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Abstract

A graph class is said to be tame if graphs in the class have a polynomially
bounded number of minimal separators. Tame graph classes have good algorithmic
properties, which follow, for example, from an algorithmic metatheorem of Fomin,
Todinca, and Villanger from 2015. We show that a hereditary graph class G is
tame if and only if the subclass consisting of graphs in G without clique cutsets is
tame. This result and Ramsey’s theorem lead to several types of sufficient conditions
for a graph class to be tame. In particular, we show that any hereditary class of
graphs of bounded clique cover number that excludes some complete prism is tame,
where a complete prism is the Cartesian product of a complete graph with a K2.
We apply these results, combined with constructions of graphs with exponentially
many minimal separators, to develop a dichotomy theorem separating tame from
non-tame graph classes within the family of graph classes defined by sets of forbidden
induced subgraphs with at most four vertices.

Mathematics Subject Classifications: 05C40, 05C75, 05C30, 05C76, 05C69

1 Introduction

The main concept studied in this paper is that of a minimal separator in a graph. Given
a graph G, a minimal separator in G is a set of vertices that separates some non-adjacent
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vertex pair a, b and is inclusion-minimal with respect to this property. Minimal separators
in graphs are important for sparse matrix computations, via their connection with minimal
triangulations (see [27] for a survey). Many graph algorithms and characterizations are
based on minimal separators (see, e.g., [2, 5, 7–9,11,16,17,21,32,41,50]).

In this work we focus on graphs with “few” minimal separators. Such graphs enjoy
good algorithmic properties. Many problems that are NP-hard for general graphs become
polynomial-time solvable for classes of graphs with a polynomially bounded number
of minimal separators. This is the case for Treewidth and Minimum Fill-In [12],
for Maximum Independent Set, Feedback Vertex Set, and more generally the
problem of finding a maximum induced subgraph of treewidth at most a constant t [23],
and for Distance-d Independent Set for even d [38]. The result of Fomin and Villanger
from [23] was further generalized in 2015 by Fomin, Todinca, and Villanger [22] to an
algorithmic metatheorem concerning induced subgraphs with properties expressible in a
certain logical system. Their approach captures many problems including Maximum
Induced Matching, Longest Induced Path, Maximum Induced Subgraph
with no Cycles of Length 0 Modulo m where m is any fixed positive integer,
and Maximum F-Minor-Free Induced Subgraph where F is any set of graphs
containing a planar graph.

All these results make it important to identify classes of graphs with a polynomially
bounded number of minimal separators. Known classes with this property include chordal
graphs [46] and their generalization weakly chordal graphs [11], permutation graphs [6,
29] and more generally cocomparability graphs of bounded interval dimension [20],
circular-arc graphs [33], circle graphs [30], polygon circle graphs [49], distance-hereditary
graphs [31], probe interval graphs [15], AT-free co-AT-free graphs [34], P4-sparse
graphs [39], extended P4-laden graphs [42], and graphs with minimal separators of
bounded size [48]. Moreover, it is known that a class of graphs has a polynomially
bounded number of minimal separators if and only if it has a polynomially bounded
number of potential maximal cliques [12].

This brings us to the central property of a graph class studied in this paper. We say
that a graph class is tame if graphs in the class have a polynomially bounded number of
minimal separators. A precise definition requires some notation. Given two non-adjacent
vertices a and b in a graph G, a set S ⊆ V (G) \ {a, b} is an a, b-separator if a and b are
contained in different connected components of G−S. If S contains no other a, b-separator
as a proper subset, then S is a minimal a, b-separator. We denote by SG(a, b) the set of all
minimal a, b-separators. A minimal separator in G is a set S ⊆ V (G) that is a minimal
a, b-separator for some pair of non-adjacent vertices a and b. We denote by SG the set of
all minimal separators in G and by s(G) the cardinality of SG.

Definition 1. We say that a graph class G is tame if there exists a polynomial p : R→ R
such that for every graph G ∈ G, we have s(G) 6 p(|V (G)|).

The main purpose of this paper is to further the knowledge of tame graph classes, and
we do this from three interrelated points of view.
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1.1 Operations preserving tame graph classes

The problem of computing the number of minimal separators of a disconnected graph
can be reduced to the same problem on each component, and similarly for graphs whose
complements are disconnected (see, e.g., [42]). We examine the consequences of these
results for tame graph classes and, as our main result regarding operations preserving
tame graph classes, show that the problem of determining if a hereditary graph class G
is tame can be reduced to the same problem on the subclass consisting of the graphs in
G that have no clique cutsets. A clique cutset in a graph G is a clique C in G such that
the graph G−C is disconnected. A graph is said to be an atom if it has no clique cutset.
Given a class G of graphs, we denote by A(G) the class of all atoms that are induced
subgraphs of a graph in G.

Theorem 2. For every graph class G, if A(G) is tame, then so is G.

1.2 Sufficient conditions

We identify several sufficient conditions for a graph class to be tame. Each condition
reveals an infinite family of tame graph classes.

To state the first one, we need some definitions. Given a family F of graphs, we say
that a graph G is F-free if no induced subgraph of G is isomorphic to a member of F . A
graph class G is hereditary if it is closed under vertex deletion, or, equivalently, if there
exists a set F of graphs such that G is exactly the class of F -free graphs. A complete
prism of order n is the Cartesian product of Kn with a K2, that is, a graph consisting
of two disjoint copies of the n-vertex complete graph and a perfect matching between
them. The clique cover number of a graph G is the smallest number of pairwise disjoint
cliques in G whose union is the vertex set of G. Note that every complete prism of order
at least two has clique cover number two. As we will explain in Section 5, the class of
complete prisms is not tame. This implies that for every k > 2, the class of graphs of
clique cover number at most k is not tame. Furthermore, the class of C4-free graphs is
not tame (cf. Corollary 41), which implies that for every n > 2, the class of all graphs
not containing an induced subgraph isomorphic to the complete prism of order n is not
tame. Our first sufficient condition states that for hereditary graph classes, combining the
two properties of bounding the clique cover number and excluding some complete prism
results in a tame graph class.

Theorem 3. Every hereditary class of graphs of bounded clique cover number that does
not contain all complete prisms is tame.

The second sufficient condition is derived from the first one and is about subclasses of
C4-free graphs.

Theorem 4. For every positive integer k, the class of {P2 +kP1, C4}-free graphs is tame.

The third sufficient condition is proved using Ramsey’s theorem.
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Theorem 5. For every two positive integers k and `, the class of {P2 +kP1, K` +P2}-free
graphs is tame.

In some sense, these results are best possible. The class of all complete prisms (and
consequently the class of all (P2 + 2P1)-free graphs) is not tame, while the class of
elementary walls shows that the class of (K3 +P2)-free graphs is not tame. (See Section 5
for details.)

1.3 A dichotomy result

We use the above results, along with constructions of graphs with exponentially many
minimal separators, to completely characterize which graph classes defined by forbidden
induced subgraphs with at most four vertices are tame. To describe the result, we need
to introduce some notation. Given two families F and F ′ of graphs, we write F E F ′ if
the class of F -free graphs is contained in the class of F ′-free graphs, or, equivalently, if
every F -free graph is also F ′-free. It is well known and not difficult to see that relation
F E F ′ can be checked by means of the following criterion, which becomes particularly
simple for finite families F and F ′.

Observation 6. For every two graph families F and F ′, we have F E F ′ if and only if
every graph from F ′ contains an induced subgraph isomorphic to a member of F .

Some small graphs are named as in Fig. 1.

4P1 P2 + 2P1 P3 + P1

P4 C4 K4C3 + P1 paw diamond

2P2C33P1

claw

Figure 1: Some graphs on at most 4 vertices.

The characterization is as follows.

Theorem 7. For every family F of graphs with at most 4 vertices, the following statements
are equivalent.

1. The class of F-free graphs is tame.

2. The class of F-free graphs does not contain any of the following graph classes: the
class of {C3, C4}-free graphs, the class of {3P1, diamond}-free graphs, and the class
of {claw, K4, C4, diamond}-free graphs.

3. F E F ′ for at least one of the following families F ′:
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|F| = 1

|F| = 2

|F| = 4

P4 2P2

4P1, K4 P2 + 2P1, K4 P3 + P1, K4 claw, paw

4P1, paw P2 + 2P1, paw P3 + P1, paw

C3, C44P1, C3 + P1 P2 + 2P1, C3 + P1

claw, C3 + P1P2 + 2P1, C43P1, diamond

P3 + P1, C3 + P1P3 + P1, C44P1, C4

claw, K4, C4, diamond

Figure 2: Overview of the dichotomy result. Maximal tame classes correspond to sets F
of forbidden induced subgraphs depicted in green ellipses, while minimal non-tame classes
correspond to sets depicted in red ellipses (in brighter, resp., darker ellipses in gray-scale
printing).

i) F ′ = {P4},
ii) F ′ = {2P2},

iii) F ′ = {F , paw} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw},
iv) F ′ = {F , C3 + P1} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw},
v) F ′ = {F , K4} for some F ∈ {4P1, P2 + 2P1, P3 + P1},

vi) F ′ = {F , C4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}.

To appreciate Theorem 7, note that up to isomorphism, there are 11 four-vertex
graphs, which means that there are 211 = 2048 different graph classes defined by a set
of forbidden induced subgraphs with exactly four vertices, and even more graph classes
defined by a set of forbidden induced subgraphs with at most four vertices.

In Fig. 2 we give an overview of maximal tame and minimal non-tame classes of F -free
graphs, where F contains graphs with at most four vertices. A similar figure with respect
to boundedness of the clique-width can be found in [13].

Related work. To the best of our knowledge, the results of this paper represent the
first set of results towards a systematic study of the problem of classifying hereditary
graph classes with respect to the existence of a polynomial bound on the number
of minimal separators. Dichotomy studies for many other problems in mathematics
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and computer science are available in the literature in general, as well as within the
field of graph theory. This includes dichotomy studies related to boundedness of
the clique-width [19], boundedness of the chromatic number of digraphs [4], price of
connectivity and independence [18, 26], and computational complexity of a number of
algorithmic problems such as Graph Homomorphism [28], Graph Isomorphism [47],
Dominating Set [36], and various coloring [24] and packing problems [14,35].

Summary of techniques. Our approach combines a variety of tools and techniques,
including applications of Ramsey’s theorem, structural characterizations of graphs in
hereditary classes, constructions of graph families with exponentially many minimal
separators, and connections between minimal separators and maximal cliques.

Structure of the paper. We collect the main notations, definitions, and some
preliminary results in Section 2. In Section 3, we study the effect of various graph
operations on the number of minimal separators and examine their consequences for tame
graph classes, including Theorem 2. In Section 4 we prove Theorems 3–5. In Section 5
we give constructions of graphs with exponentially many minimal separators and derive
several necessary conditions for a graph class to be tame. In Section 6 we prove Theorem 7.
We conclude the paper with some open problems in Section 7.

This paper is an extended version of the conference publication [37].

2 Preliminaries

All graphs in this paper will be finite, simple, undirected, and will have at least one
vertex. We denote by V (G) the vertex set of a graph G and by E(G) the edge set of G.
The complement of a graph G is the graph G with vertex set V (G) = V (G) and edge set
E(G) = {uv | u 6= v and uv /∈ E(G)}. The neighborhood of vertex v in G is the set of all
vertices adjacent to v in G and is denoted by NG(v) (or simply N(v) if G is clear from the
context); its elements are the neighbors of v in G. The closed neighborhood of v is defined
as NG[v] = NG(v)∪{v}. The degree of vertex v in G is defined as the number of neighbors
of v in G. We define the neighborhood of a set X ⊆ V (G) as NG(X) = (∪v∈XNG(v)) \X.
A clique in a graph G is a set of pairwise adjacent vertices. A clique cover of a graph G
is a partition of its vertex set into cliques. A clique is maximal if it is not contained in
any other clique. An independent set in G is a set of pairwise non-adjacent vertices. The
independence number of G is defined as the maximum size of an independent set in G and
denoted by α(G). An anticomponent of a graph G is the subgraph of G induced by the
vertex set of a component of G. A graph is anticonnected if its complement is connected.

A graph F is an induced subgraph of a graph G if V (F ) ⊆ V (G) and E(F ) = {uv ∈
E(G) | {u, v} ⊆ V (F )}; we denote this relation by F ⊆i G. In this case, graph F will
also be called the subgraph of G induced by V (F ) and denoted by G[V (F )]. Given a set
S ⊆ V (G), we denote by G − S the subgraph of G induced by V (G) \ S. The fact that
two graphs G and H are isomorphic to each other will be denoted by G ∼= H. If F and
G are graphs such that no induced subgraph of G is isomorphic to F , then we say that
G is F -free.
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If G is a graph and A and B are disjoint subsets of V (G), we say that they are
complete (resp., anticomplete) to each other in G if {ab | a ∈ A, b ∈ B} ⊆ E(G) (resp.,
{ab | a ∈ A, b ∈ B} ∩ E(G) = ∅). If the vertex set of G can be partitioned into sets V1
and V2 that are anticomplete to each other in G, then G is said to be the disjoint union
of graphs G[V1] and G[V2]; we denote this by G = G[V1] + G[V2]. Similarly, if the vertex
set of a graph G can be partitioned into two sets V1 and V2 that are complete to each
other in G, we say that G is the join of the subgraphs of G induced by V1 and V2; we
denote this by G = G[V1] ∗G[V2]. Given a non-negative integer k, the disjoint union of k
copies of G is denoted by kG.

We denote by Pn, Cn, Kn the path, the cycle, and the complete graph with n vertices,
respectively. For positive integers m,n, we denote by Km,n the complete bipartite graph
with m and n vertices in the two parts of the bipartition. The claw is the graph K1,3, the
diamond is the graph K4 minus an edge, and the paw is the graph P3 + P1. The girth of
a graph G is the smallest integer k such that Ck is a subgraph of G (or∞ if G is acyclic).
Given a graph G, its line graph is the graph L(G) with vertex set E(G) in which two
distinct vertices e and e′ are adjacent if and only if e and e′ have a common endpoint as
edges in G.

Some of our proofs will make use of the following classical result due to Ramsey [45].

Ramsey’s Theorem. For every two positive integers k and `, there exists a least positive
integer R(k, `) such that every graph with at least R(k, `) vertices contains either a clique
of size k or an independent set of size `.

We will also need the following result from the literature, describing the structure of
paw-free graphs. A graph G is complete multipartite if its vertex set can be partitioned
into any number of parts such that two vertices are adjacent if and only if they belong to
different parts.

Theorem 8 (Olariu [40]). A connected paw-free graph G is either C3-free or complete
multipartite.

Given a graph G and a set S ⊆ V (G), a component C of the graph G− S is S-full if
every vertex in S has a neighbor in C, or, equivalently, if NG(V (C)) = S. The following
well-known lemma characterizes minimal separators (see, e.g., [25]).

Lemma 9. Given a graph G = (V,E), a set S ⊆ V is a minimal separator in G if and
only if the graph G− S contains at least two S-full components.

Corollary 10. Let S be a minimal separator in a graph G. Then for every v ∈ S the set
S \ {v} is a minimal separator in G− v.

Proof. Let G′ = G− v and S ′ = S \ {v}. Since S is a minimal separator in G, there exist
two S-full components C and D in G− S. Since G− S = G′ − S ′ and S ′ ⊆ S, it follows
that C and D are also S ′-full components of G′− S ′. Hence, S ′ is a minimal separator in
G′.

Corollary 11. Let S be a minimal separator in a graph G. Then for every S∗ ⊆ S the
set S \ S∗ is a minimal separator in G− S∗.
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The next lemma gives a necessary condition for a minimal separator in a 2P2-free
graph.

Lemma 12. Let G be a 2P2-free graph and let S be a minimal separator in G. Then
there exists a vertex v ∈ V (G) such that S = N(v).

Proof. By Lemma 9, graph G − S has two S-full components C and D. If both C and
D have at least two vertices, then each of them contains at least one edge. Since C and
D are anticomplete to each other, these edges form a 2P2 in G. We may thus assume, by
symmetry, that C = {v} for some v ∈ V (G). Then it follows that N(v) ⊆ S and since
every vertex of S is adjacent to v, we must have S = N(v), as claimed.

Corollary 13. The class of 2P2-free graphs is tame.

We conclude this section with two straightforward observations about tame graph
classes.

Observation 14. Let G1 and G2 be two graph classes such that G1 ⊆ G2. If G2 is tame,
then so is G1.

Definition 15. Given a non-negative integer k, we say that a graph class G is k-tame if
s(G) 6 |V (G)|k − 1 for every graph G ∈ G.

The reasons for including the term ‘−1’ in the definition of k-tame graph classes is
purely technical, as it simplifies some of the statements and proofs (for example, those of
Lemma 24).

Lemma 16. A graph class G is tame if and only if it is k-tame for some non-negative
integer k.

Proof. Sufficiency is trivial. To prove necessity, let G be a tame graph class and let
p(x) =

∑d
i=0 aix

i be a polynomial such that s(G) 6 p(|V (G)|) for all G ∈ G. We may
assume that ai > 0 for all i, since otherwise we may delete the terms of p with negative
coefficients to obtain a polynomial q such that s(G) 6 q(|V (G)|) for all G ∈ G. Moreover,
we may assume that a0 = . . . = ad, since otherwise, as long as there is a pair (i, j) with
0 6 i < j 6 d and ai < aj, we may increase the i-th coefficient from ai to aj to obtain a
polynomial q such that s(G) 6 q(|V (G)|) for all G ∈ G. Let a be this common value, that
is, a0 = . . . = ad = a. We thus have p(x) = a(

∑d
i=0 x

i) and hence p(n) 6 and+1 holds for
all n > 2. Let ` be the least non-negative integer such that a 6 2`. Then, for all n > 2,
we have and+1 6 2` ·nd+1 6 n` ·nd+1 = nd+`+1 6 nd+`+2− 1. Since the 1-vertex graph has
no minimal separators, it follows that all G ∈ G satisfy s(G) 6 |V (G)|d+`+2 − 1. Thus,
taking k = d+ `+ 2, necessity is proved.

An obvious but useful consequence of Lemma 16 is the fact that any union of finitely
many tame graph classes is tame.
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3 Graph operations

In this section, we study the effect of various graph operations on the number of
minimal separators and examine their consequences for tame graph classes. The family of
minimal separators of a disconnected graph can be computed from the families of minimal
separators of its components, and a similar statement holds for graphs whose complements
are disconnected. The correspondences are as follows, see Pedrotti and de Mello [42].

Theorem 17. If G is a disconnected graph, with components G1, . . . , Gk, then
SG = {∅} ∪

⋃k
i=1 SGi

. If G is the join of graphs G1, . . . , Gk, then S ∈ SG if and only
if there exists some i ∈ {1, . . . , k} and some Si ∈ SGi

such that S = Si ∪ (V (G) \ V (Gi)).

Using this theorem we can derive the formulas for the number of minimal separators
and their corollaries.

Corollary 18. Let G be a disconnected graph, with components G1, . . . , Gk. Then s(G) =∑k
i=1 s(Gi) + 1.

Proof. Immediate from the first statement of Theorem 17 and the fact that sets
{∅},SG1 , . . . ,SGk

, i ∈ {1, . . . , k} are pairwise disjoint.

Corollary 19. Let G be a hereditary graph class and let G ′ be the class of connected graphs
in G. Then G is tame if and only if G ′ is tame.

Proof. Since G is hereditary, we have G ′ ⊆ G. Hence, if G is tame, then so is G ′ by
Observation 14. Suppose that G ′ is tame. By Lemma 16, there exists a positive integer
k such that s(G) 6 |V (G)|k − 1 for all G ∈ G ′. Let G ∈ G \ G ′ and let G1, . . . , Gp (with
p > 2) be the components of G. Since G is disconnected and for all i ∈ {1, . . . , p} we have
Gi ∈ G ′, we infer using Corollary 18 that s(G) =

∑p
i=1 s(Gi)+1 6

∑p
i=1(|V (Gi)|k−1)+1 6∑p

i=1 |V (Gi)|k − 1 6 (
∑p

i=1 |V (Gi)|)k − 1 = |V (G)|k − 1. It follows that G is tame.

Note that the above proof also shows that for every positive integer k, the class G is
k-tame if and only if G ′ is k-tame.

Corollary 20. Let G1, . . . , Gk be graphs and let G be the join of G1, . . . , Gk. Then
s(G) =

∑k
i=1 s(Gi).

Proof. From Theorem 17 we have that S ∈ SG if and only if there exists some i ∈
{1, . . . , k} and some Si ∈ SGi

such that S = Si ∪ (V (G) \ V (Gi)). Clearly, if i, j ∈
{1, . . . , k}, i 6= j, then Si ∪ (V (G) \ V (Gi)) 6= Sj ∪ (V (G) \ V (Gj)) and the sets {Si ∪
(V (G) \ V (Gi)) | Si ∈ SGi

} and {Sj ∪ (V (G) \ V (Gj)) | Sj ∈ SGj
} are disjoint. Moreover,

if for some i ∈ {1, . . . , k} sets Si and S ′i are distinct minimal separators in Gi, then also
the sets Si∪(V (G)\V (Gi)) and S ′i∪(V (G)\V (Gi)) are distinct. Therefore |{Si∪(V (G)\
V (Gi)) | Si ∈ SGi

}| = s(Gi) for all i ∈ {1, . . . , k}. It follows that s(G) =
∑k

i=1 s(Gi), as
claimed.

Corollary 20 implies the following result for graphs with disconnected complements.
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Corollary 21. Let G be a graph whose complement is disconnected, with anticomponents
G1, . . . , Gk. Then s(G) =

∑k
i=1 s(Gi).

Corollary 22. Let G be a hereditary graph class and let G∗ be the class of anticonnected
graphs in G. Then G is tame if and only if G∗ is tame.

Proof. Since G is hereditary, we have G∗ ⊆ G. Thus, if G is tame, then so is G∗ by
Observation 14. Suppose that G∗ is tame. By Lemma 16, there exists a positive integer k
such that s(G) 6 |V (G)|k−1 for all G ∈ G∗. Let G ∈ G\G∗ and let G1, . . . , Gp (with p > 2)
be the anticomponents of G. Since for all i ∈ {1, . . . , p} we have Gi ∈ G∗, we infer using
Corollary 21 and the assumption on G∗ that s(G) =

∑p
i=1 s(Gi) 6

∑p
i=1(|V (Gi)|k − 1) 6∑p

i=1 |V (Gi)|k − 1 6 (
∑p

i=1 |V (Gi)|)k − 1 = |V (G)|k − 1. It follows that G is tame.

Note that the above proof also shows that for every positive integer k, the class G is
k-tame if and only if G∗ is k-tame.

Next, we consider clique cutsets. A cut partition of a graph G is a triple (A,B,C) of
pairwise disjoint subsets of V (G) such that A ∪ B ∪ C = V (G), and sets A and B are
non-empty and anticomplete to each other. If (A,B,C) is a cut partition of a graph G
such that C is a (possibly empty) clique, we say that C is a clique cutset in G. Recall
that a graph is said to be an atom if it has no clique cutset and that, given a class G of
graphs, we denote by A(G) the class of all atoms that are induced subgraphs of a graph
in G.

Theorem 2 (restated). For every graph class G, if A(G) is tame, then so is G.

We prove Theorem 2 using two auxiliary lemmas. The first one gives an upper bound
on the number of minimal separators of a graph with a clique cutset in terms of the
number of minimal separators of two smaller graphs. In the proof we use the following
notation: given a graph G, a set S ⊆ V (G), and a vertex x ∈ V (G) \ S, we denote by
ΓG,S,x the component of G− S containing x.

Lemma 23. Let G be a graph that admits a cut partition (A,B,C) such that C is a
clique. Then s(G) 6 s(G[A ∪ C]) + s(G[B ∪ C]) + 1.

Proof. Denote by G1 (resp. G2) the subgraph of G induced by A ∪ C (resp. B ∪ C).
We show the claimed inequality by proving that SG ⊆ SG1 ∪ SG2 ∪ {C}. Suppose S
is a minimal x, y-separator in G and S 6= C. The fact that C is a clique implies that
either C ∩ V (ΓG,S,x) = ∅ or C ∩ V (ΓG,S,y) = ∅. By symmetry, we may assume that
C ∩ V (ΓG,S,x) = ∅ and furthermore that V (ΓG,S,x) ⊆ A. Since A is anticomplete to B,
this implies that S ∩B = ∅ and thus S ⊆ V (G1). We complete the proof by showing that
S is a minimal separator in G1.

Suppose first that S ⊆ C. Since S 6= C, there exists a vertex z ∈ C \S. We claim that
S is a minimal x, z-separator in G1. Since V (ΓG,S,x) ⊆ A, vertices x and z are separated
in G1 − S. From the minimality of S it follows that ΓG,S,x is an S-full component of
G1 − S. Furthermore, since S ⊆ C and C is a clique in G1, every vertex in S is adjacent
to z in G1. It follows that S is a minimal x, z-separator in G1, as claimed.
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We may thus assume that S * C and hence S contains a vertex from A. Since
A is anticomplete to B and ΓG,S,y is an S-full component of G − S, this component
cannot be entirely contained in B. Let z be a vertex in V (ΓG,S,y) ∩ V (G1). We claim
that S is a minimal x, z-separator in G1. Since G1 is an induced subgraph of G and
S separates x from z in G, we infer that S is an x, z-separator in G1. Note that the
components of G1−S containing x and z, respectively, are ΓG,S,x and the subgraph of G1

induced by V (ΓG,S,y) ∩ V (G1). Thus, every vertex in S is adjacent in G1 to a vertex in
ΓG1,S,x. It remains to show that every vertex in S is adjacent in G1 to a vertex in ΓG1,S,z.
If V (ΓG,S,y) ⊆ V (G1), then ΓG1,S,z = ΓG,S,y and the conclusion is clear. Otherwise,
V (ΓG,S,y) ∩ B 6= ∅, which implies that V (ΓG,S,y) ∩ C 6= ∅. Since S ⊆ A ∪ C and A is
anticomplete to B, every vertex of S that is adjacent in G to a vertex in V (ΓG,S,y) ∩ B
belongs to C and is therefore adjacent in G1 also to a vertex in V (ΓG,S,y)∩C ⊆ V (ΓG1,S,z).
Therefore, using the fact that every vertex in S is adjacent in G to a vertex in ΓG,S,y we
infer that every vertex in S is adjacent in G1 to a vertex in ΓG1,S,z, as claimed.

Recall that a graph class G is said to be k-tame if s(G) 6 |V (G)|k− 1 for every graph
G ∈ G and that, by Lemma 16, a graph class is tame if and only if it is k-tame for some
k ∈ N. Thus, Theorem 2 is a direct consequence of Lemma 16 the following lemma.

Lemma 24. Let G be a graph class such that the class of atoms A(G) is k-tame for some
non-negative integer k. Then G is (k + 1)-tame.

Proof. Let G and k be as in the lemma. We show that every n-vertex graph G ∈ G has
at most nk+1 − 1 minimal separators. The proof is by induction on n.

If n = 1, then G = K1 and G has 0 = 1k+1 − 1 minimal separators. Suppose that
n > 1 and let G be an n-vertex graph from G. If G is an atom, then G has at most
nk − 1 minimal separators by assumption, and nk − 1 < nk+1 − 1. Suppose now that G
has a clique cutset. Then, G has a cut partition (A,B,C) such that C is a clique and
GA = G[A ∪ C] has no clique cutset (see, e.g., [10, 51]). Since GA belongs to A(G), we
have s(GA) 6 |V (GA)|k−1. Furthermore, since B is non-empty, we have |V (GA)| 6 n−1
and consequently, s(GA) 6 (n − 1)k − 1. Note that also A is non-empty, and hence
we can apply the induction hypothesis to the graph GB = G[B ∪ C] ∈ G to derive
s(GB) 6 |V (GB)|k+1 − 1 6 (n− 1)k+1 − 1. By Lemma 23, we have

s(G) 6 s(GA) + s(GB) + 1 6 (n− 1)k + (n− 1)k+1 − 1 .

Thus, to complete the proof, it suffices to show the following inequality:

nk+1 − (n− 1)k+1 > (n− 1)k . (1)

Note that for every two non-negative real numbers a and b we have

ak+1 − bk+1 = (a− b) ·

(
k∑

i=0

ak−ibi

)
> (a− b)bk .

Applying the inequality ak+1 − bk+1 > (a− b)bk to a = n, b = n− 1 establishes (1).
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4 Sufficient conditions

We identify several sufficient conditions for a graph class to be tame. The first two reveal
two infinite families of tame graph classes, each parameterized by two positive integers.

4.1 Graphs in which all edges are almost dominating

Our first sufficient condition is an easy consequence of Ramsey’s theorem.

Theorem 5 (restated). For every two positive integers k and `, the class of {P2+kP1, K`+
P2}-free graphs is tame.

We prove the theorem using an auxiliary lemma. For a non-negative integer k, we
denote by Ck the class of graphs G such that for every edge uv ∈ E(G), at most k vertices
of G are adjacent to neither u nor v.

Lemma 25. For every positive integer k, the class Ck is tame.

Proof. Since Ci ⊆ Ci+1 for all i > 0, we may assume that k > 1. We will prove that for
every minimal separator S in G, there exists a set X ⊆ V (G) such that |X| 6 k and
S = NG(X). Clearly, this will imply that G has at most

(|V (G)|
k

)
minimal separators. Let

S be a minimal separator in G and let C and D be two S-full components of G − S.
Since NG(V (C)) = NG(V (D)) = S, it suffices to show that |V (C)| 6 k or |V (D)| 6 k.
Suppose that this is not the case. Then |V (C)| > k + 1 and |V (D)| > k + 1. Since
|V (C)| > k + 1 > 2 and C is connected, there is an edge uv ∈ E(C). But then, G
contains at least |V (D)| > k+ 1 vertices that are adjacent to neither u nor v, contrary to
the fact that G ∈ Ck.

Proof of Theorem 5. Let G be a {P2 + kP1, K` + P2}-free graph and let r = R(`, k). By
Lemma 25, it suffices to show that G ∈ Cr−1. Suppose this is not the case. Then, G has
an edge uv such that there exists a set X of r vertices of G such that every vertex in X is
adjacent to neither u nor v. By Ramsey’s theorem, there exists a set Z ⊆ X such that Z
is either a clique of size ` or an independent set of size k in G. But then the set {u, v}∪Z
induces either a K` +P2 or P2 +kP1, respectively. Both cases lead to a contradiction.

4.2 Graphs of bounded clique cover number excluding some complete prism

We now prove Theorem 3. We reformulate it in an equivalent way that will facilitate our
inductive proof. We denote by Lk the complete prism of order k. For every two positive
integers k and `, let Ck,` denote the class of all Lk-free graphs with clique cover number
at most `. Theorem 3 is equivalent to the following.

Theorem 26. For every two positive integers k and `, the class Ck,` is tame.

We prove Theorem 26 by induction on `, with cases ` ∈ {1, 2} as the base cases. In
the proof for the case ` = 2, we make use of the following result, discovered independently
by Alekseev [1], Balas-Yu [3], and Prisner [44].
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Theorem 27. For every positive integer k, every kP2-free graph G has O(|V (G)|2k−2)
maximal cliques.

Lemma 28. For every positive integer k, the class Ck,2 is tame.

Proof. Let G be an Lk-free graph with clique cover number at most 2 and let {A1, A2}
be a clique cover of G. We associate to G a graph G′ obtained by swapping the roles
of edges and non-edges between cliques A1 and A2. Formally, G′ is defined as follows:
V (G′) = V (G) and E(G′) = E1 ∪E2 ∪E3 where E1 = {uv | u, v ∈ A1, u 6= v}, E2 = {uv |
u, v ∈ A2, u 6= v}, and E3 = {uv | u ∈ A1, v ∈ A2, uv 6∈ E(G)}.

We prove that G has a polynomially bounded number of minimal separators in two
steps. First we prove that if a set S ⊆ V (G) is a minimal separator in G, then its
complement S = V (G) \ S is a maximal clique in G′. Then, we show that G′ is
kP2-free. Finally, we invoke the result of Theorem 27 to infer that G′ has O(|V (G′)|2k−2) =
O(|V (G)|2k−2) maximal cliques. Since the mapping S 7→ S is one-to-one, this will imply
that G has O(|V (G)|2k−2) minimal separators.

Let S be a minimal separator in G. Then G−S has precisely two components, namely
G[A1 \ S] and G[A2 \ S], and both of these components are S-full. Since sets A1 \ S and
A2 \ S are anticomplete to each other in G, we infer that S = (A1 \ S) ∪ (A2 \ S) is a
clique in G′. It remains to prove that S is a maximal clique. Assume for a contradiction
that there exists a vertex x ∈ S such that S ∪{x} is a clique in G′. By symmetry we may
assume that x ∈ A1∩S. Since A2\S is an S-full component in G−S, vertex x is adjacent
in G to some vertex y ∈ A2 \ S. This implies that vertices x and y are non-adjacent in
G′, contradicting the fact that they both belong to clique S ∪ {x}. It follows that S is a
maximal clique in G′, as claimed.

To complete the proof of the lemma, it remains to show that G′ is kP2-free. Assume the
opposite: let X ⊆ A1, Y ⊆ A2 be such that G′[X ∪ Y ] ∼= kP2. Since X and Y are cliques
in G′, all the non-edges of the kP2 must go from X to Y . It follows that G[X ∪ Y ] ∼= Lk,
contradicting the fact that G is Lk-free. Hence, G′ is kP2-free, as claimed.

Before proceeding to the induction step, we prove two more technical results. For two
positive integers k, `, let us denote by C∗k,` the class of all graphs of the form G− S∗ such
that G ∈ Ck,` and there exists a clique cover {A1, . . . , A`} of G such that S∗ is a minimal
separator in the graph G− A`.

Lemma 29. Suppose that for some positive integers k, ` with ` > 3, the classes Ck,`−1 and
C∗k,` are both tame. Then, the class Ck,` is also tame.

Proof. Fix positive integers k, ` with ` > 3 and suppose that the classes Ck,`−1 and C∗k,`
are a-tame and b-tame, respectively. We want to prove that Ck,` is tame as well. Let G
be a graph in Ck,` and let {A1, A2, . . . , A`} be a clique cover of G. Let S be a minimal
separator in G and let C and D be two distinct S-full components in G−S. Since ` > 3,
there exists at least one clique Ai, i ∈ {1, . . . , `}, such that V (C) * Ai and V (D) * Ai.
By renumbering the cliques if necessary, we may assume that V (C) * A` and V (D) * A`.
Furthermore, since C and D are anticomplete to each other and A` is a clique, we have
V (C) ∩ A` = ∅ or V (D) ∩ A` = ∅. By symmetry, we may assume that V (C) ∩ A` = ∅.
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Consider the graph G−A`. Fix two vertices u ∈ V (C) and v ∈ V (D) \A`. From the
definition of S it follows that S \ A` is a u, v-separator in G− A`. Let S∗ ⊆ S \ A` be a
minimal u, v-separator in G−A`. By Corollary 11 it follows that the set S ′ := S \S∗ is a
minimal separator in G− S∗. In particular, we have S = S∗ ∪ S ′ where S∗ ∈ SG−A`

and
S ′ ∈ SG−S∗ . Clearly, G−A` ∈ Ck,`−1. It follows that every minimal separator S in G can
be written as a union of two sets S∗ and S ′ such that S∗ ∈ SG∗ where G∗ = G−A` ∈ Ck,`−1
and S ′ ∈ SG′ where G′ = G− S∗ ∈ C∗k,`.

Note that the above arguments hold for any clique cover {A1, A2, . . . , A`} of G, except
that some renaming of cliques might have been necessary depending on S, C, and D, to
assure that V (C) ∩ A` = ∅ and V (D) * A`. Once a clique cover {A1, A2, . . . , A`} of G is
fixed, there are ` choices for which clique in the cover is labeled A`. Furthermore, since
Ck,`−1 is a-tame, there are at most |V (G∗)|a − 1 6 |V (G)|a − 1 choices for S∗. The graph
G′ ∈ C∗k,` as above is uniquely determined with G and S∗ and since C∗k,` is b-tame, there

are at most |V (G′)|b − 1 6 |V (G)|b − 1 choices for S ′. Since S = S∗ ∪ S ′, we infer that
altogether we have at most ` · (|V (G)|a − 1)(|V (G)|b − 1) choices for S. This shows that
s(G) 6 `(|V (G)|a − 1)(|V (G)|b − 1) and thus Ck,` is tame.

Lemma 30. For every two positive integers k and ` with ` > 3, if the class Ck,`−1 is tame,
then so is the class C∗k,`.

Proof. Fix positive integers k and ` with ` > 3 and suppose that the class Ck,`−1 is tame.
By Theorem 2, to show that C∗k,` is tame, it suffices to show that the class A(C∗k,`) is tame.
We do so by showing that every graph in A(C∗k,`) belongs to Ck,`−1. This will suffice since
the class Ck,`−1 is tame by assumption.

Let G ∈ A(C∗k,`). Then G is an atom that is an induced subgraph of a graph G∗ ∈ C∗k,`.
By definition of C∗k,`, there exist a graph G′ in Ck,`, a clique cover {A1, . . . , A`} of G′, and
a minimal separator S∗ in the graph G′ − A` such that G∗ = G′ − S∗. The fact that S∗

is a separator in G′ −A` implies that the graph G′ − S∗ −A` = G∗ −A` is disconnected.
Thus, there exists a cut partition (A,B,C) of G∗ such that C = A`. Note that sets
A ∩ V (G) and B ∩ V (G) are anticomplete to each other in G. Note also that A` ∩ V (G)
is a (possibly empty) clique in G. Since G has no clique cutset, we infer that one of the
sets A ∩ V (G) and B ∩ V (G) is empty, say A ∩ V (G) = ∅. Furthermore, since the sets
A and B are anticomplete to each other in G∗ − A`, it follows that A is the union of a
nonempty subset of the set of cliques {A1 \ S∗, . . . , A`−1 \ S∗}. Let i ∈ {1, . . . , `− 1} be
such that Ai \ S∗ ⊆ A. The fact that A ∩ V (G) = ∅ now implies that the vertex set of G
can be covered with `− 1 cliques (Aj \ S∗)∩ V (G), for j ∈ {1, . . . , `} \ {i}. Since G is an
induced subgraph of a graph in Ck,`, it is Lk-free. Consequently, G ∈ Ck,`−1 and the proof
is complete.

Proof of Theorem 26. Fix a positive integer k. We prove that for every positive integer `,
the class Ck,` is tame, using induction on `. If ` = 1, then every graph in Ck,` is complete
and Ck,` is tame. If ` = 2, then the class Ck,` is tame by Lemma 28. Suppose now that
` > 3 and that the class Ck,`−1 is tame. By Lemma 30, the class C∗k,` is tame. Since the
classes Ck,`−1 and C∗k,` are tame, Lemma 29 implies that so is the class Ck,`.
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4.3 Subclasses of C4-free graphs

We now derive two consequences of Theorem 26 dealing with subclasses of C4-free
graphs. Wagon proved in [53] that every 2P2-free graph with clique number k is
(k(k + 1)/2)-colorable. This result can be equivalently stated as follows.

Theorem 31. For every positive integer k, every {kP1, C4}-free graph has clique cover
number at most k(k − 1)/2.

Since the graph L2 is the 4-cycle, this result implies that the class of {kP1, C4}-free
graphs is a subclass of the class C2,k(k−1)/2. By Theorem 26, the class C2,k(k−1)/2 is tame,
and we thus obtain the following.

Corollary 32. For every positive integer k, the class of {kP1, C4}-free graphs is tame.

The question of which classes of graphs defined by a set of forbidden induced subgraphs
with at most four vertices are tame was first investigated in the early version of this
paper [37]. An almost complete dichotomy was obtained, leaving open only two cases:
the classes of {4P1, C4}-free and {4P1, claw, C4}-free graphs. Clearly, the result of
Corollary 32 resolves both cases.1 We now generalize Corollary 32 by replacing kP1

in the statement of the corollary with P2 + kP1.

Theorem 4 (restated). For every positive integer k, the class of {P2 +kP1, C4}-free graphs
is tame.

Proof. Let G be a {P2 + kP1, C4}-free graph. Fix a maximum independent set I in G. If
|I| 6 2k−1, then G is {2kP1, C4}-free and Corollary 32 implies that G has a polynomially
bounded number of minimal separators. Thus, in what follows we assume that |I| > 2k.
Let w be a vertex in V (G) \ I. Since I is a maximal independent set, w has a neighbor in
I. Consequently, since G is (P2 + kP1)-free, w has at most k − 1 non-neighbors in I and
hence w has at least |I| − (k − 1) > k + 1 neighbors in I. Suppose next that u and v are
two distinct non-adjacent vertices in V (G) \ I. Since each of u and v has at least k + 1
neighbors in I, they have at least two common neighbors in I. But this contradicts the
fact that G is C4-free. It follows that V (G) \ I is a clique. Since I is an independent set
and V (G) \ I is a clique, G is 2P2-free, and we infer from Lemma 12 that G has at most
|V (G)| minimal separators.

5 Necessary conditions

We now turn to necessary conditions for a graph class to be tame. We give two structurally
different constructions of graphs with exponentially many minimal separators. The first
construction involves families of graphs of arbitrarily large maximum degree but without
long induced paths. The second construction involves two families of graphs with small

1Daniel Lokshtanov kindly communicated to us that the result of Corollary 32 was also obtained
independently (and at approximately the same time) by Peter Gartland.
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maximum degree but with arbitrarily long induced paths. In both cases, we make use of
line graphs.

Given positive integers k and `, the k, `-theta graph is the graph θk,` obtained as the
union of k internally disjoint paths of length ` with common endpoints a and b. For every
positive integer `, we define a family of graphs Θ` in the following way: Θ` = {θk,` | k > 2}.
Note that ` refers to the length of each of the a, b-paths and not to the number of paths,
which is unrestricted.

Observation 33. For every integer ` > 3, the class Θ` is not tame.

Proof. Let k > 2, ` > 3, let G = θk,`, and let P 1, . . . , P k be paths in G as in the definition
of the theta graphs. Let S be any set of vertices of G containing exactly one internal
vertex of each of the paths P j. Then, the graph G − S has two S-full components and
Lemma 9 implies that S is a minimal separator in G. Note that for every j ∈ {1, . . . , k},
path P j has exactly ` − 1 internal vertices. It follows that s(θk,`) > (` − 1)k. Thus, as
|V (θk,`)| = k(` − 1) + 2, we infer that for every fixed positive integer ` > 3, the class Θ`

is not tame.

Corollary 34. If G is graph class such that Θ` ⊆ G for some ` > 3, then G is not tame.

Consider now the family of line graphs of theta graphs. More precisely, given positive
integers k and `, let Lk,` denote the line graph of θk,` and let L` = {Lk,` | k > 2}. Note
that the class L2 is precisely the class of all complete prisms of order at least two.

Observation 35. For every integer ` > 2, the class L` is not tame.

Proof. Let k, ` > 2 and let G = Lk,`. Then, graph G consists of two cliques K and K ′,
each of size k, say with K = {a1, . . . , ak} and K ′ = {b1, . . . , bk}, and k internally pairwise
disjoint paths P 1, . . . , P k such that for every j ∈ {1, . . . , k}, path P j is an ai, bi-path with
|V (P j)| = `, V (P j)∩K = {aj} and V (P j)∩K ′ = {bj}. Consider any set S of vertices of
G containing exactly one vertex from each of the paths P j and such that S /∈ {K,K ′}.
Then, the graph G − S has two S-full components and Lemma 9 implies that S is a
minimal separator in G. It follows that s(Lk,`) > `k − 2. Thus, as |V (Lk,`)| = k(` + 1),
we infer that for every fixed positive integer ` > 2, the class L` is not tame.

Corollary 36. If G is a graph class such that L` ⊆ G for some ` > 2, then G is not tame.

Corollary 37. The class of {3P1, diamond}-free graphs is not tame.

Proof. Let G ∈ L2. Since the vertex set of G is the union of two cliques, G is 3P1-free.
Moreover, it is not difficult to see that G is diamond-free. Consequently, the class of {3P1,
diamond}-free graphs contains all graphs in L2 and is therefore not tame by Corollary 36.

Corollaries 34 and 36 also imply the following general necessary condition for a finite
set F of graphs such that the class of F -free graphs is tame.
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Proposition 38. Let F be a finite set of graphs such that the class of F-free graphs is
tame. Then F either contains an induced subgraph of P4 or of 2P2, or F contains both
an acyclic graph and a graph of girth at most 4.

Proof. Let F be a finite set of graphs such that for every F ∈ F we have F *i P4,
F *i 2P2. Suppose for a contradiction that either all graphs in F contain cycles or all of
them are of girth more than 5. We analyze the two cases separately.

Case 1: all graphs in F contain cycles. Let ` be the smallest integer such that ` > 3
and for every graph F ∈ F , it holds that F does not contain an induced cycle of length
exactly 2`. Note that ` is well defined since F is finite. We claim that every graph in
Θ` is F -free. Suppose for a contradiction that for some k > 2, the graph θk,` contains
an induced subgraph isomorphic to some F ∈ F . Since F contains an induced cycle and
every induced cycle contained in θk,` is of length 2`, we infer that F contains an induced
cycle of length 2`. However, this contradicts the definition of `. Thus, every graph in
Θ` is F -free, as claimed. By Corollary 34, the class of F -free graphs is not tame, a
contradiction.

Case 2: every graph in F is of girth more than five. We will show that in this case,
every graph in L2 is F -free. By Corollary 36 this will imply that the class of F -free graphs
is not tame, a contradiction. From the definition of L2 it follows that every graph in L2

has independence number two. Thus, to show that every graph in L2 is F -free, it suffices
to prove that α(F ) > 3 for all F ∈ F . Suppose for a contradiction that α(F ) 6 2 for some
F ∈ F . Then F is acyclic, since otherwise a shortest cycle in F would be of length at least
6, which would imply α(F ) > 3. Moreover, F has at most two connected components.
If F is connected, then F is a tree with α(F ) 6 2. In particular, the maximum degree
of F is at most 2, hence F a path with at most four vertices, which implies F ⊆i P4, a
contradiction. If F has exactly two components, then the condition α(F ) 6 2 implies that
each component of F is a complete graph. However, since F is acyclic, each component
of F is induced subgraph of P2. It follows that F ⊆i 2P2, a contradiction.

We now turn to the second type of construction for families of graphs with
exponentially many minimal separators. Let r, s > 2 be integers. An r × s-grid is the
graph with vertex set {0, . . . , r− 1}×{0, . . . , s− 1} in which two vertices (i, j) and (i′, j′)
are adjacent if and only if |i− i′|+ |j − j′| = 1. Given an integer h > 2, an elementary
wall of height h is the graph Wh obtained from the (2h + 2) × (h + 1)-grid by deleting
all edges with endpoints (2i + 1, 2j) and (2i + 1, 2j + 1) for all i ∈ {0, 1, . . . , h} and
j ∈ {0, 1, . . . , b(h − 1)/2c}, deleting all edges with endpoints (2i, 2j − 1) and (2i, 2j) for
all i ∈ {0, 1, . . . , h} and j ∈ {1, . . . , bh/2c}, and deleting the two resulting vertices of
degree one. Note that an elementary wall of height h consists of h levels each containing
h bricks, where a brick is a cycle of length six; see Fig. 3(a).

Grids contain exponentially many minimal separators [49]. We show next that the
same is true for walls.

Proposition 39. For every integer h > 2, an elementary wall of height h has at least 2h

minimal separators.
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S(1,0,1,1,0,0,1,0)

D

Figure 3: (a) An elementary wall of height 8. (b) A minimal separator S(1,0,1,1,0,0,1,0) in
W8 and the two components of W8 − S(1,0,1,1,0,0,1,0).

Proof. Fix an integer h > 2. We will define a family of 2h subsets of V (Wh) and show that
each of them is a minimal separator in Wh. For each binary sequence of length h, say x =
(x1, . . . , xh) ∈ {0, 1}h, we define a set Sx by the following rule: Sx = {vx,0, vx,1, . . . , vx,h}
where vx,0 = (2, 0) (independently of x) and for all j ∈ {1, . . . , h}, we set vx,j = vx,j−1 +
(xj, 1), where addition is performed component-wise. Clearly, for each x ∈ {0, 1}h and
each j ∈ {1, . . . , h}, we have vx,j = (

∑j
i=1 xi + 2, j) 6 (h + 2, h), where comparison is

performed component-wise. It follows that Sx ⊆ V (Wh). Moreover, the graph Wh − Sx

has exactly two connected components, say C and D, with V (C) =
⋃h

j=0{(i, j) ∈ V (Wh) |
i < vx,j1 } and V (D) =

⋃h
j=0{(i, j) ∈ V (Wh) | i > vx,j1 }. Note that each vertex vx,j ∈ Sx

has a neighbor in C, namely vx,j − (1, 0), and a neighbor in D, namely vx,j + (1, 0). By
Lemma 9, set Sx is a minimal separator in Wh. Since the sets Sx are pairwise distinct,
this completes the proof. Fig. 3(b) shows an example with h = 4 and x = (1, 0, 1, 1). The
thick horizontal edges can be used to justify the fact that C and D are Sx-full components
of Wh − Sx.

Another family with exponentially many minimal separators is given by the line graphs
of elementary walls; see Fig. 4(a) for an example.

Proposition 40. For every even integer h > 2, the graph L(Wh) has at least 2h/2 minimal
separators.

Proof. We use a modification of the construction used in the proof of Proposition 39. We
again consider the minimal separators Sx in Wh constructed in the proof of Proposition 39;
however, for technical reasons that will simplify the argument, we restrict ourselves only
to the 2h/2 minimal separators Sx in Wh that arise from binary sequences x ∈ Xh, where

Xh = {(x1, . . . , xh) ∈ {0, 1}h | x2i−1 = x2i for all i ∈ {1, 2, . . . , h/2}} .
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(a) (b)

S ′
(1,1,0,0,1,1,1,1)

C ′

D′

Figure 4: (a) L(W8), the line graph of an elementary wall of height 8. (b) The set of nine
vertices depicted with large black disks is a minimal separator S ′(1,1,0,0,1,1,1,1) in L(W8),
which corresponds to the minimal separator S(1,1,0,0,1,1,1,1) in W8. The two components of
L(W8)− S ′(1,1,0,0,1,1,1,1) are also depicted.

Recall that for every x ∈ Xh, we have Sx = {vx,0, vx,1, . . . , vx,h} where vx,0 = (2, 0) and
vx,j = vx,j−1 + (xj, 1) for all j ∈ {1, . . . , h}. A set of 2h/2 minimal separators of L(Wh)
can be obtained as follows. For each x ∈ Xh, we define a set S ′x ⊆ V (L(Wh)) as follows:
S ′x = {ex,j | vx,j ∈ Sx} where ex,j is the vertex of the line graph of Wh corresponding to
the edge in Wh joining vertex vx,j with vertex vx,j + (1, 0).

Since the mapping is one-to-one, the set {S ′x | x ∈ Xh} is of cardinality 2h/2. Therefore,
to complete the proof it suffices to show that for every x ∈ Xh, set S ′x is a minimal
separator in L(Wh). Let us first argue that the graph L(Wh)−S ′x is disconnected. Vertices
of the wall Wh correspond bijectively to maximal cliques of its line graph. For every
x ∈ Xh, every vertex of the form vx,j where j ∈ {1, . . . , h − 1} corresponds to a triangle
(clique of size three) in L(Wh), while vertex vx,h corresponds to a clique of size two.
Let us say that a triangle in L(Wh) is upward pointing if it arises from a vertex in Wh

whose coordinates have even sum, and downward pointing, otherwise. (We draw this
terminology from the planar embeddings of the line graphs of the walls following the
example given in Fig. 4.) It is not difficult to see that for every x ∈ Xh and every even
i ∈ {0, 1, . . . , h − 2}, vertex vx,i corresponds to an upward triangle, while odd-indexed
vertices may correspond to either upward or downward pointing triangles. It follows that
for no index i ∈ {0, 1, . . . , h−1}, vertices vx,i and vx,i+1 can both correspond to downward
pointing triangles. This property ensures that the graph L(Wh)−S ′x is disconnected, with
exactly two components C ′ and D′ such that for all vx,j ∈ Sx, component C ′ contains all
vertices of the form ex,j

−
, where ex,j

− ∈ V (L(Wh)) is the vertex corresponding to the edge
in Wh joining vertex vx,j with vertex vx,j−(1, 0), while component D′ contains all vertices
of the form ex,j

+
, where ex,j

+ ∈ V (L(Wh)) is the vertex corresponding to the edge in Wh
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joining vertex vx,j + (1, 0) with vertex vx,j + (2, 0). Furthermore, since for every vertex
ex,j ∈ S ′x, vertices ex,j

−
and ex,j

+
are both adjacent to ex,j in L(Wh), this also implies, by

Lemma 9, that S ′x is a minimal separator in L(Wh). This completes the proof. Fig. 4(b)
shows an example with h = 8 and x = (1, 1, 0, 0, 1, 1, 1, 1). The thick horizontal edges can
be used to justify the fact that C ′ and D′ are S ′x-full components of L(Wh)− S ′x.

In particular, since line graphs of elementary walls are {claw, K4, C4, diamond}-free,
Proposition 40 implies the following.

Corollary 41. The class of {claw, K4, C4, diamond}-free graphs is not tame.

6 A dichotomy for small forbidden induced subgraphs

In this section we prove Theorem 7. First we prove a number of propositions, each giving
a sufficient condition for a family F of graphs on at most 4 vertices such that the class of
F -free graphs is tame. We start with a lemma simplifying the cases with P3 + P1 ∈ F .

Lemma 42. Let F be a family of graphs such that P3 + P1 ∈ F and let
F ′ = (F \ {P3 + P1}) ∪ {3P1}. Then the class of F-free graphs is tame if and only if
the class of F ′-free graphs is tame.

Proof. Let G and G ′ be the classes of F -free and F ′-free graphs, respectively. Clearly,
every F ′-free graph is also F -free (cf. Observation 6), and hence if G is tame, then so
is G ′. Suppose that G ′ is tame. By Lemma 16, there exists an integer k > 0 such that
s(G) 6 |V (G)|k − 1 for all G ∈ G ′. Let G ∈ G. By Corollary 22 we may assume that G is
anticonnected. Since G is anticonnected and (P3 + P1)-free, applying Theorem 8 to the
complement of G implies that G is either a disjoint union of complete graphs, in which
case s(G) 6 1, or G is 3P1-free, in which case G ∈ G ′ and thus s(G) 6 |V (G)|k − 1. It
follows that G is tame.

We now consider various families of forbidden induced subgraphs with at most four
vertices. We will also need the following result describing the structure of {claw, C3 +
P1}-free graphs. By S3 we denote the 6-vertex graph obtained from the 6-cycle with
vertices v1, . . . , v6 in cyclic order by adding to it the chords v1v3, v3v5, and v5v1.

Theorem 43 (Pouzet et al. [43]). The class of {claw, C3 + P1}-free graphs consists of
S3, of the induced subgraphs of L(K3,3), of graphs whose connected components are cycles
of length at least 4 or paths, and of the complements of these graphs.

Proposition 44. For every F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, the class of {F , C3 +
P1}-free graphs is tame.

Proof. i) The class of {4P1, C3 +P1}-free graphs is a subclass of the class of {P2 + 4P1,
C3 + P2}-free graphs, which is tame by Theorem 5.

ii) The class of {P2 + 2P1, C3 + P1}-free graphs is a subclass of the class of {P2 + 2P1,
C3 + P2}-free graphs, which is tame by Theorem 5.
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iii) By Lemma 42, it suffices to show that the class of {3P1, C3 +P1}-free graphs is tame.
This follows from part i) of the proposition.

iv) By Corollaries 19 and 22, it suffices to prove that the class of connected and
anticonnected {claw, C3 + P1}-free graphs is tame. Let G be a connected and
anticonnected {claw, C3 + P1}-free graph with at least 10 vertices. By Theorem 43,
G is either a path or a cycle, or the complement of a path or of a cycle. If G is a
path or a cycle, then all its minimal separators have size 1 or 2, respectively. If the
complement of G is of a path or a cycle, then G is 2P2-free, and hence has at most
|V (G)| minimal separators by Lemma 12. Thus, in either case the number of minimal
separators of G is polynomially bounded.

Proposition 45. The class of {P3 + P1, C4}-free graphs is tame.

Proof. Immediate from Lemma 42 and the fact that the class of {3P1, C4}-free graphs is
tame, which follows from Corollary 32.

Proposition 46. For every F ∈ {4P1, P2 + 2P1, P3 + P1}, the class of {F , K4}-free
graphs is tame.

Proof. i) By Ramsey’s theorem, the class of {4P1, K4}-free graph consists of finitely
many graphs, so it is tame.

ii) The class of {P2 + 2P1, K4}-free graphs is a subclass of the class of {P2 + 2P1,
K4 + P2}-free graphs, which is tame by Theorem 5.

iii) By Lemma 42, it suffices to show that the class of {3P1, K4}-free graphs is tame.
This follows from part i) of the proposition.

In the proofs of Proposition 48 and Theorem 7, we will also need the following result,
which is a consequence of more general results due to Nikolopoulos and Palios [39] and
Pedrotti and de Mello [42].

Theorem 47. The class of P4-free graphs is tame.

Proposition 48. For every F ∈ {4P1, P2+2P1, P3+P1, claw}, the class of {F , paw}-free
graphs is tame.

Proof. Let G be an {F , paw}-free graph. By Corollary 19, we may assume that G is
connected. Since G is paw-free, Theorem 8 implies that G is either C3-free, or complete
multipartite. If G is complete multipartite, then G is P4-free, and thus has a polynomially
bounded number of minimal separators by Theorem 47. Suppose now that G is C3-free.
If F ∈ {4P1, P2 + 2P1, P3 + P1}, then using the fact that G is K4-free, Proposition 46
implies that G has a polynomially bounded number of minimal separators. If F is the
claw, then G is a {claw, C3}-free graph, hence G is a path or a cycle, and all its minimal
separators have size 1 or 2, respectively. In either case, G has a polynomially bounded
number of minimal separators. Thus, the class of {F , paw}-free graphs is tame.
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We now have everything ready to prove Theorem 7.

Theorem 7 (restated). For every family F of graphs with at most 4 vertices, the following
statements are equivalent.

1. The class of F -free graphs is tame.

2. The class of F -free graphs does not contain any of the following graph classes: the
class of {C3, C4}-free graphs, the class of {3P1, diamond}-free graphs, and the class
of {claw, K4, C4, diamond}-free graphs.

3. F E F ′ for at least one of the following families F ′:

i) F ′ = {P4},
ii) F ′ = {2P2},

iii) F ′ = {F , paw} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw},
iv) F ′ = {F , C3 + P1} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw},
v) F ′ = {F , K4} for some F ∈ {4P1, P2 + 2P1, P3 + P1},
vi) F ′ = {F , C4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}.

Proof. Let F be a family of graphs on at most 4 vertices.
Suppose first that the class of F -free graphs is tame and, for a contradiction, that the

class of F -free graphs contains the class of F ′-free graphs for some F ′ ∈ {{C3, C4}, {3P1,
diamond}, {claw, K4, C4, diamond}}. If F ′ = {C3, C4}, then the class of F ′-free graphs
is not tame by Proposition 38. If F ′ = {3P1, diamond}, then the class of F ′-free graphs
is not tame by Corollary 37. If F ′ = {claw, K4, C4, diamond}, then the class of F ′-free
graphs is not tame by Corollary 41. It follows by Observation 14 that the class of F -free
graphs is not tame, a contradiction. Thus, the first statement implies the second one.

Suppose now that for all F ′ ∈ {{C3, C4}, {3P1, diamond}, {claw, K4, C4, diamond}},
the class of F -free graphs does not contain the class of F ′-free graphs. We want to prove
that F E F ′ where F ′ satisfies one of the following: F ′ = {P4}, F ′ = {2P2}, F ′ = {F ,
paw} for some F ∈ {4P1, P2 +2P1, P3 +P1, claw}, F ′ = {F , C3 +P1} for some F ∈ {4P1,
P2 + 2P1, P3 + P1, claw}, F ′ = {F , K4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}, or
F ′ = {F , C4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}.

If some graph F ∈ F is an induced subgraph of 2P2 or of P4, then F E F ′ for
F ′ = {2P2} or F ′ = {P4}. Thus, from now on we assume that no graph F ∈ F is an
induced subgraph of either 2P2 or P4. Let A = {C3, C4, C3 + P1, paw, diamond, K4}
and B = {3P1, 4P1, P2 + 2P1, P3 + P1, claw}. Note that every member of B contains
3P1 as an induced subgraph, and similarly every member of A contains C3 or C4 as an
induced subgraph. Since every graph in F has at most 4 vertices and is not an induced
subgraph of either 2P2 or P4, we infer that F ⊆ A ∪ B. Let A′ = A \ {diamond}. If
F ∩A′ = ∅, then F ⊆ {diamond}∪B and the class of F -free graphs contains the class of
{3P1, diamond}-free graphs, a contradiction. It follows that F ∩ A′ 6= ∅. If F ∩ B = ∅,
then F ⊆ A and the class of F -free graphs contains the class of {C3, C4}-free graphs, a
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contradiction. Therefore, F ∩ B 6= ∅. If F ∩ {C3, C3 + P1, paw} 6= ∅, then the fact that
F ∩ B 6= ∅ implies that F E F ′ where F ′ = {F , paw} or F ′ = {F , C3 + P1} for some
F ∈ {4P1, P2 + 2P1, P3 + P1, claw}. Assume now that F ∩ {C3, C3 + P1, paw} = ∅. As
F ∩ A′ 6= ∅, it follows that F ∩ {C4, K4} 6= ∅. Let B′ = B \ {claw}. If F ∩ B′ = ∅, then
F ⊆ {claw, C4, K4, diamond} and the class of F -free graphs contains the class of {claw,
K4, C4, diamond}-free graphs, a contradiction. It follows that F ∩ B′ 6= ∅. Therefore,
using that F ∩{C4, K4} 6= ∅, we infer that F E F ′ where F ′ = {F , C4} or F ′ = {F , K4}
for some F ∈ {4P1, P2 + 2P1, P3 +P1}. Thus, the second statement implies the third one.

Finally, suppose that F E F ′ where F ′ satisfies one of the following: F ′ = {P4},
F ′ = {2P2}, F ′ = {F , paw} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, F ′ = {F ,
C3 +P1} for some F ∈ {4P1, P2 + 2P1, P3 +P1, claw}, F ′ = {F , K4} for some F ∈ {4P1,
P2 +2P1, P3 +P1}, or F ′ = {F , C4} for some F ∈ {4P1, P2 +2P1, P3 +P1}. Note that the
class of F -free graphs is contained in the class of F ′-free graphs, hence by Observation 14
it suffices to show that the class of F ′-free graphs is tame. If F ′ = {P4} or F ′ = {2P2},
then the class of F ′-free graphs is tame by Theorem 47 and Corollary 13, respectively. If
F ′ = {F , paw} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, then the class of F ′-free
graphs is tame by Proposition 48. If F ′ = {F , C3 + P1} for some F ∈ {4P1, P2 + 2P1,
P3 + P1, claw}, then the class of F ′-free graphs is tame by Proposition 44. If F ′ = {F ,
K4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}, then the class of F ′-free graphs is tame by
Proposition 46. Finally, if F ′ = {F , C4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}, then
the class of F ′-free graphs is tame by Corollary 32 (if F = 4P1), by Proposition 45 (if
F = P3 + P1), or by Theorem 4 (if F = P2 + 2P1). This shows that the third statement
implies the first one and completes the proof.

7 Open problems

In this work we considered classes of graphs with polynomially many minimal separators
and examined them from various points of view. Constructions of graphs with
exponentially many minimal separators and the newly identified families of tame graph
classes led to a complete classification of the tame graph classes within the family of
graph classes defined by forbidden induced subgraphs with at most four vertices. Several
of the results given here are not restricted to forbidden induced subgraphs of at most four
vertices, and we hope they might prove useful for developing further results on minimal
separators.

In conclusion, we pose the following open problems:

1. It is not difficult to see that given a graph H, the class of H-free graphs is tame if
and only if H is an induced subgraph of either P4 or of 2P2. Which graph classes
defined by two forbidden induced subgraphs are tame? More generally, which graph
classes defined by finitely many forbidden induced subgraphs are tame?

2. Which graph classes have a linear number of minimal separators?

3. We are not aware of any hereditary tame graph class in which the k-coloring problem

the electronic journal of combinatorics 28(1) (2021), #P1.41 23



(for some fixed k > 3) is known to be NP-hard. Are the k-coloring problems
polynomial-time solvable in every hereditary tame graph class?

4. Is every hereditary tame graph class χ-bounded? That is, does every hereditary
tame graph class G admit a function f such that χ(G) 6 f(ω(G)) for all G ∈
G (where ω(G) and χ(G) denote the clique number and chromatic number of G,
respectively)? A positive answer to this question would give a partial solution to
the question of Thomassé et al. from [52] asking whether every hereditary graph
class G in which the maximum independent set problem is polynomial-time solvable
is χ-bounded.
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