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Abstract

We characterize the formulas that are avoided by every α-free word for some
α > 1. We show that the avoidable formulas whose fragments are of the form XY
or XYX are 4-avoidable. The largest avoidability index of an avoidable palindrome
pattern is known to be at least 4 and at most 16. We make progress toward the
conjecture that every avoidable palindrome pattern is 4-avoidable.

Mathematics Subject Classifications: 68R15

1 Introduction

A pattern p is a non-empty finite word over an alphabet ∆ = {A,B,C, . . .} of capital
letters called variables. An occurrence of p in a word w is a non-erasing morphism h :
∆∗ → Σ∗ such that h(p) is a factor of w (a morphism is non-erasing if the image of every
letter is non-empty). The avoidability index λ(p) of a pattern p is the size of the smallest
alphabet Σ such that there exists an infinite word over Σ containing no occurrence of p.
Since there is no risk of confusion, λ(p) will be simply called the index of p.

A variable that appears only once in a pattern is said to be isolated. Following Cas-
saigne [5], we associate a pattern p with the formula f obtained by replacing every isolated
variable in p by a dot. The factors between the dots are called fragments.

An occurrence of a formula f in a word w is a non-erasing morphism h : ∆∗ → Σ∗ such
that the h-image of every fragment of f is a factor of w. As for patterns, the index λ(f) of
a formula f is the size of the smallest alphabet allowing the existence of an infinite word
containing no occurrence of f . Clearly, if a formula f is associated with a pattern p, every
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word avoiding f also avoids p, so λ(p) 6 λ(f). Recall that an infinite word is recurrent if
every finite factor appears infinitely many times and that any infinite factorial language
contains a recurrent word [8, Proposition 5.1.13]. If there exists an infinite word over Σ
avoiding p, then there exists an infinite recurrent word over Σ avoiding p. This recurrent
word also avoids f , so that λ(p) = λ(f). Without loss of generality, a formula is such
that no variable is isolated and no fragment is a factor of another fragment.

Let us define the types of formulas we consider in this paper. A pattern is doubled if
it contains every variable at least twice. Thus it is a formula with only one pattern. A
formula f is nice if for every variable X of f , there exists a fragment of f that contains
X at least twice. Notice that a doubled pattern is a nice pattern. A formula is an xyx-
formula if every fragment is of the form XYX, i.e., the fragment has length 3 and the
first and third variable are the same. A formula is hybrid if every fragment has length 2
or is of the form XYX. Thus, an xyx-formula is a hybrid formula.

In Section 3, we consider the avoidance of nice formulas. In Section 4, we find some
formulas f such that every recurrent word avoiding f over Σλ(f) is equivalent to a well-
known morphic word. In Section 5, we consider the avoidance of xyx-formulas and hybrid
formulas. In Section 6, we consider the avoidance of patterns that are palindromes.

2 Preliminaries

Given a pattern p, the Zimin operator constructs the pattern Z(p) = pXp where X is a
variable that is not contained in p. For every fixed t, Zt(p) denotes the pattern obtained
by applying t times the Zimin operator to p. Notice that a recurrent word avoids Zt(p) if
and only if it avoids p.

We say that a formula f divides a formula f ′ if every recurrent word avoiding f also
avoids f ′. We denote by f � f ′ the fact that f divides f ′. By previous discussion,
p � Zt(p) and Zt(p) � p for every pattern p. The basic case of divisibility is that f � f ′

if f ′ contains an occurrence f , that is, if there exists a non-erasing morphism h such
that the h-image of every fragment of f is a factor of a fragment of f ′. Another case
of divisibility obtained by transitivity: in order to obtain f � p, it is sufficient to prove
f � Zt(p), since Zt(p) � p. We use this trick in the proof of Lemma 6 and Theorem 17.
Of course, divisibility is related to avoidability: if f � f ′, then λ(f) > λ(f ′).

Let Σk = {0, 1, . . . , k − 1} denote the k-letter alphabet. We denote by Σn
k the kn

words of length n over Σk.
The operation of splitting a formula f on a fragment φ consists in replacing φ by two

fragments, namely the prefix and the suffix of length |φ|−1 of φ. A formula f is minimally
avoidable if splitting any fragment of f gives an unavoidable formula. The set of every
minimally avoidable formula with at most n variables is called the n-avoidance basis.

The adjacency graph AG(f) of the formula f is the bipartite graph such that

• for every variable X of f , AG(f) contains the two vertices XL and XR,

• for every (possibly equal) variables X and Y , there is an edge between XL and YR
if and only if XY is a factor of f .
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We say that a set S of variables of f is free if for all X, Y ∈ S, XL and YR are in distinct
connected components of AG(f). A formula f is said to reduce to f ′ if it is obtained
by deleting all the variables of a free set from f , discarding any empty word fragment.
A formula is reducible if there is a sequence of reductions to the empty formula. Finally,
a locked formula is a formula having no free set.

Theorem 1 ([3]). A formula is unavoidable if and only if it is reducible.

Let us define here the following well-known pure morphic words. To specify a mor-
phism m : Σs → Σe, we use the notation m = m(0)/m(1)/ · · · /m(s − 1). Assuming a
morphism m : Σs → Σs is such that m(0) starts with 0, the fixed point of m is the right
infinite word mω(0).

• b2 is the fixed point of 01/10.

• b3 is the fixed point of 012/02/1.

• b4 is the fixed point of 01/03/21/23.

• b5 is the fixed point of 01/23/4/21/0

We also consider the morphic words v3 = M1(b5) and w3 = M2(b5), where M1 =
012/1/02/12/ε and M2 = 02/1/0/12/ε. The languages of each of these words have
been studied in the literature. Let us first recall the following characterization of b3, v3,
and w3. We say that two infinite words are equivalent if they have the same set of factors.

Theorem 2 ([1, 16]).

• Every ternary square-free recurrent word avoiding 010 and 212 is equivalent to b3.

• Every ternary square-free recurrent word avoiding 010 and 020 is equivalent to v3.

• Every ternary square-free recurrent word avoiding 121 and 212 is equivalent to w3.

Interestingly, these three words can be characterized in terms of a forbidden distance
between consecutive occurrences of one letter.

Theorem 3.

• Every ternary square-free recurrent word such that the distance between consecutive
occurrences of 1 is not 3 is equivalent to b3.

• Every ternary square-free recurrent word such that the distance between consecutive
occurrences of 0 is not 2 is equivalent to v3.

• Every ternary square-free recurrent word such that the distance between consecutive
occurrences of 0 is not 4 is equivalent to w3.

Proof.
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• Another characterization for b3 is that every ternary square-free recurrent word
avoiding 1021 and 1021 is equivalent to b3 [1]. This rules out the possibility that
the distance between two occurrences of 1 is 3.

• Since v3 avoids 010 and 020, the distance between two occurrences of 0 is at least 3.

• Since w3 avoids 121 and 212, the distance between consecutive occurrences of 0 is
at most 3.

The word b4 is also known to avoid large families of formulas.

Theorem 4 ([2]). Every locked formula is avoided by b4.

Theorem 5 ([5, Proposition 1.13]). If every fragment of an avoidable formula f has
length 2, then b4 avoids f .

Theorem 5 will be extended to hybrid formulas, see Theorem 21 in Section 5.
Let us give here a result that will be needed in various parts of the paper.

Lemma 6. ABA.ACA.ABCA.ACBA.ABCBA � AA.

Proof. Indeed, Z2(AA) = AABAACAABAA contains the occurrence
A→ A, B → ABA, C → ACA of ABA.ACA.ABCA.ACBA.ABCBA.

Thus, if w is a recurrent word that avoids a formula dividing
ABA.ACA.ABCA.ACBA.ABCBA, then w is square-free.

Recall that the repetition threshold RT (n) is the smallest real number α such that
there exists an infinite a+-free word over Σn. The proof of Dejean’s conjecture established
that RT (2) = 2, RT (3) = 7

5
, RT (4) = 7

4
, and RT (n) = n

n−1 for every n > 5. An infinite
RT (n)+-free word over Σn is called a Dejean word.

3 Nice formulas

All the nice formulas considered so far in the literature are also 3-avoidable. This includes
doubled patterns [12], circular formulas [9], the nice formulas in the 3-avoidance basis [9],
and the minimally nice ternary formulas in Table 1 [15].

Theorem 7 ([9, 15]). Every nice formula with at most 3 variables is 3-avoidable.

We have a risky conjecture that would generalize both Theorem 7 and the 3-avoidability
of doubled patterns.

Conjecture 8. Every nice formula is 3-avoidable.

Theorem 19 in Section 5 shows that there exist infinitely many nice formulas with
index 3. It means that Conjecture 8 would be best possible and it contrasts with the case
of doubled patterns, since we expect that there exist only finitely many doubled patterns
with index 3 [12, 13]. In this section, we make progress toward Conjecture 8 by proving
that every nice formula is avoidable and we explain how to get an upper bound on the
index of a given nice formula.
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3.1 The avoidability exponent

Let us consider a useful tool in pattern avoidance that has been defined in [12] and already
used implicitly in [11]. The avoidability exponent AE(p) of a pattern p is the largest real
α such that every α-free word avoids p. We extend this definition to formulas. The
corresponding notion for the avoidance of patterns in the abelian setting has also been
considered [7].

Let us show that AE(ABCBA.CBABC) = 4
3
. Suppose for contradiction that a 4

3
-

free word contains an occurrence h of ABCBA.CBABC. We write y = |h(Y )| for every
variable Y . The factor h(ABCBA) is a repetition with period |h(ABCB)|. So we have
a+b+c+b+a
a+b+c+b

< 4
3
. This simplifies to 2a < 2b + c. Similarly, CBABC gives 2c < a + 2b,

BAB gives 2b < a, and BCB gives 2b < c. Summing up these four inequalities gives
2a + 4b + 2c < 2a + 4b + 2c, which is a contradiction. On the other hand, the word

01234201567865876834201234 is
(

4
3

+
)

-free and contains the occurrence A→ 01, B → 2,

C → 34 of ABCBA.CBABC.
As a second example, we obtain that AE(ABCDBACBD) = 1.246266172 . . .. When

we consider a repetition uvu in an α-free word, we derive that |uvu||uv| < α, which gives β|u| <
|v| with α = 1+ 1

β+1
. We consider an occurrence h of the pattern. The maximal repetitions

in ABCDBACBD are ABCDBA, BCDB, BACB, CDBAC, and DBACBD. They
imply the following inequalities. 

βa 6 2b+ c+ d
βb 6 c+ d
βb 6 a+ c
βc 6 a+ b+ d
βd 6 a+ 2b+ c

We look for the smallest β such that this system has no solution. Notice that a and d
play symmetric roles. Thus, we can set a = d and simplify the system.

βa 6 a+ 2b+ c
βb 6 a+ c
βc 6 2a+ b

Then β is the largest eigenvalue of the matrix
[
1 2 1
1 0 1
2 1 0

]
that corresponds to the latter system.

So β = 3.060647027 . . . is the largest root of the characteristic polynomial x3−x2−5x−4.
Then α = 1 + 1

β+1
= 1.246266172 . . .

This matrix approach is a convenient trick to use when possible. It was used in
particular for some doubled patterns such that every variable occurs exactly twice [12].
It may fail if the number of inequalities is strictly greater than the number of variables
or if the formula contains a repetition uvu such that |u| > 2. In any case, we can fix a
rational value to β and ask a computer algebra system whether the system of inequalities
is solvable. Then we can get arbitrarily good approximations of β (and thus α) by a
dichotomy method.

Of course, the avoidability exponent is related to divisibility.
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Lemma 9. If f � g, then AE(f) 6 AE(g).

The avoidability exponent depends on the repetitions induced by f . We have AE(f) =
1 for formulas such as f = AB.BA.AC.CA.BC or f = AB.BA.AC.BC.CDA.DCD that
do not have enough repetitions. That is, for every ε > 0, there exists a (1 + ε)-free word
that contains an occurrence of f .

Let us investigate formulas with non-trivial avoidability exponent, that is, AE(f) > 1.
To show that a nice formula has a non-trivial avoidability exponent (see Lemma 10), we
first introduce a notion of minimality for nice formulas similar to the notion of minimally
avoidable for general formulas. A nice formula f is minimally nice if there exists no nice
formula g such that v(g) 6 v(f) and g ≺ f . Alternatively, splitting a minimally nice
formula on any of its fragments leads to a non-nice formula. The following property of
every minimally nice formula is easy to derive. If a variable V appears as a prefix of a
fragment φ, then

• V is also a suffix of φ (since otherwise we can split on φ and obtain a nice formula),

• φ contains exactly two occurrences of V (since otherwise we can remove the prefix
letter V from φ and obtain a nice formula),

• V is neither a prefix nor a suffix of any fragment other than φ (since otherwise we
can remove this prefix/suffix letter V from the other fragment and obtain a nice
formula),

• Every fragment other than φ contains at most one occurrence of V (since otherwise
we can remove the prefix letter V from φ and obtain a nice formula).

Lemma 10. If f is a nice formula with v(f) > 3, then AE(f) > 1 + 1
2v(f)−3 .

Proof. First remark that if a word uvu is
(

1 + 1
2v(f)−3

)
-free then 2|u| + |v| < (|u| +

|v|)
(

1 + 1
2v(f)−3

)
which implies (2v(f)− 4)|u| < |v|.

Suppose that f contradicts the lemma. Then there exists a
(

1 + 1
2v(f)−3

)
-free word

w containing an occurrence h of f . Let X be a variable of f such that |h(X)| > |h(Y )|
for every variable Y . Since f is nice, f contains a factor of the form XPX where P is a
sequence of variables that does not contain X. Remark that v(P ) 6 v(f)− 1.

For any variable Z, let |P |Z be the number of occurences of Z in P . Let Y be the
variable that maximizes |h(Y )| × |P |Y , that is, |h(W )| × |P |W 6 |h(Y )| × |P |Y for every
variable W in P . We have

|h(P )| =
∑

W∈V ar(P )

|h(W )| × |P |W 6 (v(f)− 1)|h(Y )| × |P |Y 6 (v(f)− 1)|h(X)| × |P |Y .

If |P |Y = 1, then |h(P )| 6 (v(f)− 1)|h(X)| and the exponent of |h(XPX)| is at least
(v(f)+1)|h(X)|
v(f)|h(X)| = 1 + 1

v(f)
, which is a contradiction.
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If |P |Y > 2, then the number of letters of h(P ) that do not belong to an occurence of
h(Y ) is at most ∑

W∈V ar(P )\{Y }

|h(W )| × |P |W 6 (v(f)− 2)|h(Y )| × |P |Y .

Thus there exist two occurences of h(Y ) in h(P ) that are separated by at most
(v(f)−2)|h(Y )|×|P |Y

|P |Y −1
letters. Since h(P ) is

(
1 + 1

2v(f)−3

)
-free, we obtain

(2v(f)− 4)|h(Y )| < (v(f)− 2)|h(Y )| × |P |Y
|P |Y − 1

.

This can be simplified to

(2v(f)− 4)(|P |Y − 1) < (v(f)− 2)× |P |Y

and finally

|P |Y <
2v(f)− 4

v(f)− 2
= 2 ,

which is a contradiction.

The circular formulas studied in [9] show that AE(f) can be as low as 1 + (v(f))−1.
Moreover, our example AE(ABCDBACBD) = 1.246266172 . . . shows that lower avoid-
ability exponents exist among nice formulas with at least 4 variables.

We will describe below a method to construct infinite words avoiding a formula. This
method can be applied if and only if the formula f satisfies AE(f) > 1. So we are
interested in characterizing the formulas f such that AE(f) > 1. By Theorems 9 and 10,
if f is a formula such that there exists a nice formula g satisfying g � f , then AE(f) > 1.
Now we prove that the converse also holds, which gives the following characterization.

Theorem 11. A formula f satisfies AE(f) > 1 if and only if there exists a nice formula
g such that g � f .

Proof. What remains to prove is that for every formula f that is not divisible by a nice
formula and for every ε > 0, there exists an infinite (1 + ε)-free word w containing an
occurrence of f , such that the size of the alphabet of w only depends on f and ε.

First, we consider the equivalent pattern p obtained from f by replacing every dot by
a distinct variable that does not appear in f . We will actually construct an occurrence
of p. Then we construct a family fi of pseudo-formulas as follows. We start with f0 = p.
To obtain fi+1 from fi, we choose a variable that appears at most once in every fragment
of fi. This variable is given the alias name Vi and every occurrence of Vi is replaced by a
dot. We say that fi is a pseudo-formula since we do not try to normalize fi, that is, fi can
contain consecutive dots and fi can contain fragments that are factors of other fragments.
However, we still have a notion of fragment for a pseudo-formula. Since f is not divisible
by a nice formula, this process ends with the pseudo-formula fv(p) with no variable and
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|p| consecutive dots. The goal of this process is to obtain the ordering V0, V1, . . ., Vv(p)−1
on the variables of p.

The image of every Vi is a finite factor wi of a Dejean word over an alphabet of bε−1c+2
letters, so that wi is (1 + ε)-free. The alphabets are disjoint: if i 6= j, then wi and wj
have no common letter. Finally, we define the length of wi as follows:

∣∣wv(p)−1∣∣ = 1
and |wi| = bε−1c × |p| × |wi+1| for every i such that 0 6 i 6 v(p) − 2. Let us show by
contradiction that the constructed occurrence h of p is (1 + ε)-free. Consider a repetition
xyx of exponent at least 1 + ε that is maximal, that is, which cannot be extended to a
repetition with the same period and larger exponent. Since every wi is (1 + ε)-free and
since two matching letters must come from distinct occurrences of the same variable, then
x = h(x′) and y = h(y′) where x′ and y′ are factors of p. Our ordering of the variables
of p implies that y′ contains a variable Vi such that i < j for every variable Vj in x′.
Thus, |y| > |wi| = bε−1c × |p| × |wi+1| > bε−1c × |x|, which contradicts the fact that the
exponent of xyx is at least 1 + ε.

To obtain the infinite word w, we can insert our occurrence of p into a bi-infinite
(1 + ε)-free word over an alphabet of bε−1c + 2 new letters. So w is an infinite (1 + ε)-
free word over an alphabet of v(p) (bε−1c+ 2) + 1 letters which contains an occurrence
of f .

By Lemma 10, every nice formula is avoidable since it is avoided by a Dejean word
over a sufficiently large alphabet. Thus, if a formula is nice and minimally avoidable, then
it is minimally nice. This is the case for every formula in the 3-avoidance basis, except
AB.AC.BA.CA.CB. However, a minimally nice formula is not necessarily minimally
avoidable. Indeed, we have shown [15] that the set of minimally nice ternary formulas
consists of the nice formulas in the 3-avoidance basis, together with the minimally nice
formulas in Table 1 that can be split to AB.AC.BA.CA.CB.

• ABA.BCB.CAC

• ABCA.BCAB.CBAC and its reverse

• ABCA.BAB.CAC

• ABCA.BAB.CBC and its reverse

• ABCA.BAB.CBAC and its reverse

• ABCBA.CABC and its reverse

• ABCBA.CAC

Table 1: The minimally nice ternary formulas that are not minimally avoidable.
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3.2 Avoiding a nice formula

Recall that a nice formula f is such that AE(f) > 1. We consider the smallest integer s
such that RT (s) < AE(f). Thus, every Dejean word over Σs avoids f , which already
gives λ(f) 6 s. Recall that a morphism is q-uniform if the image of every letter has
length q. Also, a uniform morphism h : Σ∗s → Σ∗e is synchronizing if for any a, b, c ∈ Σs

and v, w ∈ Σ∗e, if h(ab) = vh(c)w, then either v = ε and a = c or w = ε and b = c. For
increasing values of q, we look for a q-uniform morphism h : Σ∗s → Σ∗e such that h(w)
avoids f for every RT (s)+-free word w ∈ Σ`

s, where ` is given by Lemma 12 below. Recall
that a word is (β+, n)-free if it contains no repetition with exponent strictly greater than
β and period at least n.

Lemma 12. [11] Let α, β ∈ Q, 1 < α < β < 2 and n ∈ N∗. Let h : Σ∗s → Σ∗e be a
synchronizing q-uniform morphism (with q > 1). If h(w) is (β+, n)-free for every α+-free

word w such that |w| < max
(

2β
β−α ,

2(q−1)(2β−1)
q(β−1)

)
, then h(w) is (β+, n)-free for every (finite

or infinite) α+-free word w.

Given such a candidate morphism h, we use Lemma 12 to show that for every RT (s)+-
free word w ∈ Σ∗s, the image h(w) is (β+, n)-free. The pair (β, n) is chosen such that
RT (s) < β < AE(f) and n is the smallest possible for the corresponding β. If β < AE(f),
then every occurrence h of f in a (β+, t)-free word is such that the length of the h-image of
every variable of f is upper bounded by a function of n and f only. Thus, the h-image of
every fragment of f has bounded length and we can check that f is avoided by inspecting
a finite set of factors of words of the form h(w).

3.3 The number of fragments of a minimally avoidable formula

Interestingly, the notion of (minimally) nice formula is helpful in proving the following.

Theorem 13. The only minimally avoidable formula with exactly one fragment is AA.

Proof. A formula with one fragment is a doubled pattern. Since it is minimally avoidable,
it is a minimally nice formula. By the properties of minimally nice formulas discussed
above, the unique fragment of the formula is either AA or is of the form ApA such that p
does not contain the variable A. Thus, p is a doubled pattern such that p ≺ ApA, which
contradicts that ApA is minimally avoidable.

By contrast, the family of two-birds formulas, which consists of ABA.BAB,
ABCBA.CBABC, ABCDCBA.DCBABCD, and so on, shows that there exist infinitely
many minimally avoidable formulas with exactly two fragments. Every two-birds formula
is nice. Let us check that every two-birds formula AB · · ·X · · ·BA.X · · ·A · · ·X is min-
imally avoidable. Since the two fragments play symmetric roles, it is sufficient to split
on the first fragment. We obtain the formula AB · · ·X · · ·B.B · · ·X · · ·BA.X · · ·A · · ·X
which divides the pattern B · · ·X · · ·BAB · · ·X · · ·B = Z(B · · ·X · · ·B). This pattern is
equivalent to B · · ·X · · ·B, which is unavoidable. Thus, every two-birds formula is indeed
minimally avoidable.
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Concerning the index of two-birds formulas, we have seen that λ(ABA.BAB) = 3
and λ(ABCBA.CBABC) = 2 [9]. Computer experiments suggest that larger two-birds
formulas are easier to avoid.

Conjecture 14. Every two-birds formula with at least 3 variables is 2-avoidable.

4 Characterization of some famous morphic words

Our next result gives characterizations of w3, up to renaming, that use just one formula.
Then we give similar characterizations of b3 and b2. Let σ = 1/2/0 be the morphism that
cyclically permutes Σ3.

Theorem 15. Let fh = ABA.BCB.ACA, fe = ABA.ABCBA.ACA.ACB.BCA, and
let f be such that fh � f � fe. Every ternary recurrent word avoiding f is equivalent to
w3, σ(w3), or σ2(w3).

Proof. Using Cassaigne’s algorithm [4], we have checked that w3 avoids fh. By divisibility,
w3 avoids f .

Let w be a ternary recurrent word avoiding f . By Lemma 6, w is square-free.
Let v = 210201202101201021. A computer check shows that no infinite ternary word

avoids fe, squares, v, σ(v), and σ2(v). So, without loss of generality, w contains v. If w
contains 121, then w contains the occurrence A → 1, B → 2, C → 0 of fe. Similarly, if
w contains 212, then w contains the occurrence A → 2, B → 1, C → 0 of fe. Thus, w
avoids squares, 121, and 212. By Theorem 2, w is equivalent to w3.

By symmetry, every ternary recurrent word avoiding f is equivalent to w3, σ(w3), or
σ2(w3).

Theorem 16. Let f be such that

• ABCA.ABA.ACA � f � ABCA.ABA.ACA.ACB.CBA,

• ABCA.ABA.BCB.AC � f � ABCA.ABA.ABCBA.ACB, or

• ABCA.ABA.BCB.CBA � f � ABCA.ABA.ABCBA.ACB.

Every ternary recurrent word avoiding f is equivalent to b3, σ(b3), or σ2(b3).

Proof. Using Cassaigne’s algorithm [4], we have checked that b3 avoids ABCA.ABA.ACA,
ABCA.ABA.BCB.AC, and ABCA.ABA.BCB.CBA. By divisibility, b3 avoids f . Let
w be a ternary recurrent word avoiding f . By Lemma 6, w is square-free.

Let v = 20210121020120. A computer check shows that no infinite ternary word
avoids ABCA.ABA.ACA.ACB.CBA (resp. ABCA.ABA.ABCBA.ACB), squares, v,
σ(v), and σ2(v).

So, without loss of generality, w contains v. If w contains 010, then w contains
the occurrence A → 0, B → 1, C → 2 of ABA.ACA.ABCA.ACBA.ABCBA. Sim-
ilarly, if w contains 212, then w contains the occurrence A → 2, B → 1, C → 0 of
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ABA.ACA.ABCA.ACBA.ABCBA. Thus, w avoids squares, 010, and 212. By Theo-
rem 2, w is equivalent to b3.

By symmetry, every ternary recurrent word avoiding f is equivalent to b3, σ(b3), or
σ2(b3).

Notice that Theorem 16 is a complement to [15, Theorem 2] in which we gave a
disjoint set of formulas with the same property. The difference between Theorem 16
and [15, Theorem 2] is that a different occurrence of f shows that f divides Zn(AA).

Theorem 17. Let fh = AABCAA.BCB, fe = AABCAAB.AABCAB.AABCB, and
let f be such that fh � f � fe. Every binary recurrent word avoiding f is equivalent to b2.

Proof. Using Cassaigne’s algorithm [4], we have checked that b2 avoids fh. First, fe �
AAA because Z(AAA) = AAABAAA contains the occurrence A → A, B → A, C → B
of fe. Second, fe � ABABA because Z(ABABA) = ABABACABABA contains the
occurrence A→ AB, B → A, C → C of fe.

Thus, every recurrent word avoiding fe also avoids AAA and ABABA, which means
that it is overlap-free. Finally, it is well-known that every binary recurrent word that is
overlap-free is equivalent to b2.

5 xyx-formulas

Recall that every fragment of an xyx-formula is of the form XYX. We associate to an

xyx-formula F the directed graph
−→
G such that every variable corresponds to a vertex

and
−→
G contains the arc

−−→
XY if and only if F contains the fragment XYX. We will also

denote by G the underlying simple graph of
−→
G .

Lemma 18. Let F1 and F2 be xyx-formulas associated to
−→
G1 and

−→
G2. If there exists a

homomorphism
−→
G1 →

−→
G2, then F1 � F2.

Proof. Since both digraph homomorphism and formula divisibility are transitive relations,
we only need to consider the following two cases. If G1 is a subgraph of G2, then F1 is
obtained from F2 by removing some fragments. So every occurrence of F2 is also an
occurrence of F1 and thus F1 � F2. If G2 is obtained from G1 by identifying the vertices
u and v, then F2 is obtained from F1 by identifying the variables U and V . So every
occurrence of F2 is also an occurrence of F1 and thus F1 � F2.

For every i, let Ti be the xyx-formula corresponding to the directed circuit
−→
Ci of

length i, that is, T1 = AAA, T2 = ABA.BAB, T3 = ABA.BCB.CAC,
T4 = ABA.BCB.CDC.DAD, and so on. More formally, Ti is the formula with i variables
A0, . . ., Ai−1 which contains the i fragments of length three of the form AjAj+1Aj such
that the indices are taken modulo i. Notice that Ti is a nice formula.

Theorem 19. For every i > 2, λ(Ti) = 3.
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Proof. We use Lemma 12 to show that the image of every (7/4+)-free word over Σ4 by
the following 58-uniform morphism is (3/2, 3)-free.

0→ 0012211002201021120022100112201002112001022011002211201022

1→ 0012210022010211220010221120011022010021122011002211201022

2→ 0011221002201021122001102201002112001022110012200211201022

3→ 0011221002201021120011022010021122001022110012200211201022

In these words, the factor 010 is the only occurrence m of ABA such that |m(A)| >
|m(B)|. This implies that these ternary words avoid Ti for every i > 1, so that λ(Ti) 6 3.

To show that λ(Ti) > 3, we consider the xyx-formula H = ABA.BAB.ACA.CBC

associated to the directed graph
−→
D3 on 3 vertices and 4 arcs that contains a circuit of

length 2 and a circuit of length 3. Standard backtracking shows that λ(H) > 2, and even
the stronger result that λ(ABAB.ACA.CAC.BCB.CBC) > 2.

For every i > 2, the circuit
−→
Ci admits a homomorphism to

−→
D3. By Lemma 18, this

means that Ti � H, which implies that λ(Ti) > λ(H) > 3.

Theorem 20. For every i > 1, b4 avoids Ti.

Proof. Suppose for contradiction that there exist i and n such that mn(0) contains an
occurrence h of Ti. Further assume that n is minimal. Notice that in b4, every even (resp.
odd) letter appears only at even (resp. odd) positions. Thus, for every fragment XYX
of Ti, the period |h(XY )| of the repetition h(XYX) must be even. This implies that
|h(X)| and |h(Y )| have the same parity. By contagion, the lengths of the images of all
the variables of Ti have the same parity. Now we proceed to a case analysis.

• Every |h(X)| is even.

– Every h(X) starts with 0 or 2. By taking the pre-image by m of every h(X),
we obtain an occurrence of Ti that is contained in mn−1(0). This contradicts
the minimality of n.

– Every h(X) starts with 1 or 3. Notice that in b4, the letter 1 (resp. 3) is in
position 1 (mod 4) (resp. 3 (mod 4)). mn(0) contains the occurrence h′ of Ti
such that h′(X) is obtained from h(X) by adding to the rigth the letter 1 or
3 depending on its position modulo 4 and by removing the first letter. Since
is also contained in mn(0) and every h′(X) starts with 0 or 2, h′ satisfies the
previous subcase.

• Every |h(X)| is odd. It is not hard to check that every factor uvu in b4 with |v| = 1
satisfies v ∈ {1, 3} and u ∈ {0, 2}. So |h(X)| > 3 for every variable X of Ti. Let
X1, · · · , Xi be the variables of Ti. Up to a shift of indices, we can assume that j and
the first and last letters of h(Xj) have the same parity. We construct the occurrence
h′ of Ti as follows. If j is odd, then h′(Xj) is obtained by removing the first letter
of h(Xj). If j is even, then h′(Xj) is obtained by adding to the right the letter 1 or
3 depending on its position modulo 4. Since h′ is also contained in mn(0) and every
|h′(X)| is even, h′ satisfies the previous case.
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Our next result generalizes Theorems 5 and 20. Recall that every fragment of a hybrid
formula has length 2 or is of the form XYX.

Theorem 21. Every avoidable hybrid formula is avoided by b4.

Proof. Let f be a hybrid formula. If f contains a locked formula or a formula Ti, then
b4 avoids f by Theorems 4 and 20. If f contains neither a locked formula nor a formula
Ti, then we show that f is unavoidable. By induction and by theorem 1 it is sufficient
to show that f is reducible to a hybrid formula containing neither a locked formula nor
a formula Ti. Since f is not locked, f contains a free set of variables and thus f has a
free singleton {X}. If f contains a fragment Y XY , then {Y } is also a free singleton of f .
Using this argument iteratively, we end up with a free singleton {Z} such that f contains
no fragment TZT , since f contains no formula Ti.

So we can assume that f contains a free singleton {Z} and no fragment TZT . Thus,
deleting every occurrence of Z from f gives an hybrid sub-formula containing neither a
locked formula nor a formula Ti. By induction, f is unavoidable.

So the index of an avoidable xyx-formula is at most 4 and we have seen examples of
xyx-formulas with index 3 in Theorems 15 and 19. The next results give an xyx-formula
with index 4 and an xyx-formula with index 2 that is not divisible by AAA.

Theorem 22. λ(ABA.BCB.DCD.DED.AEA) = 4.

Proof. By Theorem 21, ABA.BCB.DCD.DED.AEA is 4-avoidable.
Notice that ABA.BCB.DCD.DED.AEA � ABA.BCB.ACA via the homomorphism
A→ A, B → B, C → C, D → B, E → C. Moreover, w3 contains the occurrence A→ 0,
B → 1, C → 02, D → 01, E → 2 of ABA.BCB.DCD.DED.AEA. By Theorem 15, the
formula is not 3-avoidable.

Theorem 23. The fixed point of 001/011 avoids the xyx-formula associated to the di-
rected graph on 4 vertices with all the 12 arcs.

Proof. We use again Cassaigne’s algorithm.

6 Palindrome patterns

Mikhailova [10] has considered the index of an avoidable pattern that is a palindrome
and proved that it is at most 16. She actually constructed a morphic word over Σ16 that
avoids every avoidable palindrome pattern.

We make a distinction between the largest index Pw of an avoidable palindrome pattern
and the smallest alphabet size Ps allowing an infinite word avoiding every avoidable
palindrome pattern. We obtained [15] the lower bound

λ(ABCADACBA) = λ(ABCA.ACBA) = 4,

so that 4 6 Pw 6 Ps 6 16.
The following result is a slight improvement to λ(ABCA.ACBA) = 4 that is not

related to palindromes.
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Theorem 24. λ(ABCA.ACBA.ABCBA) = 4.

Proof. By Lemma 6, every recurrent word avoiding ABCA.ACBA.ABCBA is square-
free. A computer check shows that no infinite ternary square-free word avoids the occur-
rences h of ABCA.ACBA.ABCBA such that |h(A)| = 1, |h(B)| 6 2, and |h(C)| 6 3.

Let us give necessary conditions on a palindrome pattern P so that 5 6 λ(P ) 6 16.

1. The length of P is odd and the central variable of P is isolated. Indeed, otherwise
P would be a doubled pattern and thus 3-avoidable [12].

2. No variable of P appears both at an even and an odd position. Indeed, if P had
a variable that appears both at an even and an odd position, then P would be
divisible by a formula in the family AA, ABCA.ACBA, ABCDEA.AEDCBA,
ABCDEFGA.AGFEDCBA, . . . Such formulas (with an odd number of variables)
are locked and thus are avoided by b4 by Theorem 4. So P would be 4-avoidable.

We have found three patterns/formulas satisfying these conditions (see Theorem 25),
but they seem to be 2-avoidable. We use again Cassaigne’s algorithm with simple pure
morphic words to ensure that they are 4-avoidable. Let z3 be the fixed point of 01/2/20.

Theorem 25.

1. ADBDCDAD.DADCDBDA is avoided by b4.

2. ABCDADC.CDADCBA is avoided by z3.

3. ABACDBAC.CABDCABA is avoided by z3 and b4.

7 Discussion

Let us briefly mention the things that we have attempted to do in this paper, without
success.

• Find a result similar to Theorems 15 and 16 for v3, the morphic word avoiding
squares, 010, and 020.

• Improve Theorem 23 by showing that some xyx-formula on 4 variables and fewer
fragments is 2-avoidable.

• Show that the xyx-formula associated to the transitive tournament on 5 vertices is
2-avoidable.
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