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Abstract

We give a characterization of the automorphism groups of connected prime-
valent symmetric Cayley graphs on finite (non-abelian) simple groups.

Mathematics Subject Classifications: 05C25, 05E18

1 Introduction

Throughout this paper, all graphs are assumed to be finite, simple and undirected. For
a graph Γ, we denote by V (Γ), E(Γ), A(Γ) and Aut(Γ) its vertex set, edge set, arc set
and (full) automorphism group, respectively. A graph Γ is said to be X-arc-transitive or
X-symmetric if X 6 Aut(Γ) acts transitively on A(Γ). Especially, when X = Aut(Γ), an
X-arc-transitive (or X-symmetric) graph is simply called an arc-transitive (or symmetric)
graph.

Let G be a group and an inverse-closed subset S of G\{1}. A Cayley graph Cay(G,S)
of G with connection set S is the graph with vertex set G and edge set {{g, sg} | g ∈
G, s ∈ S}. Clearly, Cay(G,S) has valency |S|, and it is connected if and only if 〈S〉 = G.
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Moreover, each g ∈ G induces an automorphism of Cay(G,S) by right multiplication on
vertices, and so G can be regarded as a regular subgroup of Aut(Cay(G,S)). In this
way, if G is normal in Aut(Cay(G,S)), then Cay(G,S) is called a normal Cayley graph,
otherwise it is called a non-normal Cayley graph.
Define

Aut(G,S) = {σ ∈ Aut(G) | Sσ = S}.
Then it is easy to see that G:Aut(G,S) 6 Aut(Cay(G,S)). In fact, G:Aut(G,S) is the
normalizer of G in Aut(Cay(G,S)) (see for example [10, 24]). Thus normal Cayley graphs
are precisely those Cay(G,S) with Aut(Cay(G,S)) = G:Aut(G,S). Hence, the normality
is crucial in determining the full automorphism group of a Cayley graph.

The normality of Cayley graphs of finite non-abelian simple groups has received con-
siderable attention [5, 6, 7, 9, 17, 25, 26]. In this paper, we focus on symmetric Cayley
graphs of prime valency on non-abelian simple groups. This work is motivated by the
study of the case when the graph is cubic or pentavalent started by Li [17] and Fang et
al. [7], respectively. In 1996, Li [17] listed all possible finite non-abelian simple groups on
which a connected cubic symmetric Cayley graph might be non-normal. Li’s list was later
made explicit by Xu, Fang, Wang and Xu [25], who showed that there exists a connected
cubic symmetric non-normal Cayley graph on a finite non-abelian simple group G if and
only if G = A47. For connected pentavalent symmetric non-normal Cayley graphs on
finite non-abelian groups, Fang, Ma and Wang first gave a characterization in 2011 [7].
Then recently Du, Feng and Zhou [5] obtained a list of all possible such non-abelian simple
groups. To extend the above results to symmetric Cayley graphs of prime valency p on
finite simple groups, we deal with the case when prime p > 7. Note that, if the regular
simple group is abelian, say Zq with prime q. Then as each symmetric Cayley graph of
prime valency is of even order, thus q = 2, which implies that p = 1, a contradiction.
Hence, one can only consider the non-abelian simple groups. Our main theorem in the
following is a characterization of those possible non-normal ones. For undefined terms,
see Section 2.

Theorem 1. Let G be a finite non-abelian simple group, let Γ = Cay(G,S) be a connected
p-valent symmetric Cayley graph on G with prime p > 7. Then, for α ∈ V (Γ), we have
either Aut(Γ) = Go Aut(G,S) or one of the following holds:

(a) Aut(Γ) is an almost simple group with socle L > G, and L is either a classical simple
group or (L,G,Lα) lies in Table 1; or

(b) Aut(Γ) has an intransitive non-trivial normal subgroup K such that Aut(Γ)/K is
almost simple with socle L > GK/K ∼= G. Moreover, we have L is either a classical
simple group or (L,G,Lα) lies in Table 2, where α is a vertex of the quotient graph
ΓK; or (Aut(Γ), G,Aut(Γ)α) lies in Table 3.

Remark 2. For line 1 of Table 1, we shall see in Example 3 that there exists a connected
non-normal symmetric Cayley graph on M22 of valency 23. For line 2 in Table 1, it is
shown in [7, Theorem 1.3] that there exists a connected non-normal symmetric Cayley
graph on Ap−1 of valency p for each prime p > 7.
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Table 1:

L G Lα remark

1 M23 M22 C23 p = 23

2 An An−1 [n] p divides n

3 Ap+1 [p+ 1] Ap Γ = Kp+1

4 Ap+3 PSL(2, q) Sp p = q − 2 for q odd

Table 2:

L G Lα K remark

1 An An−1 has a subgroup p divides n

of index n

2 Ap Ap−2 PGL(d, q).〈σ〉 p = (qd − 1)/(q − 1),

σ divides f

3 Ap Ap−3 PGL(2, q).〈σ〉 p = q + 1, σ divides f

4 Ap Ap−3 AGL(d, 2) p = 2d − 1 for d odd

5 Ap+1 has a subgroup Ap ΓK = Kp+1

of index p+ 1

6 Ap+3 PSL(2, p+ 2) Sp p ≡ 1 (mod 4)

7 Ap+k PSL(d, q) Ap or Sp
qd−1
q−1 = p+ k, k = 2 or 3

8 A23 M23 A19 [48]

S19 [96]

A24 M24

Table 3:

Aut(Γ) G Aut(Γ)α ΓK

1 PSL(2, 11)×M12 M11 M11 K12

2 (C11:C5)×M12 PSL(2, 11) M11 K12

3 C5 ×M12 A5 M11 K12

4 C11 ×M23 M22 C23:C11

5 (C23:C11)×M24 PSL(2, 23) M23 K24

6 (C7:C3)× AGL(3, 2) PSL(2, 7) SL(3, 2) K8
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2 Preliminaries

Let G be a finite group, denote by π(G) the set of prime divisors of |G|, by M(G) the
Schur multiplier of G, and by Soc(G) the socle (that is, the product of all the minimal
normal subgroups) of G. We say G is almost simple if Soc(G) is non-abelian simple. Let
n be a positive integer, denote by [n] an (unspecified) group of order n, by Fn a Frobenius
group of order n, by D2n the dihedral group of order 2n, and by Kn the complete graph of
order n. For a prime number r, let nr be the largest power of r dividing n, let nr′ = n/nr,
and let Or(G) be the largest normal r-subgroup of G.

Given a group X, let H be a core-free subgroup of (X of) finite index. Take g of
X \H such that g2 ∈ H, define a coset graph Γ(X,H, g) to be the graph with the set of
right cosets of H in X as vertex set, and join two vertices Hx and Hy an edge whenever
xy−1 ∈ HgH. It is easy to see that Γ(X,H, g) has valency |H : H ∩ g−1Hg|, and it is
connected if and only if 〈H, g〉 = X. Moreover, X acts on the right cosets by multiplication
induces an arc-transitive subgroup of the automorphism group of Γ(X,H, g).

Example 3. Let X ∼= M23, N ∼= C23:C11 be a maximal subgroup of X (see [4]), H ∼= C23

be a normal subgroup of N and g be an involution of X. As N is the only maximal
subgroup of X up to conjugation of order divisible by 23, it follows that 〈H, g〉 = X and
N = NX(H). Consequently, g /∈ NX(H) and so H ∩ g−1Hg = 1. Thus Γ(X,H, g) is a
connected X-symmetric graph of valency 23. Moreover, X has a subgroup G ∼= M22. Since
|G||H| = |X| and gcd(|G|, |H|) = 1, we see that G acts regularly by right multiplication.
Hence Γ(X,H, g) is a Cayley graph on G. As G is not normal in X, this is a non-normal
Cayley graph on G = M22.

The following result is well-known (see for example [18, Theorem 1.1]).

Lemma 4. Let X be a transitive permutation group of prime degree p. Then one of the
following holds:

(a) Cp 6 X 6 AGL(1, p);

(b) X = Ap or Sp with p > 5;

(c) PGL(d, q) 6 X 6 PΓL(d, q) and p = (qd − 1)/(q − 1), where d > 2 and q is a prime
power;

(d) (X, p) = (PSL(2, 11), 11), (M11, 11) or (M23, 23).

A permutation group X on a set Ω is said to be quasiprimitive if its non-trivial normal
subgroups are all transitive on Ω. For a graph Γ and a subgroup K of Aut(Γ), the quotient
graph ΓK of Γ by K is defined to be the graph with vertices the K-orbits on V (Γ) such
that two vertices α and β of ΓK are adjacent if and only if there exist α ∈ α and β ∈ β
adjacent in Γ.
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Proposition 5. ([9, Theorem 1.1]) Let G be a finite non-abelian simple group, Γ =
Cay(G,S) be a connected Cayley graph on G, and M be a subgroup of Aut(Γ) containing
G:Aut(G,S). Then either M = G:Aut(G,S) or one of the following holds:

(a) M is almost simple, and Soc(M) > G is transitive on V (Γ);

(b) G.Inn(G) 6 M = (G:Aut(G,S)).C2 and S is a self-inverse union of G-conjugacy
classes;

(c) M is not quasiprimitive and there is a maximal intransitive normal subgroup K of M
such that one of the following holds:

(c.1) M/K is almost simple, and Soc(M/K) > GK/K ∼= G is transitive on V (ΓK);

(c.2) M/K = AGL(3, 2), G = PSL(2, 7), and ΓK = K8;

(c.3) Soc(M/K) ∼= T × T , and GK/K ∼= G is a diagonal subgroup of Soc(M/K),
where T and G are given in Table 4.

Table 4: Product action possibilities
G T m |V (ΓK)|

1 A6 G 6 m2

2 M12 G or Am 12 m2

3 Sp4(q)(q = 2a) G or Am or Sp4r(q0)(q = qr
0)

q2(q2−1)
2

m2

4 Sp4r(q0)(q = qr
0)

q2(q2−1)
2

2m2

5 PΩ+
8 (q) G or Am or Sp8(2) (if q = 2) q3(q4−1)

(2,q−1) m2

Let Γ be a graph, X 6 Aut(Γ) and {α, β} ∈ E(Γ), let Γ(α) denote the neighborhood

of α. Let X
[1]
α be the kernel of the vertex-stabilizer Xα acting on Γ(α), and let X

[1]
αβ =

X
[1]
α ∩X [1]

β . For a positive integer s, an (s+ 1)-sequence (α0, α1, · · · , αs) of vertices of Γ is
called an s-arc if {αi−1, αi} ∈ E(Γ) for i = 1, . . . , s and αi−1 6= αi+1 for i = 1, . . . , s − 1.
The graph Γ is said to be (X, s)-arc-transitive if X acts transitively on the set of s-arcs
of Γ, and is said to be (X, s)-transitive if it is (X, s)-arc-transitive but not (X, s+ 1)-arc-
transitive.

Proposition 6. ([13, Theorem 1.1]) Let Γ be a connected X-symmetric graph of valency
7. Then for α ∈ V (Γ), Xα lies in Table 5.

The next proposition follows from [12] and [20].

Proposition 7. Let Γ be a connected (X, s)-transitive graph of prime valency p > 7 and
let {α, β} be an edge of Γ. If Xα is solvable, then Xα

∼= (Cp:Cm)×Cn for some m dividing
(p− 1) and n dividing m. If Xα is nonsolvable, then |Xα|p = p, and either (s, p,Xα) lies
in Table 6, or one of the following statements (a)–(c) holds, where d > 2 is an integer
and q = rf for some prime r and positive integer f such that p = (qd − 1)/(q − 1).
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Table 5:

|Xα|2 Xα

1 C7, F21, F21 × C3

2 D14, F42, F42 × C3

22 D28, F42 × C2, F42 × C6

23 SL(3, 2), A7

24 S7

26 C3
2:SL(3, 2), SL(3, 2)× S4, A7 × A6

27 C4
2:SL(3, 2), (A7 × A6):C2

28 S6 × S7

210 C6
2:(SL(3, 2)× S3)

224 [220]:(SL(3, 2)× S3)

Table 6:

s p Xα

2 p Ap, Sp
2 11 PSL(2, 11), M11

2 23 M23

3 p Ap−1 × Ap, (Ap−1 × Ap):C2, Sp−1 × Sp
3 11 A5 × PSL(2, 11), A6 ×M11, M10 ×M11

3 23 M22 ×M23

(a) s = 2 and one of the following holds:

(a.1) d = 2, r = 2, PSL(2, q) 6 Xα 6 PΓL(2, q) and X
[1]
αβ = 1;

(a.2) d > 3, Xα = ((C
f(d−1)
r :C`) × PSL(d, q)).O and X

[1]
αβ = 1, where O 6 Cf and

C` 6 Cq−1;

(a.3) d > 3, Xα = Or(Xα).C`.PSL(d, q).O and X
[1]
αβ 6= 1, where O 6 Cf and C` 6

Cq−1.

(b) s = 3 and one of the following holds:

(b.1) d = 2, r = 2, Xα = ((Cf
2 .O1) × PSL(2, q)).O and X

[1]
αβ = 1, where O 6 Cf and

O1 6 Cq−1.O;

(b.2) d > 3, Xα = ((C
f(d−1)
r :C`.PSL(d− 1, q).O′)× PSL(d, q)).O and X

[1]
αβ = 1, where

O 6 Cf , C` 6 Cq−1 and O′ 6 Cgcd(d−1,q−1).O;
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(b.3) d > 3, Xα = Or(Xα).C`.((PSL(d− 1, q).O′)×PSL(d, q)).O and X
[1]
αβ 6= 1, where

O 6 Cf , C` 6 Cq−1 and O′ 6 Cgcd(d−1,q−1).O; moreover, if r > 5 then |Or(Xα)|
divides qd(d−1).

(c) s = 5, d = 2, r = 2, Xα = ([q3]:GL(2, q)).O and X
[1]
αβ = 1, where O 6 Cf .

Recall that a permutation group is called k-homogeneous if it is transitive on the k-
sets of permuted points. The following result is about the k-homogeneous groups which
can be get from [15, Theorem 1].

Lemma 8. Let G be a group k-homogeneous but not k-transitive on a finite set Ω of n
points, where n > 2k. Then, up to permutation isomorphism, one of the following holds:

(a) k = 2 and G 6 AΓL(1, q) with n = q ≡ 3 mod 4;

(b) k = 3 and PSL(2, q) 6 G 6 PΓL(2, q), where n− 1 = q ≡ 3 mod 4;

(c) k = 3 and G = AGL(1, 8), AΓL(1, 8) or AΓL(1, 32);

(d) k = 4 and G = PSL(2, 8), PΓL(2, 8) or PΓL(2, 32).

3 Proof of the main result

In the following section, we give the proof of our main theorem.

Lemma 9. Let X be a permutation group on a set Ω, let G be a transitive subgroup of
X. Let α ∈ Ω, suppose that both X and G are non-abelian simple and Xα is as described
in Proposition 6 or 7. Then either X is a classical simple group or (X,G,Xα) lies in
Table 7.

Proof. From Propositions 6 and 7 we see that there exists a prime p > 7 such that
|Xα|p = p. As G is transitive, we have X = GXα. Suppose that X is not a classical
simple group. Then X is an alternating group or a simple group of exceptional Lie type
or a sporadic simple group.

First assume that X is a simple group of exceptional Lie type. Since X = GXα with
G non-abelian simple, it follows from [14, Theorem 1] that (X,G,Xα) lies in Table 8. In
line 1 of Table 8, Xα has a composition factor PSU(3, 4), which is not as described in
Proposition 6 or 7, a contradiction. Similarly one may exclude lines 2 and 6–8 of Table 8.
For the line 4 or 5, Xα has a composition factor PSL(3, q) with q a 3-power, and has no
non-trivial solvable normal subgroup. It can be seen that only cases (a.2)–(a.3) and (b.2)–
(b.3) of Proposition 7 satisfy that Xα has a composition factor PSL(3, q). However, in
those cases Xα has a non-trivial solvable normal subgroup, a contradiction. Similarly one
may exclude line 3 of Table 8. Hence, none of the triples (X,G,Xα) in Table 8 happens.

Next, assume that X is a sporadic simple group. By [11, Theorem 1.1], we know that
(X,G,Xα) lies in Table 9. As Xα is described in Proposition 6 or 7, thus (X,G,Xα)
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Table 7:

X G Xα conditions

1 An An−1 transitive permutation n > 6

group of degree n

2 Ap Ap−2 PGL(d, q).〈σ〉 p = qd−1
q−1 , σ

∣∣ f
3 Ap Ap−3 PGL(2, q).〈σ〉 p = q + 1, σ

∣∣ f
AGL(d, 2) p = 2d − 1, d odd

4 A11 A9 PSL(2, 11) p = 11

A7 M11 p = 11

5 A23 A19 M23 p = 23

6 Ap+1 transitive permutation Ap p prime

group of degree p+ 1

7 Ap+3 PSL(2, p+ 2) Sp p ≡ 1 (mod 4)

8 A11 M11 A7 or S7 p = 7

A12 M12

9 A23 M23 A19 or S19 p = 19

A24 M24

10 Ap+k PSL(d, q) Ap or Sp
qd−1
q−1 = p+ k, k = 2 or 3

11 A8 A5 AGL(3, 2) p = 7

Ak SL(3, 2), AGL(3, 2) p = 7, k ∈ {6, 7}
12 M12 M11 M11, PSL(2, 11) p = 11

13 M12 PSL(2, 11) M11 p = 11

14 M12 A5 M11 p = 11

15 M23 M22 C23, C23:C11 p = 23

16 M24 M23 SL(3, 2), C6
2:(SL(3, 2)× S3) p = 7

17 M24 PSL(2, 23) M23 p = 23
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Table 8:

X G Xα

1 G2(4) J2 PSU(3, 4), PSU(3, 4).C2

2 G2(4) PSU(3, 4) J2

3 G2(3
f ) PSL(3, 3f ) PSU(3, 3f ), PSU(3, 3f ).C2

4 G2(3
f ) PSU(3, 3f ) PSL(3, 3f ), PSL(3, 3f ).C2

5 G2(3
2e+1) 2G2(3

2e+1) PSL(3, 32e+1), PSL(3, 32e+1).C2

6 G2(3
2e+1) PSL(3, 32e+1) 2G2(3

2e+1)

7 F4(2
f ) Sp(8, 2f ) 3D4(2

f ), 3D4(2
f ).C3

8 F4(2
f ) 3D4(2

f ) Sp(8, 2f )

Table 9:

X G Xα

1 M12 M11 M11, PSL(2, 11)

2 M12 PSL(2, 11) M11

3 M12 A5 M11

4 M23 M22 C23, C23:C11

5 M24 M23 M12.C2, C3
2:F21, C6

2:C21, C6
2:F21, C6

2:C7:S3, C6
2:(F21 × C3),

C6
2:(F21 × S3), C6

2:(SL(3, 2)× C3), C6
2:(SL(3, 2)× S3),

SL(3, 2), SL(3, 2)× C3, SL(3, 2)× S3, PGL(2, 11), PSL(2, 23)

6 M24 PSL(2, 23) PΣL(3, 4), PSL(3, 4).S3, C4
2:A7, C4

2:A8, M22.C2, M22, M23

7 M24 PSL(2, 7) M23

8 HS M22 PSU(3, 5).C2

9 Ru PSL(2, 29) 2F4(2)

10 Suz G2(4) PSU(5, 2), C5
3:M11

11 Suz PSU(5, 2) G2(4)

12 Fi22
2F4(2)′ C2.PSU(6, 2)

13 Co1 Co2 (C3.Suz).C2, C3.Suz

14 Co1 Co2 G2(4) 6 Xα 6 (A4 ×G2(4)).C2

15 Co1 G2(4) Co2

16 Co1 Co3 (C3.Suz).C2, C3.Suz

17 Co1 Co3 G2(4).C2 6 Xα 6 (A4 ×G2(4)).C2
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cannot be lines 8–17 of Table 9. If (X,G,Xα) lies in lines 1–4 of Table 9, then one of
lines 12–15 of Table 7 holds. If (X,G,Xα) lies in line 5–6 of Table 9, then p = 7, 11
or 23. Furthermore, by Proposition 6 and 7, we have lines 16–17 of Table 7 hold. If
(X,G,Xα) lies in line 7 of Table 9, then (X,G,Xα) ∼= (M24,PSL(2, 27),M23). Note that

|G ∩Xα| = |PSL(2,7)||M23|
|M24| = 7. It follows that Xα

∼= M23, which has no subgroup of index
7, a contradiction. Hence this case cannot happen.

Finally, let X be the alternating group An naturally acts on a set Θ of n points with
n > 5. Again, as X = GXα, we derive from [22, Theorem D and Remark 2] (which gave
the maximal factorizations of the alternating groups) that one of the following holds:

(i) G = An−k for some 1 6 k 6 5 and Xα is k-homogenous on Θ;

(ii) G is k-homogenous on Θ and An−k E Xα 6 (Sn−k × Sk) ∩ An for some 1 6 k 6 5;

(iii) n = 6, G = PSL(2, 5), Xα 6 S3 o S2 and Xα is transitive on Θ;

(iv) n = 10, G = PSL(2, 8), A5 × A5 E Xα 6 S5 o S2 and Xα is transitive on Θ.

To finish the proof, in the following, we analyze the above four cases (i)–(iv) one by one.
Case (i). Suppose that G = An−k for some 1 6 k 6 5 and Xα is k-homogenous on

Θ. If k = 1, then n > 6 and Xα is transitive on Θ, as in line 1 of Table 7. Henceforth
assume k > 2. Since G = An−k is non-abelian simple group, n − k > 5, i.e., n > 5 + k.
Note that, if 1 6 k 6 5, then n > 2k.

Assume that Xα is k-homogeneous but not k-transitive. Then Xα is one of the four
cases in Lemma 8, and especially we have k 6 4. In the following, we will analyze these
four cases one by one. Note that we have |X : G| = |An : An−k| = n(n− 1) · · · (n− k+ 1)
and |X : G|

∣∣ |Xα|.
Let q = rf for some prime r and positive integer f . If k = 2, then Xα 6 AΓL(1, q)

with n = q ≡ 3 mod 4. Note that G ∼= Aq−2, |X:G|
∣∣ |Xα| with |X:G| = q(q − 1)

and Xα 6 AΓL(1, q) ∼= Cf
r :(Cq−1:Cf ) for q = rf . It follows that Xα

∼= Cf
r :(Cq−1:C`)

for `
∣∣ f , and so Xα is 2-transitive on Ω, a contradiction. Suppose that k = 3. Then

G ∼= An−3 for n > 8, and |X:G| = n(n− 1)(n− 2) is a factor of |Xα|. On the other hand,
Lemma 8 shows that either PSL(2, q) 6 Xα 6 PΓL(2, q) with n − 1 = q ≡ 3 mod 4, or
Xα = AGL(1, 8), AΓL(1, 8) or AΓL(1, 32). For the latter case, a calculation of the order
for these candidates of Xα shows that this case cannot occur. Suppose that the former
case occurs. Then n = q + 1, n(n − 1)(n − 2) = (q − 1)q(q + 1) is a factor of |Xα|, and

Xα
∼= PSL(2, q).(C2 × Cl) for l

∣∣ f (see ). Upon to Lemma 7, p = q2−1
q−1 = q + 1, and so

n = p. It is clear that Xα is 2-transitive on Θ = {1, · · · , p}, a contradiction. Assume
that k = 4. Then G ∼= An−4 for n > 9 and |X:Xα| = n(n − 1)(n − 2)(n − 3) is a factor
of |Xα|. In particular, Lemma 8 shows that Xα

∼= PSL(2, 8), PΓL(2, 8) or PΓL(2, 32). A
calculation of the orders for those candidates of Xα shows that this case cannot occur.

Now we suppose that Xα is k-transitive on Θ for k > 2. Note that (Cp:Cp−1):C` with
n = p > 7 prime and `

∣∣ (p−1), is not isomorphic to a subgroup of Ap as Cp−1 contains an
element of odd permutation. Then since Xα is a k-transitive subgroup of An and is also
as described in Proposition 6 or 7, one can get that either PSL(d, q) 6 Xα 6 PΓL(d, q)
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with n = p = (qd − 1)/(q − 1) > 7 prime for some integer d > 2 and prime power q,
or (Xα, n) = (PSL(2, 11), 11), (M11, 11) or (M23, 23). For the latter case, one can deduce
that line 4-5 of Table 7 hold. Now assume that the former case occurs. Then since Xα is
a k-transitive permutation group for k > 2, by [3, Theorem 4.11], we have k 6 3. Again,
as Xα is described in Proposition 6 or 7, we deduce that if k = 2, then line 2 of Table 7
holds. For k = 3, Xα is a 3-transitive permutation group, and so Xα

∼= PGL(2, q).〈σ〉 for
p = q+ 1 and σ

∣∣ f , or AGL(d, 2) for p = 2d− 1 (see [3, Table 7.3, 7.4] for example). For
p = 2d − 1 is prime, then d is odd. Hence line 3 of Table 7 holds.

Case (ii). Assume that G is k-homogenous on Θ and An−k E Xα 6 (Sn−k× Sk)∩An

for some 1 6 k 6 5. Note that Xα is given in Proposition 6 or 7. Then Xα
∼= An−k

or Sn−k for 1 6 k 6 5 and n − k = p. If k = 1, then (X,Xα) ∼= (Ap+1,Ap) and G is a
transitive permutation group of degree n = p+ 1. Hence the line 6 of Table 7 holds.

For k > 2, assume that G is k-homogeneous but not k-transitive, then G is given in
Lemma 8. Let q = rf for some prime r and positive integer f . Note that n > 5 + k and
|X : Xα| = n(n− 1) · · · (n− k+ 1) or n(n−1)···(n−k+1)

2
respecting to Xα

∼= An−k or Sn−k for
n−k = p. Since |X : Xα|

∣∣ |G| and G is k-homogeneous but not k-transitive, by a careful
analysis of the cases (a)–(d) in Lemma 8, we can draw that k = 3 and G ∼= PSL(2, q)
with n − 1 = q ≡ 3 mod 4. Then p = n − 3 and q = n − 1 is odd, and so n is even.
Therefore, |G| = |PSL(2, q)| = q(q−1)(q+1)

(2,q−1) = n(n−1)(n−2)
(2,n−2) = n(n−1)(n−2)

2
. Furthermore, since

|X:G|
∣∣ |Xα|, we conclude that Xα

∼= Sp. We derive from q = n − 1 and p = n − 3 that
q = p + 2. It follows that p ≡ 1 mod 4 as q ≡ 3 mod 4. Hence the line 7 of Table 7
holds.

Now suppose that G is k-transitive on Θ. Note that Xα
∼= An−k or Sn−k with n−k = p.

Since G < X ∼= An is a non-abelian simple group and k > 2, by [3, Theorem 4.11], we
conclude that 2 6 k 6 5, and if k = 4 or 5, then (G, n, k) = (M11, 11, 4), (M12, 12, 5),
(M23, 23, 4) or (M24, 24, 5). It follows that (X,G, p) = (A11,M11, 7), (A12,M12, 7), (A23,
M23, 19) or (A24,M24, 19) respectively, and hence lines 8-9 of Table 7 hold. Now for k = 2
or 3. Since G is non-abelian simple, G is given in [3, Table 7.4]. Together with the
conditions that |X : Xα|

∣∣ |G| and Xα
∼= An−k or Sn−k for n− k = p, we can deduce that

either G ∼= PSL(d, q) for n = (qd − 1)/(q − 1), d > 2 and q being a prime power, or G ∼=
Sp(2d, 2) for n = 22d−1±2d−1 and d > 3. For the latter case, we derive from n−k = p > 7
is an odd prime that 22d−1±2d−1−2 = p or 22d−1±2d−1−3 = p. However, 22d−1±2d−1−2
is even, which leads to that 22d−1±2d−1−3 = p. Noting that 22d−1 +2d−1−3=22d−1−2+
2d−1−1=2((2d−1)2−1)+2d−1−1= 2(2d−1−1)(2d−1+1)+2d−1−1=(2d−1−1)(2(2d−1+1)+1)
is not a prime, we conclude that this case cannot occur. Then along the same lines as the
previous case, we see that 22d−1 − 2d−1 − 3=(2d−1 + 1)(2(2d−1 − 1)− 1) is also not prime.
It yields that G � Sp(2d, 2) for n = 22d−1 ± 2d−1 and d > 3, and hence line 10 of Table 7
holds.

Cases (iii) and (iv). Suppose that n = 6, G = PSL(2, 5), Xα 6 S3 o S2 and Xα is
transitive on Ω; or n = 10, G = PSL(2, 8), A5×A5 E Xα 6 S5 oS2 and Xα is transitive on
Ω. Since Xα is given in Proposition 6 or 7, in particular, |Xα|p = p > 7, we can deduce
that those cases cannot occur.
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In the rest of this section, we always let G be a finite non-abelian simple group, let
Γ = Cay(G,S) be a connected symmetric Cayley graph on G of prime valency p > 7, and
let L = Soc(AutΓ) and α be a vertex of Γ. Moreover, for short, let A = AutΓ. If A =
G.Aut(G,S), then Γ is a normal Cayley graph. Now we assume that A > G.Aut(G,S).

Lemma 10. Assume that A acts quasiprimitively on V (Γ). Then either L is a classical
simple group or Γ is isomorphic to one of the lines of Table 1.

Proof. Since A is quasiprimitive on V (Γ), then either (a) or (b) of Proposition 5 occurs.
Case (i). Suppose that (b) holds. Then the action of G on S by conjugation is either

trivial or faithful as G is simple. If the action is trivial, then G is abelian as S generates
G, a contradiction. Suppose that the action is faithful. Note that Inn(G) � Aut(G) and
SInn(G) = S. Then Inn(G) � Aut(G,S). Since A = (G.Aut(G,S)).C2 and |S| is odd
prime, then Aut(G,S) acts transitively on S, and so it is primitive. It follows that Inn(G)
is a transitive permutation group of degree p, so does G as G ∼= Inn(G). Further, by
Lemma 4, G ∼= PSL(2, 11) for p = 11, M11 for p = 11 or M23 for p = 23, Ap, PSL(d, q)
for p = (qd − 1)/(q − 1), where d > 2 and q is a prime power. On the other hand, since
G.Inn(G) 6 A = (G.Aut(G,S)).C2, |A| = |G||A1| and Aut(G,S) 6 A1 for identity 1 ∈ G
a vertex of Γ, then |A1| = 2|Aut(G,S)| and Aα ∼= A1

∼= Aut(G,S).C2.
Assume that G ∼= PSL(2, 11) for p = 11. Then Inn(G) ∼= G ∼= PSL(2, 11) and

Aut(G,S) ∼= PSL(2, 11) or PSL(2, 11).C2. Since A1
∼= Aut(G,S).C2, by Proposition 7(b),

we have A1
∼= PSL(2, 11), and so A1 = Aut(G,S), a contradiction. A similar argument

excludes the case where G ∼= M11 or M23. Suppose that G ∼= Ap. Then Inn(G) ∼= G ∼=
Ap. Since Inn(G) � Aut(G,S), then Aut(G,S) ∼= Ap or Sp, and |A1| = 2|Ap| or 2|Sp|
respectively. Noting p > 7 is prime, by Lemma 7, one can get that A1

∼= Sp, and then
Aut(G,S) ∼= Ap and A = (G.Ap).C2

∼= (Ap ×Ap).C2. Then Soc(A) = G×Ap
∼= Ap ×Ap.

Since Soc(A) is a characteristic subgroup of A and G ∼= Ap is a normal subgroup of
Soc(A), then G � A. However, it contradicts to the assumption that Γ is not a normal
Cayley graph. Then G ∼= PSL(d, q) for p = (qd−1)/(q−1), where d > 2. Along the same
lines as the previous case, we can exclude this case.

Case (ii). Now assume that (a) of Lemma 5 holds, that is A is an almost simple
group with G < L and L is transitive on V (Γ). Note that the valency of Γ is prime p.
Then, for α ∈ V (Γ), Aα is primitive on Γ(α), so is Lα as Lα � Aα. It implies that Γ
is L-locally-primitive. Then Γ = Γ(A,Aα, g) ∼= Γ(L,Lα, t). Let L = HD be a maximal
factorization of L for G 6 H and Lα 6 D, in particular, L = GLα, G ∩ Lα = 1 and
|L| = |G||Lα|. Now we assume that L is not a classical simple group. Then the triples
(L,G,Lα) are given in Table 7 of Lemma 9.

Since |L| = |G||Lα|, the calculation shows that only lines 1, 4, 7, 9, 10 or 15 of Table
7 of Lemma 9 hold. In the following, we will analyze them one by one. Assume that
L ∼= An and G ∼= An−1, just as in line 1 of Table 7. Then |Lα| = n. It is shown in [7,
Theorem 1.3] that there is a connected symmetric non-normal Cayley graph on Ap−1 of
valency p for each prime p > 7. Then line 2 of Table 1 holds.

Now consider the line 4 of Table 7. Since |L| = |G||Lα|, a straight forward calculation
shows that (L,G,Lα) ∼= (A11,A7,M11) and p = 11. With the help of Magma, no such
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graphs exist in this case. Assume that (L,Lα) ∼= (Ap+1,Ap) and (p+ 1)
∣∣ |G|, as the line

6 of Table 7. Then |G| = p+ 1, in particular, Γ is the complete graph Kp+1. Hence line 3
of Table 1 holds.

Assume that line 8 of Table 7 holds. Note that |L| = |G||Lα|. Then (L,G,Lα) ∼=
(A11,M11,A7) or (A12,M12,A7), in particular, p = 7 and Γ is 2-arc-transitive. With the
help of Magma, neither Γ(A11,M11, g) nor Γ(A12,M12, g) exists. Suppose that line 10 of
Table 7 holds. A straight forward calculation shows that (L,G,Lα) ∼= (Ap+3,PSL(2, q), Sp)
for q odd and p = q − 2, and so the line 4 of Table 1 holds.

Suppose that the line 15 of Table 7 holds. Then (L,G,Lα) ∼= (M23,M22,C23). More-
over, p = 23 and Γ is 1-regular. By Example 3, there does exist graph in this case. Hence
line 1 of Table 1 holds, and thus Lemma 10 holds.

In the following Lemma, we will consider the case where AutΓ is not quasiprimitive
on V (Γ).

Lemma 11. Assume that A is not quasiprimitive on V (Γ). Then there exists an in-
transitive non-trivial normal subgroup K of A such that A/K is almost simple with socle
L > GK/K ∼= G. Moreover, for α ∈ V (ΓK), we have

(a) L is a classical simple group or (L,G,Lα) lies in Table 2; or

(b) (A,G,Aα) lies in Table 3.

Proof. Since A is not quasiprimitive, there exists a non-trivial maximal intransitive normal
subgroup, say K. If K has two orbits on V (Γ), then Γ is bipartite. Since G is transitive
on V (Γ), then G has a normal subgroup of index 2, a contradiction. It follows that K has
at least p + 1 orbits on V (Γ). Let ΓK be the quotient graph of Γ relative to K. Clearly,
ΓK is arc-transitive with valency p. According to the maximum of K and Γ is locally
primitive, we can conduct that the action of A/K on V (ΓK) is quasiprimitive and ΓK is
A/K-locally primitive, in particular, (A/K)α is given in Lemma 6 and 7 for α ∈ V (ΓK).
Especially, Proposition 5 shows that there are only three cases in this situation:

(i). A/K is almost simple, and Soc(A/K) contains GK/K and is transitive on V (ΓK);
(ii). A/K ∼= AGL(3, 2), G ∼= PSL(2, 7) and ΓK ∼= K8; or
(iii). Soc(A/K) = T ×T , and GK/K ∼= G is a diagonal subgroup of Soc(A/K), where

T and G are given in [9, Table 1].
Case (i). Now suppose that A/K is almost simple, just as (i). Write Soc(A/K) = L,

which is a finite non-abelian simple group containing G = GK/K ∼= G. If L is regular on
V (ΓK), then L = G as G 6 L is transitive on ΓK . So G is regular on V (ΓK). It follows
that |V (Γ)| = |G| = |G| = |V (ΓK)|, a contradiction. Hence L is not regular on V (ΓK).
We claim that L 6= G. If not, then L = G, i.e., GK/K is a characteristic subgroup
of A/K, and so GK is a characteristic subgroup of A. Noting that G � GK, we have
G�A, and then Γ is normal, a contradiction. Hence the claim holds. Then ΓK is L-arc-
transitive, and so L is locally primitive as the valency of ΓK is prime, in particular, Lα is
isomorphic to a group of Proposition 6 or 7, where α ∈ V (Γ) and α ∈ V (ΓK). Further,
L = LαG with G ∩ Lα = Gα. Since G is regular on V (Γ) and K is semiregular on V (Γ),
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we have K ∼= Gα. Thus |L:G| = |Lα:Gα| = |Lα|/|K|. We claim that (A/K)α ∼= Aα. Note
that Aα/K = (A/K)α. By the Frattini argument, we have Aα = K:Aα, i.e., Aα/K ∼= Aα.
Hence (A/K)α ∼= Aα, and so the claim holds. By Lemma 9, (L,G,Lα) are given in Table
7. Since |A| = |GAα| = |G||Aα| and |K| = |A|/|A/K|, we have |Aα|/|K| = |A/K|/|G|.
Note that Aα ∼= (A/K)α and G ∼= G. Then |(A/K)α|/|K| = |A/K|/|G|.

Suppose that L is not a classical simple group. Then by Lemma 9, (L,G,Lα) are given
in Table 7. In the following, we will analyze them one by one.

(1). Assume that L ∼= An and G ∼= An−1, in particular, n
∣∣ |Lα| and p

∣∣ n for n > 6,
as line 1 of Table 7. In [21, Theorem 1.1], it is shown that there exists a graph with
n = p = 7 and Lα ∼= C7. Hence line 1 of Table 2 holds. For a similar reason, lines 2-3 of
Table 7 lead to that line 2-4 of Table 2 hold.

(2). Assume that (L,G,Lα) ∼= (A11,A9,PSL(2, 11)) or (A11,A7,M11) and p = 11, just
as line 4 of Table 7. For (L,G,Lα) ∼= (A11,A9,PSL(2, 11)). Since Soc(A/K) = L ∼= A11,
we can conduct that A/K ∼= A11 or S11, and so (A/K)α ∼= PSL(2, 11) or PSL(2, 11):C2

respectively. On the other hand, (A/K)α is given in Proposition 7(b), which gives that
(A/K)α ∼= PSL(2, 11), and so A/K ∼= A11, i.e., A/K = L. Furthermore, ΓK is (L, 2)-arc
transitive. By Magma, we have that the graph ΓK does not exist, a contradiction. Then
along the same lines as the previous case we can exclude the cases when (L,G,Lα) ∼=
(A11,A7,M11) (which corresponding to line 4 of Table 7), and (A23,A19,M23) (which
corresponding to line 5 of Table 7).

(3). Assume that (L,Lα) ∼= (Ap+1,Ap) and (p + 1)
∣∣ |G|, just as line 6 of Table 7. It

is clear that ΓK ∼= Kp+1. Hence line 5 of Table 2 holds. For a similar reason, line 7 and
10 of Table 7 gives line 6 and 7 of Table 2 respectively.

(4). Assume that (L,G) ∼= (A11,M11) or (A12,M12), and Lα ∼= A7 or S7, in particular,
p = 7, just as line 8 of Table 7. It is clear that A7 is 2-transitive on ΓK(α). By Magma,
we have that the graph ΓK does not exist, a contradiction. Hence this case does not occur.

(5). Assume that (L,G) ∼= (A23,M23) or (A24,M24) and Lα ∼= A19 or S19, in particular,
p = 19, just as line 9 of Table 7. Suppose that (L,G) ∼= (A23,M23). Note that |Lα|/|K| =
|L|/|G| = 1267136462592000 denoted by m, and K ∼= Gα 6 (L)α, we have that K is
isomorphic to a subgroup of A19 or S19 with index m. Thus |K| = 48 or 96 respects to
Lα ∼= A19 or S19. Hence the first line of line 8 in Table 2 holds. For the same reason, the
case where (L,G) ∼= (A24,M24) implies that line 8 of Table 2 holds.

(6). Assume that (L,G) ∼= (A8,Ak) for k ∈ {5, 6, 7}, and Lα ∼= SL(3, 2) or AGL(3, 2),
in particular, p = 7, as line 11 of Table 7. By [13, Theorem 1.1], we have ΓK is (L, 2)-arc
transitive. With the help of Magma, there is no such graph ΓK exists, a contradiction.

(7). Assume that (L,G,Lα) ∼= (M12,M11,M11) or (M12,M11,PSL(2, 11)), and p = 11
as line 12 of Table 7. Suppose that (L,G,Lα) ∼= (M12,M11,M11). Then ΓK is isomorphic
to a complete graph K12. Note that Soc(A/K) = L ∼= M12. Then A/K ∼= M12 or M12.C2,
and so (A/K)α ∼= M11 or M11.C2. On the other hand, since ΓK is A/K-arc transitive
graph of valency 11, then (A/K)α is given in Proposition 7(b), which shows that Aα ∼=
(A/K)α ∼= M11. It follows that A/K = L ∼= M12. Since |Lα|/|K| = |L|/|G| = 12 and
K ∼= Gα 6 (L)α ∼= M11, we have that K is isomorphic to a subgroup of M11 of index 12.
By [4, Page 18], K ∼= PSL(2, 11). On the other hand, the Schur multiplier M(M12) ∼= C2
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(see [4, Page 31] for example). Hence A ∼= K.A/K ∼= PSL(2, 11).M12
∼= PSL(2, 11)×M12.

Hence (A,G,Aα) ∼= (PSL(2, 11) × M12,M11,M11), just as line 1 of Table 3. Assume
that (L,G,Lα) ∼= (M12,M11,PSL(2, 11)). By Proposition 7(b), we have ΓK is (L, 2)-arc
transitive. With the help of Magma, the graph ΓK does not exist, a contradiction.

(8). Suppose that (L,G,Lα) ∼= (M12,PSL(2, 11),M11) and p = 11 as line 13 of Table
7. Then ΓK is isomorphic to a complete graph K12. Note that Lα ∼= M11 and Soc(A/K) =
L ∼= M12. Then A/K ∼= M12 or M12.C2, and so (A/K)α ∼= M11 or M11.C2 respectively. On
the other hand, since ΓK is A/K-arc transitive graph of valency 11, then (A/K)α is given
in Proposition 7(b), which shows that (A/K)α ∼= M11. It follows that Aα ∼= (A/K)α ∼=
M11 and A/K ∼= L ∼= M12. Noting G ∼= G ∼= PSL(2, 11), we have |(A/K)α|/|K| =
|A/K|/|G| = 144. Since K ∼= Gα 6 (A/K)α ∼= M11, we have K is isomorphic to a
subgroup of M11 of index 144. By [4, Page 18], K ∼= C11:C5 and the Schur multiplier
M(M12) ∼= C2, and hence A ∼= K.A/K ∼= (C11:C5).M12. With the help of GAP, we have
Aut(C11:C5) ∼= (C11:C5):C2. Thus (C11:C5).M12

∼= (C11:C5)×M12. Thereby, (A,G,Aα) ∼=
((C11:C5)×M12,PSL(2, 11),M11), just as line 2 of Table 3.

(9). Assume that (L,G,Lα) ∼= (M12,A5,M11) as line 14 of Table 7, in particular,
p = 11 and ΓK ∼= K12. Note that Lα ∼= M11 and Soc(A/K) = L ∼= M12. Then A/K ∼= M12

or M12.C2, and so (A/K)α ∼= M11 or M11.C2. On the other hand, since ΓK is A/K-arc
transitive graph of valency 11, then (A/K)α is given in Proposition 7(b), which shows
that (A/K)α ∼= M11. It follows that Aα ∼= (A/K)α ∼= M11 and A/K = L ∼= M12. Note
that G ∼= G ∼= M11, we have |(A/K)α|/|K| = |A/K|/|G| = |M12|/|A5| = 24 · 32 · 11.
Since K ∼= Gα 6 (A/K)α ∼= M11, we have K is isomorphic to a subgroup of M11 of index
24 · 32 · 11. By [4, Page 18], K ∼= C5 and M(M12) ∼= C2, and hence A ∼= K.A/K ∼=
C5.M12

∼= C5 ×M12. Hence (A,G,Aα) ∼= (C5 ×M12,A5,M11), just as line 3 of Table 3.
(10). Assume that (L,G) ∼= (M23,M22) and Lα ∼= C23:C11 or C23, as line 15 of

Table 7, in particular, p = 23. Note that Soc(A/K) = L ∼= M23 and Out(M23) =
1. Then A/K ∼= M23, and so Aα ∼= (A/K)α = Lα ∼= C23:C11 or C23. In particular,
|(A/K)α|/|K| = |A/K|/|G| = 23. Since K ∼= Gα 6 (A/K)α of index 23 and K 6= 1, then
Lα ∼= C23:C11 and K ∼= C11. By [4, Page 71], the Schur multiplier M(M23) = 1, and so
A ∼= C11.M23

∼= C11 ×M23. Hence line 4 of Table 3 holds.
(11). Assume that (L,G) ∼= (M24,M23) and Lα ∼= SL(3, 2) or C6

2:(SL(3, 2) × S3), as
line 16 of Table 7, in particular, p = 7. Suppose that Lα ∼= C6

2 × (SL(3, 2) × S3). By
Lemma 6, we have ΓK is (L, 2)-arc transitive. However, by Magma, we have that the
graph ΓK does not exist, a contradiction. If Lα ∼= SL(3, 2), then P := Lαβ

∼= S4 for

β ∈ ΓK(α). With the help of GAP, we have N := NL(P ) ∼= S3 × S4 and 〈Lα, N〉 < M24.
It contradicts to the assumption that ΓK is connected.

(12). Assume that (L,G,Lα) ∼= (M24,PSL(2, 23),M23) as line 17 of Table 7, in par-
ticular, p = 23 and ΓK ∼= K24. Note that Lα ∼= M23 and Soc(A/K) = L ∼= M24. Then
A/K ∼= M24 and so Aα ∼= (A/K)α ∼= M23. Note that G ∼= G ∼= PSL(2, 23), we have
|(A/K)α|/|K| = |A/K|/|G| = |M24|/|PSL(2, 23)| = 27 · 32 · 5 · 7. Since K ∼= Gα 6
(A/K)α ∼= M23, we have K is isomorphic to a subgroup of M23 of index 27 · 32 · 5 · 7. By
[4, Page 71], K ∼= C23:C11 and M(M24) = 1, and hence A ∼= K.A/K ∼= (C23:C11).M24

∼=
(C23:C11)×M24. Hence (A,G,Aα) ∼= ((C23:C11)×M24,PSL(2, 23),M23), just as line 5 of
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Table 3.
Case (ii). Assume that (ii) occurs, i.e., A/K ∼= AGL(3, 2), G ∼= PSL(2, 7) and

ΓK ∼= K8. Since G ∼= G is transitive on V (ΓK), then |G|/8 = |Gα|, in particular, the index
of Gα in G is 8. It follows that Gα

∼= C7:C3. Since G is regular and K is semiregular on
V (Γ), then Gα

∼= K. Hence A ∼= K.A/K ∼= (C7:C3).AGL(3, 2). Note that AGL(3, 2) ∼=
C3

2:SL(3, 2) with C3
2 being the unique minimal normal subgroup. By [4], M(SL(3, 2)) ∼= C2.

Note that Aut(C7:C3) ∼= (C7:C3):C2, we have A ∼= (C7:C3) × AGL(3, 2). On the other
hand, since |A/K| = 8|(A/K)α| and A/K = AGL(3, 2) ∼= C3

2:SL(3, 2), then (A/K)α ∼=
SL(3, 2). It follows that Aα ∼= (A/K)α ∼= SL(3, 2). Then Lemma 11 holds in this case.

Case (iii). Assume that (iii) occurs, i.e., Soc(A/K) = T × T , and GK/K ∼= G is
a diagonal subgroup of Soc(A/K), where T and G are given in [9, Table 1]. Then ΓK
is L-arc transitive and Lα is primitive on ΓK(α). So Lα is given in Lemma 6 and 7, in
particular, (|Soc(A/K)|/|V (ΓK)|)p = |Lα|p = p for p > 7. However a calculation on the
index of |V (ΓK)| in Soc(A/K) shows that (|Soc(A/K)|/|V (ΓK)|)p > p2, a contradiction.

This finishes the proof of Lemma 11.

The proof of Theorem 1: The Theorem 1 follows immediately from Lemma 10 (which
gives (a) of Theorem 10) and Lemma 11 (which gives (b) of Theorem 10).
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