
Determining the circular flow number
of a cubic graph

Robert Lukoťka ∗

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava, Slovakia

lukotka@dcs.fmph.uniba.sk

Submitted: May 28, 2020; Accepted: Feb 19, 2021; Published: Mar 12, 2021
©The author. Released under the CC BY license (International 4.0).

Abstract

A circular nowhere-zero r-flow on a bridgeless graph G is an orientation of the
edges and an assignment of real values from [1, r − 1] to the edges in such a way
that the sum of incoming values equals the sum of outgoing values for every vertex.
The circular flow number, φc(G), of G is the infimum over all values r such that G
admits a nowhere-zero r-flow. A flow has its underlying orientation. If we subtract
the number of incoming and the number of outgoing edges for each vertex, we get a
mapping V (G)→ Z, which is its underlying balanced valuation. In this paper we de-
scribe efficient and practical polynomial algorithms to turn balanced valuations and
orientations into circular nowhere zero r-flows they underlie with minimal r. Using
this algorithm one can determine the circular flow number of a graph by enumerat-
ing balanced valuations. For cubic graphs we present an algorithm that determines
φc(G) in case that φc(G) 6 5 in time O(20.6·|V (G)|). If φc(G) > 5, then the algorithm
determines that φc(G) > 5 and thus the graph is a counterexample to Tutte’s 5-flow
conjecture. The key part is a procedure that generates all (not necessarily proper)
2-vertex-colourings without a monochromatic path on three vertices in O(20.6·|V (G)|)
time. We also prove that there is at most 20.6·|V (G)| of them.
Mathematics Subject Classifications: 05C21, 05C30, 05C85

1 Introduction

Many problems related to nowhere-zero flows have a prominent place within graph theory,
e.g. Four Colour Theorem, Tutte’s flow conjectures, etc. In this paper we study a natural

∗The author received partial support from APVV–19–0308 and VEGA 1/0813/18.

the electronic journal of combinatorics 28(1) (2021), #P1.49 https://doi.org/10.37236/9607

https://doi.org/10.37236/9607

refinement of the flow number—the circular flow number. A circular nowhere-zero (CNZ)
r-flow on a bridgeless graph G is an orientation of the edges of G and an assignment of
real values from [1, r− 1] to the edges in such a way that the sum of the incoming values
equals the sum of the outgoing values for every vertex. The circular flow number (CFN),
denoted by φc(G), of G is the infimum over all values r such that G admits a CNZ r-flow.
The CFN was introduced by Goddyn, Tarsi and Zhang as the dual concept to the circular
chromatic number and as a natural refinement of the ordinary flow number [3]. It is
known that the infimum from the definition is attained for finite graphs and that the flow
number is the ceiling of the CFN [3]. The concept has various associations to different
areas of graph theory. That is why, despite the fact that the CFN was introduced only
in the 90’s, several important results can be found in older literature where equivalent
results were obtained using related concepts. E.g. Jaeger published his (now disproved
[8]) circular flow conjecture [11] in the 80’s. Jaeger’s result that connects CNZ r-flows,
orientations, and balanced valuations is even older [10].

Let G be a graph on n vertices and m edges. A flow has its orientation. If we take
an orientation and we subtract the number of edges incoming and the number of edge
outgoing to each vertex we get a mapping V (G)→ Z, a balanced valuation. This relation
of flows, orientations, and balanced valuations plays an important role in our paper.
Although the arguments of Jaeger [10] and the arguments in a referenced paper of Hakimi
[7] are not constructive, with some care they can be turned into polynomial algorithms.
As the implementation in [4] does not use the result of [7]. Thus we feel necessary to
provide these algorithms. We significantly modify the arguments of Jaeger and Hakimi
to obtain efficient algorithms to change a balanced valuation into an orientation (O(m1.5)
time) and an orientation into a CNZ r-flow with r minimal (O(m1.5 · log2(m)) time). The
algorithms use the algorithm of Goldberg and Rao [5] to solve maximum flow instances
(if graphs are dense, another version of Goldberg’s and Rao’s algorithms provide better
running times, but we are mostly interested in sparse graphs). This implies that given a
graph G with di vertices of degree i can determine its CFN in O(

∏
(i− 1)di) time.

For the main result of the paper we focus on cubic graphs. Cubic graphs play an
important role in the study of flows as several important problems (Four Colour Theorem,
Tuttes’ 5-flow Conjecture, etc.) can be naturally reduced to cubic graphs. The problem
of determining the CFN is NP-hard even when in the class of cubic graph (CFN is > 4
is equivalent to 3-edge-colourability, which is NP complete [9]). A natural approach to
determine circular flow number is to enumerate all balanced valuations of a graph and
compute its circular flow number [4].

Assuming that the Tutte’s 5-flow conjecture holds the CFN of a bridgeless graph is
at most 5. If a balanced valuation of a cubic graph contains a path on three positive (or
negative) vertices, its CFN is at least 5. This allows us to cut the balanced valuations
we need to consider significantly [4]. Goedgebeur, Mattiolo, and Mazzuoccolo used this
approach to devise and implement a practical algorithm to determine the CFN of a cubic
graph. However, in their paper they do not address the problem of generating the “in-
teresting” balanced valuations and they give no bounds on the time complexity of their
algorithm. Besides the algorithm that generates an optimal CNZ flow from a balanced

the electronic journal of combinatorics 28(1) (2021), #P1.49 2

valuation we give an algorithm to generate all (not necessarily proper) 2-vertex-colourings
of cubic graph without three consecutive vertices of the same colour. The algorithm runs
in O(20.6n). We also prove that the number of such colourings is at most 20.6n (we even
sketch how to improve the constant 0.6 slightly). Together this yields an algorithm that
either determines the CFN of a cubic graph, or it says that the CFN of the graph is
> 5 and has running time O(20.6n) (To deal with the case that CFN = 5 we use a stan-
dard approach based on path decompositions). The algorithms are fairly practical to
implement.

The paper is structured as follows. In Section 2 we discuss the relation between bal-
anced valuations, orientations, and CNZ r-flows. We describe algorithms that take a
balanced valuation/orientation/CNZ flow and return a corresponding object of a different
type. In Section 3 we discuss how this correspondence can be used to determine the CFN.
Section 4 is devoted to the key part of O(20.6n) algorithm. We show how to generate all
relevant balanced valuations efficiently. This process is what determines the complexity
of the algorithm. Finally, in Section 5 we discuss several marginal improvements of the
algorithms (this is why we can drop the polynomial factors from the resulting time com-
plexities) and the applicability of the algorithm to the dual concept of circular colourings.

2 Balanced valuations, orientations and flows

Let G be a graph. Consider a mapping b : V (G) → R, let S ⊆ V (G), and let O be an
orientation of G. We define b(S) =

∑
v∈S b(v). By ∂(S) we denote the number of edges

of G with exactly one end in S. By ∂+O(S) (∂
−
O(S)) we denote the number of edges with

exactly one end in S oriented towards (away from) a vertex of S. If S = {v}, we write
just ∂(v), ∂+O(v) and ∂

−
O(v). A balanced valuation1 is a mapping b : V (G)→ Z such that

• b(S) 6 ∂(S) for each S ⊆ V (G) and

• b(v) ≡ ∂(v)(mod 2) for each v ∈ V (G).

There is an easy correspondence between CNZ r-flows, orientations, and balanced
valuations. Given a CNZ r-flow φ we have its underlying orientation O. From O we
can produce a balanced valuation b by setting b(v) = ∂+O(v) − ∂

−
O(v). We say that b is

underlying both φ and O. Note that b(S) = ∂+O(S) − ∂
−
O(S) for each S ∈ V (G). Thus b

is, indeed, a balanced valuation.
The fact that φ is a CNZ r-flow restricts both O and b. As the maximal flow value is

r − 1 and the minimal one is 1, for each S ⊆ V (G) we have

∂+O(S)/∂
−
O(S) 6 r − 1. (1)

As b(S) = ∂+O(S) − ∂
−
O(S) and ∂(S) = ∂+O(S) + ∂−O(S) we have 2 · ∂+O(S) = ∂(S) + b(S)

and 2 · ∂−O(S) = ∂(S)− b(S). Thus we have

(∂(S) + b(S))/(∂(S)− b(S)) 6 r − 1. (2)
1The notion of the balanced valuation is a bit different than in Jaeger’s paper. The change is made

mostly to avoid unnecessary fractions.

the electronic journal of combinatorics 28(1) (2021), #P1.49 3

We define the minimal r such that (1) holds as the CFN of O and the minimal r such
that (2) holds as the CFN of b. Now we are ready to state Jaeger’s result in our terms.

Theorem 1. [10] Let G be a graph. Then the following statements are equivalent:

• G admits a CNZ r-flow

• G admits an orientation with CFN at most r.

• G admits a balanced valuation with CFN at most r.

Turning a CNZ r-flow into an orientation with CFN at most r is easy and so is turning
an orientation into a balanced valuation. Thus we focus on the opposite direction.

Theorem 2. Let G be a graph and let b be a mapping from V (G) to Z. There exists
an algorithm with running time O(|E(G)|3/2) that takes G and b as the input and as the
output, if b is a balanced valuation, it computes an orientation O of G with the same CFN
as b; otherwise it finds a vertex-set violating the definition of balanced valuation.

Proof. It is easy to check if the parity condition holds for b. Thus assume that it does.
Consider an orientation O such that b is the underlying balanced valuation of O. Note
that in this case, the equations (1) and (2) are equivalent. Thus b and O necessarily have
the same CFN. Thus it suffices to calculate any orientation which b underlies.

Let OA be an arbitrary orientation ofG and let bA be its underlying balanced valuation.
We construct an auxiliary graph G′ and its orientation O′ from G and OA as follows. We
start modifying G by adding two auxiliary vertices w+ and w−. We set O′ to be such that
each edge has the opposite orientation as in OA. For each vertex v ∈ V (G) we do the
following. If bA(v)− b(v) > 0, then we add (bA(v)− b(v))/2 edges oriented from w+ to v
(as both bA and b satisfy the parity condition, bA(v)− b(v) is even). If bA(v)− b(v) < 0,
then we add (b(v)− bA(v))/2 edges oriented from v to w−. If bA(v)− b(v) = 0 we do not
add any new edges. Note that the outdegree of w+ equals the indegree of w−. Also in this
way the number of edges from w+ to v minus the number of edges from v to w− equals
(bA(v)− b(v))/2.

We solve the maximum flow problem on G′, O′ with source w+ and sink w− with all
capacities set to 1. As the capacities are integers so is some optimal flow. If the maximum
flow transfers value ∂−O′(w+) from source to sink2, then all edges incident with w+ and
w− are saturated. Then we can get O from OA by swapping the orientation of edges of
G that were used in the integral optimal flow of G′, O′. To show that O defined in this
way has b as its underlying balanced valuation consider the decomposition of the edges
in the optimal flow into disjoint paths. Let w+v1 . . . vkw− be one such a path. Reverting
the orientation of v1v2, . . . vk−1vk in G, OA affects the value of ∂+OA

(v)− ∂−OA
(v) only for

v = v1 and v = vk and the value is changed by −2 and +2, respectively. Thus by doing
this for all such paths the value is increased by b(v)− bA(v). Thus

∂+O(v)− ∂
−
O(v) = bA(v) + (b(v)− bA(v)) = b(v),

2we do not specify the graph in our notation, if the orientation is O′, the graph is G′, otherwise the
graph is G

the electronic journal of combinatorics 28(1) (2021), #P1.49 4

as desired, for each v ∈ V (G). Note that as b is underlying to some orientation, it is a
balanced valuation.

On the other hand, if there is no flow in G′, O′ that transfers value ∂−O′(w+), then
there exists a cut that separates w+ and w− and this cut contains less than ∂−O′(w+) edges
oriented from the part containing w+ to the part containing w−. Let S ′ be the part of
the cut containing w+ and let S = S ′ − {w+}. Let V + (V −) be the set of those vertices
v ∈ V (G) that have bA(v)−b(v) positive (negative). As the optimal flow does not saturate
edges incident with w+ we have ∂−O′(w+) > ∂−O′(S

′). Due to the construction of G′,

∂−O′(w+) =
∑
v∈V +

bA(v)− b(v)
2

∂−O′(S
′) = ∂+OA

(S) +
∑

v∈S∩V −
−bA(v)− b(v)

2
+

∑
v∈V +−S

bA(v)− b(v)
2

Thus we have ∑
v∈S∩V +

bA(v)− b(v)
2

> ∂+OA
(S) +

∑
v∈S∩V −

−bA(v)− b(v)
2∑

v∈S

bA(v)− b(v)
2

> ∂+OA
(S)

bA(S)− b(S) > 2∂+OA
(S)

bA(S)− b(S) > ∂(S) + bA(S)

−b(S) > ∂(S)

b(V (G)− S) > ∂(V (G)− S)

Thus b is not a balanced valuation.
The time complexity of the algorithm is dominated by the construction of the maxi-

mum flow. As the capacities are 1 this can be done in O(|E(G)|1.5) time [6].

It is easy to find out if an orientation admits a flow, it just suffices to check if the
graph is strongly connected (there exists a directed path between each pair of vertices).
Thus we may assume that the orientation makes a strongly connected oriented graph.
The problem of finding the flow number of an orientation can be easily solved by solving
the following linear program.

minimize c
subject to 1 6 xe 6 c− 1 for each e ∈ E(G)∑

e is inc. to v xe −
∑

e is outg. from v xe = 0 for each v ∈ V (G)

Note that this linear program can be solved in strongly polynomial time [14]. We propose
a different approach. We start with an auxiliary algorithm that tries to find a CNZ
p/q-flow for given p and q.

the electronic journal of combinatorics 28(1) (2021), #P1.49 5

Theorem 3. Let G be a graph and let O be an orientation of G. Let p and q be two
positive integers, p > 2q. Then there is an algorithm that either calculates a CNZ p/q-
flow φ such that O is underlying φ or it decides that the CFN of O is more that p/q. The
algorithm runs in O(|E(G)|1.5 · log(|E(G)|) time.

Proof. We construct an auxiliary graph G′ with an orientation O′ and a capacity labelling
c : E(G′) → N as follows. We start with G and add two new vertices w+ and w− to the
graph. For each e ∈ E(G) we do the following. Assume e is oriented from u to v. We set
c(e) = p− 2q. We add an edge e+ from w+ to v and an edge e− from u to w−, both with
capacity q. We find a maximum flow on G′, O′, c with source w+ and sink w−. Let φ′ be
the optimal flow. If the value of the flow is |E(G)| · q, then all edges incident with w+ are
saturated. We obtain the flow φ on G, O by setting φ(e) = φ′(e)/q+1 = (φ′(e)+φ′(e+))/q
for every e ∈ E(G). This is a CNZ p/q-flow as each value is between 1 and p/q − 1.

On the other hand, if there is no such flow there exists a cut separating w+ and w−
with capacity less than |E(G)| · q. Let S ′ be the part of the cut containing w+ and let
S = S ′−{w+}. Let a be the number of edges between w+ and a vertex not in S. Clearly,
all the other edges incident to w+ go to S thus the number of incoming edges to S is at
least ∂(w+)− a = |E(G)| − a and their capacity is at least (|E(G)| − a) · q. On the other
hand, the capacity on outgoing edges from S ′ is less than |E(G)| · q, thus the capacity on
edges outgoing from S in G′ is less than (|E(G)| − a) · q. We conclude that the capacity
of edges between w+ and S is less than the capacity of edges outgoing from S. We will
compute and compare these amounts in the following paragraphs.

Now consider the edges from G and examine the boundary of S in G′. If an edge e
of G has both endpoints in S, then in G′ there is an edge e+ from w+ to S and an edge
e− from S to w−. Both have capacity q. If e starts in S but ends outside of S then e is
outgoing from S ′ with capacity p − 2q, moreover, e− is outgoing from S ′ with capacity
q. Finally, if e starts outside of S and ends in S, then e+ in G′ goes from w+ to S with
capacity q. There is also an edge e in G′ that incoming to S but it does not come from
w+ and thus is irrelevant in our computations.

Let a′ be the number of edges in G that are inside S. The capacity of edges of G′
between w+ and a vertex of S is a′q + ∂+O(S) · q. The capacity of edges outgoing S ′ is
a′q + ∂−O(S) · (p− 2q + q). We have

a′q + ∂+O(S) · q > a′q + ∂−O(S) · (p− 2q + q)

∂+O(S)/∂
−
O(S) > p/q − 1.

Thus the CFN of O is more than p/q.
The running time of the algorithm is dominated by the search of maximum flow. As

capacities are integral we can use the algorithm of Goldberg and Gao [5]. Note that the
CFN of G, O can be expressed as p∗/q∗ with q∗ < |E(G)|. Thus if q > |E(G)| then instead
of running the algorithm with p and q we can run the algorithm with p′ and q′ such that
p′/q′ 6 p/q, q < |E(G)|, and there is no rational number p∗/q∗ with q∗ < |E(G)| with
p′/q′ < p∗/q∗ < p/q.

the electronic journal of combinatorics 28(1) (2021), #P1.49 6

Theorem 4. Let G be a graph and let O be an orientation of G such that G with O is
strongly connected. Then there is an algorithm that calculates the CFN r of O and a NZC
r-flow φ such that O is the underlying orientation of φ and runs in time O(|E(G)|1.5 ·
log2(|E(G)|)).

Proof. Theorem 1 together with the definition of the flow number of an orientation imply
that r = p/q, where p, q ∈ N and q < |E(G)| ([12, Theorem 2.2] can be used to improve
the constants). Similarly r < |E(G)|. Then we set q = |E(G)|2 and using Theorem 3
and binary search we find p such that G, O has CFN at most p/q, and strictly more
than (p−1)/q. As difference between two non equal fractions with denominator less than
|E(G)| is more than 1/|E(G)|2 there is only one rational number with denominator less
than |E(G)| in ((p − 1)/q, p/q]. This is the CFN of O. We find the flow by running
the algorithm from Theorem 3 again. The algorithm requires O(log(E(G))) calls to the
algorithm from Theorem 3, thus its running time is O(|E(G)|1.5 · log2(|E(G)|).

We believe that the running time can be improved to O(|E(G)|1.5 · log(|E(G)|)) by
modifying the Goldberg-Gao algorithm.

3 Computing the circular flow number of a graph

Given the algorithms from the previous two theorems to calculate the CFN of a graph
one just needs to calculate the minimal CFN over its balanced valuations. One needs to
consider only balanced valuations b with b(v) < |∂({v})| for each vertex v. Otherwise all
edges incident with v would be oriented either towards or away from v and this orientation
would not be underlying to any CNZ flow. This approach requires O(

∏
v∈V (G) (∂(v)− 1))

calls to the algorithm from Theorem 4. Note that it is significantly better to consider
balanced valuations instead of orientations. E.g. if G is 9-regular, it has ≈ 22.63|V (G)|

orientations and one needs to consider at most 8|V (G)| mappings as a balanced valuation.
For cubic graphs we just need to consider balanced valuations with values in {−1, 1}.

A balanced valuation b of a cubic graph G is a k-bisection if

• vertices v with b(v) = 1 induce no component containing more than k vertices and

• vertices v with b(v) = −1 induce no component containing more than k vertices.

Note that if b is not a 3-bisection, its CFN is at least 6. As each bridgeless graph admits
a nowhere-zero 6-flow [13], we do not need to consider balanced valuations that are not
3-bisections. Considering this fact we can get some improvement over the trivial 2|V (G)|

generation algorithm, however none of the methods we are aware of provides a significant
speedup. Instead of that we will focus on graphs with CFN less than 5.

Tutte’s 5-flow conjecture asserts that φc(G) 6 5. A balanced valuation with CFN less
than 5 is a 2-bisection. Thus if φc(G) < 5, then one has to consider only 2-bisections. In
the next section we show how to generate all of them in O(20.6·|V (G)|) time. To check if
φc(G) 6 5 one only needs to consider integral flows [3]. This can be done using dynamic
programming over path decompositions provided by the algorithm of Fomin and Høie [2]

the electronic journal of combinatorics 28(1) (2021), #P1.49 7

(this runs in O(20.34·|V (G)|)). Thus we can also recognise graphs with φc 6 5 and determine
its CFN in O(20.6·|V (G)|).

4 Enumerating 2-bisections

In this section we show how to enumerate all 2-bisections of a cubic graphG inO(20.6·|V (G)|).
This is also a bound on the number of 2-bisections. In contrast to the previous sections,
we assume here that G is simple. Note that this does not make problems in our CNZ flow
algorithm as for cubic graphs with a 2-circuit one can simply contract the edges incident
to one of its vertices. This produces cubic graph with the same CFN (one can easily
extend a CNZ r-flow, r > 3, of the contracted graph to the original graph and cubic
graphs do not admit CNZ r-flows with r < 3). We also assume that G 6= K4.

This is our algorithm:

1. Find a proper 3-vertex-colouring of G.

2. Extend one colour class into a maximal (with respect to inclusion) independent
set. The graph induced by the remaining vertices is an union of paths (possibly
containing only one vertex) and even circuits.

3. Recursively generate all possible (not necessarily proper) 2-vertex-colourings of the
paths and cycles such that there are no three consecutive edges of the same colour.

4. For each such colouring we do the following.

(a) We extend the colouring of the paths and circuits to the independent set. As all
three neighbouring vertices are already coloured, two of them has to have the
same colour and thus we have to colour the vertex with the other colour. We
check if this colour does not introduce a monochromatic connected subgraph
on three vertices.

(b) We check if the colouring is a bipartition (we keep track of the number of
vertices of each colour during the generation process so that this check is done
in constant time).

An easy recursive enumeration shows, that the number of improper 2-colourings avoid-
ing three consecutive vertices of the same colour on a path with i vertices is 2Fi+1 (Fi

denotes the i-th Fibonacci number). The number of 2-colourings of cycles on i vertices is
at most 2Fi+1 (for the exact value see Corollary in [1]). For cycles of length 4 we use the
exact value 6.

Consider the complement of the independent set from Step 2 of the algorithm. Let
pi be the number of paths on i vertices and let ci be the number of cycles on i vertices.
Then the number of colourings c is at most

∞∏
i=1

(2Fi+1)
pi · 6c4 ·

∞∏
i=3

(2F2i+1)
c2i .

the electronic journal of combinatorics 28(1) (2021), #P1.49 8

The number of vertices of such a graph is

n =
∞∑
i=1

(ipi +
i+ 2

3
· pi) +

∞∑
i=2

(2ic2i +
2i

3
· c2i) =

∞∑
i=1

4i+ 2

3
· pi +

∞∑
i=2

8i

3
· c2i.

After some calculation

lg(c) = lg(6)c4 +
∞∑
i=1

lg(2Fi+1)pi +
∞∑
i=3

lg(2F2i+1)c2i 6

6 0.6
16

3
c4 +

∞∑
i=1

0.6
4i+ 2

3
pi +

∞∑
i=3

0.6
8i

3
c2i 6 0.6n. (3)

5 Concluding remarks

First, we sketch how the running time of our algorithms to calculate the CFN can be
marginally improved. We do not provide any involved analysis, we believe that it is
obvious that the ideas we present provide a minor improvement of the exponents in the
running time. This justifies dropping the polynomial terms in the time complexities given
in the introduction. We decided not to pursue these improvements, first, because the
improvement is barely worth the increased complexity, and second, there is a good chance
that there exists a completely different more efficient approach to generate 2-bisections
we are not aware of.

We continue by sketching how small improvements to the presented algorithms can be
made:
Non-cubic case: Thanks to the Seymour’s 6-flow theorem [13], we need to examine
only balanced valuations that have |b(v)| < 5/6 · ∂(v) for each vertex. This improves the
running time if many edges of G are incident with vertices of degree more than 6. On the
other hand, if this is not the case, then we can merge many vertices of small degree into
quadruples of consecutive vertices. Again, due to Seymour’s theorem it is not possible
that all four vertices v will have b(v) = ∂(v)−2, and the same holds for b(v) = −(∂(v)−2),
reducing the number of mappings we need to consider.
Cubic case: The equality in the bound (3) is attained if all components in the comple-
ment of the independent set are paths on two vertices. Thus if there aren’t many such
components, the running time improves. On the other hand if almost all such components
are paths on two vertices, then there are many vertices in the independent set neighbour-
ing with at least two such paths. Note that if two vertices of first path belong to one
partite and the two vertices of the second path belong to the other one we cannot colour
the neighbouring vertex from the independent set. This, again, reduces the number of
mappings we need to consider. A finer analysis of this argument can be obtained by
discharging. We believe that using these (and several similar) arguments one can improve
the running time to approximately O(20.56·|V (G)|).

A circular r-colouring is a vertex labelling c : V (G) → R/rZ such that for each two
neighbouring vertices u and v, we have c(u) − c(v) ∈ [1, r − 1]. As circular colourings

the electronic journal of combinatorics 28(1) (2021), #P1.49 9

are dual to circular flows we can use our algorithms to determine the circular colouring
number of planar graphs. Our algorithm runs most efficiently on cubic graphs, hence
the dual algorithm is most efficient on triangulations. If the graph is not planar we still
can use orientations. Similarly as with flow number one can define the circular colouring
number of an orientation O as minC∈C(G) |E(C)|/|E+

O(C)|, where C(G) denotes the set of
oriented circuits in the unoriented graph G (we just take a circuit of G and we assign
one of the two orientation of it) and E+

O(C) denotes the set of edges of C that have
the same orientation in O. We will call |E(C)|/|E+

O(C)| as the unbalancednesses of C.
Goddyn, Tarsi, and Zhang [3] proved that G admits a circular r-colouring if and only if G
admits an orientation with circular colouring number at most r. Given an orientation one
can determine its circular chromatic number using linear programming. An interesting
question is, whether there exists notion for circular colourings equivalent to the notion of
balanced valuation for flows that works also for non-planar graphs.

References

[1] Z. Agur, A. S. Fraenkel, S. T. Klein: The number of fixed points of the majorithy
rule. Discrete Math., 70(3): 295–302, 1988.

[2] F. V. Fomin, K. Høie: Pathwidth of cubic graphs and exact algorithms. Inform.
Process. Letters, 97(5):191–196, 2006.

[3] L. A. Goddyn, M. Tarsi, C.-Q. Zhang: On (k, d)-colorings and fractional nowhere-
zero flows. J. Graph Theory, 28(3):155–161, 1998.

[4] J. Goedgebeur, D. Mattiolo, G. Mazzuoccolo: Computational results and new bounds
for the circular flow number of snarks. Discrete Math., 343(10):112026, 2020.

[5] A. V. Goldberg, S. Rao: Beyond the flow decomposition barrier. J. ACM, 45(5):783–
797, 1998.

[6] A. V. Goldberg, R. E. Tarjan: Efficient maximum flow algorithms. Communications
of the ACM, 57(8):82–89, 2014.

[7] S. L. Hakimi: On the degrees of the vertices of a directed graph. J. Franklin Inst.,
279(4):290–308, 1965.

[8] M. Han, et al.: Counterexamples to Jaeger’s circular flow conjecture. J. Combin.
Theory Ser. B, 131:1–11, 2018.

[9] I. Holyer: The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720,
1981.

[10] F. Jaeger: Balanced valuations and flows in multigraphs. Proc. Amer. Math. Soc.,
55(1):237–242, 1976.

[11] F. Jaeger: On circular flows in graphs. Finite and infinite sets. Colloquia Mathematica
Societatis János Bolyai, 37:391–402, 1984.

[12] R. Lukoťka, M. Škoviera: Real flow number and the cycle rank of a graph. J. Graph
Theory, 59(1):11–16, 2008.

the electronic journal of combinatorics 28(1) (2021), #P1.49 10

[13] P. D. Seymour: Nowhere-zero 6-flows. J. Combin. Theory Ser. B, 30(2):130–135,
1981.

[14] E. Tardos: A strongly polynomial algorithm to solve combinatorial linear programs.
Oper. Res., 34(2):250–256, 1986.

the electronic journal of combinatorics 28(1) (2021), #P1.49 11

	Introduction
	Balanced valuations, orientations and flows
	Computing the circular flow number of a graph
	Enumerating 2-bisections
	Concluding remarks

