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Abstract

In the area of forbidden subposet problems we look for the largest possible size
La(n, P ) of a family F ⊆ 2[n] that does not contain a forbidden inclusion pattern
described by P . The main conjecture of the area states that for any finite poset P
there exists an integer e(P ) such that La(n, P ) = (e(P ) + o(1))

(
n
bn/2c

)
.

In this paper, we formulate three strengthenings of this conjecture and prove
them for some specific classes of posets. (The parameters x(P ) and d(P ) are defined
in the paper.)

• For any finite connected poset P and ε > 0, there exists δ > 0 and an integer
x(P ) such that for any n large enough, and F ⊆ 2[n] of size (e(P ) + ε)

(
n
bn/2c

)
,

F contains at least δnx(P )
(

n
bn/2c

)
copies of P .

• The number of P -free families in 2[n] is 2
(e(P )+o(1))( n

bn/2c).

• Let P(n, p) be the random subfamily of 2[n] such that every F ∈ 2[n] belongs to
P(n, p) with probability p independently of all other subsets F ′ ∈ 2[n]. For any
finite poset P , there exists a positive rational d(P ) such that if p = ω(n−d(P )),
then the size of the largest P -free family in P(n, p) is (e(P ) + o(1))p

(
n
bn/2c

)
with high probability.

Mathematics Subject Classifications: 05D05
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1 Introduction

Extremal set theory starts with the seminal result of Sperner [21] that was generalized
by Erdős [7] as follows: if a family F ⊆ 2[n] of sets does not contain a nested sequence
F1 ( F2 ( · · · ( Fk+1 (such nested sequences are called chains of length k + 1 or (k + 1)-
chains for short), then its size cannot exceed that of the union of k middle levels of 2[n],
i.e., |F| 6

∑k
i=1

(
n

bn−k
2 c+i

)
. This theorem has many applications and several of its variants

have been investigated.
In the early 80’s, Katona and Tarján [13] introduced the following general framework

to study set families avoiding some fixed inclusion patterns: we say that a subfamily G
of F is a (non-induced) copy of a poset (P,6) in F , if there exists a bijection i : P → G
such that if p, q ∈ P with p 6 q, then i(p) ⊆ i(q). If i satisfies the property that for
p, q ∈ P we have p 6 q if and only if i(p) ⊆ i(q), then G is called an induced copy of
P in F . If F does not contain any (induced) copy of P , the F is said to be (induced)
P -free. The largest possible size of a(n induced) P -free family F ⊆ 2[n] is denoted by
La(n, P ) (La∗(n, P )). Let Pk denote the k-chain, then the result of Erdős mentioned
above determines La(n, Pk+1). These parameters have attracted the attention of many
researchers, and there are widely believed conjectures in the area (see Conjecture 1) that
appeared first in [3] and [11], giving the asymptotics of La(n, P ) and La∗(n, P ).

Let e(P ) denote the maximum integer m such that for any i 6 n, the family
(
[n]
i+1

)
∪(

[n]
i+2

)
∪· · ·∪

(
[n]
i+m

)
is P -free. Similarly, let e∗(P ) denote the maximum integer m such that

for any i 6 n, the family
(
[n]
i+1

)
∪
(
[n]
i+2

)
∪ · · · ∪

(
[n]
i+m

)
is induced P -free.

Conjecture 1. (i) La(n, P ) = (e(P ) + o(1))
(

n
bn/2c

)
.

(ii) La∗(n, P ) = (e∗(P ) + o(1))
(

n
bn/2c

)
.

Conjecture 1 has been verified for several classes of posets, but is still open in general.
For more results on the La(n, P ) function, see Chapter 7 of [8], and see other chapters
for more background on the generalizations considered in this paper.

After determining (the asymptotics of) the extremal size and the structure of the
extremal families, one may continue in several directions. Stability results state that all
P -free families having almost extremal size must be very similar in structure to the middle
e(P ) levels of 2[n]. Supersaturation problems ask for the minimum number of copies of
P that a family F ⊆ 2[n] of size La(n, P ) + E may contain. This is clearly at least E,
but usually one can say much more. Counting problems ask to determine the number of
P -free families in 2[n]. As any subfamily of a P -free family is P -free, therefore the number
of P -free families is at least 2La(n,P ). The question is how many more such families there
are. Finally, one can address random versions of the forbidden subposet problem. Let
P(n, p) denote the probability space of all subfamilies of 2[n] such that for any F ⊆ [n],
the probability that F belongs to P(n, p) is p, independently of any other set F ′. What
is the size of the largest P -free subfamily of P(n, p) with high probability1? Clearly, for

1we say that a sequence of events E1, E2, . . . , En, . . . holds with high probability (or w.h.p., in short)
if P(En) tends to 1 as n tends to infinity
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p = 1, this is La(n, P ). For other values of p, an obvious construction is to take a P -free
subfamily of 2[n], and then the sets that are in P(n, p) form a P -free family. Taking the
e(P ) middle levels shows that the size of the largest P -free family in P(n, P ) is at least
p(e(P )+o(1))

(
n
bn/2c

)
w.h.p.. For what values of p does this formula give the asymptotically

correct answer?

In this paper, we will consider supersaturation, counting and random versions of the
forbidden subposet problem, mostly focusing on supersaturation results. We will propose
three strengthenings of Conjecture 1 and prove them for some classes of posets. In the
remainder of the introduction, we state our results and also what was known before.

The supersaturation version of Sperner’s problem is to determine the minimum number
of pairs F ( F ′ over all subfamilies of 2[n] of given size. We say that a family F is centered
if it consists of the sets closest to n/2. More precisely, if F ∈ F and ||G|−n/2| < ||F |−n/2|
imply G ∈ F . Kleitman [14] proved that among families of cardinality m, centered ones
contain the smallest number of copies of P2. He conjectured that the same holds for any
Pk. After several partial results, e.g. [2, 5, 6], the conjecture was confirmed by Samotij
[20]. The following is a consequence of the result of Samotij. We will only use it with
k = 2, i.e. the result of Kleitman.

Theorem 1. For any k, t with k−1 6 t and ε > 0 there exists nk,t,ε such that if n > nk,t,ε,

then any family F ⊆ 2[n] of size at least (t+ ε)
(

n
bn/2c

)
contains at least ε nt

2t+1

(
n
bn/2c

)
chains

of length k.

Apart from the above, the only supersaturation result in the area of forbidden subposet
problems is due to Patkós [19]. It gives the minimum number of copies of the butterfly
poset2 B in families of size La(n,B) + E for small values of E.

We will investigate the number of copies of P created when the number of additional
sets compared to a largest P -free family is proportional to the size of the middle level(

[n]
bn/2c

)
. Let M(n, P ) denote the number of copies of P in the e(P ) + 1 middle levels of

2[n], and let M∗(n, P ) denote the number of induced copies of P in the e∗(P ) + 1 middle
levels of 2[n]. The Hasse diagram of a poset P is the directed graph with vertex set P
and for p, q ∈ P , (pq) is an arc in the Hasse diagram if p < q and there does not exist
z ∈ P with p < z < q. We say that P is connected, if its Hasse diagram (as a digraph) is
weakly connected, i.e., we cannot partition its vertices into two sets such that there is no
arc between those sets. The undirected Hasse diagram is the undirected graph obtained
from the Hasse diagram by removing orientations of all arcs.

Proposition 2. For any connected poset P on at least two elements there exist pos-

itive integers x(P ) and x∗(P ) such that M(n, P ) = Θ
(
nx(P )

(
n
bn/2c

))
and M∗(n, P ) =

Θ
(
nx
∗(P )
(

n
bn/2c

))
hold.

Proof. The proofs of the two statements are analogous, so we include only that of the
non-induced version. For a copy G of P with all sets from the e(P ) + 1 middle levels of

2the poset on four elements a, b < c, d
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2[n], let AG = ∩G∈GG, BG = ∪G∈GG and mG = |AG|,MG = |BG|. Let us define x(P ) now.
Let x(P ) := maxG{MG −mG}, where the maximum runs through all the copies G of P
with all sets from the e(P ) + 1 middle levels of 2[n].

We claim that for any such G, we have MG −mG 6 e(P )|P | (in other words x(P ) 6
e(P )|P |). Indeed, as P is connected, we can go through its elements in an order such that
every element is in relation with at least one of the earlier elements. As G is from the
e(P ) + 1 middle levels, this means that the new element is a set that is either contained
in, or contains an earlier set, thus it differs from that set in at most e(P ) elements. In the
first case, this new element decreases mG by at most e(P ), in the second case it increases
MG by at most e(P ), so we are done.

Similarly, one can show |mG − n/2|, |MG − n/2| 6 e(P )|P |. Clearly, for any A ⊆ B
with |B| − |A| 6 e(P )|P | there is at most a fixed constant number of copies G of P such
that A = AG and B = BG. Finally, the number of pairs A ⊆ B, with |B \ A| 6 x(P ),
||A| − n/2| 6 e(P )|P | and ||B| − n/2| 6 e(P )|P | is at most C

(
n
bn/2c

)(bn/2c+e(P )|P |
x(P )

)
. This

yields M(n, P ) = O(nx(P )
(

n
bn/2c

)
).

For the lower bound, fix a copy G with |BG \ AG| = x(P ). Clearly, for any A′ ⊆ B′

with |A′| = |AG|, |B′| = |BG| there exists a permutation π of [n] with π(AG) = A′ and
π(BG) = B′. Therefore, such permutations π map G into distinct copies of P . Their
number is clearly at least

(
n
|AG |

)(
n−|AG |
|BG\AG |

)
> c ·nx(P )

(
n
bn/2c

)
for some positive constant c.

Now we can state the first generalization of Conjecture 1.

Conjecture 3. (i) For every poset P and ε > 0 there exists δ > 0 such that if F ⊆ 2[n]

is of size at least (e(P ) + ε)
(

n
bn/2c

)
, then F contains at least δ ·M(n, P ) many copies

of P .

(ii) For every poset P and ε > 0 there exists δ > 0 such that if F ⊆ 2[n] is of size at
least (e∗(P ) + ε)

(
n
bn/2c

)
, then F contains at least δ ·M∗(n, P ) many induced copies

of P .

We will prove Conjecture 3 for several classes of tree posets. A poset T is a tree
poset, if its undirected Hasse diagram is a tree. The height h(P ) of poset P is the
length of the longest chain in P . Note that for any tree poset T of height 2, we have
x(T ) = x∗(T ) = |T | − 1.

Theorem 2. Let T be any height 2 tree poset of t+1 elements. Then for any ε > 0 there
exist δ > 0 and n0 such that for any n > n0 any family F ⊆ 2[n] of size |F| > (1+ε)

(
n
bn/2c

)
contains at least δnt

(
n
bn/2c

)
copies of T .

For two elements x, y of the poset P , we write x ≺ y if x <P y and there does not
exist any z ∈ P with x <P z <P y. We say that a tree poset T is upward (downward)
monotone, if for any x ∈ T there exists at most 1 element y ∈ T with y ≺ x (x ≺ y). A
tree poset is called monotone, if it is either upward or downward monotone.
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Theorem 3. For any monotone tree poset T and ε > 0, there exist δ > 0 and n0 such
that for any n > n0 any family F ⊆ 2[n] of size |F| > (h(T ) − 1 + ε)

(
n
bn/2c

)
contains at

least δnx(T )
(

n
bn/2c

)
copies of T .

The complete multipartite poset Kr1,r2,...,r` is a poset on
∑`

i=1 ri elements ai,j with
i = 1, 2, . . . , `, j = 1, 2, . . . , ri such that ai,j < ai′,j′ if and only if i < i′. The poset K1,r

is usually denoted by ∨r, and the poset Kr,1 is denoted by ∧r. The poset Ks,1,t is a tree
poset with x(Ks,1,t) = x∗(Ks,1,t) = s+ t.

Theorem 4. For any s, t ∈ N and ε > 0 there exist n0 = nε,s,t and δ > 0 such that any
F ⊆ 2[n] of size at least (2 + ε)

(
n
bn/2c

)
with n > n0 contains at least δns+t

(
n
bn/2c

)
induced

copies of Ks,1,t.

We will consider the supersaturation problem for the generalized diamond Ds, i.e., the
poset on s + 2 elements with a < b1, b2, . . . , bs < c. For any integer s > 2, let us define
ms = dlog2(s + 2)e and m∗s = min{m : s 6

(
m
dm/2e

)
}. Clearly, for any integer s > 2, we

have e(Ds) = x(Ds) = ms and e∗(Ds) = x∗(Ds) = m∗s. The next theorem establishes a
lower bound that is less by a factor of

√
n than what Conjecture 3 states for diamond

posets Ds for infinitely many s.

Theorem 5. (i) If s ∈ [2ms−1 − 1, 2ms −
(
ms

dms
2
e

)
− 1], then for any ε > 0 there exists

a δ > 0 such that every F ⊆ 2[n] with |F| > (ms + ε)
(

n
bn/2c

)
contains at least

δ · nms−0.5
(

n
bn/2c

)
copies of Ds.

(ii) For any ε > 0 there exists a δ > 0 such that every F ⊆ 2[n] with |F| > (4 + ε)
(

n
bn/2c

)
contains at least δ · n3.5

(
n
bn/2c

)
induced copies of D4.

(iii) For any constant c with 1/2 < c < 1 there exists an integer sc such that if s > sc
and s 6 c

(
m∗s
bm∗s/2c

)
, then the following holds: for any ε > 0 there exists a δ > 0 such

that every F ⊆ 2[n] with |F| > (m∗s + ε)
(

n
bn/2c

)
contains at least δ · nm∗s−0.5

(
n
bn/2c

)
induced copies of Ds.

Let us elaborate on the statement of Theorem 5. Part (i) partitions the integers
according to powers of 2 and states that for every integer k, and for most of the integers s
in the interval [2k−1, 2k+1−2], the poset Ds possesses this weak supersaturation property.
By “most of the integers” we mean that the ratio of integers for which the statement holds
and the length of the interval tends to 1 as k tends to infinity. The smallest value of s that
(i) applies to is s = 3 with ms = 3 as then 3 ∈ [23−1 − 1, 23 −

(
3
2

)
− 1] = [3, 4]. Part (ii) is

about supersaturation of induced copies of D4. Part (iii) is similar to (i) but again about
induced copies of Ds. This time positive integers are partitioned into intervals according
to the sequence {

(
k
bk/2c

)
}∞k=1, namely {[

(
k
bk/2c

)
+ 1,

(
k+1

b(k+1)/2c

)
]}∞k=1. As k tends to infinity,

the ratio of right and left endpoints tends to 2. Part (iii) states that as k tends to infinity,
those integers s in the initial segment of the kth interval for which Ds has the claimed
supersaturation property, take up larger and larger ratio of the interval.
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Let us turn our attention to counting (induced) P -free families. As we mentioned

earlier, every subfamily of a P -free family is P -free, therefore 2La(n,P ) > 2(e(P )+o(1))( n
bn/2c)

is a lower bound on the number of such families. Determining the number of P2-free

families has attracted a lot of attention. The upper bound 2(1+o(1))( n
bn/2c), asymptotically

matching in the exponent the trivial lower bound was obtained by Kleitman [15]. After
several improvements, Korshunov [16] determined asymptotically the number of P2-free
families.

Conjecture 4. (i) The number of P -free families in 2[n] is 2(e(P )+o(1))( n
bn/2c).

(ii) The number of induced P -free families in 2[n] is 2(e∗(P )+o(1))( n
bn/2c).

Theorem 6. (i) The number of induced ∨r+1-free families is 2(1+o(1))( n
bn/2c).

(ii) The number of induced Ks,1,t-free families in 2[n] is 2(2+o(1))( n
bn/2c).

As every height 2 poset P is a non-induced subposet of K|P |,1,|P |, Conjecture 4 (i) is
an immediate consequence of Theorem 6 for those height 2 posets P for which e(P ) = 2.

Finally, we turn to random versions of forbidden subposet problems. The probabilis-
tic version of Sperner’s theorem was proved by Balogh, Mycroft, and Treglown [1] and
Collares and Morris [17], independently. It states that if p = ω(1/n), then the largest
antichain in P(n, p) is of size (1 + o(1))p

(
n
bn/2c

)
w.h.p.. This is sharp in the sense that if

p = o(1/n) then the asymptotics is different. Note that as any k-Sperner family is the
union of k antichains, the analogous statement holds for k-Sperner families in P(n, p).
Both papers used the container method. Hogenson in her PhD thesis [12] adapted the
method of Balogh, Mycroft, and Treglown to obtain the same results for non-induced
∨r-free families.

Let us state a general proposition that gives a range of p when one can have a P -free
family in P(n, p) that is larger than p(e(P ) + o(1))

(
[n
bn/2c

)
.

Proposition 5. For any finite connected poset P , the following statements hold.

(i) If p = o(n−
x(P )
|P |−1 ) and p

(
n
bn/2c

)
→ ∞, then the largest P -free family in P(n, p) has

size at least (e(P ) + 1− o(1))p
(

n
bn/2c

)
w.h.p..

(ii) If p = o(n−
x∗(P )
|P |−1 ) and p

(
n
bn/2c

)
→∞, then the largest induced P -free family in P(n, p)

has size at least (e∗(P ) + 1− o(1))p
(

n
bn/2c

)
w.h.p..

Proof. We only prove (i), the proof of (ii) is similar. Let us denote the random family
of the e(P ) + 1 middle levels after keeping any of its sets with probability p by Mp.
Clearly, E(|Mp|) = (e(P ) + 1 + o(1))p

(
n
bn/2c

)
and as and p

(
n
bn/2c

)
→ ∞, we have |Mp| =

(e(P )+1+o(1))p
(

n
bn/2c

)
w.h.p.. Let X be the random variable that denotes the number of

copies of P inMp. Then we have E(X) = Θ(p|P |nx(P )
(

n
bn/2c

)
). By the assumption on p, we
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have p|P |nx(P )
(

n
bn/2c

)
= o(p

(
n
bn/2c

)
), and so X = o(|Mp|) w.h.p., and thus by removing the

copies of P fromMp, we obtain a P -free family in P(n, p) of size (e(P )+1−o(1))p
(

n
bn/2c

)
w.h.p..

IfMp does not contain a subposet P ′ of P , then it is P -free, thus we have the following.

Corollary 6. For any finite poset P , let d(P ) = min x(P ′)
|P ′|−1 , where P ′ runs through all

connected subposets P ′ of P with e(P ) = e(P ′). Similarly, let d∗(P ) = min x∗(P ′)
|P ′|−1 , where

P ′ runs through all connected subposets P ′ of P with e∗(P ) = e∗(P ′). Then the following
statements hold.

(i) If p = o(n−d(P )), then the largest P -free family in P(n, p) has size at least (e(P ) +
1− o(1))p

(
n
bn/2c

)
w.h.p.

(ii) If p = o(n−d
∗(P )), then the largest induced P -free family in P(n, p) has size (e∗(P ) +

1− o(1))p
(

n
bn/2c

)
w.h.p.

We conjecture that the bounds above are sharp.

Conjecture 7. For any finite connected poset P the following statements hold.

(i) If p = ω(n−d(P )), then the largest P -free family in P(n, p) has size (e(P )+o(1))p
(

n
bn/2c

)
w.h.p..

(ii) If p = ω(n−d
∗(P )), then the largest induced P -free family in P(n, p) has size (e∗(P )+

o(1))p
(

n
bn/2c

)
w.h.p..

The following theorem verifies Conjecture 7 for the posets ∨r+1 and Ks,1,t. Observe
that d(∨r+1) = d∗(∨r+1) = 1 for all r > 0 and d(Ks,1,t) = d∗(Ks,1,t) = 2 for all s, t > 1.

Theorem 7. If p = ω(1/n), then the following are true.

(i) For any integer r > 0, the largest induced ∨r+1-free family in P(n, p) has size
(1 + o(1))p

(
n
bn/2c

)
w.h.p..

(ii) For any pair s, t > 1 of integers, the largest induced Ks,1,t-free family in P(n, p) has
size (2 + o(1))p

(
n
bn/2c

)
w.h.p..

The structure of the paper is as follows: in the next section, we gather some earlier
results that will be used as tools in the proofs of our theorems. Also, we will obtain an
induced ∨r+1-free container lemma. Section 3, in three subsections, contain the proofs of
our theorems.
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2 Preliminaries

Here and in the next section, we will assume that n is large enough whenever it is necessary.

Lemma 8. For any 1 6 l 6 n/2 we have
∑l−1

i=0

(
n
i

)
6 2
√
n
(
n
l

)
.

Proof. Let m = b
√
nc and observe that for any k < n/2 we have(

n
k−m

)(
n
k

) 6

(
n

bn/2c−m

)(
n
bn/2c

) 6
m∏
i=1

bn/2c − i+ 1

dn/2e+ i
6 e−

∑m
i=1

2i
n 6 e−1.

So dividing
∑l−1

i=0

(
n
i

)
into m subsums depending on the residue of i mod m, we obtain

subsums that can be upper bounded by geometric progressions of quotient e−1.

We denote by Ck the set of chains of length k + 1, i.e., the set of maximal chains in
2[k]. The next two lemmas could be stated as bounds on the expected value of the size of
the intersection of a Ds-free family F and a random maximal chain, and a family without
antichains of size s a random maximal chain, respectively. We state them in the form
that will be most convenient for our purposes.

Lemma 9 (Griggs, Li, Lu, in the proof of Theorem 2.5 in [10]).
If s ∈ [2ms−1 − 1, 2ms −

(
ms

dms
2
e

)
− 1], and G ⊆ 2[k] is a Ds-free family of sets, then the

number of pairs (G, C) with G ∈ G ∩ C and C ∈ Ck is at most msk!.

Lemma 10 (Patkós [18]). (i) Let G ⊆ 2[k] be a family of sets such that any antichain
A ⊂ G has size at most 3. Then the number of pairs (G, C) with G ∈ G ∩ C and
C ∈ Ck is at most 4k!.

(ii) For any constant c with 1/2 < c < 1 there exists an integer sc such that if s > sc and
s 6 c

(
m∗s
dm∗s/2e

)
, then the following holds: if G ⊆ 2[k] is a family of sets such that any

antichain A ⊂ G has size less than s, then the number of pairs (G, C) with G ∈ G∩C
and C ∈ Ck is at most m∗sk!.

The special case r = 1 of the next theorem was proved by Carroll and Katona [4].

Theorem 8 (Griggs, Li [9]). If F ⊆ 2[n] is an induced ∨r+1-free family, then |F| 6
(1 + 2r

n
+O( r

n2 ))
(

n
bn/2c

)
holds, where the constant in the O-term does not depend on r.

We remark that we will use the above theorem with r = Θ(n).

Theorem 9. For every ε > 0 and t, r ∈ Z+, if n is large enough and F ⊆ 2[n] is of size at
least (t+ ε)

(
n
bn/2c

)
, then there exists an induced copy of ∨δnt in F with δ = ε

2t+3t!
.

Proof. As |{G ⊆ [n] : ||G| − n/2| > n2/3}| 6 1
n2

(
n
bn/2c

)
, we can assume that n/2− n2/3 6

|F | 6 n + n2/3 holds for every F ∈ F and |F| > (t + ε/2)
(

n
bn/2c

)
. The Lubell-function
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λn(F) :=
∑

F∈F
1

( n
|F |)

of a family F ⊆ 2[n] of sets is the average number of sets in F ∩ C

over all maximal chains C ∈ Cn. Clearly, |F| > (t+ ε/2)
(

n
bn/2c

)
implies λn(F) > t+ ε/2.

Let CF be the collection of maximal chains C ∈ Cn such that F is the smallest set
in F ∩ C, and let C∅ be the collection of those maximal chains that avoid F . Let us
partition Cn into C∅ ∪

⋃
F∈F CF . Writing FF = {F ′ \ F : F ′ ∈ F , F ⊆ F ′}, we

obtain λn(F) =
∑

F∈F
|CF |
n!
λn−|F |(FF ). This means that for some F ∈ F , we must have

λn−|F |(FF ) > t+ ε/2. If F does not contain any induced copy of ∨δnt , then for any i > t
we have |{F ′ ∈ FF : |F ′| = i}| < δnt, thus writing FF,1 = {G ∈ FF : |G| 6 t − 1} and
FF,2 = FF \ FF,1 we obtain

t+ ε/2 6 λn−|F |(FF ) = λn−|F |(FF,1) + λn−|F |(FF,2) 6

6 t+ δnt
2n2/3∑
i=t

1(
n−|F |
i

) < t+
2δnt(

n/2−n2/3

t

) 6 t+ 2t+2δt!.

This is a contradiction if δ 6 ε
2t+3t!

.

Hogenson [12], altering a proof of Balogh, Mycroft, and Treglown [1], obtained a
container lemma for non-induced ∨r+1-free families. With the help of Theorem 9, we can
validate it for induced ∨r+1-free families.

For a family G of sets in 2[n] and a set F ⊆ 2[n], we introduce UG(F ) = {G ∈ G :
F ⊆ G}. Previous proofs used the G-degree of F , the size of UG(F ). Observe that F
is ∨r+1-free if and only if the F -degree of every F ∈ F is at most r. We introduce the
G-weight of F as the size of the largest antichain in UG(F ). Observe that F is induced
∨r+1-free if and only if the F -weight of every F ∈ F is at most r. Now we will state the
appropriate container lemma. For the reader not familiar with container lemmas: the aim
of the next theorem is to prove the existence of “not many” containers such that every
induced ∨r+1-free family is contained in one of them. The containers are of the form
H1 ∪H2 ∪ g(H1 ∪H2) and their number is relatively small as they are determined by H1

and H2 and the size of these is much smaller than that of asymptotically maximum sized
∨r+1-free families.

Theorem 10. Let t, r ∈ Z+ and ε 6 1
(2t)t+1 and assume n is large enough. Then there exist

functions f :
(

2[n]

6(r+1)2nn−(t+0.9)

)
→
(

2[n]

(t+1+ε)( n
bn/2c)

)
and g :

(
2[n]

6(r+1) t+2

ε2nt (
n
bn/2c)

)
→
(

2[n]

(t+ε)( n
bn/2c)

)
such that for any induced ∨r+1-free family F ⊆ 2[n] there exist disjoint subfamilies
H1,H2 ⊆ F with |H1| 6 (r + 1)2nn−(t+0.9) and |H1| + |H2| 6 (r + 1) t+2

ε2nt

(
n
bn/2c

)
such

that (H1 ∪H2) ∩ g(H1 ∪H2) = ∅, H2 ⊆ f(H1) and F ⊆ H1 ∪H2 ∪ g(H1 ∪H2).

Proof. The proof uses the standard graph container algorithm with some modifications.
First, we fix an ordering S1, S2, . . . , S2n of 2[n] and also an ordering S1,S2, . . . ,S22n of 22[n]

.
The input of the algorithm is an induced ∨r+1-free family F ⊆ 2[n], and in two phases it
outputs H1, H2, f(H1) and g(H1 ∪H2) as follows.

At the beginning we set G0 = 2[n], H0
1 = H0

2 = ∅ and we start at Phase I.
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Later in the ith round (for i = 1, 2, . . . ) we always pick a Gi ∈ Gi−1 with largest
Gi−1-weight. If there are several sets G with the same (largest) Gi−1-weight, we pick the
one appearing first in our fixed ordering of 2[n].

Phase I.

• If Gi /∈ F , we set Gi = Gi−1 \ {G} and Hi
1 = Hi−1

1 , Hi
2 = Hi−1

2 .

• If Gi ∈ F , and the Gi−1-weight of Gi is more than nt+0.9, then we pick the largest
antichain Ai in UGi−1(Gi). If there are multiple such antichains, we pick the one with

the smallest index in our fixed ordering of 22[n]
and set Gi = Gi−1 \ (Ai ∪ {Gi}), Hi

1 =
Hi−1

1 ∪ [(Ai ∩ F) ∪ {Gi}] and Hi
2 = Hi−1

2 .

• If Gi ∈ F , and the Gi−1-weight of Gi is at most nt+0.9, then Phase I is ended, we
keep Gi = Gi−1, Hi

2 = Hi−1
2 , set H1 = Hi−1

1 (from here on, Hi
1 does not change) and define

f(H1) = Gi. And jump to Phase II.

Phase II.

• If Gi /∈ F , we set Gi = Gi−1 \ {G} and Hi
1 = Hi−1

1 , Hi
2 = Hi−1

2 .

• If Gi ∈ F , and the Gi−1-weight of Gi is more than ε2nt, then we again take the
largest antichain Ai in UGi−1(Gi) with the smallest index in our fixed ordering of 22[n]

and
set Gi = Gi−1 \ (Ai ∪ {Gi}), Hi

2 = Hi−1
2 ∪ [(Ai ∩ F) ∪ {Gi}].

• If Gi ∈ F , and the Gi−1-weight of Gi is at most ε2nt, then Phase II and the algorithm
is ended, set H2 = Hi−1

2 and define g(H1 ∪H2) = Gi−1.

Observe the following:

• whenever we include sets in Hi
1, then the number of such sets is at most r + 1 (as

F is
∨r+1-free), and the number of sets removed from Gi−1 is at least nt+0.9, so

|H1| 6 (r + 1)2n/nt+0.9;

• at the end of Phase I, Gi does not contain any induced copies of ∨nt+0.9 , so, by
Theorem 9,

|f(H1)| = |Gi| 6 (t+ 1 + ε)

(
n

bn/2c

)
;

• the above two bullet points and the threshold for Phase II imply that

|H2| 6
r + 1

ε2nt
|f(H1)| 6 (r + 1)

t+ 2

ε2nt

(
n

bn/2c

)
;

• Theorem 9 implies that at the end of Phase II,

|g(H1 ∪H2)| = |Gi| 6 (t+ ε)

(
n

bn/2c

)
.
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All what remains to prove is that the functions f and g are well defined, i.e., if for two
distinct ∨r+1-free families F and F ′ the algorithm outputs the same H1, then f(H1) is
defined the same, and if in addition H1 ∪ H2 is the same for both runs of the algorithm,
then so is g(H1 ∪H2). We claim more: the families Gi,Hi

1,Hi
2 are the same for both runs

for all values of i = 0, 1, . . . . This is certainly true for i = 0. Then by induction, if this
holds for some i, then Gi is the same for both runs. Therefore, due to the fixed ordering
of 2[n], the algorithm considers the same set Gi+1 ∈ Gi in step i + 1. As Gi+1 will be
removed from Gi in all cases, therefore it cannot happen that Gi+1 belongs to exactly one
of F ,F ′. If Gi+1 /∈ F ,F ′, then Gi+1 is removed from Gi and nothing happens to H1,H2

so the claim is true for i + 1. If Gi+1 ∈ F ∩ F ′, then, due to the fixed ordering of 22[n]
,

the antichain Ai+1 is defined the same for both runs. This immediately yields that Gi+1

is defined the same for both runs. Also, as for any A ∈ Ai+1 either A becomes a set of
H1,H2 in this step or never, and in the end these sets are the same, therefore they must
be the same after step i+ 1.

3 Proofs

3.1 ∨r+1-free families and consequences - Theorem 4, 6, and 7

In this subsection we present the proofs of our theorems concerning ∨r+1-free and Ks,1,t-
free families. We restate the theorems here for convenience.

Theorem 4. For any s, t ∈ N and ε > 0 there exist n0 = nε,s,t and δ > 0 such that any
F ⊆ 2[n] of size at least (2 + ε)

(
n
bn/2c

)
with n > n0 contains at least δns+t

(
n
bn/2c

)
induced

copies of Ks,1,t.

Proof. Let F ⊆ 2[n] be a family of sets of size (2 + ε)
(

n
bn/2c

)
. Let D be the family of those

elements of F that are not the maximal element of an induced ∧εn/10 and U the family
of those that are not the minimal element of an induced ∨εn/10. By Theorem 8, we have
|D|, |U| 6 (1 + 4ε/10)

(
n
bn/2c

)
, thus |F \ (D ∪U)| > ε

5

(
n
bn/2c

)
. Taking sets from F \ (D ∪U)

to play the role of the middle element of Ks,1,t, by definition of D and U , we obtain at

least ε
5

(
n
bn/2c

)(
εn/10
s

)(
εn/10
t

)
copies of Ks,1,t.

Theorem 6. (i) The number of induced ∨r+1-free families is 2(1+o(1))( n
bn/2c).

(ii) The number of induced Ks,1,t-free families in 2[n] is 2(2+o(1))( n
bn/2c).

Proof. To prove (i), we apply our container lemma, Theorem 10 with t = 1. It shows
that for every induced ∨r+1-free family F , there exist H1,H2 and g(H1 ∪ H2) such that
H1 and H2 are disjoint, |H1 ∪ H2| 6 (r + 1) 3

ε2n

(
n
bn/2c

)
, |g(H1 ∪ H2)| 6 (1 + ε)

(
n
bn/2c

)
and

F ⊆ H1 ∪ H2 ∪ g(H1 ∪ H2). Therefore, |H1 ∪ H2 ∪ g(H1 ∪ H2)| 6 (1 + 2ε)
(

n
bn/2c

)
. The

number of subfamilies of such containers is at most 2(1+2ε)( n
bn/2c), and the number of such

containers is at most (
2n

(r + 1) 3
ε2n

(
n
bn/2c

))2(r+1) 3
ε2n

( n
bn/2c).
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Indeed, the first term is an obvious upper bound on the number of families H1 ∪H2, and
the second term is an obvious upper bound on the number of ways to partition H1 ∪H2

to H1 and H2. Using
(

n
bn/2c

)
= Θ( 1√

n
2n) and

(
a
b

)
6 ( ea

b
)b, we obtain that the number of

induced ∨r+1-free families in 2[n] is at most(
2n

(r + 1) 3
ε2n

(
n
bn/2c

))2(r+1) 3
ε2n

( n
bn/2c)2(1+2ε)( n

bn/2c) = 2(1+2ε+Oε,r(
logn
n

))( n
bn/2c).

The lower bound follows from the fact that every subfamily of the middle level is ∨r+1-free.
To prove (ii), observe that every induced Ks,1,t-free family F ⊆ 2[n] can be written as

F = D ∪ U such that D is induced ∧s-free and U is induced ∨t-free. Indeed, let D be
the family of those elements of F that are not the maximal element of an induced ∧s and
U be the family of those that are not the minimal element of an induced ∨t. If F ∈ F
does not belong to D ∪ U , then F with its s subsets and its t supersets form an induced

Ks,1,t, which contradicts the Ks,1,t-free property of F . By part (i), there are 2(1+o(1))( n
bn/2c)

induced ∨t-free families in 2[n] and there are 2(1+o(1))( n
bn/2c) induced ∧s-free families in 2[n].

Therefore there are at most 2(2+o(1))( n
bn/2c) induced Ks,1,t-free families in 2[n]. The lower

bound immediately follows from the fact that every subfamily of the middle two levels is
Ks,1,t-free.

Theorem 7. If p = ω(1/n), then the following are true.

(i) For any integer r > 0, the largest induced ∨r+1-free family in P(n, p) has size (1 +
o(1))p

(
n
bn/2c

)
w.h.p..

(ii) For any pair s, t > 1 of integers, the largest induced Ks,1,t-free family in P(n, p) has
size (2 + o(1))p

(
n
bn/2c

)
w.h.p..

Proof. To prove (i), we again apply Theorem 10 with t = 1. All calculations are very
close to those in [12], which in turn are almost the same as those in [1], we include them
for sake of completeness.

We will show that w.h.p. for every ε > 0 and every ∨r+1-free family F in 2[n] of size
at least (1 + ε)p

(
n
bn/2c

)
, not all sets of F remain in P(n, p). It is enough to prove the

statement for ε < 1
4

and set ε1 = ε/4. For every such F , Theorem 10 with ε1 in the role
of ε, gives us H1 = H1(F),H2 = H2(F) such that

• H1 ∈
(

2[n]

6(r+1)2nn−1.9

)
; therefore the number of possible H1’s is at most

∑
a6(r+1)2nn−1.9

(
2n

a

)
.

Clearly, we have P(H1 ⊆ P(n, p)) = p|H1|.
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• H2 ∈
(

2[n]

63(r+1)( n
bn/2c)/(ε21n)

)
and H2 ⊆ f(H1) ∈

(
2[n]

(2+ε1)( n
bn/2c)

)
, so for fixed H1 the

number of possible H2’s is at most∣∣∣∣∣
(

f(H1)

6 3(r + 1)
(

n
bn/2c

)
/(ε21n)

)∣∣∣∣∣ 6 ∑
b63(r+1)( n

bn/2c)/(ε21n)

(
3
(

n
bn/2c

)
b

)
.

Also, P(H2 ⊆ P(n, p)) = p|H2|.

• For fixedH1 andH2 the corresponding F ’s are all subfamilies ofH1∪H2∪g(H1∪H2)
and contain H1 ∪H2.

1. Let EH1,H2 be the event that there exists any F with H1(F) = H1, H2(F) = H2,
and |F| > (1 + ε)p

(
n
bn/2c

)
, and

2. let Eg(H1∪H2) be the event that |P(n, p)∩g(H1∪H2)| > (1+ε)p
(

n
bn/2c

)
−|H1∪H2|

holds.

We bound the probability of the event EH1,H2 by the probability of the event
Eg(H1∪H2). Note that

(1 + ε)p

(
n

bn/2c

)
− |H1 ∪H2| > (1 + ε/2)p

(
n

bn/2c

)
and

|g(H1 ∪H2)| 6 (1 + ε1)

(
n

bn/2c

)
6 (1 + ε/4)

(
n

bn/2c

)
.

Therefore, |P(n, p) ∩ g(H1 ∪H2)| is binomially distributed with

E(|P(n, p) ∩ g(H1 ∪H2)|) 6 (1 + ε/4)p

(
n

bn/2c

)
,

so by Chernoff’s inequality we have

P(Eg(H1,H2)) 6 P
[
|P(n, p) ∩ g(H1 ∪H2)| > (1 + ε/2)p

(
n

bn/2c

)]
6 e−ε

2p( n
bn/2c)/100.

Note that H1, H2, and g(H1 ∪ H2) are disjoint, so the three events that H1 ⊆
P(n, p), H2 ⊆ P(n, p) and Eg(H1∪H2) are independent. Hence the probability that for
fixed H1 and H2 there is a corresponding large induced ∨r+1-free family F , is at most

p|H1|+|H2|e−ε
2p( n
bn/2c)/100. Summing up for all possible H1 and H2, we obtain that the prob-

ability that there is an induced ∨r+1-free family in P(n, p) of size (1 + ε)p
(

n
bn/2c

)
, is at

most ∑
06a6(r+1)n−1.92n

∑
06b63(r+1)( n

bn/2c)/(ε21n)

(
2n

a

)
pa
(

3
(

n
bn/2c

)
b

)
pbe−ε

2p( n
bn/2c)/100.
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It is not hard to verify that the largest summand in the above sum belongs to the largest
possible values of a and b. Therefore the above expression is bounded from above by

(r + 1)n−1.92n
3(r + 1)

(
n
bn/2c

)
ε21n

(
2n

(r + 1)n−1.92n

)( 3
(

n
bn/2c

)
3(r+1)( n

bn/2c)
(ε21n)

)
×

× e−ε
2p( n
bn/2c)/100p(r+1)n−1.92np3(r+1)( n

bn/2c)/(ε2n).

Observe that

(r + 1)n−1.92n3(r + 1)

(
n

bn/2c

)
/(ε21n) 6 eO(n) 6 eε

2p( n
bn/2c)/400.

Also, using
(
n
k

)
6 ( en

k
)k and p

(
n
bn/2c

)
= ω(n−1.52n), we have(

2n

(r + 1)n−1.92n

)
p(r+1)n−1.92n 6 (en1.9p)(r+1)n−1.92n 6 eO(n−1.92n lnn) 6 eε

2p( n
bn/2c)/400.

Finally, by the same reasoning we have(
3
(

n
bn/2c

)
3(r + 1)

(
n
bn/2c

)
/(ε21n)

)
p3(r+1)( n

bn/2c)/(ε21n) 6 (eε21np)
3(r+1)( n

bn/2c)/(ε21n)

6 e
3(r+1)( n

bn/2c)p
ln(np)

(ε2np) 6 eε
2p( n
bn/2c)/400.

Therefore, the probability there is an induced ∨r+1-free family in P(n, p) of size (1 +

ε)p
(

n
bn/2c

)
is at most e−ε

2p( n
bn/2c)/400 = o(1), as required.

To prove (ii), let F ⊆ P(n, p) be an induced Ks,1,t-free family. As in the proof of
Theorem 6 (ii), let us consider the partition F = D∪U with D = {F ∈ F : 6 ∃F1, F2, . . . , Fs
an antichain with Fi ( F} and U = {F ∈ F :6 ∃F1, F2, . . . , Ft an antichain with Fi ) F}.
By part (i) of this theorem, both D and U are of size at most (1 + o(1))p

(
n
bn/2c

)
and thus

|F| 6 (2 + o(1))p
(

n
bn/2c

)
.

3.2 Results on trees - Theorem 2 and 3

Lemma 11. Let
−→
T be a directed tree with t edges that does not contain directed paths of

length 2. Then there exists a δ > 0 such that the following holds: if f(m) tends to infinity

with m and
−→
Gm is a directed graph on m vertices with f(m) ·m edges, then

−→
G contains

δf(m)tm copies of
−→
T .

Proof. It is a well-known fact that every undirected graph contains a cut (i.e., a partition
of its vertices into two and the edges between the parts) that contains at least half of its

edges. This fact easily implies that the vertex set of
−→
Gm can be partitioned into A ∪ B

such that there exist f(m)m
4

edges pointing from A to B. Let
−→
H denote this directed
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subgraph of
−→
Gm. We call the number of edges incident to a vertex degree, no matter

what the direction of the edge is. We claim that
−→
H has a subgraph with minimum degree

at least f(m)
5

and with at least f(m)m
20

edges. Indeed, let us remove vertices of degree less

than f(m)
5

, then we remove the vertices that have degree less than f(m)
5

in the resulting

graph, and so on. We stop when we obtain a graph with minimum degree at least f(m)
5

.

Altogether we removed at most m vertices, thus less than f(m)m
5

edges.

Based on these properties, we can embed
−→
T to

−→
Gm greedily as follows: we fix an

ordering e1, e2, . . . , et of the edges of
−→
T such that e1, . . . , ej is a tree for every j = 1, 2, . . . , t

and then embed ei to an edge of
−→
H t−i. There are at least f(m)m

20
choices for the image of

e1 and at least f(m)
5
− i choices for the image of ei if i > 2.

Theorem 2. Let T be any height 2 tree poset of t+ 1 elements. Then for any ε > 0 there
exist δ > 0 and n0 such that for any n > n0 any family F ⊆ 2[n] of size |F| > (1+ε)

(
n
bn/2c

)
contains at least δnt

(
n
bn/2c

)
copies of T .

Proof. For a family F ⊆ 2[n] of size at least (1 + ε)
(

n
bn/2c

)
, let us consider its directed

comparability graph
−→
GF . This is the graph with vertex set F where

−→
FG is an edge if and

only if F ( G. By Theorem 1,
−→
GF contains at least εn

4

(
n
bn/2c

)
edges and thus Lemma 11

can be applied with m =
(

n
bn/2c

)
and f(m) = εn

4
.

Proposition 12. For any monotone tree poset T , we have x(T ) = |T |−1+
∑

(h(T )−r(`)),
where h(T ) denotes the height of T , the summation is over all leaves ` of T , and r(`) is
the rank of `, i.e., its distance from the root in the Hasse diagram of T plus 1.

Proof. Let us generate an embedding i of T into the h(T ) middle levels. Assume without
loss of generality that T is upward monotone, thus the root must be mapped to the lowest
of the middle levels. We will refer to this level as the first middle level, and analogously
the level above it is the second middle level, and the kth middle level is above the first
level by k − 1.

Observe that there are (1 + o(1))
(

n
bn/2c

)
ways to pick the image of the root. Then we

define i by going through the elements of T in a non-decreasing order with respect to
the rank r(p). That means that for every element p, when we decide where to embed it,
we have already embedded its predecessor, the (unique) element p′ that is smaller than p
such that there is no element p′′ with p′ < p′′ < p.

If the predecessor p′ of p is mapped to the jth middle level and we want to map p to
the kth middle level, then the number of possibilities is Θ(nk−j). Let fi : T → [h(T )] be a
function defined by fi(p) = k if i(p) is on the kth middle level. For a given f : T → [h(T )],
the number of embeddings i with fi = f is Θ(n

∑
p∈T (f(p)−f(p′))), where p′ is the predecessor

of p and the summation goes over all elements of P apart from the root. Therefore, to
obtain x(T ), we need to maximize Θ(n

∑
p∈P (f(p)−f(p′))). Clearly, when embedding a leaf

`, we must have f(`) = h(T ). Finally, observe that if for some non-leaf p, we have
f(p) > f(p′) + 1, then changing f(p) to f(p′) + 1 cannot decrease the sum (and strictly
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increases it, if p has at least two children). This shows that a function f that maximizes
the sum must satisfy f(`) = h(T ) for all leaves, and f(p) = r(p) for all non-leaves.

Lemma 13. Assume that the families 2[n] ⊃ F1 ⊃ F2 ⊃ · · · ⊃ Fh satisfy the following
properties for some δ1, δ2, δ3 > 0.

(i) |Fh| > δ1
(

n
bn/2c

)
.

(ii) For every i = 2, 3, . . . , h and F ∈ Fi there exist at least δ2n sets F ′ ∈ Fi−1 with
F ( F ′.

(iii) For every i = 2, 3, . . . , h and F ∈ Fi there exist at least δ3n
i−1 sets F ′ ∈ F1 with

F ( F ′.

Then for any upward monotone tree poset T of height h(T ) = h, F1 contains at least
δnx(T )

(
n
bn/2c

)
copies of T , where δ > 0 is a constant depending on δ1, δ2, δ3 and |T |.

Proof. We generate embeddings of T as follows: we embed elements of T according to
their rank. The root of T can be embedded to any set F ∈ Fh. By i), we have at least
δ1
(

n
bn/2c

)
choices.

Any non-leaf element x ∈ T with its predecessor embedded to Fi ∈ Fi can be embedded
to any set F ′ ∈ Fi−1 with Fi ( F ′ that has not yet been used by the embedding. By ii),
we have at least δ2n− |T | choices. If x is of rank r(x) then this process will embed it to
Fh+1−r(x).

If ` is a leaf vertex of rank r(`) in T , then its predecessor is embedded into some
F ∈ Fh+2−r(`). We can embed ` to any superset of F that has not yet been used. By iii),
there exist at least δ3n

h+1−r(`) − |T | such sets.
Proposition 12 yields that the exponent of n in the number of embeddings generated

this way will be exactly x(T ). (We get a factor of n for all vertices except for the root, and
an additional nh−r(`) for leaves `.) A copy corresponds to at most |T |! embeddings.

Theorem 3. For any monotone tree poset T and ε > 0, there exist δ > 0 and n0 such
that for any n > n0 any family F ⊆ 2[n] of size |F| > (h(T ) − 1 + ε)

(
n
bn/2c

)
contains at

least δnx(T )
(

n
bn/2c

)
copies of T .

Proof. Throughout the proof we can assume that n is sufficiently large. Let h := h(T ).
To prove the theorem, we will find families F ⊇ F1 ⊃ F2 ⊃ · · · ⊃ Fh that satisfy
the conditions of Lemma 13 for sufficiently small (δ1, δ2, δ3) depending on ε and T . Let
F1 = {G ∈ F : ||G| − n/2| < n2/3}. Then |F \ F1| 6 |{G ⊆ [n] : ||G| − n/2| > n2/3}| 6
o
((

n
bn/2c

))
.

For i = 2, 3, . . . , h we define Fi as follows. Let ε′ := ε/2h. A set F ∈ Fi−1 is in Fi
if the expected number of sets of Fi−1 in a random chain between F and [n] is at least
1 + ε′. (F counts for all chains.)

Let Gi := Fi−1 \ Fi. We partition the n! full chains from ∅ to [n] as follows. Let CG

denote the collection of those chains whose smallest member from Gi is G. Let C0 denote
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the collection of those full chains that avoid Gi. If we take a random full chain from any
of these collections, the expected value of members of Gi in it is at most 1 + ε′. Therefore
the expected value taken over all n! full chains is also at most 1 + ε′. This means that
λn(Gi) :=

∑
F∈Gi

1

( n
|F |)

6 1 + ε′ and therefore |Gi| 6 (1 + ε′)
(

n
bn/2c

)
. These inequalities for

i = 2, 3, . . . , h together imply i) of Lemma 13, if δ1 < ε/2.
Consider a set F ∈ Fi−1. If F has at most δ2n supersets of size between |F | + 1 and

|F | + h − 1 in Fi−1 and at most (δ2 + δ3)n
h supersets in all of Fi−1, then the expected

value of elements of Fi−1 in a chain from F to [n] is∑
F(F ′∈Fi−1

1(
n−|F |
|F ′\F |

) 6
δ2n

n− |F |
+

(δ2 + δ3)n
h(

n−|F |
h

) 6 3δ2 + 3hh!(δ2 + δ3)

which is smaller than ε′ if δ2 and δ3 are a sufficiently small positive numbers compared to
h and ε′. This means that any G ∈ Fi has either at least δ2n proper supersets of size at
most |G|+ h− 1 in Fi−1 or at least (δ2 + δ3)n

h supersets in all of Fi−1.
The above statement trivially implies ii) of Lemma 13. We show that iii) of Lemma

13 follows as well. Let F ∈ Fi for some 2 6 i 6 h. We need to find at least δ3n
i−1

supersets of F in F1. If it has (δ2 + δ3)n
h supersets in Fi−1 then we are obviously done, so

assume that this is not the case. We define a directed graph as follows. F has at least δ2n
supersets of size at most |G|+ h− 1 in Fi−1, let us direct an edge from F to all of them.
Each of these sets will have at least δ2n supersets of size at most |G|+ 2(h− 1) in Fi−2,
direct an edge from the subset to the supersets. Continue this operation until we reach
F1. Now we have at least (δ2n)i−1 directed paths from G to members of F1. All these
members are of size at most |G|+ (i− 1)(h− 1), therefore the number of paths leading to

a single one of them is at most ((i− 1)(h− 1))i−1 < h2h. Thus we found at least (δ2n)i−1

h2h

supersets of G in F1. This is more than δ3n
i−1 if δ3 is sufficiently small compared to δ2

and h.

3.3 Diamond-free families - Theorem 5

Let us recall that ms = dlog2(s + 2)e and m∗s = min{m : s 6
(

m
dm/2e

)
} and that for any

integer s > 2, we have x(Ds) = ms and x∗(Ds) = m∗s.

Theorem 5. (i) If s ∈ [2ms−1 − 1, 2ms −
(
ms

dms
2
e

)
− 1], then for any ε > 0 there exists

a δ > 0 such that every F ⊆ 2[n] with |F| > (ms + ε)
(

n
bn/2c

)
contains at least

δ · nms−0.5
(

n
bn/2c

)
copies of Ds.

(ii) For any ε > 0 there exists a δ > 0 such that every F ⊆ 2[n] with |F| > (4 + ε)
(

n
bn/2c

)
contains at least δ · n3.5

(
n
bn/2c

)
induced copies of D4.

(iii) For any constant c with 1/2 < c < 1 there exists an integer sc such that if s > sc
and s 6 c

(
m∗s
bm∗s/2c

)
, then the following holds: for any ε > 0 there exists a δ > 0 such

that every F ⊆ 2[n] with |F| > (m∗s + ε)
(

n
bn/2c

)
contains at least δ · nm∗s−0.5

(
n
bn/2c

)
induced copies of Ds.
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Proof. To prove (i), let us fix ε > 0 and let F ⊆ 2[n] such that |F| > (ms + ε)
(

n
bn/2c

)
.

Let ` be the maximum integer such that
(
n
`

)
6 ε

8
√
n

(
n
bn/2c

)
. Then by Lemma 8, we have

|
(
[n]
6`

)
∪
(

[n]
>n−`

)
| 6 ε

2

(
n
bn/2c

)
and it is easy to verify that

(
n
`

)
> ε

10
√
n

(
n
bn/2c

)
if n is large enough.

This implies that

1. F ′ = F \ (
(
[n]
6`

)
∪
(

[n]
>n−`

)
) is of size at least (ms + ε/2)

(
n
bn/2c

)
, in particular∑

F∈F |F |!(n− |F |)! > (ms + ε/2)n!;

2. for any F ∈ F ′, we have |F |!(n− |F )! 6 10
ε

√
nbn/2c!dn/2e!.

We are going to count pairs (F, C) with F ∈ F ′∩C and C is a maximal chain in [n]. On the
one hand, using the first point above, this is clearly

∑
F∈F |F |!(n− |F |)! > (ms + ε/2)n!.

To count the pairs in another way, we will use the min-max partition of the maximal
chains. Let Cn denote the set of all n! maximal chains in [n], and let us partition Cn into
∪F,F ′CF,F ′ , where F, F ′ run through all pairs F ⊆ F ′ in F ′ and

CF,F ′ := {C ∈ Cn : F is minimal in F ′ ∩ C, F ′ is maximal in F ′ ∩ C}.

Those maximal chains that do not contain any F ∈ F ′ are gathered in C∅. For any
pair F ⊆ F ′ in F ′ let us write b(F, F ′) = |F ′ ∩ {G : F ( G ( F ′}|. Observe that the
number of copies of Ds in F ′ is at least

∑
F,F ′

(
b(F,F ′)

s

)
, in particular this number is at

least |{(F, F ′) : b(F, F ′) > s}|. Finally, let Cj =
⋃
b(F,F ′)=j CF,F ′ and C<s = C∅∪

⋃s−1
j=0 Cj

and C>s = Cn \C<s.
As b(F, F ′) < s is equivalent to [F, F ′] ∩ F ′ being Ds-free, using Lemma 9, we obtain

that for any F ⊆ F ′ with b(F, F ′) < s, the number of pairs (G, C) with G ∈ F ′ ∩ C and C
a maximal chain in [F, F ′], is at most ms|F ′ \F |!. Let αF denote the number of maximal
chains from ∅ to F that do not contain any other element of F ′ than F and let βF ′ denote
the number of maximal chains from F ′ to [n] that do not contain any other element of
F ′ than F ′. Then the number of pairs (G, C) with G ∈ F ′ ∩ C and C ∈ CF,F ′ , is at most
ms|F ′ \ F |!αFβF ′ = msCF,F ′ . Summing over all pairs F, F ′ with b(F, F ′) < s, we obtain
that the umber of pairs (G, C) with G ∈ F ′ ∩ C and C ∈ C<s, is at most msC<s 6 msn!.

As a consequence, the number of pairs (F, C) with F ∈ F ′ ∩ C and C ∈ C>s is at
least ε

2
n!. Observe that |CF,F ′ | 6 |F |!(|F ′| − |F |)!(n− |F ′)! and thus the number of pairs

(F ′′, C) with F ′′ ∈ F ′∩C and C ∈ CF,F ′ is at most (|F ′|−|F |+1)|F |!(|F ′|−|F |)!(n−|F ′)!.
Also if b(F, F ′) > s, then |F ′| − |F | > ms. Fixing |F | and using ` 6 |F |, |F ′| 6 n− `, it is
easy to see that (|F ′| − |F |+ 1)|F |!(|F ′| − |F |)!(n− |F ′|)! is convex in |F ′| and thus it is
maximized either at |F ′| − |F | = ms or when |F ′| = n− `. Plugging in one obtains that
the maximum is taken when |F ′| − |F | = ms. Using 2. from above, we obtain that for
one fixed CF,F ′ ⊆ C>s the number of pairs (F ′′, C) with F ′′ ∈ F ′ ∩ C and C ∈ CF,F ′ is at
most

(ms + 1)ms!|F |!(n− |F | −ms)! 6 (ms + 1)ms!
4ms

nms
|F |!(n− |F |)!

6 (ms + 1)ms!
4ms10

εnms−0.5
bn/2c!dn/2e!.
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Therefore the number of pairs F, F ′ with b(F, F ′) > s and thus the number of copies of
Ds in F ′ is at least

ε2

20(ms + 1)!4ms
nms−0.5

(
n

bn/2c

)
as claimed.

The proofs of (ii) and (iii) are basically the same. Instead of b(F, F ′) one introduces
a(F, F ′), which is the maximum size of an antichain in F ′∩ [F, F ′], and partitions Cn into
C<s and C>s according to a(F, F ′). If a(F, F ′) < s, then F ′∩ [F, F ′] is induced Ds-free, so
for (ii), instead of Lemma 9, one applies Lemma 10 (i), and for (iii), one applies Lemma
10 (ii) to C<s. The number of induced copies of Ds is at least the number of pairs with
a(F, F ′) > s and the computation to obtain a lower bound for this number is the same as
in (i).
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