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Abstract

We classify all convex polyominoes whose coordinate rings are Gorenstein. We
also give an upper bound for the Castelnuovo-Mumford regularity of the coordinate
ring of any convex polyomino in terms of the smallest interval which contains its
vertices. We give a recursive formula for computing the multiplicity of a stack
polyomino.

Mathematics Subject Classifications: 05E40, 13H10, 13P10

1 Introduction

A polyomino P is a finite connected set of adjacent cells in the cartesian plane N2. A cell in
N2 is simply a unitary square. A polyomino P is said to be column convex (respectively
row convex) if every column (respectively row) is connected. According to [2], P is a
convex polyomino if for every two cells of P there is a monotone path between them,
that is a path having only two directions, contained in P . Convex polyominoes include
one-sided ladders, 2-sided ladders and stack polyominoes.

Let K be a field and consider the polynomial ring S = K[xij|(i, j) vertex of P ]. The
polyomino ideal IP is the ideal of S generated by all 2-inner minors of P , where a 2-inner
minor of P is a 2-minor of the matrix X = (xij)ij which involves only indeterminates of
the vertices of P . The coordinate ring of P is defined as the quotient ring K[P ] = S/IP .
The ideal IP and the ring K[P ] were first studied by Qureshi in [10]. There it was shown
that if P is a convex polyomino, then K[P ] is a normal Cohen-Macaulay domain. This
was proved by viewing the ring K[P ] as the edge ring of a suitable bipartite graph GP
associated with P .
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Understanding the graded free resolution of polyomino ideals is a difficult task. A
first step in this direction was done in [5], where the convex polyomino ideals which are
linearly related or have a linear resolution are classified.

In this paper, we continue the study of the algebraic properties of K[P ].
In Section 1, we recall the basic terminology related to convex polyominoes and their

associated bipartite graphs. The first main result of this paper appears in Section 2,
where we classify all convex polyominoes whose coordinate rings are Gorenstein (Theo-
rem 21). For this classification, we use a result due to Ohsugi and Hibi ([8]) who classified
all 2-connected bipartite graphs whose edge rings are Gorenstein. In the case of stack
polyominoes, we recover the classification of all Gorenstein stack polyominoes given in
[10, Corollary 4.12]; see Section 3.

In Section 4, we give an upper bound for the Castelnuovo-Mumford regularity of the
coordinate ring of any convex polyomino in terms of the smallest interval which contains
its vertices (Proposition 37). The computation of the upper bound of the regularity uses
as an important tool the formula of the a-invariant of the edge ring of a bipartite graph
given in [11].

Finally, in Section 5 we give a recursive formula for computing the multiplicity of K[P ]
if P is a stack polyomino and we show some concrete cases when this formula may be
applied.

2 Preliminaries

To begin with, we recall some concepts and introduce notation about collections of cells
and polyominoes.

We consider on N2 the natural partial order defined as follows: (i, j) 6 (k, l) if and
only if i 6 k and j 6 l. If a, b ∈ N2 with a 6 b, then the set

[a, b] = {c ∈ N2 | a 6 c 6 b}

is an interval in N2. If a = (i, j) and b = (k, l) ∈ N2 have the property that j = l
(respectively i = k), then the interval [a, b] is called a horizontal (respectively vertical)
edge interval.

The interval

C = [a, a+ (1, 1)]

is called a cell in N2 with lower left corner a. The elements of C are called vertices of C
and we denote their set by V (C). The set of edges of C is

E(C) = {{a, a+ (0, 1)}, {a, a+ (1, 0)}, {a+ (0, 1), a+ (1, 1)}, {a+ (1, 0), a+ (1, 1)}}.

We consider A and B two cells in N2 with lower left corners (i, j) and (k, l). Then the
set

[A,B] = {E|E is a cell with lower left corner (r, s) such that i 6 r 6 k, j 6 s 6 l}
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A convex polyomino

Figure 1:

is called a cell interval. In the case that j = l (respectively i = k), the cell interval [A,B]
is called a horizontal (respectively vertical) cell interval.

Let P be a finite collection of cells of N2. The vertex set of P and the edge set of P
are

V (P) = ∪C∈PV (C) and E(P) = ∪C∈PE(C),

where C are the cells of P . Two cells A and B of P are connected, if there is a sequence
of cells of P given by A = A1, A2, . . . , An−1, An = B such that Ai ∩ Ai+1 is an edge of Ai
and Ai+1 for each i ∈ {1, . . . , n− 1}. Such a sequence is called a path connecting the cells
A and B.

Definition 1. A collection of cells P is called a polyomino if any two cells of P are
connected.

Definition 2. A polyomino P is called row (respectively column) convex, if for any two
cells A and B of P with left lower corners a = (i, j) and b = (k, j) (respectively a = (i, j)
and b = (i, l)), the horizontal (respectively vertical) cell interval [A,B] is contained in P .
If P is row and column convex, then P is called a convex polyomino.

In Figure 1 we have two examples of polyominoes: the one on the right is a convex
polyomino, while the other one is row convex but not column convex, hence it is not
convex.

Let P be a convex polyomino and [a, b] ⊂ N2 be the smallest interval which contains
V (P). After a shift of coordinates, we may assume that a = (1, 1) and b = (m,n) and
thus, we say that P is a convex polyomino on [m]× [n], where for a positive integer a, [a]
denotes the set {1, . . . , a}. For example, the right side polyomino in Figure 1 is a convex
polyomino on [4]× [4].
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Figure 2: The bipartite graph attached to a cell in N2

Fix a field K and a polynomial ring S = K[xij | (i, j) ∈ V (P)]. We consider the ideal
IP ⊂ S generated by all binomials xilxkj − xijxkl for which [(i, j), (k, l)] is an interval in
P . The K-algebra S/IP is denoted K[P ] and is called the coordinate ring of P . By [10,
Theorem 2.2], K[P ] is a normal Cohen-Macaulay domain.

Let P be a convex polyomino on [m] × [n]. The ring R = K[xiyj | (i, j) ∈ V (P)] ⊂
K[x1, . . . , xm, y1, . . . , yn] can be viewed as the edge ring of the bipartite graph GP with
vertex set V (GP) = X ∪ Y , where X = {x1, . . . , xm} and Y = {y1, . . . , yn} and edge
set E(GP) = {{xi, yj} | (i, j) ∈ V (P)}. In Figure 2, we displayed the bipartite graph
attached to a cell in N2. According to [10], K[P ] can be identified with K[GP ].

3 Gorenstein convex polyominoes

Let P be a convex polyomino on [m]× [n]. We set X = {x1, . . . , xm} and Y = {y1, . . . , yn}
and, if needed, we identify the point (xi, yj) in the plane with the vertex (i, j) ∈ V (P).

Let A and B be two cells in P . Recall that A and B are connected by a path if there is
a sequence of cells in P , A = A1, A2, . . . , Ar−1, Ar = B, with the property that Ai ∩ Ai+1

is an edge of Ai and Ai+1, for each i ∈ [r−1]. We denote by (xji , yki) the lower left corner
of Ai, for all i ∈ [r]. Every path in P may go in at most four directions which are given
below:

1. East if (xji+1
, yki+1

)− (xji , yki) = (1, 0) for some i ∈ [r];

2. West if (xji+1
, yki+1

)− (xji , yki) = (−1, 0) for some i ∈ [r];

3. South if (xji+1
, yki+1

)− (xji , yki) = (0,−1) for some i ∈ [r];

4. North if (xji+1
, yki+1

)− (xji , yki) = (0, 1) for some i ∈ [r].

We say that a path connecting two cells is monotone if it goes only in two directions.
A characterization of convex polyominoes in terms of paths is given by the following
Proposition from [2].

Proposition 3. [2, Proposition 1] A polyomino P is convex if and only if for every pair
of cells there exists a monotone path connecting them and contained in P.
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In the next proposition we show that the bipartite graph GP associated with P is
2-connected. Let us first recall the definition of 2-connectivity.

Definition 4. If G is a finite connected graph on the vertex set V , then given a subset
∅ 6= W ⊂ V , GW denotes the induced subgraph of G on W . We say that G is 2-connected
if G together with GV \{v} are connected for all v ∈ V .

Proposition 5. Let P be a convex polyomino on [m]× [n]. Then the bipartite graph GP
is 2-connected.

Proof. Firstly, we prove that the bipartite graph GP is connected. For that it is sufficient
to choose x, x′ ∈ {x1, . . . , xm} and to find a path between them in GP . Let x, x′, y, y′ ∈
V (GP) such that (x, y), (x′, y′) ∈ V (P). Without loss the generality, we may suppose that
(x, y − 1), (x′, y′ − 1) /∈ V (P). Since P is a convex polyomino, there exists a monotone
path Γ from a cell containing (x, y) to a cell containing (x′, y′), both as outside corners of
Γ. Let us consider the sequence γ of vertices of P belonging to the cells of Γ. Now, let

Aγ = {{xik , yjk} | (xik , yjk) ∈ γ is a lower outside or inside corner of the path Γ}.

We claim that Aγ is a path in GP containing x and x′. Clearly, {x, y} and {x′, y′}
belong to Aγ by definition of Γ. Since Γ is a monotone path, for every {xik , yjk} ∈
Aγ \{{x, y}, {x′y′}}, there exist exactly two other edges of the form {xik , yr} and {xs, yjk}
in Aγ, with r 6= jk and s 6= ik.

In order to complete the proof, we show that for any k ∈ [m], the graph GPV
is

connected, where V = V (GP) \ {xk}.
Let G = GPV

and x, x′, y, y′ ∈ V (G) such that (x, y), (x′, y′) ∈ V (P). In a similar way
as in the first part of the proof, we consider Γ to be a monotone path in P from a cell
containing (x, y) to a cell containing (x′, y′). Let

A = {{xil , yjl} | (xil , yjl) is a lower outside or inside corner of the path Γ}.

If for any {xil , yjl} ∈ A, we have xil 6= xk, then A is a path in G containing x and x′

by the argument used above.
If there is {xil , yjl} ∈ A such that il = k, then we have exactly two edges

{xil1 , yjl1}, {xil2 , yjl2} ∈ A

with il1 = il2 = k. Since P is a convex polyomino, (xk−1, yjl1 ), (xk−1, yjl2 ) ∈ V (P) or
(xk+1, yjl1 ), (xk+1, yjl2 ) ∈ V (P). Let

A′ = A \ {{xk, yjl1}, {xk, yjl2}}.

If (xk−1, yjl1 ), (xk−1, yjl2 ) ∈ V (P), then A′ ∪ {{xk−1, yjl1}, {xk−1, yjl2}} is a path in G
containing x and x′ else A′ ∪{{xk+1, yjl1}, {xk+1, yjl2}} is a path in G containing x and x′

by the argument used in the first part of the proof.
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For the characterisation of Gorenstein convex polyominoes we need the following the-
orem due to Ohsugi and Hibi ([8]).

Let G be a bipartite graph on the vertex set [m] ∪ [n] and let

S ′ = K[x1, . . . , xm, y1, . . . , yn]

be the polynomial ring. The edge ring of G is the toric ring

K[G] = K[xiyj | {i, j} ∈ E(G)] ⊂ S ′.

Let T ⊂ V (G). We recall that N(T ) = {y ∈ V (G) | {x, y} ∈ E(G) for some x ∈ T}
represents the set of the neighbors of the subset T .

Theorem 6. [8, Theorem 2.1] Let G be a bipartite graph on X ∪Y and suppose that G is
2-connected. Then the edge ring of G is Gorenstein if and only if x1 · · · xmy1 · · · yn ∈ K[G]
and one has |N(T )| = |T |+ 1 for every subset T ⊂ X such that GT∪N(T ) is connected and
that G(X∪Y )\(T∪N(T )) is a connected graph with at least one edge.

Note that x1 · · ·xmy1 · · · yn ∈ K[G] if and only if G possesses a perfect matching (i.e.
there is a set of edges E ⊂ E(G) with the property that no two of them have a common
vertex and ∪{x,y}∈E{x, y} = V (G)). A characterization of the bipartite graph which
possesses a perfect matching is given by Villarreal.

Theorem 7. [13, Theorem 7.1.9] A bipartite graph G with the vertex set V = X ∪ Y
possesses a perfect matching if and only if one has |N(T )| > |T | for every independent
subset of vertices T ⊂ V .

Recall that a subset of vertices of G is called independent if no two of them are
adjacent.

From now on, whenever we consider a convex polyomino P , we consider it endowed
with its associated bipartite graph GP on the vertex set V (GP) = X ∪ Y .

Corollary 8. Let P be a convex polyomino on [m]× [n]. Then x1 · · ·xmy1 · · · yn ∈ K[GP ]
if and only if |N(T )| > |T | for every T ⊂ X or T ⊂ Y .

Proof. If x1 · · · xmy1 · · · yn ∈ K[GP ], then by Theorem 7, we obtain |N(T )| > |T |, for
every independent subset of vertices T ⊂ X ∪ Y . Notice that all subsets T ⊂ X and
U ⊂ Y are independent.

Conversely, we suppose |N(T )| > |T | for every T ⊂ X or T ⊂ Y . Let

T = {xi1 , . . . , xir , yj1 , . . . , yjs} ⊂ X ∪ Y

be an independent set of vertices with r, s > 1. Then, by assumption,

|T | = r + s 6 |N({xi1 , . . . , xir})|+ |N({yj1 , . . . , yjs})|.

Since N({xi1 , . . . , xir}) ⊂ Y and N({yj1 , . . . , yjs}) ⊂ X, we have

|N({xi1 , . . . , xir})|+ |N({yj1 , . . . , yjs})| = |N({xi1 , . . . , xir}) ∪N({yj1 , . . . , yjs})|
= |N(T )|.

Thus, |T | 6 |N(T )| and according to Theorem 7, x1 · · ·xmy1 · · · yn ∈ K[GP ].
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Figure 3: Possible monotone paths
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Figure 4:

Remark 9. If a connected bipartite graph G on X∪Y has a perfect matching, then m = n.
Indeed, |X| 6 |N(X)| = |Y | and |Y | 6 |N(Y )| = |X|.

Definition 10. Let P be a convex polyomino on [m]× [n], V (GP) = X ∪ Y and T ⊂ X.
The set NY (T ) = {y ∈ Y | (x, y) ∈ V (P) for some x ∈ T} is called a neighbor vertical
interval if NY (T ) = {ya, ya+1, . . . , yb} with a < b and for every i ∈ {a, a + 1, . . . , b − 1}
there exists x ∈ T such that [(x, yi), (x, yi+1)] is an edge in P.

Remark 11. If the subset T = {x} ⊂ X has only one element, then NY (T ) is a neigh-
bor vertical interval. Indeed, let yi1 , yi2 ∈ NY (x) with i1 < i2. By Proposition 3,
there exists a monotone path between the cells containing (x, yi1) and (x, yi2) as cor-
ners. We display some of the monotone paths between two cells in Figure 3. Then we
have [(x, yi1), (x, yi2)] ⊂ P .

Example 12. In the polyomino of Figure 4, let T1 = {x1, x4} and T2 = {x1, x2}. Then
NY (T1) = {y1, y2, y3, y4} and NY (T2) = {y1, y2, y3, y4}.

We observe that GT1∪N(T1) is not connected, while GT2∪N(T2) is connected. Moreover,
we notice that NY (T1) and NY (T2) coincide as sets, but NY (T2) is a neighbor vertical
interval, while NY (T1) is not.
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Lemma 13. Let P be a convex polyomino. Then for each ∅ 6= T ( X, the following
conditions are equivalent:

1. NY (T ) is a neighbor vertical interval.

2. GT∪N(T ) := GPT∪N(T )
is a connected graph.

Proof. For (1)⇒(2), it is sufficient to choose x, z ∈ T and to find a path d between them in
GT∪N(T ). Without loss of generality, we may choose ys ∈ NY (x) and yt ∈ NY (z) with s < t.
Then by hypothesis, {ys, ys+1, . . . , yt} ⊂ NY (T ) and there exist xis , xis+1 , . . . , xit−1 ∈ T
such that [(xij , yj), (xij , yj+1)] is an edge in P , for j ∈ {s, s+ 1, . . . , t− 1}. Thus, we have

(x, ys), (xis , ys), (xis , ys+1), (xis+1 , ys+1), . . . , (xit−1 , yt−1), (xit−1 , yt)(z, yt) ∈ V (P).

So the path between x and z in GP is

γ = {{x, ys}, {ys, xis}, {xis , ys+1}, {ys+1, xis+1}, . . . , {xit−1 , yt}, {yt, z}}.

For (2)⇒(1), we consider NY (T ) = {yi1 , . . . , yis | i1 < i2 < · · · < is} and we prove
that for every j ∈ [s− 1], there exists xk ∈ T such that

[(xk, yij), (xk, yij+1
)]

is an edge in P . In particular, it also follows that ij+1 = ij + 1 for each j ∈ [s− 1], which
will end the proof.

Let j ∈ [s − 1]. Since GT∪N(T ) is a connected graph, there is a path between yij and
yij+1

in GT∪N(T ). In other words, there are xk1 , . . . , xkr−1 ∈ T and yl1 , . . . , ylr−2 ∈ NY (T )
such that

(xk1 , yij), (xk1 , yl1), (xk2 , yl1), (xk2 , yl2), . . . , (xkr−1 , ylr−2), (xkr−1 , yij+1
) ∈ V (P).

Since there is no yl ∈ NY (T ) between yij and yij+1
, the only cases that can occur are:

1. there exists a ∈ [r − 2] such that la < ij < ij+1 < la+1;

2. for every a ∈ [r − 2], la < ij < ij+1;

3. for every a ∈ [r − 2], ij < ij+1 < la.

If we have a ∈ [r − 2] such that la < ij < ij+1 < la+1, then

[(xka+1 , yij), (xka+1 , yij+1
)]

is an edge interval in P because (xka+1 , yla), (xka+1 , yla+1) ∈ V (P) and NY (xka+1) is a
neighbor vertical interval by Remark 11. Moreover, yij , yij+1, . . . , yij+1

∈ NY (xka+1) ⊂
NY (T ). Thus, ij+1 = ij + 1 and [(xka+1 , yij), (xka+1 , yij+1

)] is an edge in P .
If for all a ∈ [r − 2], la < ij < ij+1, then

[(xkr−1 , yij), (xkr−1 , yij+1
)]
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Figure 5: Possible monotone paths

is an edge interval in P , since (xkr−1 , ylr−2), (xkr−1 , yij+1
) ∈ V (P) and NY (xkr−1) is a

neighbor vertical interval. So yij , yij+1, . . . , yij+1
∈ NY (xkr−1) ⊂ NY (T ) and

[(xkr−1 , yij), (xkr−1 , yij+1
)]

is an edge in P . We proceed in a similar way in the case that for all a ∈ [r − 2] we have
ij < ij+1 < la.

Definition 14. Let P be a convex polyomino on [m]× [n], V (GP) = X ∪ Y and U ⊂ Y .
The set NX(U) = {x ∈ X | (x, y) ∈ V (P) for some y ∈ U} is called a neighbor horizontal
interval if NX(U) = {xa, xa+1, . . . , xb} with a < b and for every i ∈ {a, a + 1, . . . , b − 1}
there exists y ∈ U such that [(xi, y), (xi+1, y)] is an edge in P.

Remark 15. If the subset U = {y} ⊂ Y , has only one element, then NX(U) is a neighbor
horizontal interval. Indeed, we consider xi1 , xi2 ∈ NX(U) with i1 < i2. Since P is a
convex polyomino, by Proposition 3, there is a monotone path between the cells containing
(xi1 , y) and (xi2 , y) as corners. We display some of the monotone paths between two cells
in Figure 5. Then we have [(xi1 , y), (xi2 , y)] ⊂ P .

Example 16. In the polyomino of Figure 6, let U1 = {y2, y3} and U2 = {y1, y5}.
We observe that NX(U1) = {x1, x2, x3, x4, x5} is a neighbor horizontal interval, while
NX(U2) = {x1, x2, x3, x4} is not.

Lemma 17. If P is a convex polyomino, then for each ∅ 6= T ⊂ X,

NY (x) * NY (T ) for every x ∈ X \ T

if and only if

NX(Y \NY (T )) = X \ T.

Proof. First assume that for every ∅ 6= T ⊂ X, NY (x) * NY (T ) for every x ∈ X \ T . Let
x ∈ NX(Y \NY (T )). Then there exists y ∈ Y \NY (T ) such that (x, y) ∈ V (P). If x ∈ T ,
then y ∈ NY (x) ⊂ NY (T ). Thus, x ∈ X \ T and NX(Y \NY (T )) ⊂ X \ T .
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If x ∈ X \ T , then by hypothesis, we obtain NY (x) * NY (T ). So there exists y ∈
NY (x)\NY (T ). Hence, y ∈ Y \NY (T ) and x ∈ NX(y) ⊂ NX(Y \NY (T )). In other words,
X \ T ⊂ NX(Y \NY (T )).

Conversely, let x ∈ X \ T . Since NX(Y \ NY (T )) = X \ T , we have that x ∈
NX(Y \ NY (T )) and there exists y ∈ Y \ NY (T ) such that (x, y) ∈ V (P). This is
equivalent to say that y ∈ NY (x) \NY (T ) and NY (x) * NY (T ).

Example 18. In Figure 6, let T = {x4, x5}. We observe that NX(Y \ NY (T )) =
NX({y4, y5}) = {x1, x2} 6= {x1, x2, x3} = X \ T . On the other hand, x3 /∈ T and
NY (x3) = NY (T ).

Lemma 19. Let P be a convex polyomino. Then for each ∅ 6= T ( X, the following
conditions are equivalent:

1. NX(Y \NY (T )) = X \ T is a neighbor horizontal interval.

2. G(X∪Y )\(T∪NY (T )) := GP(X∪Y )\(T∪NY (T ))
is a connected graph with at least one edge.

Proof. Let T be a subset in X which satisfies the conditions given in (1). By Lemma 17
and the fact that T ( X, there is x ∈ X \ T with NY (x) * NY (T ). In other words, there
are x ∈ X \ T and y ∈ Y \ NY (T ) such that (x, y) ∈ V (P). This is equivalent to saying
that {x, y} is an edge in G(X∪Y )\(T∪NY (T )).

For the connectivity of the graph G(X∪Y )\(T∪NY (T )), it is sufficient to choose y, z ∈
Y \ NY (T ) and to find a path between them in G(X∪Y )\(T∪NY (T )). Without loss of gen-
erality, we consider xs ∈ NX(y) and xt ∈ NX(z) with s < t. Since NX(Y \ NY (T ))
is a neighbor horizontal interval, {xs, xs+1, . . . , xt} ⊂ NX(Y \ NY (T )) and there exist
yis , yis+1 , . . . , yit−1 ∈ Y \ NY (T ) such that [(xj, yij), (xj+1, yij)] is an edge in P , for each
j ∈ {s, s+ 1, . . . , t− 1}. It follows that

(xs, y), (xs, yis), (xs+1, yis), (xs+1, yis+1), . . . , (xt−1, yit−1), (xt, yit−1), (xt, z) ∈ V (P).
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Figure 7: G(X∪Y )\(T1∪NY (T1))

In other words, the path between y and z is

γ = {{y, xs}, {xs, yis}, {yis , xs+1}, {xs+1, yis+1}, . . . , {yit−1 , xt}, {xt, z}}.

Conversely, we suppose that X \ T 6= NX(Y \ NY (T )). By Lemma 17, there is x ∈
X \ T with the property that NY (x) ⊂ NY (T ). So x represents an isolated vertex in
G(X∪Y )\(T∪NY (T )).

Now, we consider NX(Y \ NY (T )) = {xi1 , . . . , xis | i1 < · · · < is} and we prove that
for every j ∈ [s− 1] there exists yk ∈ Y \NY (T ) such that [(xij , yk), (xij+1

, yk)] is an edge
in P .

Let j ∈ [s− 1]. Since G(X∪Y )\(T∪NY (T )) is a connected graph, there is a path between
xij and xij+1

in G(X∪Y )\(T∪NY (T )). Thus, there exist xl1 , . . . , xlr−2 ∈ NX(Y \ NY (T )) and
yk1 , . . . , ykr−1 ∈ Y \NY (T ) such that

(xij , yk1), (xl1 , yk1), (xl1 , yk2), . . . , (xlr−2 , ykr−1), (xij+1
, ykr−1) ∈ V (P).

The claim follows using the same argument of the proof of Lemma 13 (swapping the
xi’s with the yi’s and replacing T with Y \NY (T )).

Example 20. In Figure 6, let T1 = {x5} and T2 = {x1, x2, x3}. We observe that
G(X∪Y )\(T1∪NY (T1)) is not connected because NX(Y \ NY (T1)) = X \ T1 is not a neigh-
bor horizontal interval (Figure 7). The graph G(X∪Y )\(T2∪NY (T2)) is represented by the two
isolated vertices x4 and x5.

Let P be a convex polyomino. Since the coordinate ring of P can be viewed as an edge
ring of a bipartite graph, by applying Theorem 6, Corollary 8, Lemma 13 and Lemma 19,
we get the following result.

Theorem 21. Let P be a convex polyomino on [m]× [n].
Then K[P ] is Gorenstein if and only if the following conditions are fulfilled:

1. |U | 6 |NX(U)| for every U ⊂ Y and |T | 6 |NY (T )| for every T ⊂ X;

2. For every ∅ 6= T ( X with the properties

(a) NY (T ) is a neighbor vertical interval,

(b) NX(Y \NY (T )) = X \ T is a neighbor horizontal interval,
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Figure 8:

one has |NY (T )| = |T |+ 1.

Examples 22. Let P1 be the polyomino of Figure 8.

1. Let T = {x4, x5, x6}. T satisfies properties (a), (b). Since |NY (T )| = 3 6= 4 = |T |+1,
P1 is not a Gorenstein polyomino.

2. For T = {x1, x4, x5, x6}, only the property (b) is fulfiled.

3. For T = {x4}, we have property (a) and NX(Y \ NY (T )) is a neighbor horizontal
interval, but X \ T 6= NX(Y \NY (T )).

4. For T = {x6}, we have property (a), but NX(Y \NY (T )) = X \ T is not a neighbor
horizontal interval.

The polyomino P2 of Figure 9 is Gorenstein, because x1y1 · x2y2 · x3y4 · x4y3 ∈ K[P2]
and for each T which satisfies the properties (a), (b), one has |NY (T )| = |T | + 1. In this
case, we need to check the conditions of the Theorem 21 only for two sets:

1. T = {x4} with NY (T ) = {y2, y3};

2. T = {x1, x4} with NY (T ) = {y1, y2, y3}.

Definition 23. Let P be a convex polyomino. A vertex a ∈ V (P) is called an interior
vertex of P , if a is a vertex of four distinct cells of P . We denote by int(P) the set of all
interior vertices of P . The set ∂P = V (P) \ int(P) is called the boundary of P . We say
that the vertex a ∈ ∂P is an inside (outside) corner of P if it belongs to exactly three
(one) different cells of P . (Figure 10)

Let P be a convex polyomino on [m]×[n]. Then P is called two-sided ladder (Figure 11)
if for every (i, j), (k, l) ∈ V (P) with i 6 k, j 6 l, we have (i, l), (k, j) ∈ V (P).

As a consequence of Theorem 21, we may recover the characterisation of Gorenstein
two-sided ladder polyominoes obtained by Conca in [4, Theorem 5.2].
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Figure 9:

Figure 10: Inside corners

Figure 11: Two-sided ladder polyominoes
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Corollary 24. Let P be a two-sided ladder polyomino on [m]× [n]. Then K[P ] is Goren-
stein if and only if m = n and the inside corners of P lie on the diagonal {(xi, yj) ∈
V (P)|i+ j = n+ 1}.
Proof. Let P be a two-sided ladder polyomino on [m]× [n] such that K[P ] is Gorenstein.
By the first condition of Theorem 21 and Remark 9, we obtain m = n.

Let (xr, yt) ∈ V (P) be an inside corner of P . If (xr, yt) is a lower inside corner, then
we consider T = {xr+1, xr+2, . . . , xn}. Since P is a two-sided ladder polyomino, NY (T ) =
{y1, y2, . . . , yt} and 1 < r, t < n, T satisfies the second condition of Theorem 21. Thus,
we obtain r+ t = n−|T |+ |NY (T )| = n+ 1 and (xr, yt) ∈ {(xi, yj) ∈ V (P)|i+ j = n+ 1}.
In the case that (xr, yt) ∈ V (P) is an upper inside corner of P , we proceed in a similar
way.

Conversely, we suppose that m = n and the inside corners of P belong to the set
{(xi, yj) ∈ V (P)|i + j = n + 1}. According to Corollary 8, for the proof of the first
condition of Theorem 21, it is sufficient to show that (xi, yn+1−i) ∈ V (P) for every i ∈ [n].
Indeed, if (xi, yn+1−i) ∈ V (P) for every i ∈ [n], we obtain x1 · · ·xny1 · · · yn ∈ K[P ].

Let i ∈ [n] and set r = max{j ∈ [n]|yj ∈ NY (xi)} and s = min{j ∈ [n]|yj ∈ NY (xi)}.
If 1 < s < r < n, then (xj, yr) and (xl, ys) are inside corners of P for some j ∈ {1, 2, . . . , i−
1, i} and some l ∈ {i, i + 1, i + 2, . . . , n}. By hypothesis, r = n + 1 − j > n + 1 − i and
s = n+1−l 6 n+1−i. In other words, 1 < s 6 n+1−i 6 r < n and (xi, yn+1−i) ∈ V (P).
If s = 1, then (xk, yr) is either an inside corner of P or a top left corner of P (i.e., (x1, yn))
for some k ∈ {1, 2, . . . , i−1, i}. Thus, r = n+1−k > n+1− i > 1 = s and (xi, yn+1−i) ∈
V (P). In the case that r = n, (xk, ys) is an inside corner of P or a bottom right corner of
P (i.e., (xn, y1)) for some k ∈ {i, i+ 1, . . . , n}. Hence, s = n+ 1− k 6 n+ 1− i 6 n = r
and (xi, yn+1−i) ∈ V (P).

Let ∅ 6= T ( X such that NY (T ) is a neighbor vertical interval and NX(Y \NY (T )) =
X \ T is a neighbor horizontal interval. Notice that NY (T ) = {yl, . . . , yn}, where l =
min{j ∈ [n] | yj ∈ NY (T )}: in fact, if NY (Y ) = {yl, . . . , yk} for some k < n, then
NX(Y \ NY (T )) is not a neighbor horizontal interval. Moreover, l = min{j ∈ [n] | yj ∈
NY (T )} > 1 because if l = 1, then NY (T ) = Y and NX(Y \ NY (T )) = ∅ 6= X \ T .
Since P is a two-sided ladder polyomino, T = {x1, x2, . . . , xp} for some p < n or T =
{xt, xt+1, . . . , xn} for some t > 1. Let p ∈ [n−1] and T = {x1, x2, . . . , xp}. Then (xp+1, xl)
is an inside corner of P , where l = min{j ∈ [n]|yj ∈ NY (xp)} > 1. Indeed, if (xp+1, xl) is
not an inside corner of P , then l = min{j ∈ [n]|yj ∈ NY (xp+1)} and NY (xp+1) ⊆ NY (T ).
By Lemma 17, we obtain NX(Y \NY (T )) 6= X \ T . Thus, (xp+1, xl) is an inside corner of
P and |NY (T )| = |{yl, yl+1, . . . , yn}| = n + 1 − l = p + 1 = |T | + 1. Similarly, we obtain
|NY (T )| = |T | + 1 in the case that T = {xt, xt+1, . . . , xn} for some t > 1. Hence, the
second condition of Theorem 21 is fulfilled and K[P ] is Gorenstein.

4 Gorenstein stack polyominoes

In this section we simplify the characterization of Theorem 21 for the subclass of stack
polyominoes, recovering a result of Qureshi [10, Corollary 4.12]. Stack polyominoes have
the nice property that NY (T ) is a neighbor vertical interval for all ∅ 6= T ⊂ X.
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Figure 12: Stack polyominoes

We consider P to be a polyomino and we may assume that [(1, 1), (m,n)] is the smallest
interval containing V (P). Then P is called a stack polyomino (Figure 12), if it is a convex
polyomino and for i ∈ [m− 1], the cell [(i, 1), (i+ 1, 2)] belongs to P .

Remark 25. If P is a stack polyomino, then for every x ∈ X we have {y1, y2} ⊂ NY (x).
Moreover, there exists x ∈ X such that NY (x) = Y .

Let T 6= ∅ be a subset of X and yj ∈ NY (T ) \ {y1, y2}. Hence, there exists xk ∈ T
such that yj ∈ NY (xk). Since NY (xk) is a neighbor vertical interval,

{y1, y2, . . . , yj−1, yj} ⊂ NY (xk) ⊂ NY (T ).

In other words, NY (T ) = {y1, y2, . . . , ys} is a neighbor vertical interval for all ∅ 6= T ( X,
where s = max{i ∈ [n] | (xk, yi) ∈ V (P) for some xk ∈ T}.

Lemma 26. Let P be a stack polyomino on [n] × [n]. If x1 · · · xny1 · · · yn /∈ K[P ], then
there is a subset T ⊂ X, with |T | > |NY (T )|, for which the following conditions hold:

1. Y \NY (T ) 6= ∅ and

2. for every x ∈ X \ T , max{j ∈ [n] | yj ∈ NY (x)} > max{j ∈ [n] | yj ∈ NY (T )}.

Proof. We suppose that x1 · · ·xny1 · · · yn /∈ K[P ]. By Corollary 8, we find I ⊂ X with
|I| > |NY (I)| or J ⊂ Y with |J | > |NX(J)|.

In the case that I ⊂ X and |I| > |NY (I)|, we consider

T = I ∪ {x ∈ X | NY (x) ⊂ NY (I)}.

We check conditions (1) and (2) for the set T . Since P is a stack polyomino, NY (T ) =
{y1, y2, . . . , ys} for some s 6 n. If NY (T ) = Y , then |NY (T )| = |Y | = n > |I|. Hence,
Y \NY (T ) 6= ∅. Let x ∈ X\T . It follows that NY (x) * NY (I) = NY (T ) and |T | > NY (T ).
Thus, there is l > s such that yl ∈ NY (x) \NY (T ) and condition (2) holds.

If there exists J ⊂ Y with |J | > |NX(J)|, then we set

T = X \NX(J).

We check conditions (1) and (2) for the set T . For the proof of the first condition, it
is sufficient to show that J ⊂ Y \ NY (T ). Let y ∈ J . If y ∈ NY (T ), then there is x ∈
T∩NX(y). Since y ∈ J , we get x ∈ NX(y) ⊂ NX(J) = X\T . Thus, ∅ 6= J ⊂ Y \NY (T ). It
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follows that |T | = |X|− |NX(J)| > |X|− |J | = |Y |− |J | > |NY (T )|, where |X| = |Y | = n.
Moreover, X \ T = NX(J) ⊂ NX(Y \ NY (T )). For each y ∈ Y \ NY (T ), we have
NX(y)∩T = ∅. Consequently, NX(y) ⊂ X \T and NX(Y \NY (T )) = ∪y∈Y \NY (T )NX(y) ⊂
X \T . Hence, we proved X \T = NX(Y \NY (T )). By Lemma 17 and the previous remark
for any x ∈ X \ T , NY (x) * N(T ) and we have the second condition.

As a consequence of Theorem 21, we may recover the characterisation of Gorenstein
stack polyominoes obtained by Qureshi in [10, Corollary 4.12].

Corollary 27. Let P be a stack polyomino on [m] × [n]. The following conditions are
equivalent:

1. K[P ] is Gorenstein;

2. m = n and for every T ⊂ X with the properties that Y \NY (T ) 6= ∅ and for every
x ∈ X \ T , max{j ∈ [n] | yj ∈ NY (x)} > max{j ∈ [n] | yj ∈ NY (T )}, one has
|NY (T )| = |T |+ 1.

Proof. For (1)⇒(2), let T 6= ∅ be a subset of X such that Y \NY (T ) 6= ∅ and max{j ∈
[n] | yj ∈ NY (x)} > max{j ∈ [n] | yj ∈ NY (T )}, for every x ∈ X \ T . By Remark 25,
NY (T ) is a neighbor vertical interval.

By Lemma 17, we have X \ T = NX(Y \ NY (T )), since NY (T ) = {y1, y2, . . . , ys}
and NY (x) = {y1, y2, . . . , yt} with t > s, for every x ∈ X \ T . Moreover Y \ NY (T ) =
{ys+1, ys+2, . . . , yn} 6= ∅ and ys+1 ∈ NY (x), ∀ x ∈ X\T . Hence, NX(Y \NY (T )) = X\T =
NX(ys+1) and this is a neighbor horizontal interval by Remark 15. By using Theorem 21
and Corollary 8, |NY (T )| = |T | + 1 and x1 · · ·xmy1 · · · yn ∈ K[P ]. Thus, we also obtain
m = n by Remark 9.

For (2)⇒(1), we suppose that m = n and x1 · · ·xmy1 · · · yn /∈ K[P ].
By Lemma 26, there exists ∅ 6= T ( X such that |T | > |NY (T )|, Y \NY (T ) 6= ∅ and

max{j ∈ [n] | yj ∈ NY (x)} > max{j ∈ [n] | yj ∈ NY (T )}, for every x ∈ X \ T , which
contradicts the assumption that |NY (T )| = |T | + 1. Thus, x1 · · ·xny1 · · · yn ∈ K[P ] and
we obtain the first condition of Theorem 21 by applying Corollary 8.

Let ∅ 6= T ( X such that NY (T ) is a neighbor vertical interval and NX(Y \NY (T )) =
X \ T is a neighbor horizontal interval. Since T ( X, there exists x ∈ X \ T with
NY (x) * NY (T ), by Lemma 17. It follows that we find y ∈ NY (x) \NY (T ) ⊂ Y \NY (T ).
In other words, Y \NY (T ) 6= ∅.

If x ∈ X \ T , then max{j ∈ [n] | yj ∈ NY (x)} > max{j ∈ [n] | yj ∈ NY (T )} by
Lemma 17 and Remark 25. It implies that |NY (T )| = |T | + 1 and the second condition
of Theorem 21 is fulfilled. Hence, K[P ] is Gorenstein.

We may reformulate Corollary 27 as follows.

Corollary 28. Let P be a convex stack polyomino and [(1, 1), (m,n)] the smallest interval
which contains V (P). Then K[P ] is Gorenstein if and only if m = n and for each inside
corner of P, cutting all the cells of P which lie below the horizontal edge interval containing
the corner, the smallest interval which contains the remaining polyomino is a square.
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Figure 13:

Proof. Let K[P ] be Gorenstein and (xr, yt) be an inside corner of P . Set T = {x ∈ X |
max{j ∈ [n] | yj ∈ NY (x)} 6 t}. Then

max{j ∈ [n] | yj ∈ NY (T )} = t < n.

For x ∈ X \ T we have that max{j ∈ [n] | yj ∈ NY (x)} > t. By Corollary 27, it follows
that |NY (T )| = |T | + 1. Thus, |T | = t − 1. In other words, n − t + 1 = n − |T | and the
minimal rectangle we are interested in is a square.

Conversely, we suppose that T ⊂ X is a set with the properties that Y \ NY (T ) 6= ∅
and for every x ∈ X \ T ,

max{j ∈ [n] | yj ∈ NY (x)} > max{j ∈ [n] | yj ∈ NY (T )}.

Let r = max{j ∈ [n] | yj ∈ NY (T )} < n.
Since P is a column convex polyomino, yr is the y-coordinate of an inside corner. Then

by assumption, |X \T | = n−r+1. Hence, n−|T | = n−r+1 and |T |+1 = r = |NY (T )|.
By Corollary 27, K[P ] is Gorenstein.

Notice that Corollaries 27 and 28 extend the classification of Gorenstein one-sided
ladder polyominoes given in [3, Theorem 4.9(c)].

Examples 29. By Corollary 28, the first polyomino of Figure 13 is Gorenstein, while the
second is not.

5 The regularity of K[P]

Let P be a convex polyomino on [m]×[n]. Recall that the coordinate ring of P is a finitely
generated module over the polynomial ring S = K[xij | (i, j) ∈ V (P)]. The Castelnuovo-
Mumford regularity of K[P ], denoted reg(K[P ]), is defined to be the largest integer r such
that, for every i, the ith syzygy of K[P ] is generated in degree at most r + i.

We consider HK[P](t) to be the Hilbert series of K[P ]. Then

HK[P](t) =
Q(t)

(1− t)d
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where Q(t) ∈ Z[t] and where d is the Krull dimension of K[P ]. According to [10, Theorem
2.2], d = dim(K[P ]) = m+ n− 1.

Since K[P ] is a Cohen-Macaulay ring, we have

reg(K[P ]) = deg(Q(t)) = dim(K[P ]) + a(K[P ]), (1)

where the a-invariant a(K[P ]) of K[P ] is defined as the degree of the Hilbert series of
K[P ], that is a(K[P ]) = deg(Q(t)) − d. For the proof, we refer, for example, to [12,
Corollary B.4.1].

Let GP be the bipartite graph attached to P on the vertex set X ∪ Y . In this section,
we consider GP as a digraph with all its arrows leaving the vertex set Y . Hence, we denote
the directed edges by (z, w), where z ∈ Y and w ∈ X. Following [11], we introduce the
following notion.

Definition 30. If T ⊂ X ∪ Y , then

δ+(T ) = {e = (z, w) ∈ E(GP) | z ∈ T and w /∈ T}

is the set of edges leaving the vertex set T and

δ−(T ) = {e = (z, w) ∈ E(GP) | z /∈ T and w ∈ T}

is the set of edges entering the vertex set T .
The set δ+(T ) is called a directed cut of the digraph GP if ∅ 6= T ( X ∪ Y and

δ−(T ) = ∅.

Example 31. In the digraph of Figure 14, let T1 = {x3, y2, y3} and T2 = {x3, y1, y2}.
Then we notice that

∅ 6= δ+(T1) = {(y2, x1), (y2, x2), (y3, x1), (y3, x2)} and δ−(T1) = {(y1, x3)} 6= ∅,

while

∅ 6= δ+(T2) = {(y1, x1), (y1, x2), (y2, x1), (y2, x2)} and δ−(T2) = ∅.

Thus, δ+(T2) is a directed cut, while δ+(T1) is not.

Remark 32. Since K[P ] ∼= K[GP ], we consider

δ+(T ) = {(x, y) ∈ V (P) | x /∈ T and y ∈ T}

and

δ−(T ) = {(x, y) ∈ V (P) | x ∈ T and y /∈ T}

for all T ⊂ X ∪ Y . If T ⊆ X, then δ+(T ) = ∅. If T ⊆ Y , then δ−(T ) = ∅ and δ+(T ) is a
directed cut of GP .
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Figure 14: A convex polyomino and its associated digraph

Lemma 33. Let ∅ 6= T ( X ∪ Y . Then δ+(T ) is a directed cut of the digraph GP if and
only if T = A ∪B with A ⊂ X, B ⊂ Y and NY (A) ⊂ B.

Proof. Let T 6= ∅ be a proper subset in X ∪Y . Then T = A∪B with A ⊂ X and B ⊂ Y .
By Definition 30 and Remark 32,

δ+(T ) = {(x, y) ∈ V (P) | x /∈ A and y ∈ B}

is a directed cut of GP if and only if

δ−(T ) = {(x, y) | x ∈ A and y /∈ B} = ∅.

Suppose that NY (A) * B. Then there exist x ∈ A and y ∈ Y \B such that (x, y) ∈ V (P).
In other words, (x, y) ∈ δ−(T ) 6= ∅.

Conversely, suppose that δ−(T ) 6= ∅. Then we find x ∈ A and y ∈ Y \ B such that
(x, y) ∈ V (P). This is equivalent to saying that y ∈ NY (x) \ B ⊂ NY (A) \ B and hence,
NY (A) * B.

In [11], Valencia and Villarreal show that for any connected bipartite graph G, the
a-invariant, a(K[G]) can be interpreted in combinatorial terms as follows.

Proposition 34. [11, Proposition 4.2] Let G be a connected bipartite graph with V (G) =
X ∪ Y . If G is a digraph with all its arrows leaving the vertex set Y , then

−a(K[G]) = the maximum number of disjoint directed cuts of G.

Example 35. In the digraph of Figure 14, −a(K[GP ]) = 4 and a set of disjoint directed
cuts is {δ+({y1}), δ+({y2}), δ+({y3}), δ+({y4})}.

Remark 36. Let P be a convex polyomino on [m]× [n]. Then

δ+({yi}) = {(x, yi) ∈ V (P) | x ∈ NX(yi)} = NX(yi)× {yi} for i = 1, . . . , n

are disjoint directed cuts and also,

δ+({x1, x2, . . . , x̂i, . . . , xm−1, xm, y1, y2, . . . , yn}) = {(xi, y) ∈ V (P) | y ∈ NY (xi)}
= {xi} ×NY (xi) for i = 1, . . . ,m

are disjoint directed cuts, where x̂i means that we skip xi.
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Figure 15:

Proposition 37. Let P be a convex polyomino on [m]× [n]. Then

−a(K[P ]) > max{m,n}.

In particular,

reg(K[P ]) 6 min{m,n} − 1.

Proof. Since K[P ] ∼= K[GP ], we have

−a(K[P ]) = the maximum number of disjoint directed cuts of GP .

By Proposition 34 and Remark 36, it follows that −a(K[P ]) > max{m,n}. The inequality
for the regularity follows by (1).

Example 38. Let P be the stack polyomino of Figure 15. Then reg(K[P ]) = min{6, 4}−
1 = 3.

In general it is difficult to compute the regularity of K[P ]. Even in the case of stack
polyominoes, we have not found a lower bound for the regularity of K[P ].

Example 39. Let P be the stack polyomino of Figure 16. Then reg(K[P ]) = 2 <
min{m,n} − 1.

6 The multiplicity of K[P]

Let P be a stack polyomino on [m] × [n]. The multiplicity of K[P ], denoted e(K[P ]), is
given by Q(1), where Q(t) is the numerator of the Hilbert series of K[P ].

For every i ∈ [m], we define the height of i as

height(i) = max{j ∈ [n] | (i, j) ∈ V (P)}.

Following the proof of [9, Theorem], we give a total order on the variables xij, with
(i, j) ∈ V (P), as follows:

xij > xkl if and only if (2)

(height(i) > height(k)) or (height(i) = height(k) and i > k) or (i = k and j > l).

the electronic journal of combinatorics 28(1) (2021), #P1.45 20



m

n

Figure 16:

Let < be the reverse lexicographical order induced by this order of variables. As we have
already seen in the previous sections, the ideal IP can be viewed as the toric ideal of the
edge ring K[GP ], where GP is the bipartite graph associated to P . As it follows from the
proof of [9, Theorem], the reduced Gröbner basis of IP with respect to < consists of all
2-inner minors of P . In what follows, whenever we consider the Gröbner basis of IP , we
assume that the variables xij, with (i, j) ∈ V (P) are totally ordered as in (2).

We notice that in<(IP) is a squarefree monomial ideal. Thus, we may view in<(IP) as
the Stanley-Reisner ideal of a simplicial complex ∆P on the vertex set V (P). It is known
that ∆P is a pure shellable simplicial complex by [13, Theorem 9.6.1] and [7, Theorem
9.5.10].

Let f = (f0, f1, · · · , fd−1) be the f -vector of ∆P , where d = dim(K[P ]) = m+ n− 1.
We have

HK[P](t) = HS/ in<(IP )(t) = HK[∆P ](t).

By [1, Corollary 5.1.9],

e(K[P ]) = fd−1 = |F(∆P)|,

that is, e(K[P ]) is equal to the number of facets of ∆P .

Example 40. Let P be the polyomino of Figure 17. We order the variables as follows
x23 > x22 > x21 > x13 > x12 > x11 > x32 > x31. Then with respect to the reverse
lexicographical order induced by this order of variables, we have

in<(IP) = (x11x32, x21x32, x21x12, x21x13, x22x13) and

∆P = 〈F1 = {(1, 1), (2, 1), (2, 2), (2, 3), (3, 1)};
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Figure 17:

F2 = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1)};F3 = {(1, 1), (1, 2), (1, 3), (2, 3), (3, 1)};

F4 = {(1, 2), (2, 2), (2, 3), (3, 1), (3, 2)};F5 = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 2)}〉.

Let ∆ be a simplicial complex on the vertex set V and v ∈ V . Recall that the link of
v in ∆ is the simplicial complex

lk(v) = {F ∈ ∆ | v /∈ F and F ∪ {v} ∈ ∆}

and the deletion of v is the simplicial complex

del(v) = {F ∈ ∆ | v /∈ F}.

Let xij be the smallest variable in S with respect to < and fix v = (i, height(i)) ∈
V (P). If i = 1, then we denote by P1 the polyomino obtained from P by deleting
the only cell which contains the vertex v. Otherwise, P1 is given by deleting the only
cell which contains the vertex (m, height(m)); see Figure 18. Notice that in both cases
dim(∆P1) = d− 1 = m+ n− 2.

Remark 41. Since xi1 is the smallest variable with respect to <, we have (i, 1) ∈ F for
every F ∈ ∆P . Indeed, xi1 is regular on S/ in<(IP), thus it does not belong to any of the
minimal primes of in<(IP) which implies that xi1 belongs to all the facets of ∆P .

In what follows we will sometimes confuse the point (i, j) of P with the vertex xij of
∆P .

Lemma 42. With respect to the above notation, |F(∆P1)| = |F(del(v))|.

Proof. Let xij be the smallest variable in S with respect to < and set

v = (i, height(i)) ∈ V (P).

First, let us consider height(i) > 3. If F ∈ F(del(v)), then applying Algorithm 1, we
obtain a facet F ′ ∈ F(∆P1).

Indeed, if F ∈ F(del(v)) and i 6= 1, then v /∈ F and |F | = m + n − 1. Notice that,
by applying the first “For” loop in Algorithm 1, we obtain F ′ with (m, height(m)) /∈ F ′,
and we never add this vertex again; hence F ′ ⊂ V (P1). Since F ′ is obtained from F by
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a circular permutation of the vertices of F which have the x-coordinate greater than or
equal to i, we get |F | = |F ′| = m+ n− 1 = dim ∆P1 + 1.

For example, in the polyomino P of Figure 19, v = (3, 3). In this case, i = 3 and
m = 6. We illustrate all the “For” loops of Algortihm 1 in Figure 19 for the facet

F = {(1, 3), (1, 4), (2, 4), (3, 1), (3, 2), (4, 2), (4, 3), (5, 3), (6, 3)} ∈ del(v).

Following Algorithm 1,

F ′ = {(1, 3), (1, 4), (2, 4), (3, 2), (3, 3), (4, 3), (5, 3), (6, 1), (6, 2)}.

We depict the points that are in F ′ by black dots, the points removed from F ′ by crosses
and the points added to F ′ by empty dots.

Now, we observe that even if the order of the variables for P1 is not induced by the
order of the variables of P , the generators of in<(IP1) are also generators of in<(IP), since
the 2-inner minors of P1 are also 2-inner minors of P . Therefore, we may conclude that
F ′ ∈ ∆P1 and so F ′ ∈ F(∆P1).

In the case that i = 1, we notice that F = F ′ and F(∆P1) = F(del(v)). In fact, if
F ∈ F(∆P1), then v /∈ F and |F | = m+n−1. Since F ∈ del(v) and dim ∆P = m+n−2,
it follows that F ∈ F(del(v)). If F ∈ F(del(v)), then F ∈ ∆P1 . Since dimK[∆P1 ] =
m+ n− 1, it follows that F ∈ F(∆P1).

Therefore, we have shown that every facet F of del(v) determines uniquely a facet F ′

of ∆P1 , if height(i) > 3.
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Algorithm 1

1: F ′ := F ;
2: h := height(i);
3: if i 6= 1 then
4: for k = 1 to h do
5: if (m, k) ∈ F then
6: F ′ := F ′ \ {(m, k)};
7: end if
8: if (i, k) ∈ F then
9: F ′ := (F ′ \ {(i, k)}) ∪ {(m, k)};

10: end if
11: end for
12: for j = i+ 1 to m− 1 do
13: for k = 1 to h do
14: if (j, k) ∈ F then
15: F ′ := (F ′ \ {(j, k)}) ∪ {(j − 1, k)};
16: end if
17: end for
18: end for
19: for k = 1 to h do
20: if (m, k) ∈ F then
21: F ′ := F ′ ∪ {(m− 1, k)};
22: end if
23: end for
24: end if
25: return F ′

Conversely, let F ′ be a facet of ∆P1 . Following the steps of Algorithm 1 in reverse
order, we obtain a facet F of del(v). Algorithm 2 gives explicitly all the steps to get F
from F ′.

We thus get |F(∆P1)| = |F(del(v))| if height(i) > 3. Moreover, we have equality
between the sets F(∆P1) and F(del(v)) if and only if i = 1 and height(i) > 3.

In order to complete the proof, let us point out that the same two algorithms work
for height(i) = 2. In fact, for i > 1 (respectively i = 1), F is a facet of del(v) if and only
if F ′ is a facet of the cone (m, 1) ∗∆P1 (respectively (1, 1) ∗∆P1).

For example, if we consider the polyomino P of Figure 20, v = (3, 2) ∈ V (P) and if
we choose

F = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 1), (4, 1), (4, 2), (5, 2)} ∈ F(del(v)),

by applying Algorithm 1 with i = 3, h = 2 and m = 5, we obtain

F ′ = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 1), (3, 2), (4, 2), (5, 1)}

a facet of (5, 1) ∗∆P1 .
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Algorithm 2

1: F := F ′;
2: h := height(i);
3: if i 6= 1 then
4: for k = 1 to h do
5: if (m− 1, k) ∈ F ′ then
6: F := F \ {(m− 1, k)};
7: end if
8: end for
9: if i 6 m− 2 then

10: for j = m− 2 to i do
11: for k = 1 to h do
12: if (j, k) ∈ F ′ then
13: F := (F \ {(j, k)}) ∪ {(j + 1, k)};
14: end if
15: end for
16: end for
17: end if
18: for k = 1 to h do
19: if (m, k) ∈ F ′ then
20: F := (F \ {(m, k)}) ∪ {(i, k)};
21: end if
22: if (m− 1, k) ∈ F ′ then
23: F := F ∪ {(m, k)};
24: end if
25: end for
26: end if
27: return F
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Let P2 be the polyomino obtained from P by deleting all the cells of P which lie below
the horizontal edge interval containing the vertex v.

Lemma 43. With respect to the above notation, |F(∆P2)| = |F(lk(v))|.

Proof. Let F be a facet of lk(v). Then F ∪ {v} ∈ F(∆P). We set j = height(i).
Suppose that F ∪ {v} = G1 ∪ G2 where G1 ∈ ∆P2 and G2 = {(a, j) | (a, j) ∈

V (P) \ V (P2)} ∪ {(i, j − 1), . . . , (i, 1)}. In fact, since v ∈ F ∪ {v}, all the vertices of G2

must belong to F ∪ {v} and xijxkl ∈ in<(IP), for every (k, l) ∈ V (P) \G2 with l < j.
In order to prove that G1 ∈ F(∆P2), it is enough to show that |G1| = dim ∆P2 + 1.

We consider the polyomino P2 to be on [m − t] × [n − j + 1], for some t > 1. It follows
that m+ n− 1 = |F ∪ {v}| = |G1 ∪G2| = |G1|+ |G2| = |G1|+ (t+ j − 1), which implies
that |G1| = (m − t) + (n − j + 1) − 1 = dim ∆P2 + 1. Therefore, G1 ∈ F(∆P2) and
|F(lk(v))| 6 |F(∆P2)|.

Vice versa, let G be a facet of ∆P2 . By definition of P2, v /∈ G and G ∪ {v} ∈ ∆P .
In other words, G ∈ lk(v) and there exists F ∈ F(lk(v)) such that G ⊂ F . Thus,
F ∪ {v} ∈ F(∆P). Moreover, F ∪ {v} = G ∪G2 and |F(∆P2)| 6 |F(lk(v))|.

We now prove the main result of this section.

Theorem 44. Let P be a stack polyomino on [m]× [n] and v = (i, j) ∈ V (P) such that
xi1 is the smallest variable in S and j = height(i). Then

e(K[P ]) = e(K[P1]) + e(K[P2]),

where P1 and P2 are the polyominoes defined before.

Proof. In order to prove the equality, it is sufficient to show that

|F(∆P)| = |F(∆P1)|+ |F(∆P2)|.

We consider F to be a facet in ∆P . If v ∈ F , then F \ {v} ∈ F(lk(v)). Otherwise, v /∈ F ,
thus F ∈ F(del(v)). Therefore, we obtain |F(∆P)| = |F(lk(v))| + |F(del(v)|. The claim
follows by applying Lemma 42 and Lemma 43.

Example 45. Let P be the stack polyomino of Figure 21. Then the multiplicity of K[P ] is
equal to 14. The first step in the recursive formula, namely e(K[P ]) = e(K[P1])+e(K[P2]),
is shown in the figure. Next we apply the recursive procedure for each of the polyominoes
P1 and P2.

Example 46. Let Pm,n be the stack polyomino on [m] × [n] with V (Pm,n) = [m] × [n].
The multiplicity of K[Pm,n] was computed in [6, Section 3, Example] and

e(K[Pm,n]) =

(
m+ n− 2

m− 1

)
.
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Now, we consider k < n to be a positive integer and Pk to be the polyomino of Figure 22.
It consists of a rectangle of size [m − 1] × [n] together with a column of cells of height
equal to k. By Theorem 44,

e(K[Pk]) = e(K[Pk−1]) + e(K[Pm−1,n−k+1]) = e(K[Pk−1]) +

(
m+ n− k − 2

m− 2

)
.

Applying recursively this formula, we obtain

e(K[Pk]) =

(
m+ n− 3

m− 2

)
+

(
m+ n− 4

m− 2

)
+ · · ·+

(
m+ n− k − 2

m− 2

)
=

(
m+ n− 2

m− 1

)
−
(
m+ n− k − 2

m− 1

)
.
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Example 47. Let P(m,n, k1, k2, . . . , kl) be the polyomino of Figure 23. This is an ex-
ample of one-sided ladder with the last l columns of heights k1, . . . , kl. Hilbert series of
one-sided ladders have been considered in [14]. By Theorem 44,

e(K[P(m,n, k1, k2, . . . , kl)])

=e(K[P(m− 1, n− kl + 1, k1 − kl + 1, k2 − kl + 1, . . . , kl−1 − kl + 1)])

+ e(K[P(m,n, k1, k2, . . . , kl−1, kl − 1)])

=e(K[P(m− 1, n− kl + 1, k1 − kl + 1, k2 − kl + 1, . . . , kl−1 − kl + 1)])

+ e(K[P(m− 1, n− kl + 2, k1 − kl + 2, k2 − kl + 2, . . . , kl−1 − kl + 2)])

+ e(K[P(m,n, k1, k2, . . . , kl−1, kl − 2)])

=

...

=e(K[P(m− 1, n− kl + 1, k1 − kl + 1, k2 − kl + 1, . . . , kl−1 − kl + 1)])

+ e(K[P(m− 1, n− kl + 2, k1 − kl + 2, k2 − kl + 2, . . . , kl−1 − kl + 2)])

+ · · ·+ e(K[P(m− 1, n− 1, k1 − 1, k2 − 1, . . . , kl−1 − 1)])

+ e(K[P(m− 1, n, k1, k2, . . . , kl−1)]).

In other words, we have

e(K[P(m,n, k1, k2, . . . , kl)]) =

kl−1∑
j1=0

e(K[P(m− 1, n− j1, k1 − j1, k2 − j1, . . . , kl−1 − j1)]).

By iterating the formula, we obtain

e(K[P(m,n, k1, k2, . . . , kl)])

=

kl−1∑
j1=0

kl−1−j1−1∑
j2=0

e(K[P(m− 2, n− j1 − j2, k1 − j1 − j2, k2 − j1 − j2, . . . , kl−2 − j1 − j2)])

=

...

=

kl−1∑
j1=0

kl−j1−1∑
j2=0

· · ·
k2−j1−···−jl−2−1∑

jl−1=0

e(K[P(m− l + 1, n− j1 − · · · − jl−1, k1 − j1 − · · · − jl−1)])

=

kl−1∑
j1=0

kl−j1−1∑
j2=0

· · ·
k2−j1−···−jl−2−1∑

jl−1=0

((
(m− l + 1) + (n− j1 − · · · − jl−1)− 2

(m− l + 1)− 1

)
−(

(m− l + 1) + (n− j1 − · · · − jl−1)− (k1 − j1 − · · · − jl−1)− 2

(m− l + 1)− 1

))
.
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Thus,

e(K[P(m,n, k1, k2, . . . , kl)])

=

kl−1∑
j1=0

kl−j1−1∑
j2=0

· · ·
k2−j1−···−jl−2−1∑

jl−1=0

((
m+ n− l − j1 − · · · − jl−1 − 1

m− l

)
−
(
m+ n− l − k1 − 1

m− l

))
.

One may, of course, approach the computation of the multiplicity in a recursive way
for arbitrary convex polyominoes. Finding the appropriate order of the variables in con-
cordance to the one described in [9] is not difficult as we will see in the example below.
What is difficult in the general case is to identify the link of a suitable chosen vertex as
a simplicial complex of another polyomino related to the original one. We illustrate part
of these difficulties in the following example.

Example 48. Let P be the convex polyomino of Figure 24. According to the proof of
[9], the generators of IP form the reduced Gröbner basis of IP with respect to the reverse
lexicographical order induced by the following order of variables: x32 > x33 > x34 > x31 >
x22 > x23 > x24 > x12 > x13 > x14 > x42 > x43 > x41 > x52 > x53. We consider the
vertex v = (5, 3). The link of v in ∆P is the cone of the vertex (5, 2) with the simplicial
complex which we may associate to the collection of cells Q displayed in Figure 24 in a
similar way to the one we used for stack polyominoes. The problem is that the collection
Q is no longer a convex polyomino.
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