles of lengths α, β and n, where $\alpha+\beta>n+2$ and $\alpha+\beta \equiv n(\bmod 4)$. In particular, G^{*} has no Hamiltonian cycle decomposition if $n \equiv 0(\bmod 4)$.

The method used in this paper to show non-existence by constructing an auxiliary bipartite graph with a perfect 1 -factorization does not apply in general to canonical lists of size greater than three. It remains an interesting open question to determine if there are other infinite families of n-admissible lists M for which K_{n}^{*} is not M-decomposable. We have checked all n-admissible lists with $n \leqslant 13$ and have verified that the corresponding decompostions exist, except for those given by Lemma 23 and the decompositions corresponding to the canonical lists:

$$
\begin{aligned}
& n=4: \quad(4,4,4) ; \\
& n=5: \quad(4,4,5,5),(3,4,4,4,5),(3,3,3,3,3,5) ; \\
& n=6: \quad(3,3,3,3,3,3,3,3,3,3),(3,3,6,6,6,6),(4,6,6,6),(6,6,6,6,6),
\end{aligned}
$$

which do not exist. We conjecture that these are the only exceptions.

References

[1] B. Alspach. Research Problem 3. Discrete Math. 36 (1981), 333.
[2] B. Alspach and H. Gavlas. Cycle decompositions of K_{n} and $K_{n}-I$. J. Combin. Theory Ser. B 81 (2001), 77-99.
[3] B. Alspach, H. Gavlas, M. Šajna and H. Verrall. Cycle decompositions IV: complete directed graphs and fixed length directed cycles. J. Combin. Theory Ser. A 103 (2003), 165-208.
[4] D. Bryant, D. Horsley, B. Maenhaut and B.R. Smith. Decompositions of complete multigraphs into cycles of varying lengths. J. Combin. Theory Ser. B 129 (2018), 79-106.
[5] D. Bryant, D. Horsley and W. Pettersson. Cycle decompositions V: Complete graphs into cycles of arbitrary lengths. Proc. London Math. Soc. 108 (2014), 1153-1192.
[6] T.P. Kirkman. On a problem in combinations. Cambridge and Dublin Math J. 2 (1847), 191-204.
[7] A. Kotzig and J. Labelle. Strongly Hamiltonian graphs. Utilitas Math. 14 (1978), 99-116.
[8] E. Lucas. Récréations Mathématiques, Vol. II. Gauthier-Villars, Paris, 1892.
[9] M. Šajna. Cycle decompositions III: Complete graphs and fixed length cycles. J. Combin. Des. 10 (2002), 27-78.

[^0]: *Supported by NSERC Discovery Grant RGPIN-2019-04328.
 ${ }^{\dagger}$ Supported by NSERC Discovery Grant RGPIN-2016-04178.

