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Abstract

A graph G is called t-node fault tolerant with respect to H if G still contains
a subgraph isomorphic to H after removing any t of its vertices. The least value
of |E(G)| − |E(H)| among all such graphs G is denoted by ∆(t,H). We study
fault tolerance with respect to some natural architectures of a computer network,
i.e. the d-dimensional toroidal grids and the hypercubes. We provide the first non-
trivial lower bounds for ∆(1,H) in these cases. For this aim we establish a general
connection between the notion of fault tolerance and the size of a largest component
of a graph. In particular, we give for all values of k (and n) a lower bound on the
order of the largest component of any graph obtained from Cn✷Cn via removal of
k of its vertices, which is in general optimal.

Mathematics Subject Classifications: 05C70, 05C78

1 Introduction

A graph G is called t-node fault tolerant with respect to H (t-FT(H) for short) if G− S
contains H as a subgraph for every S ⊂ V (G) with |S| 6 t. This problem was introduced
by Hayes [9] in 1976 as a graph theoretic model of computer or communication networks
operating correctly in the presence of faults. Different measures of efficiency of fault-
tolerant graphs have been studied so far. Hayes [9] and Ajtai et al. [1] considered t-
FT(H) graphs that have exactly t spare nodes and as small as possible number of edges.
Alon and Chung [2], Zhang [14], Ueno and Yamada [12], alowed O(t) spare nodes and
focused on minimizing the maximum degree to maintain a scalability of a network. In
this paper we study another variant introduced by Ueno et al. [11], and independently
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within subsidy of Ministry of Science and Higher Education.
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by Dudek et al. in [7]. In this variant one is interested in t-FT(H) graphs having as
few as possible edges, disregarding the number of vertices (note that Erdős, Graham and
Szemerédi [8] considered already the analogue of this variant for dipaths of order exactly
t). Let ∆(G,H) = |E(G)| − |E(H)| and define

∆(t, H) = min{∆(G,H) : G is t-FT(H)}.

Ueno et al. [11] determined the growth order ∆(t, H) = Θ
(√

|H|
)

, where t is fixed

and |H| tends to infinity, for some special families of graphs. They conjectured [11, pp.
571] that there exists a general lower bound for connected graphs H and t > 2 where c is
a universal constant:

∆(t, H) > c
√

t|H| + f(t).

The second author proved the conjecture in the case of regular graphs [15, Theorem 1].

Theorem 1 ([15]). Let H be an r-regular graph of connectivity κ, and let t > 1. If
r (|H| + 1 − κ) > 2

√

rκt|H| + t(1 + r − rκ) then

∆(t, H) >
√

rκt|H| − t(rκ− r − 1)

2
. (1)

For t = 1, the above bound is close to optimal for many families of graphs, however,
for some typical widely studied architectures of computer networks, the growth order is
suspected to be significantly bigger. Ueno et al. [11, Sections 6-7] considered (among other
graphs) the toroidal grids Cn✷Cn and the hypercubes Qn. They proved that ∆(1, H) =
O
(
|H|3/4

)
in the case when H = Cn✷Cn, see [11, Theorem 11], and conjectured that this

is the right growth rate. However, they did not provide any lower bound neither for the
toroidal grid nor for the hypercube, which is essentially bigger than (1). In this paper
we improve the known lower bounds significantly, by establishing the following general
relation between the notion of 1-FT(H) graphs and the size of a largest component of a
graph obtained by removing a given number of its vertices. Let m(G) denote the number
of vertices in a largest component of G and let

m(G, k) = min{m(G− S) : S ⊂ V (G), |S| = k}.

Theorem 2. Let H be an r-regular graph, r > 1. Then

∆(1, H) >
1

2
min

06k6|V (H)|
{rm(H, k) + k}.

In particular, we may derive many new bounds for ∆(1, H) from known results on the
integrity of graphs, c.f. [3]. The integrity I(H) of a graph H is defined as follows

I(H) = min{m(H − S) + |S| : S ⊂ V (H)}.

Thus we immediately obtain the following corollary.
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Corollary 3. Let H be an r-regular graph, r > 1. Then

∆(1, H) >
1

2
I(H).

We give special attention to the toroidal grids since we believe that our estimation on
the parameter m(Cn✷Cn, k) may be of independent interest. Thus, although much less is
sufficient within the mentioned application, we nevertheless provide a general result for
the entire spectrum of potential values of k.

Theorem 4. For any positive integers n > 3 and k

m(Cn✷Cn, k) >







n2 − (k+2)2

8
− 1

2
for 1 6 k 6 2n− 3

(n−1)2

2
+ 1

2
, for k = 2n− 2

(n2−k)
k2

·
(
n2 − k + n

√
n2 − 2k

)
, for 2n− 1 6 k < n2

2

1, for n2

2
6 k 6 n2 − 1.

We moreover show that all bounds in Theorem 4 above are in general optimal, i.e.
these are tight in infinitely many cases. Note that whenever n ≪ k ≪ n2, the lower
bound in Theorem 4 is roughly 2n4/k2.

As an application of Theorem 2, Theorem 4 and Corollary 3 we obtain the following
lower bounds on ∆(1, H). We say that a graph G on n vertices is (α, β)-expander if for
any set A ⊂ V (G) such that |A| 6 αn, its external neighborhood satisfies |N(A)| > β|A|.
Furthermore, denote

Cd
n = Cn✷ · · ·✷Cn

︸ ︷︷ ︸

d

.

Theorem 5.

1. There exists n0 such that for every n > n0

∆(1, Cn✷Cn) > 3n4/3.

2. There exists a constant cd depending only on d such that

∆(1, Cd
n) > cdn

d2/(d+1).

3. There exists a constant c > 0 such that

∆(1, Qn) > c
2n

√
n
.

4. Let H be an r-regular (α, β)-expander on n vertices. Then

∆(1, H) >
n

2
min{rα, β

r + β
}.
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Note that the parameter ∆(1, H) in Theorem 5 is, respectively, of order Ω
(
|H|2/3

)
,

Ω
(
|H|d/(d+1)

)
, Ω
(

|H|/
√

log |H|
)

, Ω (|H|), and thus exceeds (1) significantly.

In what follows by a graph we mean a simple graph without multiple edges and loops.
Given a graph G, V (G) denotes the vertex set of G and E(G) denotes the edge set of G.
Furthermore, |V (G)| is the order of G and |E(G)| is the size of G. By NG(x) we denote
the set of vertices adjacent with x in G. For a vertex set X ⊆ V (G), G[X ] denotes the
subgraph of G induced by X , while the set NG(X) denotes the external neighbourhood of
X in G, i.e.

NG(X) = {y ∈ V (G) \X : y is adjacent with some x ∈ X}.

Moreover, if H is a subgraph of G, by the external neighbourhood of H , NG(H), we
understand NG(V (H)).

2 Fault tolerance

2.1 Proof of Theorem 2

We begin with the following obvious observation.

Observation 6. Let H be a subgraph of G and let dG(v) < δ(H) for some v ∈ V (G). Then
H is a subgraph of G− v.

Proof of Theorem 2. . Let G be a 1-FT(H) graph with the minimum number of edges. By
Observation 6, we may assume that δ(G) > r. Let K be the subset of V (G) consisting of
all vertices of G with degree at least r+1, and set k = |K|. Let C be a largest component
(i.e. of largest order) of G −K. Since H is a subgraph of G, |C| > m(G, k) > m(H, k).
We will show that H is a subgraph of G− V (C).

Let v0 be any vertex of C and set G1 = G− v0. Since G is 1-FT(H), H is a subgraph
of G1. We furthermore, for i = 1, . . . , |C| define Gi+1 := Gi − vi where vi ∈ V (Gi) ∩ C
with dGi

(vi) < r. To see that we can always find such vi, recall that dG(v) = r for each
v ∈ C and V (Gi) has at least one neighbor in {v0, . . . , vi−1} in G (because C is connected
in G). By Observation 6, H is a subgraph of Gi−vi for every i = 1, . . . , |C|. In particular,
H is thus a subgraph of G− V (C).

Therefore,
|V (G)| > |V (H)| + |C| > |V (H)| + m(H, k).

Hence,

|E(G)| − |E(H)| > r(|V (G)| − k) + (r + 1)k

2
− r|V (H)|

2

>
r(|V (H)| + m(H, k) − k) + (r + 1)k − r|V (H)|

2

=
rm(H, k) + k

2
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2.2 Proof of Theorem 5

In this section we complete the proof of Theorem 5.

Proof of Theorem 5. We prove cases 1-4 separately.
1. Denote

g(n, k) := 4m(Cn✷Cn, k) + k.

By Theorem 2,

∆(1, Cn✷Cn) >
1

2
min

06k6n2

g(n, k).

In order to prove the statement, we will show that if n is large enough, then for every
integer k ∈ [0, n2],

g(n, k) > 3n4/3. (2)

This is obvious by the definition of g(n, k) if k > 3n4/3, while it follows by Theorem 4 for
k 6 2n− 2. For the remaining values of k, by Theorem 4 we however have:

g(n, k) >
4n4

k2
+ k

(for n large enough). Consider f(x) = 4n4

x2 + x, x ∈ [2n− 1, 3n4/3]. The derivative of f(x)

equals f ′(x) = −8n4

x3 + 1. Clearly,

f ′(x) > 0 ⇐⇒ x3 > 8n4.

Hence, f attains its minimum for x0 = 2n4/3, and f(x0) = 3n4/3, and thus (2) follows.
2. We derive the proof from known results. Benke et al. [6] proved the following

theorem.

Theorem 7 ([6], Thm. 1.6). There exist a constant cd > 0 depending only on d, such that

I(P d
n) > cdn

d2/(d+1).

Clearly, I(Cd
n) > I(P d

n). Hence, the proof follows by Corollary 3. (Note that the
growth order for the bound in case 1 of Theorem 5 follows from case 2, as well, however,
with a much worse constant c2 = 0.00136 (cf. [6], Thm. 1.5)).

3. So far the best known bounds on the integrity of a hypercube are due to Beineke
et al. [5] (lower bound) and Balogh et al. [4] (upper bound).

Theorem 8 ([4, 5]). There exist constants c, C > 0 such that

c
2n

√
n
6 I(Qn) 6 C

2n

√
n

√

logn.

Hence the proof of this case follows from Corollary 3, again.
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4. Let S ⊂ V (G) with |S| = k. Let A1, . . . , Al be connected components of G− S. If
there exists i such that |Ai| > αn then, by Theorem 2, ∆(1, H) > rαn

2
. Otherwise, by the

expanding property,

rk = r|S| >
l∑

i=1

|N(Ai)| >
l∑

i=1

β|Ai| = β(n− k).

Hence k > n β
r+β

and the statement follows by Theorem 2, too. (a similar simple proof

appeared in [13], where the integrity of cubic graphs was considered).

3 Largest component in the toroidal grid

3.1 Preliminaries

Let G = Cn✷Cn or G = Pn✷Pn, where V (G) = {1, 2, . . . , n} × {1, 2, . . . , n}, and
{(i, j), (k, l)} ∈ E(G) iff i = k and |j − l| = 1 (or {j, l} = {1, n} in the case of
G = Cn✷Cn) or j = l and |i− k| = 1 (or {i, k} = {1, n} in the case of G = Cn✷Cn). If
(i, j), (k, l) ∈ V (G) then we say that the distance between (i, j) and (k, l) is

• 1 if {(i, j), (k, l)} ∈ E(G)

•
√

2 if |i− k| = 1 (or {i, k} = {1, n} in the case of G = Cn✷Cn) and |j − l| = 1 (or
{j, l} = {1, n} in the case of G = Cn✷Cn)

• > 2 otherwise

In the same manner we define the distance in G = P∞✷P∞. In all these cases, given
S ⊂ V (G), by G′

S we denote the graph (S,E ′
S) where uv ∈ E ′

S if and only if the distance
between u and v is less than or equal to

√
2 in G. Finally, by GS we denote the graph

that is obtained from G′
S by removing both diagonals from each copy of K4 in G′

S, see
an example on Figure 1. Clearly, GS has no crossing edges and so is embeddable on the
plane or torus depending on which surface G is embeddable. We first prove the following
simple geometric fact.

Proposition 9. Let P be a planar polygon with all angles equal to π/2 or 3π/2. If the
circumference of P is less than or equal to a, then:

|P | 6
(a

4

)2

.

Proof. We may assume that P is represented on a plane with all sides parallel to the axis
of a coordinate system of the plane. Let [x0, x1] be the projection of P onto the x-axis, and
[y0, y1] be the projection of P onto the y-axis. Then the rectangle R := [x0, x1] × [y0, y1]
contains P . Thus |P | 6 |R|. On the other hand, c(R) 6 c(P ) 6 a, where by c(P ′) we
understand the circumference of any polygon P ′. To see this note that (x0, y

′), (x1, y
′′),

(x′, y0), (x′′, y1) are nodes of P for some x′, x′′, y′, y′′. Since all sides of P are parallel to
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Figure 1: S ⊂ C4✷C4 (black dots), G′
S and GS.

the axis, the polyline (x0, y
′) → (x0, y1) → (x′′, y1) (formed of two line segments joining

(x0, y
′) with (x0, y1) and (x0, y1) with (x′′, y1)) has length less than or equal to the length

of any polyline formed by sides of P and joining (x0, y
′) with (x′′, y1), and analogous

statements hold for polylines (x′′, y1) → (x1, y1) → (x1, y
′′), (x1, y

′′) → (x1, y0) → (x′, y0)
and (x′, y0) → (x0, y0) → (x0, y

′). Moreover, the surface area of R is less than or equal to
the surface area of the square of the same circumference. Therefore,

|P | 6 |R| 6
(a

4

)2

.

We will also need the famous Pick Theorem [10].

Theorem 10 (Pick’s Theorem). Let P be a lattice polygon. Assume there are i lattice
points in the interior of P , and b lattice points on its boundary. Then

|P | = i +
b

2
− 1.

Theorem 11. Let G = P∞✷P∞ and let X ⊂ V (G) be finite. Then

|X| 6 (|NG(X)| − 2)2

8
+

1

2
.

Proof. We may assume that G is in fact a plane graph (i.e. planar embedding of G) and
that X is non-empty. Let S = NG(X) and define GS as described above.

Suppose first that X induces a connected subgraph in G. Then the edges belonging
to the external (infinite) face of GS form a cycle – we denote it by C and note that
|C| 6 |NG(X)|, where by |C| we understand the number of edges (or equivalently vertices)
of C. The region of the plane inside C we denote by F ; note it includes all vertices of X .
Next we replace each edge e of length 1 of C with a polyline consisting of two line segments
joining the ends of e with the middle of the unit square incident to e which lies outside F .
Clearly the polyline has length

√
2. The edges of length

√
2 of C remain unchanged. Note

that by the definition of GS, the middle of such a unit square may belong to at most one
of those polylines of length

√
2. Thus this way we obtain a polygon P with c(P ) = |C|

√
2

and with angles π/2 and 3π/2 only, which contains F . By Proposition 9,

|P | 6
(

|C|
√

2

4

)2

=
|C|2

8
.
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Figure 2: Illustrating the sharpness of Theorem 11 (black dots are elements of NG(X)):
|NG(X)| = 4a, |X| = 2 ·∑a

i=2(2i− 3) + 2a− 1 = 2a2 − 2a + 1 = (4a− 2)2/8 + 1/2.

Thus by Pick’s theorem,

|C|2
8

> |P | > |F | > |X| + |C|/2 − 1,

and consequently,

|X| 6 (|C| − 2)2

8
+

1

2
6

(|NG(X)| − 2)2

8
+

1

2
,

as |NG(X)| > |C| > 4.
Suppose now that G[X ] has two components, and let X1, X2 induce these (hence

X = X1∪X2). If the edges belonging to the external (infinite) face of GS form a cycle, we
proceed as above. Otherwise, |(X1∪NG(X1))∩(X2∪NG(X2))| = |NG(X1)∩NG(X2)| 6 1,
and thus we may shift one of the components (i.e., isomorphically map it to a subgraph
of G) so that no vertex of X1 and X2 overlaps, but |(X1∪NG(X1))∩ (X2∪NG(X2))| > 2.
Then the external neighbourhood of X gets smaller, but the cardinality of X does not
change, while the edges belonging to the external (infinite) face of GS form a cycle now,
and again the theorem follows by the reasoning above.

If finally G[X ] has more than two components, we proceed as in the previous para-
graph, shifting components one by one, not changing the size of X , and potentially di-
minishing the cardinality of external neighbourhood of X , until the edges belonging to
the external face of GS form a cycle, and then we conclude as above.

We note that the bound in Theorem 11 above cannot be improved in general, which
is exemplified in the Figure 2 below (where |NG(X)| is divisible by 4).
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3.2 Proof of Theorem 4

Proof of Theorem 4. Let C = Cn✷Cn with n > 3 be standardly embedded on the torus
and suppose the thesis does not hold for a given k ∈ [1, n2 − 1]. Consider any S ⊂ V (C)
with |S| = k such that m(G, S) = m(G, k), and let X1, . . . , Xq be the vertex sets of the

components of C − S, hence if only 2n− 1 6 k < n2

2
, then for every i = 1, . . . , q,

|Xi| <
n2 − (2n− 1)

(2n− 1)2
·
(

n2 − (2n− 1) + n
√

n2 − 2(2n− 1)
)

=
(n− 1)2 ·

(
(n− 1)2 + n

√
n2 − 4n + 2

)

(2n− 1)2

6
(n− 1)4 + (n− 1)2n(n− 2)

(2n− 1)2

=
2(n2 − 2n + 1)(n2 − 2n + 1

2
)

(2n− 1)2

6
2
(
n2 − 2n + 3

4

)2

(2n− 1)2

=
2
[
(n− 1

2
)(n− 3

2
)
]2

(2n− 1)2

=
(2n− 3)2

8
. (3)

Any maximal connected surface obtained from the torus after removing all points of the
edges and vertices of CS will be naturally called a face. Let Fi be the face of CS containing
Xi, for i = 1, . . . , q. Let further Fq+1, . . . , Fp be the remaining faces of CS – note that
their interiors do not contain any vertex of V (C)rS, and thus they can only be triangles
or squares. Now for i = 1, . . . , p, denote by Bi the boundary walk or walks of the face
Fi, and let |Bi| be the cardinality of the set of vertices of Bi. By l(Bi) we in turn denote
the length of Bi, that is the number of edges appearing in it where an edge appearing
two times in the walk or walks (i.e. an edge incident with Fi from both sides) is counted
twice. Consequently, l(Bi) > |Bi|, |Bi| = |NC(Xi)| and NC(Xi) ⊆ S, for i = 1, . . . , q.

For any fixed integer i ∈ [1, n], the set of vertices {(i, j) : j ∈ [1, n]} will be called the
i-th row, while the set {(j, i) : j ∈ [1, n]} will be called the i-th column of C = Cn✷Cn,
cf. the standard notation discussed at the beginning of Section 3.1. Any set of vertices
X ′ ⊆ V (C) will be called vast if it contains vertices from at least n − 1 rows or at least
n − 1 columns of C, i.e. X ′ is vast if there are at least n − 1 indices i for which there
exists an index ji with (i, ji) in X ′ or at least n − 1 indices i for which there exists an
index ji with (ji, i) in X ′.

Claim 12. If X ′ ⊆ V (C) is not vast and C[X ′] is connected, then

|X ′| 6 (|NC(X ′)| − 2)2

8
+

1

2
.
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Proof. We first note that C[X ′] can be isomorphically mapped to a subgraph of P∞✷P∞
so that the external neighbourhoods of the both subgraphs have the same cardinality. To
see this, note that since X ′ is connected and not vast, there must be two consecutive rows
of C and two consecutive columns of C without elements of X ′, and thus if we delete from
C all edges between these two rows and all edges between these two columns, then the
resulting C ′ will be planar and thus clearly isomorphic to a subgraph of P∞✷P∞, whereas
C[X ′] is also a subgraph of C ′ with the same external neighbourhood as in C. The claim
thus follows by Theorem 11.

Claim 13. If X ′ ⊆ V (C) is not vast and |NC(X ′)| 6 2n− 2, then

|X ′| 6 (|NC(X ′)| − 2)2

8
+

1

2
.

Proof. We are going to proceed similarly as above. We might however need to introduce
some modifications of X ′ beforehand. We first show that we may actually assume there
are two consecutive rows of C without elements of X ′.

Indeed, for suppose this is not the case. First, assume that row i, for some i ∈ [1, n],
does not intersect NC(X ′). Then, as X ′ is not vast, row i contains no element in X ′

either. In addition, row i− 1(mod n) cannot contain an element in X ′ either, and hence
we obtain two consecutive rows not intersecting X ′, a contradiction. We therefore may
assume that every row intersects NC(X ′). As |NC(X ′)| 6 2n− 2, this implies that there
are (at least) two rows each containing exactly one element of NC(X ′). These two rows
thus contain no element of X ′, as X ′ is not vast, and due to our supposition these cannot
be two consecutive rows in C. Assume thus without loss of generality that these are
rows 1 and r ∈ [3, n − 1]. We then modify X ′ by exchanging each element (a, b) ∈ X ′

with a ∈ [2, r] by (a − 1, b). This way, neither the size of X ′ nor the cardinality of its
external neighbourhood will change. Moreover X ′ will still not be vast and there will be
two consecutive rows (r − 1 and r) without elements of X ′.

The above potential changes do not modify the columns of the elements in X ′, and
therefore we may also assume, by symmetry, that there are two consecutive columns, say
c−1 and c in C without elements of X ′. We therefore may delete the edges of C between
rows of r − 1 and r and between the columns c − 1 and c, and the thesis follows by
Theorem 11 via the same reasoning as in the proof of Claim 12 above.

Claim 14. If X ′ ⊆ V (C) is vast and |NC(X ′)| 6 2n − 2 then X ′ contains at least n − 1
elements from some row and at least n− 1 elements from some column of C.

Proof. Without loss of generality, suppose X ′ contains at least one vertex in rows 1, . . . , n−
1. Suppose that X ′ contains at most n − 2 elements from each of the rows of C. Then
however NC(X ′) must include at least 2 elements from each of the rows 1, . . . , n − 1,
and also from row n if some element from this row belongs to X ′, or otherwise NC(X ′)
includes at least one element from this row. In both cases we obtain a contradiction with
the assumption that |NC(X ′)| 6 2n − 2, and hence X ′ contains at least n − 1 elements
from some row of C. But it means X ′ contains at least one vertex in at least n−1 columns
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Figure 3: Exemplary construction of C ′′ and embedding in P∞✷P∞.

of C and by a symmetrical reasoning as above we conclude X ′ must also contain at least
n− 1 elements from some column of C.

For any X ′ ⊆ V (C), denote X ′ := V (C)r(X ′∪NC(X ′)), and note that NC(X ′) ⊆ NC(X ′).

Claim 15. If X ′ ⊆ V (C) is vast and |NC(X ′)| 6 2n− 3 then X ′ is not vast.

Proof. Suppose the claim is false, i.e. that X ′ is vast. As NC(X ′) ⊆ NC(X ′), by Claim 14,
X ′ contains at least n−1 elements from some row, while X ′ contains at least n−1 elements
from another row of C. This implies there has to be an element of NC(X ′) in each column
of C, and moreover there have to be at least two such elements in at least n− 2 columns.
Therefore we obtain a contradiction, as |NC(X ′)| < 2n− 2.

Claim 16. If X ′ ⊆ V (C) is vast, |NC(X ′)| = 2n− 2 and X ′ is vast, then

|X ′| > (n− 1)2

2
+

1

2
.

Proof. We will first embed X ′ into a subgraph of P∞✷P∞ whose external neighbourhood
has at most 2 more vertices than that of X ′ in C.

Since NC(X ′) ⊆ NC(X ′), then |NC(X ′)| 6 2n − 2. Thus, by Claim 14, X ′ contains
at least n− 1 elements from some row and at least n− 1 elements from some column of
C. Similarly, X ′ contains at least n − 1 elements from some row r and at least n − 1
elements from some column c of C. Thus, each of these two rows and two columns must
contain exactly n − 1 elements from the respective sets (as otherwise there would be an
edge between X ′ and X ′). Then we create a graph C ′ of C by deleting all edges between
column c and its neighbouring column c′ (arbitrarily chosen out of the two) and all edges
between row r and its neighbouring row r′. Note that as all the removed edges, except
possibly two are incident with vertices in X ′, these cannot be incident with X ′. We
thus might have deleted at most two edges incident with vertices in X ′, and for these
we provide substitutes in the following manner. If u is a (single) vertex u from column
c which belongs to NC(X ′), we introduce a new vertex u′ and join it by an edge with
the neighbour (in C) of u in column c′. Analogously, if v is a (single) vertex v from
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Figure 4: Illustrating sharpness in Theorem 4 for k = 2n− 2

(black dots are elements of S).

row r which belongs to NC(X ′), then we introduce a new vertex v′ and join it by an
edge with the neighbour (in C) of v in row r′. The resulting graph (with at most two
new vertices) we denote by C ′′, cf. the example in Figure 3. Analogously as previously,
C ′′[X ′] (and thus also C[X ′]) is isomorphic with a subgraph of P∞✷P∞ whose external
neighbourhood in P∞✷P∞ contains at most |NC(X ′)| + 2 6 |NC(X ′)| + 2 = 2n elements.
Thus by Theorem 11,

|X ′| 6 (2n− 2)2

8
+

1

2
=

(n− 1)2 + 1

2
,

and hence

|X ′| > n2 − (2n− 2) − (n− 1)2 + 1

2
=

(n− 1)2

2
+

1

2
.

Before we show how one may derive Theorem 4 from the presented claims, we note
that the bound from Claim 16 above (similarly as the one in Claim 12) is sharp, which is
exemplified in Figure 4.

Assume first that k 6 2n− 2. We note that then at least one Xi is vast. Indeed, if it
were otherwise, each row (and column) of C would have to contain at least two elements
of S, hence |S| > 2n, a contradiction. Without loss of generality assume X1 is vast.

Now denote X0 := X2 ∪X3 ∪ . . . ∪Xq and suppose that X0 is not vast (in particular
we may have X0 = ∅). Since |NC(X0)| 6 |S| 6 2n− 2, by Claim 13,

|X0| 6
(k − 2)2

8
+

1

2
,

hence,

|X1| > n2 − k −
(

(k − 2)2

8
+

1

2

)

= n2 − (k + 2)2

8
− 1

2
,
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and we obtain a contradiction (thus the thesis of Theorem 4 follows).
So we may assume that X0 is vast, hence X1 is vast as well (as X0 ⊆ X1). By Claim 15

this implies that k = 2n− 2. We will show that then we must have q < 3. By Claim 14
each of X1 and X0 contains at least n − 1 vertices from some row of C, hence none of
these contains all elements from any column of C, and thus each column contains a vertex
from S. Moreover, as any n − 1 vertices of X0 from the same row induce a connected
subgraph of C, and hence they must belong to the same Xi, we may assume without loss
of generality that there is such a set of vertices in X2. Observe that if any given column
c intersects i different sets among X1, . . . , Xq, then c contains at least i elements of S.
Therefore, as each of X1 and X2 contains n − 1 elements of some row, at least n − 2
columns must contain at least 2 elements in S, summing to no less than 2n− 4 elements
of S. Since the remaining two columns contain at least 2 elements in X1∪X2, these imply
the existence of at least (2n − 4) + 2 = 2n − 2 = |S| elements in S. Thus indeed q < 3,
as any element v in Xj with j > 2 would imply the existence of an element in S not yet
counted in the column of v. Since q 6 2, we must however have

max
16i6q

|Xi| >
1

2
(n2 − k) =

(n− 1)2

2
+

1

2
,

hence we obtain a contradiction (thus the thesis of Theorem 4 follows).
As the case when n2

2
6 k < n2 is trivial, we may assume till the end of the proof that

2n− 1 6 k < n2

2
. We will show that then for every i = 1, . . . , q,

|Xi| 6
(|Bi| − 2)2

8
+

1

2
. (4)

This follows by Claim 12 when Xi is not vast. So suppose now that Xi is vast. In the
case when |NC(Xi)| 6 2n − 3 (hence Xi is not vast by Claim 15) and in the case when
|NC(Xi)| = 2n− 2 and Xi is not vast, by Claim 13,

|Xi| 6
(2n− 4)2

8
+

1

2
, (5)

and hence,

|Xi| > n2 − (2n− 2) −
(

(2n− 4)2

8
+

1

2

)

> (n− 1)2 − (n− 2)2

2

>
(n− 1)2

2
>

(2n− 3)2

8
,

a contradiction with (3). Similarly, in the case when |NC(Xi)| = 2n−2 and Xi is vast, we
obtain a contradiction with (3) by Claim 16. Thus we may assume that |NC(Xi)| > 2n−1.
Then however, by (3),

|Xi| <
(2n− 3)2

8
<

(|Bi| − 2)2

8
+

1

2
,
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and thus (4) follows.
By Euler’s formula for graphs embeddable without crossings on the torus:

2k + 2p > 2|E(GS)| =

p
∑

i=1

l(Bi) >

p
∑

i=1

|Bi|.

Thus, for x := max16i6q |Xi|, by (4),

2k >

p
∑

i=1

(|Bi| − 2) >

q
∑

i=1

(|Bi| − 2) =

q
∑

i=1

∑

v∈Xi

|Bi| − 2

|Xi|

>

q
∑

i=1

∑

v∈Xi

√

8|Xi| − 4

|Xi|
>

q
∑

i=1

∑

v∈Xi

√
8x− 4

x

=

√
8x− 4

x

q
∑

i=1

∑

v∈Xi

1 =

√
8x− 4

x
(n2 − k).

Therefore, taking into account the fact that x > 1 (for k < n2),

x >
x

2 − 1
x

>

(
n2 − k

k

)2

, (6)

and (
k

n2 − k

)2

x2 − 2x + 1 > 0,

where the polynomial in x on the left-hand side of the inequality above has two roots (for
k < n2

2
):

x1 =

(
n2 − k

k

)2


1 −
√

1 −
(

k

n2 − k

)2


 <

(
n2 − k

k

)2

and

x2 =

(
n2 − k

k

)2


1 +

√

1 −
(

k

n2 − k

)2


 >

(
n2 − k

k

)2

,

hence, by (6),

x > x2 =
n2 − k

k2
·
(

n2 − k + n
√
n2 − 2k

)

,

a contradiction.
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Figure 5: Illustrating the sharpness in Theorem 4 for 2n− 1 6 k < n2/2

(black dots are elements of S).

3.3 Sharpness

The bound in Theorem 4 is best possible in infinitely many cases. Let e.g. n = s(t− 1)
for some s > 1, t > 2, and consider the set S as displayed in Figure 5 below.

Each face Fi is a square of diagonal t − 1. Thus the side of each Fi is of length t−1√
2

.
Hence the area and the circumference of Fi are equal to

|Fi| =
(t− 1)2

2
(7)

c(Fi) = 4
t− 1√

2
. (8)

By (7), the number p of faces satisfies

p = n2 ÷ (t− 1)2

2
= 2s2. (9)

Since each edge lying on a boundary of every face has length
√

2, by (8), the boundary
of each face has 2(t− 1) edges. Thus the total number of edges is equal to

|E| =
1

2
· 2s2 · 2(t− 1) = 2s2(t− 1). (10)

Therefore, by Euler’s formula

k = |V | = |E| − |F | = 2s2(t− 2). (11)
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By (7) and Pick’s theorem

|Xi| =
(t− 1)2

2
− (t− 1) + 1 =

t2 − 4t + 5

2
. (12)

Finally the lower bound in Theorem 4 is

|Xi| >
(n2 − k)

(
(n2 − k) + n

√
n2 − 2k

)

k2

=
s2(t2 − 4t + 5)

(

s2(t2 − 4t + 5) + s(t− 1)
√

s2(t− 1)2 − 4s2(t− 2)
)

4s4(t− 2)2

=
s2(t2 − 4t + 5) (s2(t2 − 4t + 5) + s(t− 1)s(t− 3))

4s4(t− 2)2

=
s2(t2 − 4t + 5) (s2(t2 − 4t + 5) + s2(t2 − 4t + 3))

4s4(t− 2)2

=
(t2 − 4t + 5)(2t2 − 8t + 8)

4(t− 2)2
=

t2 − 4t + 5

2
,

which agrees with (12).
The example discussed above shows that the result of Theorem 4 cannot be improved

in general for the cases when k > 2n−1. A representative of an infinite family of examples
for sharpness of the bound in Theorem 4 when k = 2n− 2 is displayed in Figure 4, while
Figure 2 indicates how one can construct such examples in the remaining case, i.e. when
k is small, that is k 6 2n− 3.

References

[1] Ajtai M., Alon N., Bruck J., Cypher R., Ho C.T., Naor M. and Szemerédi E., Fault
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