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Abstract

We prove that for every digraph D and every choice of positive integers k, `
there exists a digraph D∗ with girth at least ` together with a surjective acyclic
homomorphism ψ : D∗ → D such that: (i) for every digraph C of order at most
k, there exists an acyclic homomorphism D∗ → C if and only if there exists an
acyclic homomorphism D → C; and (ii) for every D-pointed digraph C of order at
most k and every acyclic homomorphism ϕ : D∗ → C there exists a unique acyclic
homomorphism f : D → C such that ϕ = f ◦ ψ. This implies the main results in
[A. Harutyunyan et al., Uniquely D-colourable digraphs with large girth, Canad. J.
Math., 64(6) (2012), 1310–1328; MR2994666] analogously with how the work [J.
Nešetřil and X. Zhu, On sparse graphs with given colorings and homomorphisms,
J. Combin. Theory Ser. B, 90(1) (2004), 161–172; MR2041324] generalizes and
extends [X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory,
23(1) (1996), 33–41; MR1402136].

Mathematics Subject Classifications: Primary 05C15; Secondary 05C20,
05C60, 60C05

1 Introduction

In 1959, Paul Erdős, in a landmark paper [7]—now known as one of the most pleasing uses
of the probabilistic method—proved the existence of graphs with arbitrarily large girth
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and chromatic number. His technique has been extended in a number of ways, e.g., by
Bollobás and Sauer [5] to prove that for all k > 2 and ` > 3 there is a uniquely k-colourable
graph whose girth is at least `. It would be difficult to overstate the influence of this one [7]
of Erdős’ thousands of results. Indeed, one authoritative combinatorialist went so far as
to assert that “All interesting combinatorics flows from the existence of graphs with large
girth and chromatic number.”1 Of course, we interpret Thomassé’s remark as somewhat
tongue-in-cheek, but as they say, many a truth is said in jest. In the present article, we
follow the flow, from colourings to homomorphisms and from graphs to digraphs. This
work is a sequel to [9], with which we assume some familiarity. For example, because
the introduction of [9] is more extensive than this one, we refer the reader there for more
background. Also, some of the arguments from [9]—e.g. the statement/proof of Lemma 7
and Lemma 8 (both below)—prove useful here. We try to balance the conflicting goals of
not duplicating earlier work while allowing our new results to stand on their own.

Erdős’ argument in [7] was probabilistic, hence nonconstructive. To help answer the
question of what graphs with large girth and chromatic number actually look like, in 1968
Lovász [13] constructed hypergraphs with arbitrarily large girth and chromatic number.
Müller [15] also worked in this domain. More than twenty years after Lovász’s contri-
bution, Kř́ıž [12] produced the first purely graph-theoretic construction of graphs with
arbitrarily large girth and chromatic number. And more recently (2016), Alon et al. [1]
constructed such graphs that also satisfy a side condition on maximum average degree.
The time intervals separating these results offer some hint of the delicacy of their con-
structions.

Graph homomorphisms, as vertex mappings that preserve adjacency, naturally gen-
eralize graph colouring. In 1996, working in this realm, Zhu [22] proved that for every
‘core’ graph H and every positive integer ` > 3 there exists a uniquely H-colourable graph
with girth at least `. Because complete graphs are cores, Zhu’s result generalized [5] and
[7]. Almost ten years later, Nešetřil and Zhu [16] further generalized the results in the
sequence [7, 5, 22] using the notion of ‘pointed’ graphs.

Let us shift now to digraphs. Their circular chromatic number was first studied in
[4], where Bokal et al. showed that the colouring theory for digraphs is similar to that for
undirected graphs when stable vertex sets are replaced by acyclic sets. For example, using
an analogue of Erdős’ original argument from [7], they showed that there exist digraphs of
arbitrarily large (directed) girth and circular chromatic number. Almost a decade later, in
[9], a subset of these authors together with their doctoral students established analogues
of Zhu’s results from [22] in a digraph setting; namely, for a suitable digraph D, there
exist digraphs of arbitrarily large girth that are uniquely D-colourable. Severino [19]
presented a construction of highly chromatic digraphs without short cycles and another
construction [20] of uniquely n-colourable digraphs (for arbitrary n) with arbitrarily large
girth. The latter two articles, based on [21], give constructive proofs of results in [4] and
[9] that were originally proved probabilistically.

This paper analogizes the results of Nešetřil and Zhu [16] to the realm of digraphs.

1Stéphan Thomassé included the assertion in his plenary CanaDAM lecture, 2 June 2011, Victoria,
Canada.
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Just as [16] puts the final icing on the sequence [7, 5, 22], so too does our main result—
Theorem 1 below—provide a fitting capstone for the sequence [4, 9]. Postponing defini-
tions for another minute (until Section 2), let us state our main result and lay bare its
connection with [9].

Theorem 1. For every digraph D and every choice of positive integers k, ` there exists
a digraph D∗ together with a surjective acyclic homomorphism ψ : D∗ → D with the
following properties:

(i). girth(D∗) > `;

(ii). for every digraph C with at most k vertices, there exists an acyclic homomorphism
D∗ → C if and only if there exists an acyclic homomorphism D → C;

(iii). for every D-pointed digraph C with at most k vertices and for every acyclic homo-
morphism ϕ : D∗ → C there exists a unique acyclic homomorphism f : D → C such
that ϕ = f ◦ ψ.

The precursor [9] established two main results:

Theorem 2. If D and C are digraphs such that D is not C-colourable, then for every
positive integer `, there exists a digraph D∗ of girth at least ` that is D-colourable but not
C-colourable.

Theorem 3. For every core D and every positive integer `, there is a digraph D∗ of girth
at least ` that is uniquely D-colourable.

To see that Theorem 1 implies Theorem 2, let us be given a positive integer ` and two
digraphs C, D with D not C-colourable (as in the hypotheses of Theorem 2). Taking k
to be the order of C, we can put this C in the role of the digraph C in conclusion (ii) of
Theorem 1, which delivers a digraph D∗ with D∗ → D. As D 6→ C, the same conclusion
shows that also D∗ 6→ C, and conclusion (i) gives the girth requirement on D∗.

Before deriving Theorem 3 from Theorem 1, observe that if D is a core, then every
acyclic homomorphism from D to itself must be an automorphism, and so if any two
such homomorphisms agree on all but one vertex, they must also agree on that vertex.
Therefore, cores D are D-pointed.

Now let us be given a positive integer ` and a core D (as in the hypotheses of The-
orem 3). If we here take k = |V (D)|, then Theorem 1 delivers a large-girth digraph D∗

together with a D-colouring ψ : D∗ → D. The preceding paragraph foreshadows that we
can put D in the role of C in conclusion (iii), which shows that every acyclic homomor-
phism ϕ : D∗ → D yields an acyclic homomorphism f : D → D such that ϕ = f ◦ ψ. But
D being a core implies that such an f is an automorphism, so we’ve shown that ϕ and ψ
differ by an automorphism, i.e., that D∗ is uniquely D-colourable.

Notice that being D-pointed is a necessary condition in part (iii) of Theorem 1. For
consider two acyclic homomorphisms f ′, f ′′ : D → C satisfying (for some vertex x0 of D)
f ′(x) = f ′′(x) for all x 6= x0 and f ′(x0) 6= f ′′(x0), and assume that there is an arc between
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f ′(x0) and f ′′(x0) in C. Typically, the set ψ−1(x0) can be split into two nonempty sets
A, B and we can define ϕ : D∗ → C by f ′ ◦ ψ(y) for y ∈ V (D∗) r B and f ′′ ◦ ψ(y) for
y ∈ B. Now this ϕ sends A and B to two different points while f ◦ ψ, for any given
f : D → C, sends these sets to a single point. Therefore, the acyclic homomorphism ϕ
cannot be written as ϕ = f ◦ ψ for an acyclic homomorphism f : D → C.

Remarks

As hinted above, Nešetřil’s and Zhu’s article [16] was in a sense a crowning achievement
for a body of work initiated by Erdős in [7]. For any given graph G, they produced a high-
girth graph G∗ characterizing the small-order graphs admitting a homomorphism from G
and furthermore, via G-pointedness, wound unique colourability into their tapestry. Their
results generalized [5], [22] and moreover some other major contemporary theorems (e.g.,
the Sparse Incomparability Lemma and Müller’s Theorem—see [22] and the discussion in
[16]).

Because our Theorem 1 likewise characterizes when the high directed girth, high di-
graph chromatic number (for unique colourability) phenomenon occurs—phrased in terms
of acyclic homomorphisms—it too reaches a satisfying destination, now for the sequence
[4, 9]. And because this level of generality has actually shortened the proofs from [9],
perhaps we’ve arrived at the ‘right’ vantage point for viewing these results.

2 Terminology, notation, and an auxiliary result

Without being overly encyclopedic, we attempt to include the required definitions. For
basic notation and terminology concerning graphs and digraphs, we mainly follow [6] and
[3], respectively, and we refer the reader there for any omissions. For a more (most)
thorough treatment of graph homomorphisms, the reader could consult [8] ([10]). For
probabilistic concerns, see, e.g., [2] or [14].

All our digraphs are finite and simple—i.e. loopless and without multiple arcs—
however, we do allow two vertices u, v to be joined by two oppositely directed arcs
uv, vu. Cycles in digraphs mean directed ones, and the girth of a digraph D is the length
of a shortest cycle in D.

Just as graph homomorphisms generalize graph colouring, so too do acyclic homomor-
phisms of digraphs generalize (one variant of) digraph colouring. So we begin by recalling
the definition of these sorts of homomorphisms from [4]; see [9] for background. An acyclic
homomorphism of a digraph D to a digraph C is a function ρ : V (D)→ V (C) such that:

(i). for every arc uv ∈ A(D), either ρ(u) = ρ(v), or ρ(u)ρ(v) is an arc of C; and

(ii). for every vertex x ∈ V (C), the subdigraph of D induced by ρ−1(x) is acyclic.

Acyclic homomorphisms can also be viewed as a generalization of (ordinary) homomor-
phisms of undirected graphs; again, see [9].

If there exists an acyclic homomorphism of D to C, we say that D is homomorphic
to C and write D → C. Motivated by the connection to ‘acyclic digraph colouring’, we
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sometimes call an acyclic homomorphism of D to C a C-colouring of D and say that D is
C-colourable. A digraph D is uniquely C-colourable if it is surjectively C-colourable, and
for any two C-colourings ψ, ϕ of D, there is an automorphism f of C such that ϕ = f ◦ψ;
when this occurs, we say that ϕ and ψ differ by an automorphism of C. A digraph D is
a core if the only acyclic homomorphisms of D to itself are automorphisms. Given two
digraphs C, D, we say that C is D-pointed if there do not exist two C-colourings ρ, ϕ
of D such that ρ(v) 6= ϕ(v) holds for exactly one vertex v of D. As noted following the
statement of Theorem 3, digraph cores D are D-pointed.

Probabilistic tools

Our proof of Theorem 1 invokes several standard probabilistic tools. Aside from the First
Moment Method (Markov’s Inequality)—which is explicitly invoked a handful of times—
Inclusion-Exclusion and the Janson Inequalities also make an implicit appearance through
their use (in [9]) in proving Lemma 8 below. We shall not restate these standard results
here; however, for convenience, we do include a version of Chernoff’s famous bound(s) on
the tail distributions of binomial random variables. Though more technical versions are
available—see, e.g., [11]—this one will suffice for our main proof in Section 4:

Theorem 4. If X is a binomial random variable and 0 < γ < 3/2, then

P (|X − E(X)| > γE(X)) 6 2e−γ
2E(X)/3.

3 Set-up for the proof of Theorem 1

We begin at the starting point for the main proof in [9], namely specifying a random
digraph model, which needs no change here. Suppose that the digraph D is given with
V (D) = {1, 2, . . . , a} and |A(D)| = q. Let n be a positive integer and V1, V2, . . . , Va be
pairwise-disjoint ordered n-sets Vi = {vi1 , vi2 , . . . , vin}, for i = 1, 2, . . . , a. Next let D0 be
the digraph with vertex set V := V1 ∪ V2 ∪ · · · ∪ Va and

A(D0) :=
{
xy : x ∈ Vi, y ∈ Vj with ij ∈ A(D), for some i, j ∈ {1, 2, . . . , a}

}
a⋃
i=1

{
vikvit : k, t ∈ {1, 2, . . . , n} and k < t

}
;

so D0 has na vertices and a
(
n
2

)
+ qn2 arcs.

Now fix an ε with 0 < ε < 1/4`. Our random digraph model D(n, p) consists of all
spanning subdigraphs of D0 in which the arcs are chosen randomly and independently with
probability p := nε−1. Through the following three lemmas we prove essential technical
facts about digraphs in D(n, p). Throughout the discussion n is assumed to be sufficiently
large to support our assertions.

Our first aim is to show that most digraphs in D(n, p) have few short cycles which are
pairwise vertex-disjoint.
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Lemma 5.

(i). The expected number of cycles of length less than ` in a digraph D̂ ∈ D(n, p) is
bounded from above by nε`n−ε/2;

(ii). the expected number of pairs of cycles of length less than ` in a digraph D̂ ∈ D(n, p)
which intersect in at least one vertex is bounded from above by n−1/2.

By Markov’s Inequality, Lemma 5 implies that asymptotically almost all digraphs from
D(n, p) have at most nε` cycles of length less than `, and these cycles are all vertex-
disjoint. The ideas in the proofs of (i) and (ii) are contained, respectively, in the “Proof
of (2.1)” and “Proof of (3.1)” in [9]; we include the proofs here for context, completeness,
and consolidation.

Proof. (i) Let D̂ ∈ D(n, p) and let the random variables Xi, X count, respectively, the

number of cycles of length i, for 2 6 i < `, and of length less than ` in D̂. Then

E(Xi) 6

(
na

i

)
(i− 1)!pi =

na(na− 1) · · · (na− i+ 1)

i
pi <

(na)i

i
pi.

Hence

E(X) =
`−1∑
i=2

E(Xi) 6
`−1∑
i=2

(na)i

i
pi 6

`−1∑
i=2

(nεa)i

i
,

recalling that p = nε−1 for the last step. Now, the inequality
∑`−1

i=2(nεa)i/i < a`−1n(`−1)ε

(which can be proved by induction on `) shows that

E(X) < a`−1n(`−1)ε = a`−1n−εnε` < nε`n−ε/2,

for sufficiently large values of n.
To prove part (ii), we need the following definition from [9] which in turn had its roots

in [22]. For integers `1, `2 < `, we call a digraph an (`1, `2)-double cycle if it consists
of a directed cycle C`1 of length `1 and a directed path of length `2 joining two (not
necessarily distinct) vertices of C`1 . An (`1, `2)-double cycle contains `1 + `2 arcs and
`1 + `2 − 1 vertices.

A moment’s reflection shows that if two cycles of length less than ` intersect in at
least one vertex, then they contain (as a subdigraph) an (`1, `2)-double cycle for some

`1, `2 < `. Hence in a random D̂ ∈ D(n, p) the expected number of pairs of cycles of
length less than ` that intersect in at least one vertex is at most the expected number of
all (`1, `2)-double cycles for `1, `2 < `.

Let the random variable Y count the number of all (`1, `2)-double cycles for some

`1, `2 < ` in a random D̂ ∈ D(n, p). For fixed `1, `2 < `, let Y (`1, `2) be the number of
(`1, `2)-double cycles. Then

E(Y (`1, `2)) < 2

(
an

`1

)
(`1 − 1)!p`1(`1)(`1)

(
an

`2 − 1

)
(`2 − 1)!p`2

< `1(na)`1(na)`2−1p`1+`2

< `1a
`1+`2nε(`1+`2)n−1.
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As ε(`1 + `2) < 2`ε < 1/2 (because `1, `2 6 ` and ε < 1/4`), for large enough n we have

E(Y ) =
∑

26`1<`
16`2<`

E(Y (`1, `2)) < n−1/2.

To state the second lemma we need the following definition (which leans on the pa-
rameters D and k of Theorem 1). This set-up and the ensuing analysis in Lemma 6
is modelled after an analogous discussion in [16]. Following these authors, we call a
set A ⊆ V large if there are distinct i, j ∈ [a], with ij an arc of D, such that both
|A ∩ Vi| > n/k and |A ∩ Vj| > n/k, and the D-arc ij in this case is a good arc for A. For

a large set A, denote by |D̂/A| the minimum number of arcs of (a random) D̂ which lie
in a set {xy : x ∈ A ∩ Vi, y ∈ A ∩ Vj}, with ij a good arc for A.

Lemma 6. If D̂ ∈ D(n, p) and A is large, then P (|D̂/A| > n) = 1− o(1).

Thus asymptotically most digraphs from D(n, p) enjoy the property of all good arcs (of

D) for large sets A inducing at least n arcs (of D̂ ∈ D(n, p)).

Proof. Let D̂ ∈ D(n, p) and A ⊆ V be a large set and set α = P (|D̂/A| > n). Essentially
following [16, Proof (of Claim 2)], we have

1− α = P (|D̂/A| < n) 6
∑

B large

P (|D̂/B| < n)

6 2na
(
qn2

n

)
(1− p)n2/k2−n

< ecn lnn−c′n1+ε

= o(1) (1)

for some positive constants c and c′ that are independent of n (with the estimates in (1)
being borrowed from [16]). Thus we get α = 1− o(1).

The last lemma of this section addresses a technical situation also encountered at the
end of Section 3 of [9]. We repeat part of the proof here for completeness and also to
facilitate fleshing out more of its details. See also [16, Claim 3] for an analogous statement
(for graphs and homomorphisms) and an alternate proof approach (via enumeration).

Lemma 7. Almost all digraphs from D(n, p) do not contain two nonempty sets A ⊂ Vi0,
B ⊂ Vj0, for some i0, j0 ∈ [a], with i0j0 ∈ A(D) (resp. j0i0 ∈ A(D)), |A| = n− (k−1)|B|,
|B| 6 n/k, such that the set A∪B contains at most min{|B|, nε`} arcs from A to B (resp.
from B to A) and these arcs form a matching (i.e. a set of independent arcs).

Proof. Let b 6 n/k and s 6 min{b, dnε`e}. We denote by L(b, s) the expected number of
pairs A, B such that A ⊆ Vi, B ⊆ Vj, ij ∈ A(D), |A| = n− (k− 1)|B|, |B| = b and there
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are exactly s arcs joining a vertex in A to a vertex in B. Then

L(b, s) 6

(
n

n− (k − 1)b

)(
n

b

)(
(n− (k − 1)b)b

s

)
ps(1− p)(n−(k−1)b)b−s

< n(k−1)bnb(nb)sns(ε−1)e−bn
ε+nε−1((k−1)b2+s)

< nkbbsnεse−(bn
ε)/2 (2)

= bsnεs(nke−n
ε/2)b

< bsnεse−(bn
ε)/3 (3)

< e−n
ε/4. (4)

To help the reader through steps (2)–(4), we fill in the following estimates:
for (2):

−bnε + nε−1((k − 1)b2 + s) = −bnε +
(k − 1)b2 + s

n1−ε < −bnε +
bnε

2
= −bn

ε

2
;

for (3): for large enough n, we have nk < en
ε/6

, so that nke−n
ε/2
< e−n

ε/3;
and lastly for (4):

(bnε)s = es ln(bn
ε) = (eln(bn

ε))s < (e(1/12bn
ε)1/s)s = e1/12bn

ε

,

and this implies that

bsnεse−(bn
ε)/3 < e−bn

ε/4 < e−n
ε/4

.

So with L(b) :=
∑

s6min{b,dnε`e} L(b, s), we find that

L(b) < dnε`ee−nε/4 < e−n
ε/5,

and we finally obtain ∑
16b6n/k

L(b) < (n/k)e−n
ε/5 < e−n

ε/6.

An application of Markov’s Inequality completes the proof. (Notice that we are getting a
small upper estimate here even without the matching condition).

4 Proof of Theorem 1

We continue to be guided by [16], but the argument here is complicated by the more tech-
nical definition of ‘acyclic homomorphism’ in our context compared to ‘homomorphism’
in the graph setting.

Choose a digraph D′ in D(n, p) satisfying the properties asserted in Lemmas 5–7. So
D′ contains at most nε` (directed) cycles of length less than ` and these cycles are pairwise
vertex-disjoint. Consequently (picking one arc from each cycle), there is a matching (an
independent arc set) M ⊆ A(D′) of size at most nε` such that the digraph D′ −M =
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(V (D′), A(D′) rM) has no cycles of length less than `. We prove that this digraph—
henceforth denoted D∗ := D′ −M—satisfies the conclusions of Theorem 1.

Define ψ : V (D∗)→ V (D) by ψ(x) = i if and only if x ∈ Vi, for i ∈ [a]. It is clear from
the definition of D(n, p) that ψ is a surjective acyclic homomorphism. That girth(D∗) > `
was arranged in our description of D∗, and this takes care of (i).

To prove part (ii) of Theorem 1, fix a digraph C of order at most k and consider an
acyclic homomorphism ϕ : D∗ → C. We proceed to define a mapping f : V (D)→ V (C).
By the Pigeonhole Principle, for each i ∈ V (D), there is a vertex x ∈ V (C) such that
|Vi ∩ ϕ−1(x)| > n/k. We let f(i) = x (choosing x arbitrarily if more than one x has this
property) and now prove that f is an acyclic homomorphism. To prove that f satisfies
the first property of being an acyclic homomorphism, let ij be an arc of D with f(i) = x
and f(j) = y. If x = y, then we are done, so suppose that x 6= y. With Ai = Vi ∩ ϕ−1(x)
and Aj = Vj ∩ϕ−1(y), we have |Ai| > n/k and |Aj| > n/k from the definition of f . Hence
A = Ai ∪ Aj is a large set and ij is a good arc for A, so we can invoke Lemma 6 to see
that there exists an arc of D∗ from Ai to Aj (Note that we deleted at most nε` < n1/4 arcs
from D′ to get D∗, but ij induces at least n arcs, so we did not delete all these arcs from
Ai to Aj). Now, since ϕ is an acyclic homomorphism, we have xy ∈ A(C) as required.

To finish the proof that f is an acyclic homomorphism, we need to show that f−1(x)
induces an acyclic subdigraph in D for every x ∈ V (C). We prove this by contradiction.
Suppose that there is a vertex v′ ∈ V (C) such that the subdigraph induced by f−1(v′) in
D contains a cycle Q. Write Q = i1i2 · · · it and observe that 2 6 t 6 a. Since f(is) = v′,
for s = 1, 2, . . . , t, we have |Vis ∩ ϕ−1(v′)| > n/k, for s = 1, 2, . . . , t (from the definition
of f). The fact that nε` � n/k implies that each set Vis ∩ ϕ−1(v′) contains a subset
Wis of size w := dn/(2k)e such that no arc in M has an end vertex in Wis . It follows
from Wis ⊆ Vis ∩ ϕ−1(v′) that ϕ(Wi1) = · · · = ϕ(Wis) = {v′}. Since ϕ is an acyclic
homomorphism, the subdigraph of D∗ induced by Wi1 ∪Wi2 ∪ · · · ∪Wis is acyclic. We
show that the event that Wi1 ∪Wi2 ∪ · · · ∪Wis induces an acyclic subdigraph in D∗ is
unlikely.

Let us consider a sequence of sets Uj1 , Uj2 , . . . , Ujr such that for i = 1, 2, . . . , r we have
Uji ⊆ Vji and |Uji | = w, and the vertex sequence j1, j2, . . . , jr is a cycle in D. We denote
by Pr the probability that the subdigraph of D∗ induced by Uj1 ∪Uj2 ∪ · · · ∪Ujr is acyclic
and call this sequence bad if it induces an acyclic subdigraph in D∗. Now, for the expected
number N of bad sequences in D∗, we have

N 6
a∑
r=2

(
a

r

)
(r − 1)!

(
n

w

)r
Pr. (5)

We pause to note that (5) is relation (2.6) from [9], adapted to our present context. The
following result bounds the probabilities Pr; for a proof, see [9] (which actually contains
two proofs).

Lemma 8 ([9, Lemma 2.1]). For every integer r ∈ {2, . . . , a}, we have Pr 6 e−n
1+ε/(10k2).

As in [9, relations (2.19)], we see that for large enough n, the relation (5) and Lemma 8
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give

N 6
a∑
r=2

(
a

r

)
(r − 1)!

(
n

w

)r
e−n

(1+ε)/(10k2) <
a∑
r=2

e−n

2a
<
e−n

2
.

So to finish this chain of reasoning as in [9], using Markov’s Inequality, we find that

P (∃ a bad sequence) <
e−n

2
.

This achieves the goal stated before Lemma 8 which in turn contradicts our assump-
tion that the subdigraph induced by f−1(v′) in D contains a cycle. Thus the forward
implication in part (ii) of Theorem 1 is proved.

For the converse in (ii), let f : V (D)→ V (C) be an acyclic homomorphism. We define
a mapping ϕ : V (D∗) → V (C) as ϕ(x) = f(i), where x ∈ Vi. Each Vi induces an acyclic
set in D∗. Arcs of D that are mapped to single vertices f(i) in C do not lead to cycles in
preimages ϕ−1(f(i)) because f is itself an acyclic homomorphism. Furthermore, each arc
xy ∈ A(D∗) with ϕ(x) 6= ϕ(y) is mapped to the arc ϕ(x)ϕ(y) ∈ A(C) again because f
is an acyclic homomorphism. Hence ϕ is an acyclic homomorphism. This completes the
proof of part (ii).

We turn our attention to part (iii) of Theorem 1. Let C be a D-pointed digraph of
order at most k and ϕ be an acyclic homomorphism from D∗ to C. We want to show that
there exists a unique acyclic homomorphism f : V (D)→ V (C) such that ϕ = f ◦ψ. Note
that for every i ∈ V (D) there exists a unique xi ∈ V (C) such that |ϕ−1(xi) ∩ Vi| > n/k.
Existence follows from the Pigeonhole Principle. If there were x′i 6= xi with the same
property (|ϕ−1(x′i) ∩ Vi| > n/k), then our definition of f here would lead to another
acyclic homomorphism f ′ : V (D)→ V (C) such that f(j) = f ′(j) for all j ∈ V (D) r {i}.
But then the D-pointedness of C would force xi = f(i) = f ′(i) = x′i. Now, we define
f : V (D)→ V (C) as f(i) = xi for i = 1, 2, . . . , a. Because f is defined as in part (ii), we
again see that this function is an acyclic homomorphism. Hence, it remains to show that
ϕ = f ◦ ψ.

Remark Until now, parts of our proof have involved carefully piecing together ideas
from [9] and [16]. The remainder of the argument follows quite a different path and
underscores the extra complexity inherent in working with acyclic homomorphisms (of
digraphs) compared to ordinary homomorphisms (of graphs).

Proof of ϕ = f ◦ ψ

First, we show that ϕ and f ◦ ψ have the same range. It is clear that Range(f ◦ ψ) ⊆
Range(ϕ). To prove the reverse containment, suppose to the contrary that there is a vertex
y ∈ Range(ϕ) that is not in Range(f ◦ψ). Since y is in the range of ϕ, the set ϕ−1(y)∩Vi
is not empty for some i ∈ {1, 2, . . . , a}. On the other hand, the definition of f shows that
|ϕ−1(f(i)) ∩ Vi| > n/k; in particular ϕ−1(f(i)) ∩ Vi 6= ∅. Because f(i) ∈ Range(f ◦ ψ)
while y 6∈ Range(f ◦ ψ) we see that Vi r

(
ϕ−1(f(i)) ∩ Vi

)
6= ∅ for some i ∈ {1, 2, . . . , a}.

We show that this leads to a contradiction.
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Let i0 ∈ {1, 2, . . . , a} be such that t := |ϕ−1(f(i0))∩ Vi0 | is minimum. It is easy to see
that t > n/k. Our discussion in the preceding paragraph implies that t < n. We choose
x ∈ V (C) with x 6= f(i0) such that b := |ϕ−1(x)∩Vi0 | is maximum. Using the Pigeonhole
Principle we obtain b > (n− t)/(k−1) which gives t > n− (k−1)b. Furthermore b < n/k
as there is only one vertex of V (C) satisfying the negation (f(i0) 6= x already has this
property). Now we define a mapping f ′ : V (D)→ V (C) as

f ′(i) =

{
f(i) for i 6= i0

x for i = i0.

Since f and f ′ differ only at i0 and C is D-pointed, the function f ′ cannot be an
acyclic homomorphism. We distinguish two cases.

Case I: x 6∈ Range(f).
In this case, the only reason that f ′ is not an acyclic homomorphism is that there must

be a vertex v 6= i0 in V (D) such that either f(v)f(i0) ∈ A(C) but f(v)x 6∈ A(C) (and
vi0 ∈ A(D)), or f(i0)f(v) ∈ A(C) but xf(v) 6∈ A(C) (and i0v ∈ A(D)). Without loss of
generality, assume that f(v)f(i0) ∈ A(C) but f(v)x 6∈ A(C) (and vi0 ∈ A(D)) occurs. We
have |ϕ−1(f(v))∩ Vv| > t > n− (k− 1)b, so we can choose a set U ⊆ ϕ−1(f(v))∩ Vv with
|U | = n−(k−1)b. Then there must be at most min{b, nε`} arcs from U to A := ϕ−1(x)∩Vi0
in D′; otherwise after passing from D′ to D∗, we have some arc(s) left between these two
sets inD∗ and since ϕ is an acyclic homomorphism, f(v)x ∈ A(C) which is a contradiction.
But the property just described is the rare property articulated in Lemma 7, and D′ was
chosen not to enjoy it, so Case I leads to this contradiction.

Case II: x ∈ Range(f).
In this case, there are two potential reasons for f ′ not to be an acyclic homomorphism.

The reason we explained in Case I is still a potential reason in the present case, and it
similarly leads to a contradiction. The other reason here is when f ′−1(x) does not induce
an acyclic subdigraph in D. We proceed to show that this also leads to a contradiction.

We know that ϕ−1(x) ∩ Vi0 6= ∅. Since x ∈ Range(f), we have x = f(j0) for some
j0 ∈ V (D) and j0 6= i0. The reason for j0 6= i0 is that f(i0) 6= x = f(j0). We show
that in this case i0j0, j0i0 ∈ A(D). Suppose to the contrary that this is wrong. Without
loss of generality, we assume that i0j0 6∈ A(D). First we claim that there exists a vertex
p0 ∈ V (D) such that it has a different situation with respect to i0 and j0 in the sense of
adjacency (like, for example, p0i0 ∈ A(D), but p0j0 6∈ A(D)). For if every p0 ∈ V (D) that
is adjacent to i0 is also adjacent to j0 (preserving the directions), then we can define the
mapping g : V (D) → V (C) by g(i) = f(i) for i 6= i0 and g(i0) = f(j0). Then f 6= g (but
they differ only at i0), and g is clearly an acyclic homomorphism; this contradicts the
D-pointedness of C. We also claim that there exist p0 ∈ V (D) and v ∈ V (C) such that
f(p0) = v, the arc p0i0 ∈ A(D), p0j0 6∈ A(D), the arc vf(i0) ∈ A(C), and vf(j0) 6∈ A(C).
For if every p0 ∈ V (D) with p0i0 ∈ A(D), p0j0 6∈ A(D) satisfies both vf(i0) ∈ A(C) and
vf(j0) ∈ A(C), then we can again define the mapping g : V (D) → V (C) by g(i) = f(i)
for i 6= i0 and g(i0) = f(j0), which again contradicts the fact that C is D-pointed.
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Thus let p0, v as above satisfy f(p0) = v, the arc p0i0 ∈ A(D), p0j0 6∈ A(D), the arc
vf(i0) ∈ A(C), and vf(j0) 6∈ A(C). The sets Wp0 := ϕ−1(v)∩ Vp0 and B′ := ϕ−1(f(j0))∩
Vi0 satisfy |Wp0| > t = |ϕ−1(f(i0)) ∩ Vi0 | and n/k > |B′| = b > (n − t)/(k − 1). Hence,
there exists a set A′ ⊆ Wp0 such that |A′| = n−|B′|(k−1) with the property that there is
no arc from A′ to B′ in D (as ϕ(B′) = f(j0) and ϕ(A′) = v and vf(j0) 6∈ A(C)). However,
this contradicts Lemma 7. Thus, i0j0, j0i0 ∈ A(D). Using this important fact, we proceed
to show that (the second reason in) Case II also leads to a contradiction.

The definition of f gives us |ϕ−1(f(j0)) ∩ Vj0 | > n/k. Since nε` 6 n1/4 � n/k we can
choose A ⊆ ϕ−1(f(j0)) ∩ Vj0 with |A| = bn/2kc such that no arc of M (the matching
defined at the start of Section 4) has an end vertex in A. Let B = {z} ⊂ ϕ−1(f(j0))∩Vi0 .
Since all arcs of M are independent, at most one arc of M is incident with z. Since
ϕ(A ∪ B) = {x} and ϕ is an acyclic homomorphism, the subdigraph of D∗ induced by
A ∪B is acyclic. To show that this is unlikely, we first estimate the expected number N
of ways to select a vertex z ∈ Vi0 and a subset U ⊆ Vj0 of cardinality bn/2kc so that the
subdigraph Hz,U of D∗ they induce is acyclic and no arc of M is incident with a vertex
in U . If Pz,U denotes the probability that Hz,U is acyclic, then

N 6 n

(
n

bn/2kc

)
Pz,U < nnPz,U . (6)

In order to bound Pz,U , we employ Chernoff’s Inequality (Theorem 4). Let Ω be the
set of all potential arcs in the subdigraph D′z,U , of D0 induced by {z} ∪ U . Each arc in
Ω appears in Hz,U with probability p. Let τ > (2 + ε)/ε be a fixed integer. We index
(by positive integers) those cycles of D′z,U that are of length τ + 1. For i > 1, let Si be
the arc set of the ith such cycle and Bi be the event that the arcs in Si all appear (i.e.,
the cycle determined by Si is present in Hz,U). Let the random variable Y count the Bi’s
that occur. Since P (Y = 0) is an upper bound for Pz,U , we can bound Pz,U by bounding
P (Y = 0). Using Theorem 4 with γ = 1, we have

P (Y = 0) 6 P
(
|Y − E(Y )| > E(Y )

)
6 2e−E(Y )/3. (7)

Since the arcs of D′z,U within U are acyclically oriented, each choice of τ vertices within
U determines exactly one potential (τ + 1)-cycle. It follows that

E(Y ) =

(
bn/2kc
τ

)
pτ+1 >

(bn/2kc
τ

)τ
pτ+1 >

nετ+ε−1

(4kτ)τ
. (8)

Using (7) and (8) we find that

P (Y = 0) 6 2e−n
ετ+ε−1/3(4kτ)τ ,

and recalling our choice of τ (as exceeding (2 + ε)/ε), we see that

P (Y = 0) 6 2e−n
1+2ε/3(4kτ)τ < e−n

1+ε

. (9)
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Returning to (6), we have

N < nnPz,U < nne−n
1+ε

= (ne−n
ε

)n < e−n
1+ε/2.

By Markov’s Inequality, the probability that there exists such a set {z} ∪ U that
induces an acyclic subdigraph is less than e−n

1+ε/2, which means it is unlikely as desired.
Our discussion in Cases I and II implies that ϕ and f ◦ ψ have the same range. It

is now evident that ϕ = f ◦ ψ, for otherwise the same situation as in the proof that
Range(ϕ) = Range(f ◦ ψ) occurs and similarly leads to a contradiction. Hence ϕ = f ◦ ψ
as desired and therefore the proof of part (iii) of Theorem 1 is complete. �
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