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Abstract

The order ideal Bn,2 of the Boolean lattice Bn consists of all subsets of size at
most 2. Let Fn,2 denote the poset refinement of Bn,2 induced by the rules: i < j
implies {i} ≺ {j} and {i, k} ≺ {j, k}. We give an elementary bijection from the
set Fn,2 of linear extensions of Fn,2 to the set of shifted standard Young tableau
of shape (n, n − 1, . . . , 1), which are counted by the strict-sense ballot numbers.
We find a more surprising result when considering the set F1

n,2 of minimal poset
refinements in which each singleton is comparable with all of the doubletons. We
show that F1

n,2 is in bijection with magog triangles, and therefore is equinumerous
with alternating sign matrices. We adopt our proof techniques to show that row
reversal of an alternating sign matrix corresponds to a natural involution on gog
triangles.

Mathematics Subject Classifications: 05A10, 05A15
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1 Introduction

1.1 Overview

The Boolean lattice Bn consists of subsets of [n] = {1, 2, . . . , n} ordered by inclusion.
The order ideal Bn,2 ⊂ Bn consists of all subsets of size at most 2. We investigate two
families of poset refinements of the Boolean lattice Bn,2. The first family is in bijection
with shifted standard Young tableau of staircase shape (n, n − 1, . . . , 1). The second
family is in bijection with magog triangles. We assume familiarity with standard notions
from poset theory, as found in Chapter 3 of Stanley [30]; a helpful collection of poset
terminology is found in Section 1.3.1 below.

Define Fn,2 to be the poset refinement of Bn,2 where we add the relations

(R1) {i} ≺ {k} if and only if i < k.

(R2) If i < j and k < ` then

{i, j} ≺ {k, `} if and only if (i < k and j 6 `) or (i 6 k and j < `).

Transitivity of the set inclusion relation {i} ≺ {i, j} and (R2) yields the relation

{i} ≺ {k, `} if and only if i < min{k, `}.

The Hasse diagrams for Bn,2 and Fn,2 are shown in Figure 1.

B4,2
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3121 41 32 42 43
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Figure 1: Hasse diagrams for the order ideal Bn,2 and the de Finetti lattice Fn,2. The sets
{i} and {j, k} are denoted by i and jk where j > k.

It is straightforward to confirm that the poset Fn,2 is a distributive lattice. First, we
show every pair of subsets x, y ∈ Fn,2 has a meet (greatest lower bound) x ∧ y and a join
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(least upper bound) x ∨ y. For j > i and ` > k, we have

{j} ∧ {`} = {min{j, `}}, {j} ∨ {`} = {max{j, `}},
{j} ∧ {`, k} = {min{j, `}}, {j} ∨ {`, k} = {max{j, `}, k},
{j, i} ∧ {`, k} = {min{j, `},min{i, k}}, {j, i} ∨ {`, k} = {max{j, `},max{i, k}}.

Note that if we identify {j} with {j, 0} and {`} with {`, 0}, then the meet and join rules
for doubleton pairs imply the other rules. Moreover, it then becomes easy to confirm that
Fn,2 is a distributive lattice: x∨(y∧z) = (x∨y)∧(x∨z) and x∧(y∨z) = (x∧y)∨(x∧z).

We refer to Fn,2 as the de Finetti lattice; the origin of this name will be illuminated
in Section 1.2 below. We resolve two questions concerning families of poset refinements
of Fn,2.

Definition 1. The set Fn,2 is the collection of linear extensions of Fn,2.

We give a simple bijection between the total orders in Fn,2 and shifted standard Young
tableau (shifted SYT) of shape (n, n− 1, . . . , 1), see OEIS A003121 [29]. In these shifted
SYT of staircase shape, the first box in row i > 1 is located below the second box of row
i − 1. The integers 1, 2, . . . , n(n + 1)/2 are arranged in the boxes so that the rows and
the columns are both increasing. These are equinumerous with the number of strict-sense
ballots with n candidates, where candidate k receives k votes, and during the vote count,
candidate k always leads candidate ` for n > k > ` > 1, see [3]. The strict-sense ballot
number sequence begins with

1, 1, 2, 12, 286, 33592, 23178480, . . .

and the general formula for the nth strict-sense ballot number is(
n+ 1

2

)
!

∏n−1
k=1 k!∏n

k=1(2k − 1)!
.

The proof of the following proposition appears in Section 2.

Proposition 2. The set Fn,2 is in bijection with shifted standard Young tableaux of shape
(n, n− 1, . . . , 1). Therefore Fn,2 is enumerated by the strict-sense ballot numbers.

Our second family of poset refinements is less conventional.

Definition 3. The set F1
n,2 is the collection of poset refinements of Fn,2 that are induced

by resolving all disjoint pairs of the form {i}, {k, `}.

The seven posets in F1
4,2 are shown in Figure 2. Two of these posets are linear ex-

tensions. In the remaining five refinements, the doubletons 41 and 32 are incomparable.
There are two ways to resolve this relation: either 41 ≺ 32 or 32 ≺ 41. This accounts for
the 12 linear extensions in Fn,2, in accordance with Proposition 2. We prove the following
lemma in Section 1.2.

the electronic journal of combinatorics 28(1) (2021), #P1.38 3



∅

1

2

21

3

31

32

4

41

42

43

∅

1

2

3

21

31

32

4

41

42

43

∅

1

2

21

3

31

4

32 41

42

43

∅

1

2

3

21

31

4

32 41

42

43

∅

1

2

21

3

4

31

32 41

42

43

∅

1

2

3

21

4

31

32 41

42

43

∅

1

2

3

4

21

31

32 41

42

43

Figure 2: Hasse diagrams for the seven posets in F1
4,2.

Lemma 4. Every poset in F1
n,2 is a lattice.

Our main result is a bijection between F1
n,2 and magog triangles of size n − 1, see

OEIS A005130 [29]. Magog triangles are a family of triangular integer arrays which
are in bijection with totally symmetric self-complimentary plane partitions (TSSCPPs).
Their counterpart gog triangles are in bijection with alternating sign matrices (ASMs).
Gog and magog triangles were instrumental to Zeilberger’s famous proof that ASMs are
equinumerous with TSSCPPs [36]. The first numbers in this sequence are

1, 2, 7, 42, 429, 7436, 218348, . . .

and the general formula is
n−1∏
k=0

(3k + 1)!

(n+ k)!
. (1)

We useMn and Gn to denote the respective families of magog triangles and gog triangles
of size n. Here is our main theorem, which we prove in Section 3.

Theorem 5. The family F1
n,2 of de Finetti refinements of the lattice Fn,2 is in bijection

with the family Mn−1 of magog triangles of size n− 1.

We make two remarks about our proof of Theorem 5. First, our bijection makes use
of a new triangular family that is in bijection with magog triangles, though we defer the
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description of these kagog triangles to Section 3.1. Second, we view these triangular arrays
of positive integers as pyramids of cubes colored gray and white, adhering to appropriate
stacking rules. This geometric viewpoint is essential to our proof, which employs an affine
transformation and a color inversion to turn a kagog pyramid into a magog pyramid.

This two-color cube pyramid model may be useful to others interested in studying
the enigmatic relationship between ASMs and TSSCPPs. As an example of its potential
utility, we prove the following theorem in Section 4.

Theorem 6. Reversing the order of the rows of n × n ASMs induces an involution on
gog triangles Gn. The corresponding involution on two-color cube pyramids reverses the
cube coloring and performs a rigid transformation of the pyramid.

1.2 De Finetti Lattices

In this section, we motivate the study of Fn,2 and its poset refinements. We also prove
Lemma 4. In various settings, (including probability, computational algebra, and social
choice theory) researchers have investigated total orders of the power set P([n]) satisfying
the following two conditions:

(F1) ∅ ≺ {1} ≺ {2} ≺ . . . ≺ {n}, and

(F2) X ≺ Y if and only if X ∪ Z ≺ Y ∪ Z for all Z ⊂ [n] such that (X ∪ Y ) ∩ Z = ∅.

Condition (F1) is the canonical ordering of the singleton sets. Condition (F2) is de
Finetti’s axiom [12], which was first formulated in a probabilistic setting. This axiom can
be restated as: A ≺ B if and only if A\B ≺ B\A. Intuitively, condition (F2) states that
when we have comparable sets, adding the same element (or elements) to both sets will not
change the comparison. For n > 3, conditions (F1) and (F2) do not completely determine
a total order; for example, we cannot deduce whether {1, 2} ≺ {3} or {3} ≺ {1, 2} from
these first principles.

We make two observations about total orders satisfying these conditions. First, in-
duction on |B\A| shows that if A ( B then A ≺ B. Second, another simple induction
proof confirms that if xi 6 yi for 1 6 i 6 k then (F1) and (F2) lead to the (intuitive)
conclusion that {x1, x2, . . . , xk} � {y1, y2, . . . , yk}, where equality holds only when these
sets are identical. In summary, we have a linear extension of the Boolean lattice that also
extends the standard ordering on the integers [n] to an ordering of the subsets of [n].

Total orders of P([n]) satisfying (F1) and (F2) appear under various names, including
comparative probability orders, Boolean term orders, and completely separable preference
orders, see OEIS A005806 [29]. Each of these names reflects the application setting rather
than the defining properties of the total order. Therefore, we opt for the generic name de
Finetti total order, paying homage to de Finetti’s axiom. Furthermore, there is no harm
in starting with the Boolean lattice Bn rather than the set P([n]), since the set inclusion
relations are enforced by (F1) and (F2).
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Definition 7. A de Finetti refinement (E,≺E) of the Boolean lattice (Bn,≺) is a poset
refinement that adheres to (F1) and to (F2) for all sets X, Y ⊂ [n] that are comparable
in E. A de Finetti total order is a linear extension of Bn that adheres to (F1) and (F2).
The collection of de Finetti total orders of Bn is denoted Fn.

Note that (F2) does not require that all pairs X and Y are comparable, but when they
are, the sets X ∪ Z and Y ∪ Z are also comparable, as are X\Y and Y \X. The number
|Fn| of de Finetti total orders for 1 6 n 6 7 is

1, 1, 2, 14, 546, 169444, 560043206

but there is still no known general formula. Enumerations of the 14 de Finetti total orders
for n = 4 can be found in [17, 6, 11]. This current work germinated while studying de
Finetti total orders: we restricted our attention to the order ideal Bn,2 ⊂ Bn of subsets
of size at most 2, and then considered the poset refinements of Bn,2 that adhere to (F1)
and (F2).

Definition 8. A de Finetti refinement (E2,≺E2) of the order ideal (Bn,2,≺) is a poset
refinement that adheres to (F1) and to (F2) for all sets X, Y that are comparable in E2.

When restricting ourselves to Bn,2, the conditions (F1) and (F2) simplify to the set
inclusion relations (as noted above) plus the relations (R1) and (R2) from Section 1.1.
Indeed, (F1) clearly implies (R1). As for (R2), let i < j and k < `. If i < k and j 6 `
then {i, j} ≺ {k, j} � {k, `}, so {i, j} ≺ {k, `} by transitivity. The case i 6 k and j < `
proceeds similarly.

Having made this connection, we relate the results in Section 1.1 to de Finetti re-
finements. First, we now recognize the lattice Fn,2 as the unique minimal de Finetti
refinement of Bn,2. Any de Finetti refinement of Bn,2 must adhere to conditions (R1) and
(R2), so it must contain the lattice Fn,2. Second, any valid poset refinement of Fn,2 is
automatically a de Finetti refinement. The incomparable pairs X, Y of Fn,2 are disjoint
and at least one must be a doubleton set, so Z = ∅ is the only allowed choice in (F2).

Let us revisit Fn,2 and F1
n,2 in light of this observation. We can now see that the

collection Fn,2 of linear extensions of Fn,2 is also the collection of de Finetti total orders
of Bn,2. Likewise, the refinements of F1

n,2 are de Finetti refinements of Bn,2. As an aside,
we find it useful to view F1

n,2 as the collection of minimal de Finetti refinements of Bn,2

among those in which the singleton sets are comparable with all other elements.
We now prove Lemma 4: each poset refinement in F1

n,2 is a lattice.

Proof of Lemma 4. Consider any pair of elements x, y ∈ Fn,2. Since Fn,2 is a lattice, these
elements have least upper bound x ∨ y, and greatest lower bound x ∧ y in Fn,2.

Let (P,≺P ) ∈ F1
n,2. Since (P,≺P ) is a refinement of (Fn,2,≺), we know that x ∨ y is

still an upper bound of x and y in P and that that x∧ y is still a lower bound of x and y
in P .

We must show x, y have a least upper bound x∨P y and a greatest lower bound x∧P y
in P . If at least one of x, y is a singleton set, then x and y are comparable in P , which
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means that x ∨P y = max{x, y} and x ∧P y = min{x, y}. So we now assume that both x
and y are doubleton sets.

Let us prove that x and y have a least upper bound in P . Assume for the sake of
contradiction that z ∈ P is a minimal x, y upper bound that is incomparable with x ∨ y
in P . Recall that the empty set and the singleton sets are comparable with every element
in P , so both z and x∨y must be doubleton sets. Furthermore, z is an upper bound of at
most one of x and y in Fn,2: otherwise x ∨ y ≺ z in Fn,2 and therefore x ∨ y ≺P z. There
are two cases.

First, suppose that z is Fn,2-incomparable with both x and y. Recall that the addi-
tional comparisons in P are induced by resolving disjoint pairs {i}, {j, k}. In order to
be comparable in P , there must be singletons s1, s2 (not necessarily distinct) such that
x ≺P s1 ≺P z and y ≺P s2 ≺P z in P . Without loss of generality, s1 6 s2, which means
that s2 is an x, y upper bound in P and s2 ≺P z. This contradicts the minimality of z.

Second, suppose (without loss of generality) that x ≺ z in Fn,2 while y and z are
Fn,2-incomparable. Analogous to the previous case, there must be a singleton s such that
y ≺P s ≺P z. Now, if x ≺P s then s is an x, y upper bound in P , contradicting the
minimality of z. Otherwise, s ≺P x which means that x = x ∨P y, which also contradicts
the minimality of z.

The doubletons x, y also have a greatest lower bound in P : this proof is entirely
parallel to the least upper bound proof.

This concludes our motivation for studying Fn,2 and F1
n,2. Given our success at charac-

terizing these refinements of Bn,2, it is natural to formulate analogous research questions
for de Finetti refinements of Bn,m. We defer those formulations to our concluding section.

1.3 Related Work

1.3.1 The Boolean Lattice

A partially ordered set (or poset for short) consists of a set P and a binary relation �
that is reflexive (x � x), antisymmetric (if x � y and y � x then x = y) and transitive (if
x � y and y � z then x � z). An order ideal is a subset I ⊂ P that is downward-closed:
if x ∈ I and y � x then y ∈ I. A lattice is a poset such that every pair of elements have
a least upper bound and a greatest lower bound. We obtain a refinement of a poset P by
adding relations between pairs of incomparable elements of P . A total order is a poset in
which every pair of elements is comparable. A linear extension of a poset P is a refinement
of P that is a total order (equivalently: a linear extension is an order-preserving bijection
σ : P → [N ] where |P | = N). See Chapter 3 of Stanley [30] for an introduction to posets
and lattices.

For a poset P , let L(P ) denote the set of linear extensions of P . Brightwell and Tetali
[9] determined an accurate asymptotic formula for |L(Bn)|, improving on work of Sha
and Kleitman [27]. The value of |L(Bn)| is known for 1 6 n 6 7, see OEIS A046873 [29].
The n = 7 case was recently determined by Brower and Christensen [10] using machinery
developed to study the game of Chomp played on the Boolean lattice. Pruesse and Ruskey
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[26] introduced the linear extension graph G(Bn) whose vertex set is L(Bn) and whose
edge set consists of pairs of linear extensions that differ by a single adjacent transposition.
Felsner and Massow [13] determined the diameter of G(Bn).

Researchers have also studied linear extensions of subposets of Bn, including the order
ideal Bn,m of subsets of size at most m. Fink and Gregor [15] determined the linear
extension diameter of the subposet B1,k

n of Bn that is induced by levels 1 and k. Brouwer
and Christensen [10] determined that

|L(Bn,2)| =
n!
((

n
2

)
+ n
)
!∏n

i=1

(
i n−

(
i
2

)) =

(
n+ 1

2

)
!

1∏n
i=1

(
n− i−1

2

)
and computed |L(Bn,3)| for n 6 7. Comparing this formula with our Proposition 2 shows
that n! · |Fn,2| = o(|L(Bn,2)|). In other words, the de Finetti linear extensions of Bn,2 are
exceptionally rare.

1.3.2 De Finetti Total Orders

The de Finetti total orders Fn are total orders of P([n]) that satisfy both (F1) and
(F2). These total orders appear in a variety of settings with names that reflect the
application at hand [14, 23, 6, 11]. In probability theory, the total orders in Fn are known
as comparative probability orders, and they enjoy applications in decision theory and
economics [21, 14, 16, 28]. A comparative probability order � is additively representable
when there is a probability measure p : [n] → [0, 1] that induces the order, namely
p(X) 6 p(Y ) if and only if X � Y .

In a more algebraic context, Maclagan [23] refered to total orders in Fn as Boolean term
orders and studied their combinatorial properties. Maclagan introduced a flip operation
between Boolean term orders, which consists of multiple (related) adjacent transpositions
so that (F2) still holds. The flip graph is the graph with vertex set Fn, where two orders
are adjacent when they differ by one flip. It is an open question whether the flip graph
is connected for n > 9. Christian et al. [11] further studied flippable pairs of orders and
their relation to the polytope of an additively representable order.

In social choice theory, these total orders are called completely separable preferences
[18, 6]. In this setting, de Finetti’s condition ensures that a voter’s preference for the
outcomes on a subset S ⊂ [n] of proposals is independent of the outcome of the proposals
in S. Hodge and TerHaar [20] showed that the number of de Finetti total orders satisfies
n!·|Fn| = o(L(Bn)). In fact, they proved the stronger condition that linear extensions with
at least one pair X, Y of proper nontrivial subsets satisfying condition (F2) are vanishingly
rare. Other research on separable preferences focuses on the admissibility problem: which
collection of subsets can occur as the collection of separable sets S, meaning that (F2)
holds for any subsets X, Y ⊂ S and any Z ⊂ S, see [20, 19, 4].

1.3.3 Gog Triangles and Magog Triangles

Theorem 2 establishes a bijection between the de Finetti refinements F1
n,2 and the magog

triangles Mn−1. This connects our poset refinement problem to the illustrious family of
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alternating sign matrices. See [7, 8], respectively, for a brief or an extended recounting of
the history of the famous alternating sign matrix conjecture. The magog trianglesMn are
in bijection with totally the symmetric self-complementary plane partitions (TSSCPP) in
a 2n×2n×2n box. Andrews [1] proved that the number of such TSSCPP is given by (1).
Meanwhile, gog triangles Gn are in bijection with n× n alternating sign matrices (ASM).
Zeilberger [36] proved that |Mn| = |Gn|, which confirmed that TSSCPPs and ASMs are
equinumerous. Kuperberg [22] later gave a more streamlined proof using the 6-vertex
model from statistical mechanics.

There are many combinatorial manifestations of the ASM sequence (1), see [8, 25]. A
natural bijective proof between TSSCPPs and ASMs (or equivalently, between magog and
gog triangles) remains elusive, though progress on subfamilies has been achieved [2, 5, 33].
Posets and triangular arrays of numbers (such as gog, magog and kagog triangles) con-
tinue to play an essential role in ASM and TSSCPP research. Terwilliger [34] describes a
poset refinement of the hypercube whose maximal chains are in bijection with alternating
sign matrices (and gog triangles). Striker [32] defined a tetrahedral poset Tn whose sub-
posets trace connections between TSSCPPs, ASMs and other combinatorial sequences. In
particular, Tn has one subposet whose order ideals can be described via families of trian-
gular arrays. The order ideals of one such subposet is in bijection with gog triangles (and
hence with ASMs). There are six distinct subposets whose order ideals (with associated
triangular families) are in bijection with magog triangles (and hence with TSSCPPs). We
note that our kagog triangles are not among the triangular families described in [32], so
the family of TSSCPP triangles continues to grow.

2 Shifted Standard Young Tableau of Staircase Shape and Fn,2

This brief section contains a proof of Proposition 2: we give a simple bijection between
Fn,2 and shifted standard Young tableaux (shifted SYT) of shape (n, n−1, . . . , 1). Figure
3 exemplifies the mapping for n = 4.

Proof of Proposition 2. To ease exposition, we identify the singleton {i} with the double-
ton {i, 0}. Ignore the set ∅ and lay out the lattice Fn,2 in a shifted staircase grid so that
row k contains the sets {i, k − 1} for k 6 i 6 n in increasing order. This grid induces a
shifted staircase Ferrers diagram (n, n− 1, . . . , 1) whose boxes are indexed the n(n+ 1)/2
nontrivial members of Fn,2.

Consider a total order E ∈ Fn,2. Place the integer ` in the box corresponding to the
`th set in total ordering E. The result is a shifted SYT of staircase shape: the rows and
columns of the resulting tableau are both increasing because the total ordering satisfies
properties (F1) and (F2) of Definition 7. This mapping is surjective: starting from a
shifted SYT, we can reverse the process to find a total order E ∈ Fn,2 that maps to
it.
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Figure 3: Mapping F4,2 to a shifted standard Young tableau. (a) The nontrivial sets in F4,2

laid out in a shifted staircase grid. (b) A de Finetti total order and (c) its corresponding
shifted standard Young tableau.

3 Kagog Triangles, Magog Triangles and F1
n,2

3.1 Overview

We outline the proof of Theorem 5, deferring the details to the subsections that follow. We
begin by defining the new family of kagog triangles. This name is a variant of Zeilberger’s
gog and magog terminology, and is meant to invoke their connection to magog triangles.

Definition 9. A kagog triangle K of index n is an array of nonnegative integers K(i, j)
such that

(K1) 1 6 j 6 i 6 n− 1, so the array is triangular;

(K2) 0 6 K(i, j) 6 j, so entries in column j are at most j;

(K3) K(i, j) > K(i+ 1, j), so columns are weakly decreasing; and

(K4) if K(i, j) > 0 then K(i, j + 1) > K(i, j), so rows can start with multiple zeros, but
then the positive values are strictly increasing.

We use Kn to denote the set of kagog triangles of index n.

The elements of K3 are

1
1 2

1
0 2

1
0 1

1
0 0

0
0 2

0
0 1

0
0 0

. (2)

Note that a kagog triangle of index n only has n−1 rows and columns. Our first theorem
connects kagog triangles Kn−1 to the poset refinements F1

n,2.

Theorem 10. The set of de Finetti refinements F1
n,2 is in bijection with the set of kagog

triangles Kn−1.
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Next, we turn our attention to the well-known family of magog triangles, which are in
bijection with TSSCPPs.

Definition 11. A magog triangle M of size n is an array of positive integers M(i, j)
where

(M1) 1 6 j 6 i 6 n, so the array is triangular;

(M2) 1 6M(i, j) 6 j, so entries in column j are at most j;

(M3) M(i, j) 6M(i+ 1, j), so columns are weakly increasing; and

(M4) M(i, j) 6M(i, j + 1), so rows are weakly increasing.

We use Mn to denote the set of magog triangles of size n.

When a magog triangle is viewed as a Gelfand-Tsetlin triangle of positive integers,
conditions (M2) and (M4) are replaced by M(j, j) 6 j and M(i, j) 6 M(i + 1, j + 1),
respectively. The elements of M3 are

1
1 1
1 1 1

1
1 1
1 1 2

1
1 1
1 2 2

1
1 2
1 2 2

1
1 1
1 1 3

1
1 1
1 2 3

1
1 2
1 2 3

. (3)

Our second theorem addresses a duality between kagog triangles Kn and magog triangles
Mn.

Theorem 12. The set of magog trianglesMn is in bijection with the set of kagog triangles
Kn.

The magog triangles listed in (3) are ordered so that that they biject to the kagog
triangles in (2). Also, note that we have chosen to left-justify our triangles (they are often
presented using center alignment). This layout choice simplifies our geometric arguments.
The key to proving Theorem 12 is to convert each of these triangles into a pyramid of
stacked cubes, colored gray or white, so that gray cubes cannot appear above white cubes.
We offer a generic definition for pyramid construction, which applies to any family Tn of
triangular arrays that form a distributive lattice using the natural partial ordering T1 ≺ T2
whenever T1(i, j) 6 T2(i, j) for 1 6 j 6 i 6 n. This includes magog triangles Mn and
kagog triangles Kn, as well as gog triangles Gn (defined in Section 4 below).

Definition 13. Let Tn be a finite distributive lattice of triangular arrays of positive
integers T = T (i, j) where 1 6 j 6 i 6 n with minimal triangle Tmin and maximal triangle
Tmax. Define 4T to be the two-color pyramid of cubes (i, j, k) where 1 6 i 6 j 6 n and
1 6 k 6 Tmax(i, j) where the tower of cubes at (i, j) consists of T (i, j) white cubes below
Tmax(i, j) − T (i, j) gray cubes. Define 4Tn = {4T : T ∈ Tn} to be the collection of
two-color pyramids.
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Figure 4: The two-color pyramids from 4M3, sliced into horizontal layers. The shadow
of each layer is thickly drawn on the layer below. The pyramids are drawn using a right-
handed coordinate system with the positive x-axis pointing out of the page.

Figure 4 shows the seven magog pyramids, listed in the same order as in (3). To
facilitate visualization, the pyramids have been sliced into layers of equal height. This
two-color pyramid mapping is a variation of the standard interpretation triangular array
T as a stack of cubes where the tower at (i, j) has height T (i, j). Indeed, we can view
the white cubes as present and the gray cubes as absent. In our proof, tracking the
absent cubes is essential, so the two-color pyramids are more illuminating. Intuitively,
the bijection from magog triangles to kagog triangles corresponds to removing the bottom
layer of the magog pyramid, then swapping the colors of the cubes and finally performing
an appropriate affine transformation.

Proof of Theorem 5. Follows immediately from Theorem 10 and Theorem 12.

We prove Theorem 10 and Theorem 12 in the next two subsections.

3.2 The bijection from F1
n,2 to Kn−1

In this subsection, we prove Theorem 10. Figure 5 shows the de Finetti lattice Fn,2 for
n = 3, 4, 5 and also indicates the sublattice

Ik = {{j, i} : 1 6 i < j < k} (4)

of doubletons that are incomparable with singleton {k}.
For k > 3, let Φ(Ik) be the collection of de Finetti refinements of Ik ∪ {k} for which

the singleton {k} is comparable with every doubleton of Ik (and no additional extraneous
relations). When we restrict a poset refinement E ∈ F1

n,2 to the set Ik ∪ {k}, we obtain
some Ek ∈ Φ(Ik). Similarly, we can induce a unique poset refinement E of Fn,2 from a
list (E3, E4, . . . , En) where Ek ∈ Φ(Ik). We will have E ∈ F1

n,2 provided that the union of
these orderings does not violate de Finetti’s condition (F2). Figure 6 gives an example of
a poset refinement E ∈ F1

n,2 and its collection of Ek ∈ Φ(Ik).
Our bijection from the poset refinements of Fn,2 in F1

n,2 to the kagog triangles in Kn−1
proceeds as follows. Given a de Finetti refinement E ∈ F1

n,2, we create the corresponding
list (E3, . . . En) where Ek ∈ Φ(Ik). We then map refinement E to a kagog triangle K ∈
Kn−1 so that refinement Ej maps to row j − 2 of triangle K for 3 6 j 6 n. The row
constraint (K3) of the kagog triangle will correspond to the internal structure of each Ek.
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I3

∅
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31
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n = 3

I4
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n = 4

I5

∅
1

2

3

4

5

21

31

41

51

32

42

52 43

53

54

n = 5

Figure 5: The lattice Fn,2 induced by 1 ≺ 2 ≺ · · · ≺ n and de Finetti’s condition for
n = 3, 4, 5. The set In contains the doubletons whose comparison with the singleton n is
not determined by de Finetti’s condition.

∅
1

2

21

3

31

4

41

5

51

32

42

52 43

53

54

E

21

31

41 32

5

42

43

E5

21

31

4

32

E4

21

3 E3

(a) (b)

Figure 6: (a) A poset refinement E ∈ F1
5,2. Each singleton is comparable with every other

set. (b) The subposets E3, E4 and E5 of E.
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The column constraint (K2) of the kagog triangle will correspond to having singleton de
Finetti refinements (E3, E4, . . . , En) whose union also abides by de Finetti’s condition.

We begin by introducing a convenient k-list version of the power set P([k]). Let

L([k]) =
{

(0, . . . , 0︸ ︷︷ ︸
k−j

, s1, s2, . . . , sj) : 0 6 j 6 k and 1 6 s1 < s2 < · · · < sj 6 k
}

be the set of k-lists produced by listing the elements of S ⊂ [k] in increasing order and
then prepending k − |S| zeros.

Lemma 14. Each row 1 6 k 6 n− 1 of a kagog triangle in Kn is an element of L([k]).

Proof. The constraint (K4) on row k of a kagog triangle in Kn is identical to the conditions
on a list in L([k]).

Lemma 15. For n > 3, Φ(In) is in bijection with L([n− 2]).

Let us build some intuition with two examples. First, we consider refinements in Φ(I5).
We must determine the comparisons of the singleton {5} with the doubletons in the lattice
I5. By interweaving empty boxes among the doubletons, we obtain the template

2 41 2 42 2 43 2

2 31 2 32 2

2 21 2

←→

where omitting the doubletons gives the Ferrers diagram for the integer partition (4, 3, 2).
Specifying the comparisons with singleton {5} is equivalent to placing a dot in each row
of (4, 3, 2). Looking only at the top row, placing a 5 in the first box

•

means that 5 ≺ 41. This puts no further de Finetti restrictions on the remaining two
rows. The four ways to complete this configuration are

•
•
•

•
•
•

•
•
•

•
•
•

which correspond to the respective comparisons

5 ≺ 21 21 ≺ 5 ≺ 31 31 ≺ 5 ≺ 32 32 ≺ 5 ≺ 41.

Our final step is to count the boxes to the right of these dots, starting from the bottom
row and moving up. This results in the lists (1, 2, 3), (0, 2, 3), (0, 1, 3) and (0, 0, 3) from
L([3]).

Next, we consider refinements in Φ(I7). Specifying the comparisons of singleton {7}
with the doubletons in I7 is equivalent to placing a dot in each row of the integer partition
(6, 5, 4, 3, 2). Suppose that we place a 7 in the third box of the first row, corresponding
to 62 ≺ 7 ≺ 63. Now de Finetti’s condition leads to 21 ≺ 32 ≺ 42 ≺ 52 ≺ 62 ≺ 7, which
yields the partially filled diagram
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•

•
•

which contains a shifted copy of partition (3, 2) whose rows must each be assigned a dot.
This can be done in four ways, and counting the boxes to the right of the dots gives the
lists (0, 0, 1, 2, 3), (0, 0, 0, 2, 3), (0, 0, 0, 1, 3) and (0, 0, 0, 0, 3) from L([5]). We now prove
Lemma 15 by strong induction.

λn−1

(a)

λn−k−1

(c) (c)

Figure 7: (a) The Ferrers diagram λn−1 = (n− 1, n− 2, . . . , 2) for ordering singleton {n}
with the doubletons. (b) When {n − 1, k − 1} ≺ n ≺ {n − 1, k}, we place a dot in the
kth position. This places de Finetti restrictions on the remaining rows. Completing the
order is equivalent to choosing an order inside template λn−k−1. (c) Counting the boxes
to the right of the dots gives the subset {6, 4, 2, 1} ⊂ [n− 2].

Proof of Lemma 15. We recursively define the bijection f : Φ(In)→ L([n−2]). For n = 3,
we map the ordering with 21 ≺ 3 to the list (0) and the ordering with 3 ≺ 21 to the list
(1). Assume that we have specified the bijection f : Φ(I`)→ L([`− 2]) for 2 6 ` < n. We
determine the image of a refinement E ∈ Φ(In). As in the above examples, we represent
E by placing a dot in each row of the Ferrers diagram λn−1 = (n − 1, n − 2, . . . , 2), see
Figure 7(a). Our target list in L ∈ L([n − 2]) will be obtained by counting the boxes to
the right of the dot in each row.

Placing a dot in position 1 6 k 6 n− 1 of the first row of the template

2 {n− 1, 1} 2 {n− 1, 2} 2 · · · 2 {n− 1, n− 3} 2 {n− 1, n− 2} 2

resolves the ordering of singleton {n} with the doubletons {n− 1, j} for 1 6 j 6 n− 2. If
k = 1 then {n} ≺ {n− 1, 1}; if 1 < k < n− 1 then {n− 1, k− 1} ≺ {n} ≺ {n− 1, k}; and
if k = n− 1 then {n− 1, n− 2} ≺ {n}. Condition (F2) puts constraints on the remaining
rows. For rows 2 6 i 6 n − k − 1, we must place n in position k or higher. For rows
i > n − k − 1, we must place n in the rightmost (diagonal) position. Therefore, we can
restrict our attention to rows 2 6 i 6 n− k − 1 and positions k 6 j 6 n− 2. But this is
simply a translation of the mapping f : Φ(In−k) → L([n − k − 2]) via a copy of λn−k−1,
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see Figure 7(b). Let (a1, a2, . . . , an−k−2) ∈ L([n − k − 2]) be the image of this mapping.
Noting that an−k−2 6 n− k − 2, we set

f(E) = (0, . . . , 0︸ ︷︷ ︸
k

, a1, a2, . . . , an−k−2, n− k − 1).

The values in this list are the number of boxes to the right of the dots in Figure 7(c),
when ordered from bottom to top.

We can now prove that the set of de Finetti refinements F1
n,2 is in bijection with the

set of kagog triangles Kn−1.

Proof of Theorem 10. Let E ∈ F1
n,2 be a de Finetti refinement of Fn,2 so that every

singleton is universally comparable in E. Consider (E3, E4, . . . , En) where Ek ∈ Φ(Ik) is
the poset refinement of Ik ∪ {k} induced by E. Create a triangular array T = T (i, j) for
1 6 j 6 i 6 n− 2 by applying the mapping f from Lemma 15 to each element in this list
of refinements, using the indexing convention

f(Ek) =
(
T (k − 2, 1), T (k − 2, 2), · · · , T (k − 2, k − 2)

)
, 3 6 k 6 n.

By Lemma 15, each row satisfies the kagog row constraint. Meanwhile, the refinement
E satisfies de Finetti’s condition (F2). In particular, for any 1 6 i < j < k 6 n, if
{k} ≺ {j, i} then {k−1} ≺ {j, i}. In terms of triangle T , this means that T (k−2, n−j) >
T (k − 3, n − j). For 2 6 j 6 n − 1, this is precisely the contraint that column n − k of
a kagog triangle must be weakly decreasing constraint on column. Column n − 1 has a
single entry, so the final column is (vacuously) weakly increasing.

3.3 The bijection from Mn to Kn

We now prove Theorem 12. Recall that each triangular family Tn forms a distributive
lattice and that Definition 13 constructs two-color pyramids in relation to the maximum
and minimum triangle of Tn.

The minimum magog triangle has Mmin(i, j) = 1 for every entry (i, j) and the maxi-
mum magog triangle has Mmax(i, j) = j for every entry (i, j). Our first transformation is
to subtract Mmin from each magog triangle. The rightmost column becomes all-zero, so
we omit it and reindex. This leads to the family of omagog triangles (short for “zeroed-
magog” triangles).

Definition 16. An omagog triangle M◦ of index n is an array of nonnegative integers
M◦(i, j) such that

(OM1) 1 6 j 6 i 6 n− 1, so the array is triangular

(OM2) M◦(i, j) 6 j, so the entries in column k are at most j;

(OM3) M◦(i, j) 6M◦(i+ 1, j), so columns are weakly increasing; and
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(OM4) M◦(i, j) 6M◦(i, j + 1), so rows are weakly increasing.

We use M◦
n to denote the set of all omagog triangles of index n.

The set M◦
3 appears in Figure 8, with elements ordered so that they biject to the

magog triangles of (3). The minimum omagog triangle satisfies M◦
min(i, j) = 0 and the

maximum omagog triangle satisfies M◦
max(i, j) = j for all entries (i, j).

0
0 0

0
0 1

0
1 1

1
1 1

0
0 2

0
1 2

1
1 2

Figure 8: The omagog triangles M◦
3 and the corresponding two-color omagog pyramids

4M◦
3, drawn using a right-handed coordinate system. The pyramids are sliced into

horizontal layers. The shadow of a layer is thickly drawn on the layer below.

Proof of Theorem 12. We create a bijection ψ from omagog pyramids 4M◦
n to kagog

pyramids 4Kn via a sequence of elementary transformations.
Recall that a two-color pyramid 4T is a collection of cubes (i, j, k) that are colored

white or gray. Renaming these colors as color 1 and color 0, respectively, then the two-
color pyramid becomes a binary function on the set of admissible coordinates, that is
4M◦ : (i, j, k) 7→ {0, 1}. Viewing 4M◦ as a function allows us to describe the collection
4M◦

n of two-color pyramids with a system of inequalities. We have

• 4M◦(i, j, k) is defined for 1 6 k 6 j 6 i 6 n− 1.

• 4M◦(i, j, k) 6 4M◦(i+ 1, j, k): the columns of the magog triangle are nondecreas-
ing,

• 4M◦(i, j, k) 6 4M◦(i, j + 1, k): the rows of the magog triangle are nondecreasing,
and

• 4M◦(i, j, k + 1) 6 4M◦(i, j, k): color 1 (white, present) cubes are below color 0
(gray, absent) cubes, so the cubes that are present obey “gravity.”

We now perform our four step transformation ψ. We use a right-handed coordinate
system, so that the positive x-axis points out of the paper (southward) and the negative
x-axis points into the paper (northward). The y-axis and z-axis lie in the plane of the
paper, corresponding to cardinal east/west and up/down directions, respectively.

• Step 1: Invert the colors, or exchange color 0 for color 1 and vice versa. This
reverses the inequalities.
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• Step 2: Push all cubes north in their respective column so that row 1 has length
n− 1. This is equivalent to moving the cube (i, j, k) to (i− (j − 1), j, k).

• Step 3: Tip the entire stack over the y-axis via a clockwise rotation by π/2 and then
translate by (n, 0, 0). This is equivalent to moving the cube (i, j, k) to (n− k, j, i).

• Step 4: Reflect the stack through the plane y = (n + 1)/2. This is equivalent to
moving the cube (i, j, k) to (i, n− j, k).

After composing these four steps, cube (i, j, k) switches color and moves to (n − k, n −
j, i− j + 1). Figure 9 shows the mapping ψ for an omagog pyramid in 4M◦

4.

0
0 1
1 2 2

(1)
1
1 1
0 0 1

(2)

1 1 1
1 0
0

(3)

1
1 0

2 0 0

(4)
1
0 1
0 0 2

Figure 9: Example of the omagog to kagog bijection ψ. The pyramids are drawn using
a right-handed coordinate system with the positive x-axis pointing out of the page. (1)
Invert the colors. (2) push the cubes northward along the columns. (3) Tip the stack
around the y-axis and then translate by (n, 0, 0). (4) Reflect through the plane y =
(n+ 1)/2.

Updating the omagog pyramid inequalities at every step leads to the following algebraic
constraints for some pyramid 4P :

(P1) 4P (i, j, k) is defined for 1 6 k 6 j 6 i 6 n− 1.

(P2) 4P (i, j, k) > 4P (i+ 1, j, k),

(P3) 4P (i, j, k) > 4P (i, j − 1, k − 1), and

(P4) 4P (i, j, k) > 4P (i, j, k + 1).

These pyramid inequalities correspond to the kagog triangle constraints of Definition 9,
where we must recall that color 1 (white) cubes are present and color 0 (gray) cubes are
absent. Condition (P1) ensures that the domain for admissible cubes (i, j, k) is correct
and that the height of tower (i, j) is at most j, so (K1) and (K2) hold. Condition (P4)
states that the cubes adhere to gravity: color 1 blocks must appear below color 0 blocks.
Conditions (P2) and (P4) ensure that the columns are weakly decreasing, so (K3) holds.
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Conditions (P3) and (P4) ensure that the rows are strictly increasing after the first nonzero
entry, so (K4) holds. Indeed, if cube (i, j − 1, k − 1) is color 1, then (i, j, k) is color 1, so
the tower at (i, j) must be taller than the tower at (i, j − 1).

3.4 A Catalan Submapping

In this brief digression, we show that the mapping ψ : 4M◦
n →4Kn induces a natural bi-

jection between Catalan subfamilies of these pyramids. We start by describing two known
Catalan families [31]. Let Sn denote the set of nondecreasing sequences (s0, s1, . . . , sn−1)
where 0 6 si 6 i for 0 6 i 6 n − 1 and si 6 si+1 for 0 6 i 6 n − 2. Let Cn denote the
set of coin pyramids whose bottom row contains n consecutive coins and such that every
additional coin is above and between two other coins. Both families are shown in Figure
10

Next, we define our associated pyramid families. Let S ′n ⊂ M◦
n be the set of omagog

triangles whose first n − 2 rows are all zero. Let C ′n ⊂ Kn be the set of kagog triangles
such that for 1 6 j 6 n− 1, every entry in column j is either j − 1 or j.

Proposition 17. Let Sn, Cn,S ′n and C ′n be the families defined above.

(a) There is an elementary bijection σ : Sn → Cn.

(b) There is an elementary bijection ρ : Sn → S ′n.

(c) There is an elementary bijection τ : Cn → C ′n.

(d) Restricting the bijection ψ : 4M◦
n → 4Kn from Theorem 12 to 4S ′n gives a bijec-

tion to 4C ′n. Furthermore, this bijection has a natural interpretation in terms of
monotone sequences and coin pyramids. Namely, σ = τ−1 ◦ ψ ◦ ρ.

Proof. Figure 10 shows the families S3, C3,S ′3, C ′3. It also shows two families H3,H′3 of
hybrid configurations that are essential in multiple stages of the proof.

Proof of (a). Our bijection relates Sn to Cn via the set Pn of lattice paths from (0, 0)
to (n, n) that never travel above the diagonal y = x, composing mappings described in
[31]. First, we map sequence s = (s0, s1, . . . , sn−1) ∈ Sn to the lattice path p ∈ Pn whose
kth horizontal step is at height sk. Next, we place gray (missing) coins in each square
below p, and place white coins in each square above the path p, up to and including the
squares along the diagonal y = x. Let Hn denote the hybrid family of configurations of
paths and coins, where missing coins are gray. To complete the mapping σ, reflect the
white coins in the hybrid configuration through θ = π/8 to obtain the corresponding coin
pyramid (equivalently, we could rotate by 3π/4 and then reflect across the y-axis).

Proof of (b). The monotone sequences Sn map quite simply to S ′n. The sequence
s ∈ Sn maps to the omagog triangle in M◦

n whose final row is (s1, . . . , sn−1), and whose
other rows are all-zero. This mapping is clearly a bijection.

Proof of (c). We map coin pyramids Cn to the triangles in C ′n via the hybrid configu-
rations in Hn. After mapping a coin pyramid to its hybrid configuration in Hn, we ignore
the white coins on the diagonal (which correspond to the fixed base of the coin pyramid),
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S ′3

S3

C3

H3

H′3

C ′3

0
0 0

(0, 0, 0)

1
1 2

0
0 1

(0, 0, 1)

1
0 2

0
1 1

(0, 1, 1)

1
0 1

0
0 2

(0, 0, 2)

0
0 2

0
1 2

(0, 1, 2)

0
0 1

Figure 10: Six Catalan families used in the proof of Proposition 17. The family S3 of
monotone sequences (s0, s1, s2) maps simply to the subfamily S ′3 of omagog pyramids
whose first row is zero. The family C3 of coin pyramids is in bijection with S3 via the
hybrid family H3 consisting of lattice paths and coins, where sk is the height of the
horizontal step starting at x = k. We map C3 to the subfamily C ′3 of kagog pyramids via
family H′3, the mirror image of the non-diagonal coins of H3.

and reflect the remaining coins across the vertical axis to get a triangular array of the
appropriate shape. Let H′n denote the resulting family of triangular arrays of two-colored
coins. Replace each white coin with a 1 and each gray coin with a 0. Finally, add j − 1
to the entries in column j for 1 6 j 6 n − 1. The result is a kagog triangle in C ′n. This
invertible mapping is a bijection.

Proof of (d). First, we show that the bijection ψ : 4M◦
n →4Kn maps 4S ′n to 4C ′n.

All of the white (present) blocks of 4S ∈ 4S ′n are in row n−1. Let 4K = ψ(4S) where
ψ is the mapping in the proof of Theorem 12. Recall that in this mapping, the block
4S(i, j, k) flips colors and moves to 4K(n − k, n − j, i − j + 1). In particular, the gray
block 4S(n− 2, j, k) maps to the white block 4K(n− k, n− j, n− j − 1). This proves
that every tower in column ` = n− j has height at least `− 1 = n− j− 1; in other words,
ψ bijects 4S ′n to 4C ′n.

It remains to show that the mapping ψ corresponds to the mapping σ : Sn → Cn.
The key is to take a bird’s eye view of a kagog pyramid 4K ∈ 4C ′n. This view only
shows the topmost blocks; this is sufficient, since the blocks in the lower layers are all

the electronic journal of combinatorics 28(1) (2021), #P1.38 20



white. We will see that the coin colors of h′ ∈ H′n correspond to the block colors of the
top layer of a unique 4K = ψ(4S). Keeping this intuition in mind, we conclude the
proof. After mapping, the block 4S(n − 1, j, k) flips color and maps to the top-layer
block 4K(n − k, n − j, n − j). Suppose that 4S(n − 1, j, k) is white for 1 6 k 6 ` and
gray for ` + 1 6 k 6 j. This means that 4K(n − k, n − j, n − j) is gray for 1 6 k 6 `
and white for `+ 1 6 k 6 j. In other words, 4K(k′, j′, j′) is gray for n− ` 6 k′ 6 n− 1
and white for j′ 6 k′ 6 n− `− 1. The bird’s eye view of the pyramids of 4Kn bijects to
the hybrid configurations of H′n, where we replace the blocks with coins.

4 The Gog Triangle Involution

Given the success of the two-color cube pyramid view of magog triangles, we investigate
two-color cube pyramids of gog triangles. Inspired by the mapping from omagog pyramids
to kagog pyramids from 3.3, apply a similar transformation to gog triangles. This results
in a natural involution on gog pyramids that corresponds to row reversal of the equivalent
ASM. This section culminates in our proof of Theorem 6.

Definition 18. A gog triangle G of size n is a triangular array of positive integers G(i, j)
such that

(G1) 1 6 j 6 i 6 n, so the array is triangular;

(G2) 1 6 G(i, j) 6 n− i+ j, so entry j in row i is at most n− i+ j;

(G3) G(i, j) < G(i, j + 1), so rows are strictly increasing;

(G4) G(i, j) > G(i+ 1, j), so columns are weakly decreasing; and

(G5) G(i, j) 6 G(i+ 1, j + 1), so diagonals are weakly increasing.

We use Gn to denote the set of gog triangles of size n.

Note that we use (G2) in place of the standard condition that G(n, j) = j for 1 6
j 6 n; an elementary argument shows that they are interchangeable. Condition (G2),
which applies to all rows of the triangle, is better suited for our two-colored cube pyramid
argument.

The gog triangles of G3 are

1
1 2
1 2 3

1
1 3
1 2 3

2
1 2
1 2 3

2
1 3
1 2 3

2
2 3
1 2 3

3
1 3
1 2 3

3
2 3
1 2 3

(5)

where once again, we have chosen to left-justify the triangular arrays.
Gog triangles (also known as monotone triangles) are in bijection with alternating sign

matrices. An ASM is a n× n matrix of 0’s, 1’s and −1’s such that each or column sums
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to 1, and the nonzero entries in each row or column alternate in sign. The seven 3 × 3
ASMs are 1 0 0

0 1 0
0 0 1

  1 0 0
0 0 1
0 1 0

  0 1 0
1 0 0
0 0 1

  0 1 0
1 −1 1
0 1 0

  0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0

  0 0 1
0 1 0
1 0 0

 . (6)

We have listed the seven gog triangles in (5) in the same order as their corresponding 3×3
ASMs in (6). The bijective mapping of Mills et al. [24] between ASMs and gog triangles
is simple to describe: the jth row of the gog triangle records the locations of the 1’s in
the vector obtained by adding the first j rows of the corresponding ASM.

We now prove Theorem 6: there is a natural gog triangle involution f : Gn → Gn that
corresponds to both (1) an affine transformation of two-color pyramids, and (2) reversing
the order of the rows of the corresponding ASM.

Analogous to Section 3.3, we start by defining ogog triangles. The minimum gog
triangle has Gmin(i, j) = j for all entries (i, j), while the maximum gog triangle has
Gmax(i, j) = n − i + j. For every gog triangle, we construct its ogog counterpart by
subtracting the minimum gog triangle. The last row in every gog triangle is always
[1 2 · · · n] since it has length n and is strictly increasing. As such, every ogog triangle
has a final row of zeros, which we omit from ogog triangle.

Definition 19. An ogog triangle G◦ of index n is a triangular array of nonnegative
integers G◦(i, j) such that

(OG1) 1 6 j 6 i 6 n− 1, so the array is triangular;

(OG2) 0 6 G◦(i, j) 6 n− i, so values in row i are at most n− i;

(OG3) G◦(i, j) 6 G◦(i, j + 1), so rows are weakly increasing;

(OG4) G◦(i, j) > G◦(i+ 1, j), so columns are weakly decreasing; and

(OG5) G◦(i, j) 6 G◦(i+ 1, j + 1) + 1, so diagonals cannot decrease by more than 1.

We use G◦n to denote the set of all ogog triangles of index n.

For example, the ogog triangles of G◦3 are

0
0 0

0
0 1

1
0 0

1
0 1

1
1 1

2
0 1

2
1 1

,

where these ogog triangles are ordered so that they biject to the gog triangles in (5). As
constructed, the color 1 (white) cubes are present in the ogog triangle, while the color 0
(gray) cubes are absent. Our next lemma states that the gray cubes also represent a gog
triangle.

Lemma 20. Let G◦ be an ogog triangle and let 4G◦ be its two-color cube pyramid repre-
sentation. The color 0 cubes of 4G◦ are an affine transformation of another ogog triangle.
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Note that this correspondence is an involution on the set of ogog triangles: swapping
the colors twice leads us back to the original two-coloring of the cube pyramid.

Proof. Similar to the proof of Lemma 12, we describe ogog pyramids via a set of inequal-
ities, perform a multistep transformation and then check that the resulting inequalities
also describe the set of ogog pyramids. The inequalities for ogog pyramids are:

• 4G◦(i, j, k) is defined 1 6 j 6 i 6 n− 1: length of row i is at most i,

• 4G◦(i, j, k) is defined 1 6 k 6 n− i: height of row i is at most n− i,

• if j < i, then 4G◦(i, j + 1, k) > 4G◦(i, j, k): rows are weakly increasing,

• if i > 1, then 4G◦(i− 1, j, k) > 4G◦(i, j, k): columns are weakly decreasing

• if i < n, then 4G◦(i+ 1, j + 1, k − 1) > 4G◦(i, j, k): diagonals cannot decrease by
more than 1, and

• if k > 1, then 4G◦(i, j, k − 1) > 4G◦(i, j, k): the present cubes obey gravity.

The three-step mapping ϕ is:

• Step One: Invert the colors, or exchange color 1 for color 0 and vice versa. This
reverses the inequalities.

• Step Two: Perform a quarter rotation of R3 about the x-axis. This moves the
cube (i, j, k) to position (i,−k, j). This tips the two-color cube pyramid onto its
side.

• Step Three: Rotate by π around the z-axis and then translate by (n, 0, 0). This
moves cube (i, j, k) to (n− i,−j, k).

After composing these three steps, cube (i, j, k) switches color and moves to (n− i, k, j).
Figure 11 exemplifies the mapping ϕ for an ogog pyramid from 4G◦4 .

Careful algebra shows that the resulting constraints are a permutation of the algebraic
inequalities for an ogog cube pyramid. As such, this mapping takes one gog triangle to
another gog triangle. This affine mapping is an involution, so it is bijective.

The ogog pyramids are in bijection with gog triangles, and hence also in bijection with
alternating sign matrices. Our next Theorem shows that the involution ϕ of Lemma 20
reverses the rows of the associated ASM.

Theorem 21. Let ϕ be the ogog pyramid involution of Lemma 20. Let A be an n × n
alternating sign matrix corresponding to ogog triangle G◦ with two-color cube pyramid
4G◦. Let 4H◦ = ϕ(4G◦) and let H◦ be the associated ogog triangle. Then H◦ is the
ogog triangle corresponding to processing the rows of A in reverse order.

Figure 12 shows an example of how the alternating sign matrices A and B correspond-
ing to ogog pyramids 4G◦ and 4H◦ = ϕ(4G◦) are the row reversals of one another.
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2
0 2
0 0 1

(1)
1
2 0
1 1 0

(2)
1 0 0

1 1
2

(3)
2
1 1
0 0 1

Figure 11: Example of the ogog to ogog bijection ϕ. The pyramids use a right-handed
coordinate system in which the postive x-axis points out of the paper. (1) Invert the
colors. (2) Tip the stack around the x-axis by a quarter turn. (3) Rotate one half turn
about the z-axis, then translate by (n, 0, 0).

Proof. Starting with the alternating sign matrix A, we obtain the ogog triangle G◦ as
follows. First, we create the matrix A′ whose ith row is the sum of the first i rows of
A. This is a 0-1 matrix whose ith row contains exactly i ones. We convert A′ into a gog
triangle G by reporting the indices of the ones in each row. We then set G◦ = G−Gmin,
which corresponds to subtracting [1, 2, . . . , i] from row i of G for 1 6 i 6 n and then
deleting the final row (which is all-zero).

Let Ai denote the ith row of A and let A′i =
∑k

k=1Ai denote the ith row of the partial
sum matrix A′. Let 1 6 a′1 < a′2 < · · · < a′i 6 n denote the locations of the ones in row
A′i. Then G(i, j) = a′j, or equivalently [a′1, a

′
2, · · · , a′i] is the ith row of the gog triangle G.

The entries satisfy

1 6 a′1 6 n− i+ 1,
a′j−1 < a′j 6 n− i+ j, 2 6 j 6 i.

Row i of ogog triangle G◦ is

[a′1 − 1, a′2 − 2 · · · , a′i − i]. (7)

We start with row n− 1 of our triangle, as it is the simplest row to comprehend. Row
n − 1 of gog triangle G is [a′1, a

′
2, . . . , a

′
n−1], which is missing a single number ` ∈ [n],

namely the location ` of the unique one in row n of A. By (7), the corresponding ogog
row consists of `− 1 zeros followed by n− ` ones.

Consider this row in the context of the two-color ogog pyramid 4G◦ and its image
4H◦ = ϕ(4G◦). Row n − 1 of pyramid 4G◦ has height 1. It contains ` − 1 cubes of
color 0, followed by n− ` cubes of color 1. After transformation ϕ, the cube (n− 1, j, 1)
switches color and moves to (1, 1, j). So 4H◦ has a tower of blocks at (1, 1) of height
n−1, with `−1 cubes of color 1 below n− ` cubes of color 0. It follows that ogog triangle
H◦ has H◦(1, 1) = `−1, and thus the corresponding gog triangle H has H(1, 1) = `. This
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l l

l l

l l

l l

←→row
reversal

←→ϕ

ASM

ASM partial sums

gog triangle

ogog triangle

two-color cube pyramid

A


0 0 1 0
1 0 −1 1
0 1 0 0
0 0 1 0



A′


0 0 1 0
1 0 0 1
1 1 0 1
1 1 1 1



3
1 4
1 2 4
1 2 3 4

G

2
0 2
0 0 1

G◦

4G◦

B


0 0 1 0
0 1 0 0
1 0 −1 1
0 0 1 0



B′


0 0 1 0
0 1 1 0
1 1 0 1
1 1 1 1



3
2 3
1 2 4
1 2 3 4

H

2
1 1
0 0 1

H◦

4H◦

Figure 12: The alternating sign matrices A and B corresponding to the two-color cube
pyramids 4G◦ and 4H◦ = ϕ(4G◦) are the row reversals of one another.

confirms that the first row of gog triangle H corresponds to the last row of matrix A, as
desired.

We now handle a generic row i of ogog triangle G◦; Figure 13 shows an example. The
entries of row i are a weakly increasing list of length i, drawn from {0, 1, . . . , n− i}. Let
0 6 sm 6 i be the number of consecutive m’s in this list, so that

n−i∑
m=0

sm = i.
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In the corresponding gog triangle G, row i is missing the integers

1 + p+

p∑
k=0

sk where 0 6 p 6 n− i− 1. (8)

Let us pause to make some key observations. The missing integers in row i of G are
precisely the locations of the zeros in the partial sum A′i =

∑i
`=1A`. Since the sum of all

the rows yields the all-ones vector, these are also the locations of the ones in the partial
sum

∑n
`=i+1A`. Of course, summing the last n− i rows of A is the same as summing the

first n− i rows of the row reversal of A.
Next, we translate our observations into statements about two-color pyramids. When

we convert ogog triangle G◦ into pyramid 4G◦, row i of G◦ maps to the i× (n− i) wall
of cubes

4G◦i = {(i, j, k) : 1 6 j 6 i and 1 6 k 6 n− i}.
The layer of wall 4G◦i at height k consists of

∑k−1
m=0 sm cubes of color 0 followed by∑n−i

m=k sm cubes of color 1. The transformation ϕ : 4G◦ 7→ 4H◦ maps 4G◦i to the
(n− i)× i wall

4H◦n−i = {(n− i, k, j) : 1 6 k 6 n− i and 1 6 j 6 i}.

We have inverted the colors and exchanged vertical and horizontal, so the tower of wall
4H◦n−i at (n− i, k) consists of

∑k−1
m=0 sm cubes of color 1, stacked below

∑n−i
m=k sm cubes

of color 0.

5
3 5
2 3 4
1 2 2 3
0 1 1 1 2
0 0 1 1 2 2
0 0 1 1 1 1 1

G◦

2
2 4
1 4 5
0 1 3 4
0 0 1 2 3
0 0 0 1 1 2
0 0 0 0 0 1 1

H◦

ϕ

4G◦5

4H◦3

Figure 13: An ogog triangle G◦ from G◦8 and its image H◦ via the invertible mapping ϕ.
Row 5 of triangle G◦ becomes pyramid wall 4G◦5 which maps via ϕ to pyramid wall 4H◦3
and then to row 3 of triangle H◦.

We now translate the structure of pyramid 4H◦ into the triangle setting. Ogog
triangle H◦ has H◦(n − i, k) =

∑k−1
m=0 sm for 1 6 h 6 n − i, so its corresponding gog

triangle H has

H(n− i, k) = k +
k−1∑
m=0

sm where 1 6 k 6 n− i. (9)
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The formulas in (8) and (9) are equivalent (taking k = p + 1). Therefore, row n − i of
gog triangle H contains the locations of the ones in the partial sum

∑n
k=i+1Ak. In other

words, gog triangle H is constructed by considering the rows of alternating sign matrix
A in reverse order.

Proof of Theorem 6. Let γ : Gn → G◦n be the bijection γ(G) = G − Gmin. Let π : G◦n →
4G◦n be the bijection π(G◦) = 4G◦. By Theorem 21, the desired involution f : Gn → Gn
is f = γ−1 ◦ π−1 ◦ ϕ ◦ π ◦ γ.

5 Conclusion and Future Work

Poset refinements of the de Finetti Lattice Fn,2 have interesting combinatorial connections.
We have shown that Fn,2 is enumerated by the strict-sense ballot numbers and that F1

n,2

is enumerated by the ASM/TSSCPP sequence. We have also shown that there is a
very natural involution on gog triangles that corresponds to reversing the rows of the
associated alternating sign matrices. We conclude this work with some open research
questions relating to both poset refinement and ASM/TSSCPP.

One natural continuation of this work is to consider the de Finetti refinements of the
order ideal Bn,m for 3 6 m 6 n, with m = 3 as the obvious starting point. Analogous
to Section 1.2, let Fn,m to be the unique minimal de Finetti refinement of Bn,m. For
3 6 m 6 n, let Fn,m denote the collection of linear extensions of Fn,m that adhere to de
Finetti’s condition (F2). For 1 6 k 6 m, let Fk

n,m denote the collection of minimal de
Finetti refinements of Fn,m such that every set of size at most k is comparable with all
other sets. Are any of these families enumerated by known combinatorial sequences? If
so, can we find a natural bijection to the appropriate combinatorial family?

An understanding of these poset families could provide valuable insight into the family
Fn of de Finetti total orders. Any new perspective could have ramifications for compara-
tive probability orders and completely separable preferences. One could further investigate
the subfamily of de Finetti refinements Fk

n,m by defining a graph where we connect posets
via an appropriately atomic operation, such as transpositions [26] for L(Bn) or flips [23]
for members of Fn. Also, can the dimension [35] of a de Finetti refinement of Fn,m be
achieved by restricting ourselves to de Finetti refinements?

This paper brings two novel families into the fold of ASM and TSSCPP combinatorial
structures: the poset refinements F1

n,2 and the kagog triangles Kn. Some recent efforts
have focused on statistic-preserving bijections between subfamilies of ASM and TSSCPP
structures [5, 33]. Perhaps the properties F1

n,2 and Kn might reveal connections to help
traverse the gap between ASM and TSSCPP. In particular, our two-color cube pyramid
representation for triangular arrays revealed a natural bijection between magog triangles
and kagog triangles, as well as a nice involution on gog triangles. We are optimistic that
this point of view could aid in the investigation of the other known triangular families.

the electronic journal of combinatorics 28(1) (2021), #P1.38 27



Acknowledgements

We thank David Bressoud and Jessica Striker for sharing their insights about ASMs, TSS-
CPPs, triangular arrays and posets. We thank the anonymous referee for their suggestions
for improving the exposition.

References

[1] G. Andrews. Plane partitions V: the TSSCPP conjecture. J. Combin. Theory, Ser.
A, 66:28–39, 1994.

[2] A. Ayyer, R. Cori, and D. Gouyou-Beauchamps. Monotone triangles and 312 pattern
avoidance. Electron. J. Comb., 18(2), 2011, #P26.

[3] D. E. Barton and C. L. Mallows. Some aspects of the random sequence. Ann. Math.
Statist., 36(1):236–269, 1965.

[4] A. Beveridge and I. Calaway. The voter basis and the admissibility of tree characters.
arXiv:1809.08332.

[5] P. Biane. Gog and magog triangles. In E. Celledoni, G. Di Nunno, K. Ebrahimi-
Fard, and H. Munthe-Kaas, editors, Computation and Combinatorics in Dynamics,
Stochastics and Control, Abel Symposia, vol. 13, pages 99–127. Springer, 2018.

[6] W. J. Bradley, J. K. Hodge, and D. M. Kilgour. Separable discrete preferences. Math.
Social Sci., 49(1):335–353, 2005.

[7] D. Bressoud and J. Propp. How the alternating sign matrix conjecture was solved.
Notices of the AMS, 46(6):637–646, 1999.

[8] D. M. Bressoud. Proofs and Confirmations: The Story of the Alternating Sign Matrix
Conjecture. Cambridge University Press, 1999.

[9] G. R. Brightwell and P. Tetali. The number of linear extensions of the boolean lattice.
Order, 20:333–345, 2004.

[10] A. E. Brouwer and J. D. Christensen. Counterexamples to conjectures about subset
takeaway and counting linear extensions of a boolean lattice. Order, 35:275–281,
2018.

[11] R. Christian, M. Conder, and A. Slinko. Flippable pairs and subset comparisons in
comparative probability orderings. Order, 24:193–213, 2007.

[12] B. de Finetti. Sul significato soggettivo della probabilità. Fundamenta Mathematicae,
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