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Abstract

We give a classification of toric log del Pezzo surfaces with two or three singular
points. Our proofs are purely combinatorial, relying on the bijection between toric
log del Pezzo surfaces and the so-called LDP-polygons introduced by Dais and Nill.

Mathematics Subject Classifications: 14M25, 14Q10, 52B20

1 Introduction

A normal projective surface is called log del Pezzo surface if it has at worst log-terminal
singularities (that is, quotient singularities) and its anticanonical divisor is a Q-Cartier
ample divisor. Log del Pezzo surfaces have been extensively studied and many results are
known (for example [13, 14, 15, 1, 12, 9]).

When they are toric, log del Pezzo surfaces are known to be in bijection to the so-
called LDP-polygons, introduced by Dais and Nill [8]. This makes their classification be
a purely combinatorial problem. Let us explain this connection from the point of view of
the polygon, skipping all technical algebraic-geometric details.

An LDP-polygon is a convex lattice polygon with the origin in its interior and with
the property that all vertices are primitive lattice points; that is, they are of the form
(p, q) ∈ Z2 with gcd(p, q) = 1. The bijection sends isomorphism classes of toric log
del Pezzo surfaces to equivalence classes of LDP-polygons, where two LDP-polygons Q
and Q′ are called equivalent if there is an automorphism of the lattice Z2 sending Q to
Q′. Remember that an automorphism of Z2 is (the restriction to Z2 of) a linear map
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of determinant ±1 and with integer coefficients. See Section 2, in particular Corollary
8, for more details. Moreover, several algebraic-geometric invariants of a toric log del
Pezzo surface XQ admit an easy description in terms of the corresponding LDP-polygon
Q. Among them:

Picard number: The Picard number of XQ equals the number of edges (equivalently,
of vertices) of Q minus two. That is, triangles, quadrilaterals, and pentagons correspond
respectively to Picard number 1, 2, 3, etc.

Singular points: Each torus-invariant point of XQ corresponds to an edge of Q, and
those points are the only possible singularities in a toric surface. Since the number and
distribution of such singular points around the polygon plays an important role in this
paper, we call an edge of Q singular or nonsingular accordingly.

Proposition 1 ([4, Theorem 1.3.12]). An edge of an LDP-polygon Q is nonsingular (that
is, the corresponding torus-fixed point of the associated toric surface XQ is nonsingular)
if and only if its two vertices form a basis of Z2. That is, if and only if |ps − rq| = 1,
where (p, q) and (r, s) are the vertex coordinates.

It is well known that there are exactly five nonsingular LDP-polygons (that is, five
nonsingular toric del Pezzo surfaces). They are the polars of the five smooth reflexive
polygons, and they are depicted in Figure 1.

Blow-ups: Suppose that vivi+1 is a nonsingular edge in an LDP-polygon Q, and let Q′

be the convex hull of Q∪{vi + vi+1}. If vi and vi+1 are still vertices of Q′, then XQ′ is the
blow-up of XQ at the corresponding nonsingular point. In this situation we say that the
LDP-polygon Q′ is a blow-up of Q at the nonsingular edge vivi+1. Blow-ups make sense
algebraically even if vi or vi+1 are not vertices of Q′ anymore but in this case the resulting
toric surface is no longer log del Pezzo. Thus, we do not consider it.

Figure 1: The five nonsingular LDP-polygons, polars of the smooth reflexive polygons.
The interior dot in each polygon is the origin and arrows represent blow-ups. As customary
in algebraic geometry, blow-ups are shown as reverse arrows, since there is a morphism
from the blown-up variety to the original one.
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Index: The index of XQ is the minimum k ∈ N such that Q can be described by linear
inequalities of the form a1x 6 k, . . . , adx 6 k, with a1, . . . , ad ∈ Z2. Put differently,
it is the minimum k ∈ N such that kQ∨ is a lattice polygon, where Q∨ is the polar
polygon of Q. For example, an LDP-polygon has index 1 if and only if its polar is again a
lattice polygon. Lattice polytopes (in arbitrary dimension) whose polar is again a lattice
polytope are called reflexive, and there are exactly sixteen of them in dimension two; that
is, there are sixteen LDP-polygons of index 1. They include the five nonsingular ones (see
[4, Theorem 8.3.7]).

It is known that there are finitely many toric log del Pezzo surfaces of any fixed index
(see [10, Corollary 4.5]). Dais [5, 6] classified toric log del Pezzo surfaces of Picard number
one (that is, LDP-triangles) and of index at most three, and Kasprzyk–Kreuzer–Nill [10]
gave two independent algorithms that enumerate all toric log del Pezzo surfaces up to any
given index.

In this paper, we focus on the number of singular points on toric log del Pezzo surfaces.
Partial results on this exist even in the general, perhaps non-toric case: Belousov [2, 3]
proved that a log del Pezzo surface of Picard number one has at most four singular points,
and Kojima [11] classified log del Pezzo surfaces of Picard number one with unique singular
points. Dais has recently classified all toric log del Pezzo surfaces with unique singular
points:

Theorem 2 ([7, Theorem 1.4]). An LDP-polygon has exactly one singular edge if and
only if it is equivalent to one of the following:

(1) conv

{(
1
−1

)
,

(
p
1

)
,

(
−1
0

)}
for some positive integer p.

(2) A quadrilateral or pentagon obtained by blowing up one or both of the nonsingular
edges of an LDP-triangle in part (1).

The purpose of this paper is to extend this classification for LDP-polygons with two
or three singular points:

Theorem 3. An LDP-polygon has exactly two singular edges if and only if it is equivalent
to one of the following:

(1) conv

{(
1
0

)
,

(
0
1

)
,

(
−p
−q

)}
for some p, q ∈ Z with p, q > 2 and gcd(p, q) = 1.

(2) conv

{(
1
0

)
,

(
0
1

)
,

(
−1
p

)
,

(
q
r

)}
for some p, q, r ∈ Z with

p 6 1, r 6 min{−pq − 2,−2,−q − 1, q − pq − 1}

and gcd(q, r) = 1.

(3) conv

{(
1
0

)
,

(
0
1

)
,

(
−1
p+ 1

)
,

(
−1
p

)
,

(
q
r

)}
for some p, q, r ∈ Z with p 6

0, 1 6 q 6 −r − 1 and gcd(q, r) = 1.
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Note that part (3) in Theorem 3 is the blow-up of an LDP-quadrilateral in part (2)
at a nonsingular edge.

Theorem 4. An LDP-polygon has exactly three singular edges if and only if it is equivalent
to one of the following:

(1) conv

{(
1
0

)
,

(
p
q

)
,

(
r
s

)}
for some p, q, r, s ∈ Z with q > 2, s 6 −2, ps−qr > 2

and gcd(p, q) = gcd(r, s) = 1.

(2) conv

{(
1
0

)
,

(
0
1

)
,

(
p
q

)
,

(
r
s

)}
for some p, q, r, s ∈ Z with

p 6 min{−2,−q}, s 6 min{−2,−r}, ps− qr > max{2, p− r + 1, s− q + 1}

and gcd(p, q) = gcd(r, s) = 1.

(3) conv

{(
1
0

)
,

(
0
1

)
,

(
−1
p

)
,

(
−q

pq − r

)
,

(
s
−t

)}
for some

p, q, r, s, t ∈ Z

with

p 6 1,

r > max{2, q + 1},
t > max{2, s+ 1},

qt+ rs− pqs > max{2, t− r − ps+ 1, r − t− pq + 1},
pq − r 6 −1

and gcd(q, r) = gcd(s, t) = 1.

(4) The blow-up of an LDP-pentagon in part (3) at a nonsingular edge.

Our proofs of Theorems 3 and 4 use the following general properties of LDP-polygons:

Theorem 5. Let Q be an LDP-polygon with at least one singular edge. Then:

(1) The nonsingular edges of Q (and hence also the singular ones) form a consecutive
sequence. (See Proposition 16).

(2) If Q has at least two singular edges, then it has at most three nonsingular edges.
(See Corollary 17).

(3) If Q is not a blow-up of a smaller LDP-polygon at a nonsingular edge, then Q has
at most two nonsingular edges. (See Lemma 11).
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Theorems 2 and 5(2) imply that any LDP-polygon Q has at most four nonsingular
edges except if Q is the polar of the unique smooth reflexive pentagon or hexagon. Fur-
thermore, Theorem 5(3) implies that any LDP-polygon Q with more than two nonsingular
edges is a blow-up of a smaller LDP-polygon except if Q is equivalent to

conv

{(
1
0

)
,

(
0
1

)
,

(
−1
−1

)}
or conv

{(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
.

The structure of the paper is as follows: In Section 2, we recall the bijection between
toric log del Pezzo surfaces and LDP-polygons, and we fix some notation. In Sections 3
and 4, we prove Theorems 3 and 4, respectively. The three parts of Theorem 5 are proved
as we go along.

2 Toric log del Pezzo surfaces and LDP-polygons

We fix a notation and recall some basic facts from toric geometry which will be used in
this paper. (See [4] for details.) Let ∆ be a complete fan in R2. We list the primitive
generators of rays, that is, one-dimensional cones, in ∆ as v1, . . . , vd in counterclockwise
order around the origin in R2, and we define v0 = vd and vd+1 = v1. For i = 1, . . . , d, we

write vi =

(
xi
yi

)
. Observe that a complete fan ∆ in R2 is completely described by its

set of primitive ray generators v1, . . . , vd, and that any such set defines a complete fan as
long as all the vi are primitive (that is, gcd(xi, yi) = 1), no two are positive multiples of
one another, and every open half-plane contains at least one vi. We denote by X(∆) the
associated complete toric surface. Since ∆ is simplicial, the Picard number ρ(X(∆)) of
X(∆) equals d− 2.

Definition 6. Let ∆ be a complete fan in R2. We define the map f : {1, . . . , d} → Z by

f(i) = det(vi−1, vi) + det(vi, vi+1) + det(vi+1, vi−1).

The equivalence of parts (1) and (2) in the following statement is Remark 6.7 in [5]
(see also Exercise 8.3.9 in [4]). The equivalence of (2) and (3) is elementary.

Proposition 7. Let ∆ be a complete fan in R2 and let v1, . . . , vd be its primitive ray
generators, in counterclockwise order. Then, the following are equivalent:

(1) The toric surface X(∆) is log del Pezzo.

(2) Every vi is a vertex of conv{v1, . . . , vd}.

(3) f(i) > 0 for every i.

Let Q ⊂ R2 be an LDP-polygon and let v1, . . . , vd be its vertices, in counterclockwise
order. We denote by Sing(Q) the set of singular edges of Q and denote by Fi the edge
vivi+1 of Q for i = 1, . . . , d. For each edge Fi, we define the rational strongly convex
polyhedral cone σi = {λx | λ > 0, x ∈ Fi} ⊂ R2. Then the set ∆Q of all such cones and
their faces forms a complete fan in R2 whose primitive ray generators are precisely the
vertices of Q. We define XQ to be the associated toric surface X(∆Q).
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Corollary 8 ([7, Proposition 4.2]). The correspondence Q 7→ XQ induces a bijection
between equivalence classes of LDP-polygons and isomorphism classes of toric log del
Pezzo surfaces.

Example 9. Let p be a positive integer and let

v1 =

(
1
0

)
, v2 =

(
0
1

)
, v3 =

(
−1
−p

)
.

Then the convex hull Q = conv{v1, v2, v3} is an LDP-triangle. The fan ∆Q consists of the
cones

R>0v1 + R>0v2,R>0v2 + R>0v3,R>0v3 + R>0v1

and their faces. The associated toric log del Pezzo surface XQ is the weighted projective
plane P(1, 1, p) (see [4, Example 3.1.17]).

3 Proof of Theorem 3

In this section, we give a proof of Theorem 3. We will use the notation introduced in
Section 2 freely. The following lemmas play key roles in the proof of Theorems 3 and 4.

Lemma 10. Let Q be an LDP-polygon with d > 4 edges. Suppose that there exists i with
1 6 i 6 d such that Fi−1 and Fi+1 are singular while Fi is nonsingular. Then the following
hold:

(1) We have det(vi+2, vi−1) > 2. In particular, the cones σi−1, σi, σi+1 cover more than
a half-plane.

(2) Q has at least three singular edges.

Proof. Without loss of generality, we may assume that i = 2, v2 =

(
−1
0

)
, v3 =

(
0
−1

)
.

Then y1 > 2 and x4 > 2.

(1) Proposition 7 and f(2) = x1+y1+1 imply x1 > −y1. Since y1 > 2 and v1 =

(
x1
y1

)
is primitive, we have x1 > 1− y1 and x1 6= 0. A similar argument shows that y4 > 1− x4
and y4 6= 0.

Case 1. Suppose that x1 6 −1 or y4 6 −1. We may assume that x1 6 −1. Then
y4 > 1 − x4 implies x1y4 6 x1(1 − x4). Since 1 − x4 6 1 − 2 = −1 and x1 > 1 − y1, we
have x1(1− x4) 6 (1− x4)(1− y1). Thus, x1y4 6 (1− x4)(1− y1). Therefore,

det(v4, v1) = x4y1 − x1y4 > x4y1 − (1− x4)(1− y1) = x4 + y1 − 1 > 3.

Case 2. Suppose that x1 > 1 and y4 > 1. Then both v4 and v1 are in{(
x
y

)
∈ R2;x, y > 0

}
.
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Since v1, . . . , vd are arranged in counterclockwise order, we must have det(v4, v1) = x4y1−
x1y4 > 1. To deduce a contradiction we assume that det(v4, v1) = 1. We see that
(x4 + 1)/x1 > 0 and

x4 + 1

x1

((
1− x4

x4 + 1

)
v3 +

x4
x4 + 1

v1

)
=

1

x1

(
x1x4

−1 + x4y1

)
=

1

x1

(
x1x4
x1y4

)
= v4.

Since v4 is a vertex of Q, we must have (x4 + 1)/x1 > 1, so x4 > x1. The assumption
det(v4, v1) = 1 and x4 > 2 imply x4− 1 > x1. A similar argument shows that y1− 1 > y4.
Thus, x1y4 6 (x4 − 1)(y1 − 1). Therefore,

1 = det(v4, v1) = x4y1 − x1y4 > x4y1 − (x4 − 1)(y1 − 1) = x4 + y1 − 1 > 3,

which is a contradiction.
In every case, we obtain det(v4, v1) > 2.
(2) If d = 4, then F4 is a singular edge by (1). Assume d > 5. Then by (1), there

exists a lattice point v ∈ (conv{0, v4, v1} ∩ Z2) \ {0, v4, v1}. Since

d⋃
j=4

conv{0, vj, vj+1} ) conv{0, v4, v1},

there exists j ∈ {4, . . . , d} such that v is an interior point of conv{0, vj, vj+1}. In partic-
ular, Fj is a singular edge and thus |Sing(Q)| > 3.

Lemma 11. Let Q be an LDP-polygon with at least one singular edge. Suppose that Q
cannot be obtained by blowing up a nonsingular edge of another LDP-polygon, and there
exists i with 1 6 i 6 d such that Fi and Fi+1 are nonsingular. Then Fj is singular for
every j ∈ {1, . . . , d} \ {i, i+ 1}.

Proof. It is obvious for d = 3. We may assume that d > 4, i = 2 and

v2 =

(
−1
0

)
, v3 =

(
0
−1

)
, v4 =

(
1
a

)
for a ∈ Z. To deduce a contradiction we assume that there exists j ∈ {1, 4, 5, . . . , d} such
that Fj is nonsingular. Proposition 7 and f(3) = a + 2 imply a > −1. Since Q is not a
blow-up of a smaller LDP-polygon at a nonsingular edge, we have v2 + v4 6= v3. Thus,

a > 0 and y5, . . . , yd, y1 > 1. In particular, σ2 ∪ σ3 ⊃
{(

x
y

)
∈ R2; y 6 0

}
.

Case 1. Suppose that 5 6 j 6 d. If Fj−1 (resp. Fj+1) is nonsingular, then a = 0 and

σj−1 ∪ σj (resp. σj ∪ σj+1) coincides with

{(
x
y

)
∈ R2; y > 0

}
, a contradiction. Hence,

both Fj−1 and Fj+1 are singular. However, by Lemma 10 (1), the cones σj−1, σj, σj+1

cover more than a half-plane. This is a contradiction.
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Case 2. Suppose that j = 1 or j = 4. We may assume that j = 4. Since Q has
at least one singular edge, we may further assume that F1 is singular. Then y1 > 2

and v5 =

(
b

ab+ 1

)
for some b ∈ Z. Note that ab = y5 − 1 > 0. Proposition 7 and

f(2) = x1 + y1 + 1 imply x1 > −y1. Since y1 > 2 and v1 is primitive, we have x1 > 1− y1
and x1 6= 0. Furthermore, 1 6 f(4) = 2− b and v3 + v5 6= v4 imply b 6 0. There are three
subcases to consider.

Subcase 2.1. Suppose that x1 > 1. Then d > 5 since x5 = b 6 0. Obviously,
det(v5, v1) = by1 − (ab + 1)x1 > 1. On the other hand, if a = 0, then by1 6 0 and
−x1 6 −1, which means that det(v5, v1) 6 −1. But even if a > 1, we have ab > 0 and
b 6 0, meaning that b = 0, and again det(v5, v1) 6 −1. This is a contradiction.

Subcase 2.2. Suppose that x1 6 −1 and a = 0. Then v4 =

(
1
0

)
, v5 =

(
b
1

)
and

d > 5. We see that (det(v5, v1) + 1)/y1 > 0 and

det(v5, v1) + 1

y1

((
1− 1

det(v5, v1) + 1

)
v4 +

1

det(v5, v1) + 1
v1

)
= v5.

However,
det(v5, v1) + 1 = by1 − x1 + 1 6 by1 + y1 6 y1

and thus 0 < (det(v5, v1) + 1)/y1 6 1, which contradicts the fact that v5 is a vertex of Q.
Subcase 2.3. Suppose that x1 6 −1 and a > 1. Since ab > 0 and b 6 0, we must have

b = 0. Hence v4 =

(
1
a

)
, v5 =

(
0
1

)
and d > 5. We see that (1 − x1)/ det(v4, v1) > 0

and
1− x1

det(v4, v1)

((
1− 1

1− x1

)
v4 +

1

1− x1
v1

)
= v5.

However,

det(v4, v1) = y1 − ax1 > (1− x1)− ax1 > 1− x1 + a > 1− x1

and thus 0 < (1− x1)/ det(v4, v1) < 1, which contradicts the fact that v5 is a vertex of Q.
Thus, we have reached a contradiction in every case. Hence, F1, F4, F5, . . . , Fd are

singular.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let Q be an LDP-polygon with two singular edges. Then there
exists at least one i with 1 6 i 6 d such that Fi is nonsingular. Hence we may assume

that v1 =

(
1
0

)
and v2 =

(
0
1

)
.

The case where d = 3. Since |Sing(Q)| = 2, the edges F2 and F3 are singular. Hence

v3 =

(
−p
−q

)
for some p, q ∈ Z with p, q > 2 and gcd(p, q) = 1. Conversely, for any
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p, q ∈ Z with p, q > 2 and gcd(p, q) = 1, the convex hull conv

{(
1
0

)
,

(
0
1

)
,

(
−p
−q

)}
is an LDP-triangle with two singular edges.

The case where d = 4. By Lemma 10 (2), either F2 or F4 is nonsingular. We may

assume that F2 is nonsingular. Then v3 =

(
−1
p

)
, v4 =

(
q
r

)
for some p, q, r ∈ Z

with gcd(q, r) = 1. Hence, it suffices to show that for p, q, r ∈ Z with gcd(q, r) = 1, the
sequence

v1 =

(
1
0

)
, v2 =

(
0
1

)
, v3 =

(
−1
p

)
, v4 =

(
q
r

)
determines an LDP-polygon Q = conv{v1, . . . , v4} (that is, v1, . . . , v4 go counterclockwise
around the origin exactly once in this order, and every vi is a vertex of Q) and |Sing(Q)| =
2 if and only if p 6 1 and r 6 min{−pq− 2,−2,−q− 1, q− pq− 1}. We first observe that
if the sequence determines Q, then we have

• F1 and F2 are nonsingular;

• f(2) > 1⇔ p 6 1;

• F3 is singular if and only if r 6 −pq − 2;

• F4 is singular if and only if r 6 −2;

• f(1) > 1⇔ r 6 −q;

• f(3) > 1⇔ r 6 q − pq.

Suppose that the sequence determines Q and |Sing(Q)| = 2. Since r 6 −2 and v4
is primitive, we have r 6 −q − 1. If r = q − pq, then q = ±1 since v4 is primitive,
which contradicts that r 6 −pq − 2. Hence, r 6 q − pq − 1. Therefore, p 6 1 and
r 6 min{−pq − 2,−2,−q − 1, q − pq − 1}.

Conversely, suppose that p 6 1 and r 6 min{−pq − 2,−2,−q − 1, q − pq − 1}. It
suffices to show that f(4) > 1, that is, p(1−q)−2r > 1. Since r 6 −2 and v4 is primitive,
we have q 6= 0.

Case 1. Suppose q > 1. Then p 6 1 implies p(1 − q) > 1 − q. Since r 6 −q − 1, we
have −2r > 2q + 2. Thus,

f(4) = p(1− q)− 2r > (1− q) + (2q + 2) = q + 3 > 4.

Case 2. Suppose q 6 −1. It suffices to show pq(1 − q) − 2qr 6 q. The assumption
pq 6 −r − 2 implies pq(1− q) 6 (q − 1)(r + 2). Since r + 2 6 0 and q − 1 > 2q, we have
(q − 1)(r + 2) 6 2q(r + 2). Thus,

pq(1− q)− 2qr 6 2q(r + 2)− 2qr = 4q < q.

In every case, we obtain f(4) > 1. Therefore, Q = conv{v1, . . . , v4} is an LDP-
quadrilateral with |Sing(Q)| = 2.

The case where d > 5. First we show the following claims:
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Claim 12. Every LDP-polygon Q with exactly two singular edges and more than four
edges in total is an iterated blow-up, at nonsingular edges, of an LDP-quadrilateral.

Proof of Claim 12. We use induction on d. Assume d > 5. We may assume that F1 and
F2 are nonsingular. If Q = Qd cannot be obtained by blowing up a nonsingular edge of
another LDP-polygon, then F3, . . . , Fd are all singular by Lemma 11, which contradicts
that |Sing(Q)| = 2. Hence, Qd is the blow-up of a smaller LDP-polygon at a nonsingular
edge. We may further assume that v2 = v1 + v3. Let Qd−1 = conv{v1, v3, v4, . . . , vd}.
Then Qd is the blow-up of Qd−1 at the nonsingular edge v1v3. By induction hypothesis
there is a sequence of LDP-polygons

Q = Qd, Qd−1, . . . , Q4,

where Qi is the blow-up of Qi−1 at a nonsingular edge for 5 6 i 6 d.

Claim 13. Every LDP-polygon with exactly two singular edges has five edges or less in
total.

Proof of Claim 13. Let Q′ be an LDP-quadrilateral with |Sing(Q′)| = 2, and let Q =
conv{v1, . . . , v5} be the blow-up of Q′ at one nonsingular edge. Then we may assume that

v1 =

(
1
0

)
, v2 =

(
0
1

)
, v3 =

(
−1
p+ 1

)
, v4 =

(
−1
p

)
, v5 =

(
q
r

)
for p, q, r ∈ Z with

p 6 1, r 6 min{−pq − 2,−2,−q − 1, q − pq − 1}, gcd(q, r) = 1.

By Claim 12, it suffices to show that the blow-up of Q at any nonsingular edge does not
increase the number of vertices. Proposition 7 and f(4) = q + 1 imply q > 0. Since
r 6 −2 and v5 is primitive, we have q > 1. The nonsingular edges of Q are F1, F2, F3.
However, we see that

det(v5, v1) + det(v1, v1 + v2) + det(v1 + v2, v5) = 1− q 6 0,

det(v2 + v3, v3) + det(v3, v4) + det(v4, v2 + v3) = 0,

det(v2, v3) + det(v3, v3 + v4) + det(v3 + v4, v2) = 0.

Hence, the blow-up of Q at any nonsingular edge does not increase the number of vertices.
This completes the proof of Claim 13.

By Claims 12 and 13, it suffices to show that for p, q, r ∈ Z with gcd(q, r) = 1, the
sequence

v1 =

(
1
0

)
, v2 =

(
0
1

)
, v3 =

(
−1
p+ 1

)
, v4 =

(
−1
p

)
, v5 =

(
q
r

)
determines an LDP-polygon Q = conv{v1, . . . , v5} and |Sing(Q)| = 2 if and only if p 6 0
and 1 6 q 6 −r − 1. We observe that if the sequence determines Q, then we have
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• F1, F2, F3 are nonsingular;

• F5 is singular if and only if r 6 −2;

• f(1) > 1⇔ q 6 −r;

• f(2) > 1⇔ p 6 0;

• f(3) = 1;

• f(4) > 1⇔ q > 0.

If the sequence determines Q and |Sing(Q)| = 2, then p 6 0 and 1 6 q 6 −r−1, since
r 6 −2 and v5 is primitive. Conversely, suppose that p 6 0 and 1 6 q 6 −r − 1. We
need to show that f(5) > 1 and det(v4, v5) > 2. Since p(1− q) > 0 and r 6 −2, we have
f(5) = p(1 − q) − 2r > 4 and det(v4, v5) = −r − pq > 2. Thus, Q = conv{v1, . . . , v5} is
an LDP-pentagon with |Sing(Q)| = 2. This completes the proof of Theorem 3.

4 Proof of Theorem 4

In this section, we prove Theorem 4. First we show the following lemma:

Lemma 14. If Q is an LDP-pentagon with exactly two nonsingular edges, then these two
edges are consecutive.

Proof. To deduce a contradiction we assume that there is an LDP-pentagon Q with

Sing(Q) = {F1, F3, F5}. We may assume that v2 =

(
−1
0

)
, v3 =

(
0
−1

)
. Then

y1 > 2, x4 > 2, x1 + y1 > 1, x4 + y4 > 1.
Case 1. Suppose y5 6 0. Then x5 > 1. We will show that x5 + y5 − x4 − y4 > 1.

Since f(5) = (x5 − x4)y1 − x1(y5 − y4) + 1 and f(4) = x4 − x5 + 1, Proposition 7 gives
(x5 − x4)y1 − x1(y5 − y4) > 0 and x4 > x5. It follows that

1 = det(v4, v5) = x4y5 − x5y4 6 x5y5 − x5y4 = x5(y5 − y4)

and thus y5 − y4 > 1. Since x1 > 1− y1, we have x1(y5 − y4) > (1− y1)(y5 − y4). Hence,

0 6 (x5 − x4)y1 − x1(y5 − y4)
6 (x5 − x4)y1 − (1− y1)(y5 − y4)
= (x5 + y5 − x4 − y4)y1 − (y5 − y4)
6 (x5 + y5 − x4 − y4)y1 − 1.

Therefore, x5 + y5 − x4 − y4 > 1.

Let v′ =

(
−1
1

)
. We calculate

det(v5, v
′) + det(v′, v3) + det(v3, v5) = (x5 + y5) + 1 + x5
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> (x4 + y4 + 1) + 1 + x5 > 3 + x5 > 4,

det(v′, v3) + det(v3, v4) + det(v4, v
′) = 1 + x4 + (x4 + y4) > 1 + x4 + 1 > 4,

det(v3, v4) + det(v4, v5) + det(v5, v3) = f(4) > 1,

det(v4, v5) + det(v5, v
′) + det(v′, v4) = 1 + x5 + y5 − x4 − y4 > 2.

Hence, conv{v′, v3, v4, v5} is an LDP-quadrilateral. However, det(v3, v4) 6= 1 and

det(v5, v
′) = x5 + y5 > x4 + y4 + 1 > 2

while det(v′, v3) = det(v4, v5) = 1, which contradicts Theorem 3.
Case 2. Suppose y5 = 1. Then Q′ = conv{v2, v3, v4, v5} is an LDP-quadrilateral with

|Sing(Q′)| = 1. By Theorem 2, we have either v2 = v5 +v3 or v5 = v4 +v2. If v2 = v5 +v3,

then v5 = v2 − v3 =

(
−1
1

)
and thus 2 6 det(v5, v1) = −x1 − y1 6 −1, a contradiction.

If v5 = v4 + v2, then v4 = v5 − v2 =

(
x5 + 1

1

)
and thus

1 6 det(v4, v5) + det(v5, v1) + det(v1, v4) = 1− y1 6 1− 2 = −1,

a contradiction.
Case 3. Suppose y5 > 2. Then Q′ = conv{v2, v3, v4, v5} is an LDP-quadrilateral with

|Sing(Q′)| = 2. However, det(v3, v4) 6= 1 and det(v5, v2) = y5 > 2 while det(v2, v3) =
det(v4, v5) = 1, which contradicts Theorem 3.

Thus, we have reached a contradiction in every case.

Proof of Theorem 4. LetQ be an LDP-polygon with three singular edges. We may assume

that v1 =

(
1
0

)
.

The case where d = 3. Since |Sing(Q)| = 3, all edges of Q are singular. Hence

v2 =

(
p
q

)
and v3 =

(
r
s

)
for some p, q, r, s ∈ Z with q > 2, s 6 −2, ps − qr > 2 and

gcd(p, q) = gcd(r, s) = 1. Conversely, for any p, q, r, s ∈ Z with q > 2, s 6 −2, ps− qr > 2

and gcd(p, q) = gcd(r, s) = 1, the convex hull conv

{(
1
0

)
,

(
p
q

)
,

(
r
s

)}
is an LDP-

triangle with three singular edges.

The case where d = 4. We may assume that v2 =

(
0
1

)
and F2, F3, F4 are singular.

Then v3 =

(
p
q

)
and v4 =

(
r
s

)
for some p, q, r, s ∈ Z with gcd(p, q) = gcd(r, s) = 1.

We observe the following:

• F2 is singular if and only if p 6 −2;

• f(2) > 1⇔ p 6 −q;

• F4 is singular if and only if s 6 −2;
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• f(1) > 1⇔ s 6 −r;

• F3 is singular if and only if ps − qr > 2; moreover, this inequality together with
p, s 6 −2 guarantees that the four rays (1, 0), (0, 1), (p, q) and (r, s) are in counter-
clockwise order.

• f(3) > 1⇔ ps− qr > p− r + 1;

• f(4) > 1⇔ ps− qr > s− q + 1.

Hence, the assertion holds.
The case where d > 5. Firstly, we assume that d = 5. By Lemma 14, there exists i

such that Fi and Fi+1 are nonsingular. We may assume that i = 1, v2 =

(
0
1

)
. Then

v3 =

(
−1
p

)
, v4 =

(
−q

pq − r

)
, v5 =

(
s
−t

)
for some p, q, r, s, t ∈ Z with gcd(q, r) = gcd(s, t) = 1. Hence, it suffices to show that for
p, q, r, s, t ∈ Z with gcd(q, r) = gcd(s, t) = 1, the sequence

v1 =

(
1
0

)
, v2 =

(
0
1

)
, v3 =

(
−1
p

)
, v4 =

(
−q

pq − r

)
, v5 =

(
s
−t

)
determines an LDP-polygon Q = conv{v1, . . . , v5} and |Sing(Q)| = 3 if and only if

p 6 1,

r > max{2, q + 1},
t > max{2, s+ 1},

qt+ rs− pqs > max{2, t− r − ps+ 1, r − t− pq + 1},
pq − r 6 −1.

If the above sequence determines Q, then we observe the following:

• F1 and F2 are nonsingular;

• f(2) > 1⇔ p 6 1;

• F3 is singular if and only if r > 2;

• f(3) > 1⇔ r > q;

• F5 is singular if and only if t > 2;

• f(1) > 1⇔ t > s;

• F4 is singular if and only if qt+ rs− pqs > 2;
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• f(4) > 1⇔ qt+ rs− pqs > t− r − ps+ 1;

• f(5) > 1⇔ qt+ rs− pqs > r − t− pq + 1.

Suppose that the same sequence determines Q and |Sing(Q)| = 3. Since t > 2 and
v5 is primitive, we have t > s + 1. If r = q, then q = ±1 since v4 is primitive, which
contradicts that r > 2. Hence, r > q + 1. It remains to show that pq − r 6 −1. If p 6 0,
then pq − r 6 −1 holds obviously. If p = 1, then pq − r = q − r 6 q − (q + 1) = −1. We
therefore obtain the required inequalities. The converse is obvious.

To prove the remaining part of the theorem, we need the following claim:

Claim 15. Every LDP-polygon Q with three singular edges and more than five edges in
total is an iterated blow-up, at nonsingular edges, of an LDP-pentagon.

Proof of Claim 15. We use induction on d. Assume d = 6. To deduce a contradiction we
assume that Q cannot be obtained by blowing up a nonsingular edge of another LDP-
polygon. By Lemma 11, if Fi is nonsingular, then both Fi−1 and Fi+1 are singular. We
may assume that Sing(Q) = {F1, F3, F5}. By Lemma 10 (1), we have det(v4, v1) > 2.
We consider the LDP-pentagon conv{v1, . . . , v5}. If det(v5, v1) = 1, then this contradicts
Theorem 3. Otherwise this contradicts Lemma 14. Hence, Q is the blow-up of a smaller
LDP-polygon at a nonsingular edge.

In the case d > 7, we may assume that F1 and F2 are nonsingular. The rest of the
proof is as for Claim 12.

Let Q′ be an LDP-pentagon with |Sing(Q′)| = 3, and let Q = conv{v1, . . . , v6} be the
blow-up of Q′ at one nonsingular edge. Then we may assume that

v1 =

(
1
0

)
, v2 =

(
0
1

)
, v3 =

(
−1
p+ 1

)
,

v4 =

(
−1
p

)
, v5 =

(
−q

pq − r

)
, v6 =

(
s
−t

)
for p, q, r, s, t ∈ Z with

p 6 1,

r > max{2, q + 1},
t > max{2, s+ 1},

qt+ rs− pqs > max{2, t− r − ps+ 1, r − t− pq + 1},
pq − r 6 −1

and gcd(q, r) = gcd(s, t) = 1. By Claim 15, to prove the remaining part it suffices to show
that the blow-up of Q at any nonsingular edge does not increase the number of vertices.
Proposition 7 and f(4) = 1− q imply q 6 0. Since r− pq > 1 and (r− pq)s = rs− pqs >
2 − qt > 2, we have s > 1. The nonsingular edges of Q are F1, F2, F3. However, we see
that

det(v6, v1) + det(v1, v1 + v2) + det(v1 + v2, v6) = 1− s 6 0,
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det(v2 + v3, v3) + det(v3, v4) + det(v4, v2 + v3) = 0,

det(v2, v3) + det(v3, v3 + v4) + det(v3 + v4, v2) = 0.

Hence, the blow-up of Q at any nonsingular edge does not increase the number of vertices.
This completes the proof of Theorem 4.

The following proposition holds even for |Sing(Q)| > 4.

Proposition 16. In every LDP-polygon Q the nonsingular edges (hence also all the sin-
gular edges) form a consecutive sequence.

Proof. We may assume that Q cannot be obtained by blowing up a nonsingular edge of
another LDP-polygon. If d 6 5, then the assertion follows from Theorems 3 and 4.

Assume d = 6. If |Sing(Q)| > 5, then the assertion is obvious. If |Sing(Q)| 6 3,
then the assertion follows from Theorems 3 and 4. Hence, we may further assume that
|Sing(Q)| = 4 and F2 is nonsingular. To deduce a contradiction we assume that the other
nonsingular edge is one of F4, F5, F6.

Case 1. Suppose that either F4 or F6 is nonsingular. We may assume that F4 is
nonsingular. By Lemma 10 (1), we have det(v4, v1) > 2. We consider the LDP-pentagon
conv{v1, . . . , v5}. If det(v5, v1) = 1, then this contradicts Theorem 3. Otherwise this
contradicts Theorem 4.

Case 2. Suppose that F5 is nonsingular. By Lemma 10 (1), the cones σ1, σ2, σ3 cover
more than a half-plane. Similarly, σ4, σ5, σ6 cover more than a half-plane. This is a
contradiction.

Hence, the other nonsingular edge is either F1 or F3. Therefore, the assertion holds
for d = 6.

We prove the assertion for d > 7. We use induction on d. If there exists i such that Fi

and Fi+1 are nonsingular, then the remaining edges are all singular by Lemma 11. Hence,
we may assume that if Fi is nonsingular, then both Fi−1 and Fi+1 are singular. To deduce
a contradiction we assume that there are i and j with 1 6 i < j 6 d and j > i + 2 such
that Fi and Fj are nonsingular. By Lemma 10 (1), we must have

(i, j) ∈ {(1, 3), (2, 4), . . . , (d− 2, d), (1, d− 1), (2, d)}.

We may further assume that (i, j) = (2, 4). Then det(v4, v1) > 2 by Lemma 10 (1). We
consider the LDP-polygon conv{v1, . . . , vd−1}. We have det(v1, v2) 6= 1 and det(v3, v4) 6= 1
while det(v2, v3) = det(v4, v5) = 1, which contradicts the hypothesis of induction. Hence,
|Sing(Q)| = d− 1. Therefore, the assertion holds for d. This completes the proof.

Finally, we give an upper bound for the number of nonsingular edges of an LDP-
polygon.

Corollary 17. Let Q be an LDP-polygon. If |Sing(Q)| > 2, then Q has at most three
nonsingular edges.
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Proof. By Proposition 16, we may assume that there exists an integer n with 0 6 n 6 d−2
such that Fi is nonsingular for 1 6 i 6 n and Fi is singular for n+ 1 6 i 6 d. To deduce

a contradiction we assume that n > 4. We may further assume that v1 =

(
1
0

)
and

v2 =

(
0
1

)
. We consider the LDP-polygon Q′ = conv{v1, . . . , vn, vn+1, vd}. Then Q′ has

more than five vertices. Since y5, y6, . . . , yn+1, yd 6 −1, we have det(vn+1, vd) > 1. If
det(vn+1, vd) = 1, then Q′ has exactly one singular edge, which contradicts Theorem 2.
Otherwise Q′ has exactly two singular edges, which contradicts Theorem 3. Hence, we
must have n 6 3. This completes the proof.

Acknowledgements

The author would like to thank the editor and referee for their suggestions and comments
which have greatly improved the manuscript. He would also like to thank Benjamin Nill
for his suggestion of Corollary 17.

References

[1] V. Alexeev and V. V. Nikulin, Del Pezzo and K3 surfaces, MSJ Memoirs, Vol. 15,
Math. Soc. Japan, 2006.

[2] G. Belousov, Del Pezzo surfaces with log terminal singularities, Math. Notes 83
(2008), 152–161.

[3] G. Belousov, The maximal number of singular points on log del Pezzo surfaces, J.
Math. Sci. Univ. Tokyo 16 (2009), 231–238.

[4] D. A. Cox, J. B. Little and H. K. Schenck, Toric Varieties, Graduate Studies in
Mathematics, Vol. 124. American Mathematical Society, Providence, RI, 2011.

[5] D. I. Dais, Geometric combinatorics in the study of compact toric surfaces, In “Al-
gebraic and Geometric Combinatorics” (edited by C. Athanasiadis et al.), Contem-
porary Mathematics, Vol. 423, American Mathematical Society, 2007, pp. 71–123.

[6] D. I. Dais, Classification of toric log del Pezzo surfaces having Picard number 1 and
index 6 3, Result. Math. 54 (2009), 219–252.

[7] D. I. Dais, Toric log del Pezzo surfaces with one singularity, Adv. Geom. 20 (2020),
121–138.

[8] D. I. Dais and B. Nill, A boundedness result for toric log del Pezzo surfaces, Arch.
Math. 91 (2008), 526–535.

[9] K. Fujita and K. Yasutake, Classification of log del Pezzo surfaces of index three, J.
Math. Soc. Japan 69 (2017), 163–225.

[10] A. M. Kasprzyk, M. Kreuzer and B. Nill, On the combinatorial classification of toric
log del Pezzo surfaces, LMS J. Comput. Math. 13 (2010), 33–46.

the electronic journal of combinatorics 28(1) (2021), #P1.39 16



[11] H. Kojima, Logarithmic del Pezzo surfaces of rank one with unique singular points,
Japan J. Math. 25 (1999), 343–374.

[12] N. Nakayama, Classification of log del Pezzo surfaces of index two, J. Math. Sci.
Univ. Tokyo 14 (2007), 293–498.

[13] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities I, Math. USSR-Sb.
66 (1990), 231–248; translation from Mat. Sb. 180 (1989), 226–243.

[14] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities II, Math. USSR-Izv.
33 (1989), 355–372; translation from Izv. Akad. Nauk SSSR 52 (1988), 1032–1050.

[15] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities III, Math. USSR-Izv.
35 (1990), 657–675; translation from Izv. Akad. Nauk SSSR 53 (1989), 1316–1334.

the electronic journal of combinatorics 28(1) (2021), #P1.39 17


	Introduction
	Toric log del Pezzo surfaces and LDP-polygons
	Proof of Theorem 3
	Proof of Theorem 4

