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Abstract

The Catalan numbers (Cn)n>0 = 1, 1, 2, 5, 14, 42, . . . form one of the most ven-
erable sequences in combinatorics. They have many combinatorial interpretations,
from counting bracketings of products in non-associative algebra to counting plane
trees and noncrossing set partitions. They also arise in the GUE matrix model as
the leading coefficient of certain polynomials, a connection closely related to the
plane trees and noncrossing set partitions interpretations. In this paper we define
a generalization of the Catalan numbers. In fact we define an infinite collection of

generalizations C
(m)
n , m > 1, with m = 1 giving the usual Catalans. The sequence

C
(m)
n comes from studying certain matrix models attached to hypergraphs. We

also give some combinatorial interpretations of these numbers, and conjecture some
asymptotics.

Mathematics Subject Classifications: 05A10, 11B65

1 Introduction

1.1

The Catalan numbers (Cn)n>0

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . ,

form one of the most venerable sequences in combinatorics. They have many combinatorial
interpretations, far more than can be reproduced here. We only mention a few:
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comments.
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i. A plane tree is a rooted tree with an ordering specified for the children of each
vertex. Then Cn counts the number of plane trees with n+ 1 vertices.

ii. A Dyck path of length n is a directed path from (0, 0) to (n, 0) in R2 that only uses
steps of type (1, 1) and (1,−1) and never crosses below the x-axis. Then Cn counts
the number of Dyck paths of length 2n.

iii. A ballot sequence of length 2n is a sequence (a1, . . . , a2n) with ai ∈ {±1} with total
sum 0 and with all partial sums nonnegative. Then Cn counts the number of ballot
sequences of length 2n.

iv. A binary plane tree is the empty graph or a plane tree in which every node N has at
most two children, which are called the left and right children of N . Furthermore,
if a node has only one child, then it must be either a left or right child. Then Cn

counts the number of binary plane trees with n vertices.

v. A regular (n+ 2)-gon can be subdivided into triangles without adding new vertices
by drawing n− 1 new diagonals. Then Cn counts these subdivisions.

vi. Let Π be a polygon with 2n sides. A pairing of Π is a partition of the edges of Π
into blocks of size 2 and a choice of relative orientations for the edges in each block.
Any pairing π of Π determines a compact topological surface Σπ of some genus: one
identifies the edges together according to the pairing. One can show that the surface
Σπ is orientable if and only if the edges in each pair are have opposite orientations as
one walks around the boundary of Π (cf. [11, Ch. 1]). Then Cn counts the number
of pairings of the sides of Π such that Σπ is orientable and has genus 0, i.e. is
homeomorphic to the 2-sphere.

A reference for combinatorial interpretations of Catalan numbers is Richard Stanley’s
recent monograph [17]. It contains no fewer than 214 different interpretations of the Cn.(

1)
Indeed, the first five interpretations given above appear in [17, Ch. 2] as items (6), (25),
(77), (4), and (1) respectively. The last interpretation (counting genus 0 polygon gluings)
is unfortunately not in [17]. However, it is easily seen to be equivalent to [17, Ch. 2, (59)],
which counts the number of ways to draw n nonintersecting chords joining 2n points on
the circumference of a circle. Another resource is OEIS [14], where the Catalans are
sequence A000108.

1.2

The goal of this paper is to give a family of generalizations of the Cn. For each integer
m > 1, we define a sequence of integers (C

(m)
n )n>0; for m = 1 we have C

(1)
n = Cn. Here

1An earlier version of this list is contained in [16], with additions available on Stanley’s website [15].
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are some further examples:

m = 2 : 1, 1, 6, 57, 678, 9270, 139968, 2285073, 39871926, 739129374, 14521778820, . . .

m = 3 : 1, 1, 20, 860, 57200, 5344800, 682612800, 118180104000, 27396820448000, . . .

m = 4 : 1, 1, 70, 15225, 7043750, 6327749750, 10411817136000, 29034031694460625, . . .

m = 5 : 1, 1, 252, 299880, 1112865264, 11126161436292, 255654847841227632, . . .

m = 6 : 1, 1, 924, 6358044, 203356067376, 23345633108619360, . . .

m = 7 : 1, 1, 3432, 141858288, 40309820014464, 53321581727982247680,

238681094467043912358445056, . . .

The C
(m)
n are defined in terms of counting walks on trees, weighted by the orders of

their automorphism groups. For m = 1 the resulting expression is not usually given as a
standard combinatorial interpretation of the Catalan numbers, but it is known to compute
them; we will prove it in the course of proving Theorem 5. In fact, from our definition it
is not clear that the C

(m)
n are actually integers, even for m = 1, although we will see this

by giving several combinatorial interpretations of them.
Here is the plan of the paper. In §2 we give the definition of the C

(m)
n , and in §3 we

explain how to compute them for moderate values of n and any m. In §4 we give six
different combinatorial interpretations of the C

(m)
n based on six standard interpretations

of the Catalan numbers. In §5 we explain how to compute the generating function of the
C

(m)
n , and conjecture some asymptotics of C

(m)
n for fixed m as n → ∞. Finally, in §6

we discuss how these numbers arise in the study of certain matrix models associated to
hypergraphs.

2 Hypergraph Catalan Numbers

2.1

We begin by giving the description of the Catalan numbers that we wish to generalize.
Let Tn be the set of unlabeled trees on n vertices. The sequence |Tn| appears on OEIS
as sequence A000055, and begins

1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, . . . ,

where |T0| := 1 by convention.
Let T ∈ Tn, and for each vertex v ∈ T , let aT (v) be the number of walks that begin

and end at v and traverse each edge of T exactly twice. Note that any such walk visits each
other vertex at least once, and may do so multiple times. Let Γ(T ) be the automorphism
group of T , and let |Γ(T )| be its order.

Figure 1 shows an example of the numbers aT (v) for the 3 trees in T5. The outer
numbers on the leaves of the upper left tree are 1 because the only possible walk is to go
from one end of the tree to the other, then back to the beginning. The inner numbers
on the same tree are 2, because one must first choose a direction in which to head, then
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must go all the way to that end, then back through the starting point to the other end,
then back to the initial vertex.

Proposition 1. The Catalan number Cn is given by

Cn =
∑

T∈Tn+1

∑

v∈T

aT (v)

|Γ(T )| . (1)

For example, using Figure 1 we have

C4 =
8

2
+

48

24
+

16

2
= 4 + 2 + 8 = 14.

We defer the verification of Proposition 1 until §4, when we discuss combinatorial
interpretations. The proposition will be proved in the course of Theorem 5.

11

2

2

2

222

4 6

6

66

6

24

Figure 1: The set T5 with vertices labeled by aT (v). Going clockwise from the upper left,
the orders of the automorphism groups are 2, 24, 2.

2.2

Now let m > 1 be a positive integer. Then C
(m)
n is defined essentially as in (1), but we

modify the definition of the numbers aT (v):

Definition 2. Let m > 1, let T ∈ Tn+1, and let v ∈ T . Then an a
(m)
T -tour beginning at

v is a walk that begins and ends at v and traverses each edge of T exactly 2m times. We
denote by a

(m)
T (v) the number of a

(m)
T -tours beginning at v.

We note that a
(1)
T (v) = aT (v). As before, in an a

(m)
T -tour each vertex of T will be

visited at least once. Furthermore, since T is a tree, each edge is visited m times while
going away from v and m times while coming back to v.

Definition 3. The hypergraph Catalan numbers C
(m)
n are defined by

C(m)
n =

∑

T∈Tn+1

∑

v∈T

a
(m)
T (v)

|Γ(T )| . (2)

the electronic journal of combinatorics 28(1) (2021), #P1.52 4



For example the numbers a
(2)
T (v) are shown in Figure 2 for the three trees in T5. The

numbers are larger now, since walks have many more options. Using the numbers in
Figure 2 we find

C
(2)
4 =

216

2
+

5040

24
+

720

2
= 108 + 210 + 360 = 678.

2727 545454

630

630

630

630

180 270

90

90

90

2520

Figure 2: The set T5 with vertices labeled by a
(2)
T (v).

3 Computing the C
(m)
n

3.1

In this section we show that once one has sufficient knowledge of the trees in Tn+1 to

compute Cn, one can easily compute C
(m)
n for any m. In other words, if one wants to

extend the data in §1.2, we show that it is easy to fix n and let m grow.

Theorem 4. Let T ∈ Tn+1, and let v ∈ T have degree d(v). Then we have

∑

v∈T

a
(m)
T (v) =

2nmn+1

(m!)2n

∏

v∈T

(md(v)− 1)!. (3)

For example, for the tree on the right of Figure 2, we find

2 · 4 · 25
(2!)8

(2 · 1− 1)!4(2 · 4− 1)! = 5040,

which agrees with the data in the figure.

Proof. We use the results in [18, Ch. 10], which treat Eulerian tours in balanced digraphs,
and so we begin by recalling some notation. Let G be a connected digraph and let G̃ be
the associated undirected graph. Suppose G is balanced ; this means that the outdegree
o(v) of each vertex v is equal to its indegree i(v). Given a vertex v of G, an oriented
spanning tree with root at v is a subgraph T ⊂ G such that T̃ is a spanning tree of
G̃ in the usual sense, and such that all the edges of T are oriented towards v. Then
since G is connected and balanced it is Eulerian [18, Theorem 10.1], and according to
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[18, Theorem 10.2] given an edge e the number ε(G, e) of Eulerian tours of G beginning
with the (directed) edge e is

ε(G, e) = τ(G, e)
∏

v∈G

(o(v)− 1)!, (4)

where τ(G, e) is the number of oriented spanning trees of G with root at the initial vertex
of e. Furthermore, it is known that τ(G, e) is independent of e [18, Corollary 10.3].

Now let T be a tree with n+1 vertices and fix m. The left of (3) is the total number of

a
(m)
T -tours on T (Definition 2). We will count a

(m)
T -tours by first counting Eulerian tours

on the canonical balanced digraph Tm built from T by replacing each edge with 2m edges,
m oriented in one direction and m oriented in the other. Let v ∈ T . Then it is clear that
an a

(m)
T -tour contributing to a

(m)
T (v) determines (non-uniquely) an Eulerian tour on Tm

starting and ending at v. Hence we can use (4) to compute a
(m)
T (v). In particular for an

edge e ∈ Tm we have

ε(Tm, e) = τ(Tm, e)
∏

v∈T

(md(v)− 1)!, (5)

where d(v) is the degree of v in T .
Now we go from (5) to (3). First, the number τ(Tm, e) of oriented spanning trees in

Tm is mn (after fixing a root we pick one of m possible properly oriented edges for each
edge in T ). Next, to get the total number of Eulerian tours of Tm, we multiply ε(Tm, e)
by the number of edges of Tm, which is 2mn. The result is

∣

∣

∣

{

Eulerian tours of Tm

}
∣

∣

∣
= 2mn ·mn ·

∏

v∈T

(md(v)− 1)!. (6)

Now let π be the map

π :
{

Eulerian tours of Tm

}

−→
{

a
(m)
T -tours of T

}

that replaces each edge of an Eulerian tour of Tm with the corresponding edge in T . It
is clear that π is surjective. Furthermore, each a

(m)
T -tour w of T has precisely (m!)2n

preimages under this map, since w traverses each edge of T in each direction precisely
m times, and we get to choose in which order these m traversals correspond to the m
corresponding edges of Tm. Thus

∣

∣

∣

{

Eulerian tours of Tm

}
∣

∣

∣
= (m!)2n ·

∣

∣

∣

{

a
(m)
T -tours of T

}
∣

∣

∣
. (7)

Comparing (6) and (7) yields (3), and completes the proof.

3.2

Thus to compute C
(m)
n for any m one only needs the trees in Tn+1 together with their

vertex degrees and orders of their automorphism groups. This can be done, at least for
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reasonable values of n, using the software nauty [12]. For example there are 751065460 ≈
229 trees in T27; nauty is able to compute them on a laptop in less than 14 seconds. On
the other hand, computing the orders of all the automorphism groups takes longer. For
instance there are only 823065 ≈ 220 trees in T20, and computing all their automorphism
groups takes just over 4 hours.

4 Combinatorial interpretations

4.1

As it turns out, the numbers C
(m)
n have a variety of combinatorial interpretations, in fact

in terms of objects used to count the usual Catalan number Cnm. As we shall see, only
certain of these will contribute to C

(m)
n , and in general a given object may contribute in

several different ways. It will also be evident that any standard Catalan interpretation
can be turned into one for the C

(m)
n . We begin by introducing some notation.

4.2

Let X be an combinatorial object; we do not give a precise definition of X , but the reader
should imagine that X is something used in a standard Catalan interpretation, such as
those in §1.1. We will give examples in Theorem 5. Typically X will be an aggregate of
smaller elements, and we say that a level structure for X is a surjective map ℓ from these
elements to a finite set [[N ]] := {1, 2, . . . , N} for some N ∈ Z>0. We will say x ∈ X is on
a higher level than x′ ∈ X if ℓ(x) > ℓ(x′), with similar conventions for same and lower
level. The ith level Xi ⊂ X with respect to ℓ will be the preimage ℓ−1(i) ⊂ X . In some
interpretations, we will also have a zeroth level X0; these will usually be combinatorial
objects that are naturally rooted. If X has a zeroth level, we will require |X0| = 1. Note
that in the pictures that follow, the function ℓ will not typically correspond to the height
of elements of X in their positions in the figures.

4.3

The object X will be a poset. If x, x′ ∈ X and x covers x′, we will say that x is a
parent of the child x′. The level structures we consider will always be compatible with
the poset structure, in that any child x′ of a given parent x will satisfy ℓ(x′) = ℓ(x)+1. In
other words, children will always lie one level above their parents. We remark the poset
structure determines the level of each element as long as a level-0 element is present.

4.4

Finally, let m be a positive integer. We will consider m-labeling the positive levels of X ,
which means the following. First fix an infinite set L of labels. Let

X = X0 ⊔
⊔

i>1

Xi
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be the disjoint decomposition of X into levels, where X0 may be empty. For each positive
level Xi, i > 0, we choose a disjoint decomposition of Xi into subsets of order m; in
particular, this implies |Xi| ≡ 0 mod m for i > 0 in all cases we consider. Then an m-
labeling is a map assigning an element of L to each of these subsets. We will say that an
m-labeling is admissible if the following are true:

• Distinct subsets receive distinct labels.

• The labeling is compatible with the poset structure, in the following sense: if two
elements x, x′ share a given label, then the labels of their parents agree.

In other words, an admissible m-labeling is a partition of the set XrX0 of all non-level-0
elements of X into disjoint size m blocks such that if two elements u, v ∈ X r X0 have
children in the same block, then u must belong to the same block as v. We also consider
two labelings to be equivalent if one is obtained from the other by permuting labels. Note
that all m-labelings are admissible if m = 1.

4.5

We give an example to clarify this terminology. Let X be a plane tree. The elements of
X are its vertices. Let v be the root. We can define a level structure ℓ : X → Z>0 by
setting ℓ(x) to be the distance in X to v. Note that X0 = {v} has size 1, but of course
the positive levels Xi can be bigger. Given two vertices x, x′, one is a parent or a child
of the other if it is in the usual sense of trees: x is a parent (respectively, child) of x′ if
x and x′ are joined by an edge and x lies closer to (respectively, further from) the root
than x′. Figure 3 shows two plane trees X, Y . Each tree has four levels. Parents appear
above their children, and levels increase as we move down the figure.

Next we consider labelings. Figure 4 shows the two rooted trees X, Y equipped with
2-labelings, with labeling set L = {a, b, c, d, e}. We have arbitrarily ordered the labels as
indicated; one would obtain an equivalent labeling after permuting the labels. The left
tree X is admissibly 2-labeled: if two vertices have the same label, so do their parents.
The right tree Y , however, is not admissibly 2-labeled: the two vertices at the bottom
have the same label e, but their parents have two different labels c, d.

4.6

Now let Xnm be a set of objects constituting a combinatorial interpretation of Cnm (we
will say which we consider in a moment). Then we will define a poset structure and levels
on each X ∈ Xnm, and show

C(m)
n =

∑

X∈Xnm

Nm(X), (8)

where Nm(X) is the number of admissible m-labelings of X . As mentioned before, an
object X ∈ Xnm cannot have Nm(X) 6= 0 unless its level structure satisfies an obvious
congruence condition: the size of a nonzero level must be divisible by m. This condition
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is not sufficient, however, as one can see in Figure 4. Both trees have positive levels of
even size, but there is no way to give the right tree an admissible 2-labeling: the parents
of the vertices labeled e are forced to have different labels. On the other hand, if m = 1
then any m-labeling is admissible. Hence when m = 1 each X ∈ Xnm contributes to Cnm

with Nm(X) = 1, and one recovers a usual combinatorial interpretation of the Catalan
numbers.

X0

X1

X2

X3

Y0

Y1

Y2

Y3

Figure 3: Two rooted trees X, Y with their levels.

aaaa bbbb

cccc dddd

eeee ff

Figure 4: 2-labelings of X and Y . The labeling of Y is not admissible.

4.7

We are now ready to give our combinatorial interpretations. For each we explain their
level and hierarchical structures. Examples of all the objects are shown in Figures 6–7.

(i) Plane trees.

The set Xnm is the set of plane trees on nm + 1 vertices. The levels are the distance to
the root, and the vertices are parents/children of each other if they are in the usual sense.

(ii) Dyck paths.

The set Xnm is the set of Dyck paths from (0, 0) to (2mn, 0). The elements of a path π
are its slabs, defined as follows. Let Rπ be the interior of the region bounded by π and
the x-axis. Then a slab is a connected component of the intersection of Rπ with an open
strip Yk = {(x, y) ∈ R2 | k − 1 < y < k}, where k > 1 is an integer. A slab is in level k if
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it lies in Yk; the zeroth level is empty. A slab S is a parent of a slab S ′ if S sits in a lower
level and sits under S ′.

(iii) Ballot sequences.

The set Xnm consists of the ballot sequences B = (a1, . . . , a2nm). Let sk =
∑k

i=1 ai be the
kth partial sum. Let i < j. We say i, j are a pair if (i) ai = 1, aj = −1; (ii) si = sj + 1;
and (iii) j is the minimal index greater than i for which these conditions are true. Then
the elements of a ballot sequence are its pairs. The level of a pair (i, j) is the value of si;
the zeroth level is empty. A pair p = (i, j) is the parent of q = (k, l) if the level of p is
one less than that of q and i < k and l > j.

(iv) Binary plane trees.

The set Xnm consists of all binary plane trees with nm vertices. The zeroth level is empty.
The ith level for i > 1 consists of all vertices that can be reached from the root by a path
that always moves away from the root with exactly i− 1 left steps. A vertex v ∈ Xi is a
parent of v′ ∈ Xi+1 if there is a path from v to v′ with exactly one left step.

(v) Triangulations.

Let Π = Πnm+2 be a regular polygon with nm + 2 sides. Then Xmn consists of triangu-
lations ∆ of Π that do not have new vertices. The elements of ∆ are its triangles, and
the levels of ∆ are given by the sets of left-turning triangles, which means the following.
Fix once and for all an edge e of Π and let T be the triangle of ∆ meeting e. As one
enters T across e there is a unique exiting edge eR to the right and one eL to the left. We
say the triangle TR meeting T at eR, if there is one, is obtained by turning right, and the
triangle TL across eL, if there is one, is obtained by turning left. Then the first level ∆1

of ∆ consists of T and all the triangles that can be reached from T by turning left. The
second level ∆2 consists of the triangles that can be reached by turning right once from a
triangle on the first level, and then turning left an arbitrary number of times. Continuing
this process, each triangle in ∆ gets placed into a unique positive level. The zeroth level
is empty. A triangle T ∈ ∆i is the parent of T ′ ∈ ∆i+1 if T ′ can be reached from T by a
single right turn followed by any number of left turns.

(vi) Polygon gluings.

Let Π = Π2mn be a regular polygon with 2mn sides with a distinguished vertex. An
oriented gluing of Π is a partition of its sides into n blocks of size 2m, with the sides
oriented such that as one moves clockwise around Π, the orientations in a given block
alternate (cf. the right column of Figure 7). We also assume that the first edge in any of
these blocks is oriented such that clockwise is positive. The labeling of the edges induces
an equivalence relation on the vertices of Π, after one performs the identifications. Then
Xnm is the set of such gluings with the number of equivalence classes of vertices maximal.
A vertex b is a child of a if the edge joining them is positive from a to b. The distinguished
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e

e

TL TR

Figure 5: The left and right triangles determined by an edge e, and a triangulation of a
polygon with its level structure. The light grey triangles, which are obtained by turning
left after entering across the edge e, are on level 1. The white triangles are on level 2, and
the dark grey triangles are on level 3.

vertex is at level 0, and the levels of the others are determined by requiring that passing
from parent to child increases the level.

4.8

Figures 6–7 illustrate the combinatorial interpretations used in the computation of C
(2)
2 =

6. For this number each object that affords an admissible 2-labeling has at most two
levels; we show the first level using light grey and the second level using white. Labelings
are indicated by the letters a, b. Note that only one object has more than one 2-labeling,
namely the one appearing in the first three lines of each figure.

Theorem 5. The interpretations (i)–(vi) given in §4.7 count the numbers C
(m)
n , i.e. (8)

holds.

Proof. First we claim that all the interpretations (i)–(vi) give the same counts. To see
this, note that if Xnm is any of the above sets (with no labelings), then |Xnm| = Cnm, and
there are known bijections between the different objects (cf. [17, Theorem 1.5.1]). For the
convenience of the reader, we recall these bijections. To simplify notation we set m = 1.

Plane trees and Dyck paths. Let T be a plane tree with n + 1 vertices with root
vertex v. Then T has n edges, and one can build a length 2n Dyck path π(T ) as follows.
Recall that a plane tree either consists of the single vertex v, or else v has a sequence of
subtrees T1, . . . , Tk, each of which is a plane tree. To construct the Dyck path attached
to T , one performs the preorder tree traversal : this is the traversal that begins by visiting
the root vertex, then recursively visits the subtrees of the root T1, . . . , Tk, in order. The
traversal returns to the root along the root-incident edge every time it is done traversing
a subtree.
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11

1

11

1

−1−1

−1

−1−1

−1

Figure 6: Plane trees, Dyck paths, ballot sequences.

During the traversal one crosses each edge of T exactly twice, once going down, and
once going up. For every move down one appends the step (1, 1) to π(T ), and for every
move up one appends (1,−1). It is clear that the result is a Dyck path; it has 2n steps,
never goes below the x-axis, and ends at (2n, 0). One can also easily reverse this process:
given a Dyck path π, one builds a plane tree T (π) whose preorder traversal is encoded by
π.

Dyck paths and ballot sequences. Let π be a Dyck path of length 2n. We create a
sequence b(π) = (a1, . . . , a2n) with ai ∈ {±1} by projecting onto the second coordinate:
(1, 1) 7→ 1 and (1,−1) 7→ −1. Thus b(π) records the change in height above the x-axis
as one moves along π. Then b(π) is clearly a ballot sequence: the condition that π never
goes below the x-axis ensures that the partial sums are nonnegative. It is also clear that
this process can be reversed to give a map from ballot sequences to Dyck paths.

Plane trees and polygon gluings. Let T be a plane tree. We can regard T as embedded
in the sphere S2, for example by applying stereographic projection to the plane. If one
cuts the sphere open along the edges of T , one obtains a polygon Π2n with 2n sides
together with data of an oriented gluing: the edges come naturally in pairs, and the root
becomes the distinguished vertex of Π2n. To go backwards, if one starts with a polygon
Π2n and identifies the edges in pairs, one obtains a topological surface S together with
an embedded connected graph G (G may have loops or multiple edges). The surface S is
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Figure 7: Binary trees, triangulations, polygon gluings.

orientable if and only if the gluing data is oriented (as one goes around the boundary of
the polygon, every pair of edges to be glued must appear with opposite orientations). If
S is orientable, then the graph G is a tree if and only if S is a sphere; this happens if and
only if the number of vertices of G is maximal after gluing; this follows from considering
the Euler characteristic of S, computed as 1− |edges|+ |vertices|.2

Triangulations and binary plane trees. Let ∆ be a triangulation of the polygon
Πn+2 with a distinguished edge e. One can make a binary plane tree B(∆) by taking the
dual of ∆ as follows (cf. Figure 8). The vertices of B(∆) are the triangles of ∆. Two
vertices are joined by an edge if and only if they correspond to adjacent triangles in ∆.
The distinguished edge e sits in the boundary of one triangle, which determines the root
of B(∆) (in Figure 8 the root is indicated by a doubled circle). The resulting tree is
embedded in the plane and is a binary tree exactly because each triangle has three sides.
It is also easy to see that this construction is reversible.

Plane trees and binary plane trees. Finally we come to this bijection, due to

2As mentioned before (§1.1), there is a connection between polygon gluings and interpretation (59) in
[17, Chapter 2]. This interpretation is that Cn is the number of ways to draw n nonintersecting chords
joining 2n points on the circumference of a circle. If one starts with a connected oriented polygon gluing,
and draws chords between the centers of the edge pairs, one obtains n chords as in (59). The condition
that these chords do not intersect is exactly equivalent to the resulting surface being a sphere.
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de Bruijn–Morselt [4], which is the most interesting of all. We follow the presentation in
the proof of [17, Theorem 1.5.1] closely.3

Let T be a plane tree on n + 1 vertices. We will construct a binary tree B(T ) on
n vertices; in fact the vertices of B(T ) are the non-root vertices of T . First we delete
the root from T and all edges incident to it. Then we remove all edges that are not the
leftmost edge from any vertex. In other words, if the children of v in T are v1, . . . , vk, then
we remove the edges {v, v2}), . . . , {v, vk} and leave the edge {v, v1} untouched. After this
the remaining edges become the left edges in the binary tree B(T ).

To construct the right edges in B(T ), we create edges horizontally across the vertices
of T . In particular, given a vertex v in T , we draw edges from each child w of v to the
child of v immediately to the right of w, if this child exists. Finally the root of B(T ) is
the leftmost child of the root of T . (See Figure 9 for an example.) This process is easily
seen to be reversible.

e

Figure 8: Making a binary tree B(∆) from a triangulation ∆. The vertices of B(∆) are
white and its edges are dashed. The root vertex is circled.

We now return to the original discussion. We claim that for m > 1, the same bijections
prove that all interpretations give the same counts. One needs only to check that the
definitions of admissible labelings are compatible. For instance, to pass from a plane tree
T to a Dyck path π, one starts at the root of the T and traverses it in preorder (process the
node, traverse the left subtree, then traverse the right subtree). As one descends T along
an edge, one steps up in π by (1, 1), and as one ascends along an edge, one steps down by
(1,−1). With this correspondence, it is evident that the non-root vertices of T coincide
with the slabs of π. Indeed, the slabs of π are constructed so that the corresponding
vertices of T are at the same distance from the root, and the poset structure in the
slabs mirrors that of the vertices of T . It is also easy to see that the different notions of
admissible labelings agree. The verifications for the other interpretations are similar.

3In particular we follow the paragraph labeled (iii)→(ii) at the bottom of p. 8.
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−→−→

Figure 9: Making a binary tree B(T ) from a plane tree T . We first delete the root of
T and all edges incident to it. Then we delete the edges in T that are not furthest to
the left. The deleted edges are shown in gray, and the remaining edges are drawn with
a wider pen width. We then create horizontal edges, shown as dashed lines, by drawing
horizontally from the leftmost child of a vertex v through the remaining children of v, in
order. The original (respectively, horizontal) edges become the left (resp., right) edges of
B(T ).

To complete the proof, we must check that any one of them actually computes C
(m)
n .

We will use admissibly labeled plane trees (i).
Let C = Cn+1 be the set of pairs

{

(T, w)
∣

∣

∣
T ∈ Tn+1, w an a

(m)
T -tour

}

modulo the equivalence relation (T, w) ∼ (T ′, w′) if T = T ′ and there is an automorphism

of T taking w to w′. Then |C | = C
(m)
n . Let P = Pn be the set of plane trees on n

vertices, and let A = Anm+1 be the set of pairs
{

(T, l)
∣

∣

∣
T ∈ Pnm+1 and l is an admissible m-labeling of T

}

. (9)

Then |A | is the right hand side of (8). We will prove that (8) holds by constructing a
bijection between C and A .

We begin by defining two maps

α : C −→ A , β : A −→ C .

First we define α. Given (T, w) ∈ C , let v be the vertex where w begins and ends.
Then α(T, w) is the plane tree T̃ whose Dyck word π(T̃ ) is determined by the following
rule: the ith step of π(T̃ ) is an up-step if the ith step of w moves towards v, and is a
down-step otherwise. We equip T̃ with a labeling l as follows: the ith vertex in preorder
traversal of T̃ is given the label of the starting point of the ith edge of w. This labeling l
is an admissible m-labeling: if x1, x2 are two vertices of T̃ with the same labels, then the
parents y1, y2 of x1, x2 receive the label of the unique vertex y ∈ T that is one step closer
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to v. Thus α(T, w) ∈ A . We also claim α is well-defined. Suppose α(T, w) = (T̃ , l) and
(T, w) ∼ (T ′, w′). Then α(T ′, w′) is the pair (T̃ , l′), where the labels of l′ are a permutation
of those of l. Figure 10 shows an example of the computation of α for m = 2.

Now we define β. Let (S, l) ∈ A . Let S̄ be the graph obtained from S by first
identifying any two vertices of S that share the same label, and then by replacing parallel
edges in the resulting multigraph by single edges. We note that S̄ is actually a tree.
Indeed, the admissibility of the labeling implies that the map E(S) → E(S̄) on edges is
m : 1, and the map on vertices is m : 1 away from the root and 1 : 1 on the root. Thus
S̄ has n+1 vertices and n edges, and since it is clearly connected S̄ is a tree. Finally, we
define a walk w = w(S̄) on S̄ by writing the sequence of labels encountered during the

preorder traversal of S. The m-admissibility of the labeling implies that w is an a
(m)
S -tour,

and thus we have defined an element β(S, l) = (S̄, w). Figure 11 shows an example of this
construction.

To complete the proof, we must show that α, β are bijections. First we show β◦α = 1C .
We claim that if (S̄, w(S̄)) = (β ◦ α)(T, w), then S̄ = T and w(S̄) = w (in other words,
the representative of an equivalence class in C is taken to itself). This is clearly true if T
has one vertex. Suppose the claim is true for all pairs (T, w) with 6 n vertices. Let T be

a tree with n+ 1 vertices, let w be an a
(m)
T -tour of T beginning at v, let x be a leaf of T ,

and let y be the neighbor of x in T . Deleting x and modifying w appropriately we obtain
a pair (T ′, w′). In (S ′, l′) = α(T ′, w′) we have m vertices y1, . . . , ym corresponding to y.
Then (S, l) = α(T, w) is obtained from (S ′, l′) by placing m new vertices x1, . . . , xm under
the yi according to where they appear in the walk w. By induction β(S ′, l′) = (T ′, w′).
When we construct β(S, l) the only differences are that now we collapse the m edges of
the form (xi, yj) to a single edge in S̄ joining x to y, and that we build w(S̄) from w(S̄ ′)
by incorporating the vertex x. Clearly S̄ = T . Moreover w(S̄) = w, since the edges
in S were built to make preorder traversal in S match the original walk w. This shows
β ◦ α = 1C .

Now we show α ◦ β = 1A . The proof is similar. Clearly this is true for all (S, l) ∈ A

with one vertex. Suppose that for all (S, l) with < nm+1 vertices we have (α ◦β)(S, l) =
(S, l). Let (S, l) have nm + 1 vertices and choose a leaf x1 of S of highest level. The
admissibility of the labeling l implies that there are m− 1 additional vertices x2, . . . , xm

with the same label as x1, and since x1 lies in the highest level, the vertices x2, . . . , xm

must also be leaves of S. Let y1, . . . , ym be the vertices of S with label equal to any
parent of xi. In particular, the parents of the xi are a subset of the yj, but not every yj
is necessarily a parent of an xi. Deleting the xi we obtain a labeled plane tree (S ′, l′).
If (S̄ ′, w(S̄ ′)) = α(S ′, l′), then by induction we have β(S̄ ′, w(S̄ ′)) = (S ′, l′), and moreover
the tree S̄ ′ is obtained from S̄ by deleting x (the image of the xi). The walk w(S̄) is
obtained from w(S̄ ′) by inserting steps along the edge (x, y) exactly according to the up-
and down-steps in S along the edges of the form (xi, yj), where y is the image of the yj.
After applying α we exactly recover the edges (xi, yj) in S. This shows α ◦ β = 1A , and
completes the proof of the theorem.

Remark 6. The interpretations in Theorem 5 make it possible to define various higher

the electronic journal of combinatorics 28(1) (2021), #P1.52 16



analogues of other standard numbers, such as Narayana numbers, and higher q-analogues.
We have not pursued these definitions.

a a

a

bb

b

ccc

dd

d

v

v

T T̃

−→

Figure 10: Applying the map α to a pair (T, w) gives an admissibly m-labeled plane tree
T̃ . The label set is {a, b, c, d}, and the walk is w = vadavbvadavcvbvcv. If we apply
the automorphism of T that swaps vertices b and c, we obtain an equivalent admissibly
m-labeled plane tree.

a a

a a

b b

bb c ccc

d d

dd

v v

v

S S̄

−→−→

Figure 11: The map β is the composition of these two arrows; applied to a pair (S, l)
gives a tree S̄ and a walk w. The resulting walk is the same as that in Figure 10.

5 Generating functions and asymptotics

5.1

Let
Fm(x) =

∑

n>0

C(m)
n xn (10)

be the ordinary generating function of the C
(m)
n . In this section we explain how to use the

combinatorial interpretations in §4 to compute (10) to arbitrary precision as a power series

in x. Then we will give a conjecture of the asymptotic behavior of C
(m)
n that generalizes

the famous formula

Cn ∼ 4n

n3/2
√
π
, (n → ∞).
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5.2

We will compute Fm(x) by showing that counting admissibly labeled plane trees on nm+1
vertices is equivalent to counting colored plane trees on n+1 vertices. To count the latter,
we use standard generating function techniques as described in Flajolet–Sedgewick [8]. For
the benefit of the reader and to keep our presentation as self-contained as possible, we
recall the results we need here.

Proposition 7.

i. Let A(x) =
∑

k>0 akx
k ∈ Z[[x]] be an integral formal power series with ak > 0. Let

PA be the set of all colored plane trees such that any vertex with k children can be
painted one of ak colors. Let PA ∈ Z[[x]] be the ordinary generating function of PA,
so that the coefficient [xn]PA(x) of x

n counts the trees in PA with n vertices. Then
PA satisfies the functional relation

PA = xA(PA). (11)

ii. Let B(x) =
∑

k>0 bkx
k ∈ Z[[x]] be another integral formal power series with bk > 0.

Let PA,B be the set of all colored plane trees such that (a) any non-root vertex with
k children can be painted one of ak colors, and (b) if the root vertex has degree k then
it can be painted any one of bk colors. Let PA,B ∈ Z[[x]] be the ordinary generating
function of PA,B. Then PA,B satisfies the functional relation

PA,B = xB(PA), (12)

where PA satisfies (11).

Proof. These results are proved in [8]. Specifically (i) is [8, Proposition I.5] and (ii) follows
from [8, Example III.8]. We sketch the proof here.

For (11), recall that a plane tree is a rooted tree with an ordering specified for the
children of each vertex. This is equivalent to the recursive specification that a plane tree
is a root vertex v with a (possibly empty) sequence of plane trees T1, . . . , Tk attached in
order to v, with the root of Ti becoming the ith child of v. If P is the ordinary generating
function of plane trees, this description leads to the well-known functional relation

P = x(1 + P + P 2 + P 3 + · · · ),

where the right hand side encodes the process of attaching an arbitrary sequence of plane
trees to an initial root vertex.

Now consider the collection PA of plane trees colored according to A. In terms of the
recursive specification above, one can think of building a tree in PA by (i) picking a root
vertex v and deciding on the number k of its children, (ii) coloring v one of ak different
colors, and (iii) continuing the process recursively to each of the k children of v. This
leads to the functional relation

PA = x(a0 + a1PA + a2P
2
A + a3P

3
A + · · · ),
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which proves (11).
To see (12), we note that a tree in PA,B is built similarly. We (i) choose a root vertex

v and decide on the number k of its children, (ii) color v one of bk different colors, and
(iii) place trees from PA under v with their roots as v’s children. This leads to

PA,B = x(b0 + b1PA + b2P
2
A + b3P

3
A + · · · ),

which proves (12).

Definition 8. If S is a plane tree appearing in PA,B, then we say S has been equipped
with an (A,B)-coloring.

5.3

Now we define the generating functions for the colorings we will need. For any pair
g > 0, r > 1, let λ(r, g) be the dimension of the space of degree g homogeneous polynomials
in r variables. We have

λ(r, g) =

(

r − 1 + g

r − 1

)

.

For any k > 0, let Wm(k) be the number of partitions of a set of size k into blocks of size
m. Then Wm(k) = 0 unless m divides k, and in this case we have

Wm(k) =
k!

(m!)k/m(k/m)!
.

Theorem 9. Put
ℓm(x) =

∑

d>0

Wm(dm)λ(m, dm)xd

and
hm(x) =

∑

d>0

Wm(dm)xd.

Let fm(x) ∈ Z[[x]] satisfy the functional equation

fm(x) = xℓm(fm(x)). (13)

Then the generating function Fm(x) =
∑

n>0C
(m)
n xn+1 satisfies

Fm(x) = xhm(fm(x)). (14)

Proof. Let us fix m > 1 and simplify notation by writing F , f , ℓ, h instead of Fm, fm,
ℓm, hm. Then by Proposition 7 F is the ordinary generating function of the (ℓ, h)-colored
plane trees Pℓ,h. Recall (9) that A is the set of pairs (T, l) where T ∈ Pnm+1 and l is
an admissible m-labeling of T . We will construct a surjective map

ρ : A −→ P (15)

show that it induces a bijection between trees (ℓ, h)-colored plane trees with n+1 vertices
and admissibly m-labeled plane trees Anm+1 on nm+1 vertices. First we assume that the
labeling set L is the positive integers Z>0, with its standard total order. Then we assume
that (S, l) ∈ A is labeled so that the following properties hold:
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i. If S has nm+ 1 vertices, then l is surjective onto [[n]] ⊂ L.

ii. If x, y ∈ S are two vertices and y is in a higher level than x (i.e. y is further from
the root than x), then l(x) < l(y).

iii. If x, x′ ∈ S are on the same level with l(x) < l(x′), and y (respectively, y′) is a child
of x (resp., x′), then l(y) < l(y′).

iv. If L′ ⊂ L is the subset of labels appearing in a fixed level of S, then the elements of
L′ are ordered compatibly with when they first appear when read from left to right:
the leftmost vertex receives the smallest label from L′, the first new label seen when
reading to the right is next largest available label from L′, and so on until the final
label in L′ is seen.

It is clear that, given any admissibly m-labeled tree, one can permute the labels to satisfy
these properties, and that the resulting labeling is unique.

Recall that in the proof of Theorem 5, we built a topological tree S̄ on n+ 1 vertices
from S by identifying vertices with the same labels and replacing parallel edges with single
edges. After fixing a total order on L and requiring that the labels of S satisfy the above,
we obtain a canonical plane tree structure on S̄. The root of S̄ is the image of the root
of S, and each non root vertex of S̄ receives a unique label from 1 to n. The children of
any vertex are ordered using the order in [[n]] ⊂ Z>0. In the resulting plane tree, which
we also denote by S̄, the labels in a given level increase when read from left to right, and
labels in higher levels are larger than those in lower levels. In particular, the labeling of
S̄ is uniquely determined; for this discussion, we will say that the plane tree S̄ has been
canonically labeled. Figure 12 shows an example of an admissibly 2-labeled plane tree S
satisfying the conditions (i)–(iv), and the resulting canonically labeled plane tree S̄.

We have thus constructed the map ρ in (15). We claim ρ is surjective. We let S̄ be a
canonically labeled plane tree, and we build an admissibly m-labeled tree (S, l) ∈ ρ−1(S̄)
as follows. Suppose v̄ ∈ S̄ is the root with children x1, . . . , xd, read from left to right.
Under the root v ∈ S we place dm vertices

x
(1)
1 , . . . , x

(m)
1 , . . . , x

(1)
d , . . . , x

(m)
d , (16)

from left to right with l(x
(j)
i ) = l(xi), and put ρ(x

(j)
i ) = ρ(xi). Now suppose v̄ ∈ S̄ is a

non root vertex with d children. By induction on distance to the root, we may assume
that v̄ has already been lifted to m vertices v(1), . . . , v(m) with l(v(i)) = l(v̄), and these
vertices have been placed in their level in S in some order. We lift the children x1, . . . , xd

of v̄ to dm vertices as before, again with l(x
(j)
i ) = l(xi) and ρ(x

(j)
i ) = ρ(xi), and we make

them all children of v
(1)
1 in the order (16). Continuing in this way we obtain an admissibly

m-labeled (S, l) ∈ ρ−1(S̄) with l satisfying (i)–(iv), which shows ρ is surjective.
To complete the proof, we claim that the inverse image ρ−1(S̄) is in bijection with

the (ℓ, h)-colorings of S̄. To see this we revisit the proof of surjectivity and see what
additional choices one could make along the way to build (S, l). First consider the root
vertex v̄ ∈ S̄ and suppose it has d children x1, . . . , xd. As before we lift these children to
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dm vertices x
(1)
1 , . . . , x

(m)
d under the root v ∈ S, but we are not obligated to order them

as in (16). We can use any order compatible with the induced ordering of the labels of
the x1, . . . , xd and with the requirements (i)–(iv). In particular this implies that these
orders are in bijection with set partitions of [[dm]] into d blocks B1, . . . , Bd of size m: if

the vertices x
(j)
i are ordered under v as y1, . . . , ydm, then

l(yi) = k if and only if i ∈ Bk.

Since there areWm(dm) such set partitions, we see that the root must be colored according
to h.

Now consider a non root vertex v̄ with d children x1, . . . , xd. Again by induction we
know that the vertices v(1), . . . , v(m) mapping to v̄ have been placed in order in their level
in S. To place the dm vertices x

(1)
1 , . . . , x

(m)
d in their level we must do two things:

(A) We must choose an order of the x
(j)
i in their level, and this order must be compatible

with l(x
(j)
i ) = l(xi) and the requirements (i)–(iv).

(B) After fixing the order of the x
(j)
i , we must decide how to place them under their

(potential) parents v(1), . . . , v(m).

As before (A) corresponds to a set partition of [[dm]] into d blocks of size m. The data in

(B) corresponds to an order preserving map from [[dm]] to [[m]]: if x ∈ {x(j)
i } is a child of

v ∈ {v(j)}, then any x′ > x (according to the order chosen in (A)) cannot be a child of any
v′ < v. Such maps are counted by λ(m, dm). Indeed, a degree dm monomial ze11 · · · zemm
encodes that the first e1 in [[dm]] map to 1 ∈ [[m]], the next e2 map to 2, and so on. This
means the total number of choices is Wm(dm) ·λ(m, dm), which implies that any non root
vertex with d children must be colored according to ℓ.

We have thus shown that any (S, l) in the inverse image ρ−1(S̄) corresponds uniquely
to an (ℓ, h)-coloring of S̄. By Proposition 7, this completes the proof.

11 1 22 2 333

444 555 666

777 888

−→

S S̄

Figure 12: The map ρ takes the plane tree S on nm+ 1 vertices to a canonically labeled
plane tree S̄ on n+ 1 vertices.
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Remark 10. At this point the reader may be nostalgic for the recurrence relation satisfied
by the classical Catalan numbers, which corresponds to the equation

xF 2
1 − F1 + 1 = 0. (17)

For m > 1, the power series Fm(x) does not appear to be algebraic, so unfortunately one
does not have such a simple recurrence relation on its coefficients. However, experimen-
tally one finds that there is an algebraic relation satisfied by fm and Fm:

f 2
m − xFm + x = 0. (18)

Relation (18) is easily checked when m = 1. We have f1 = xF1, so (18) is really the same
as (17). For m > 1 a proof of (18) was given by Mark Wilson [19]. One observes that ℓm
and hm are related by

xℓm(x) = hm(x)− 1,

from which (18) easily follows.
The relation (18) gives a connection between pairs of objects computing hypergraph

Catalan numbers in the spirit of that encoded by (17). Consider m = 2. We have

f2(x) = x+ 3x2 + 24x3 + 267x4 + · · · ,

and
f2(x)

2 = x2 + 6x3 + 57x4 + 678x5 + · · · = x(F2(x)− 1).

We see C
(2)
3 = 57 as the coefficient of x4 in f2(x)

2, which comes from the coefficients of
x, x2, x3 in f2(x) via

57 = 24 · 1 + 3 · 3 + 1 · 24. (19)

This is certainly reminiscent of the classical Catalan relation, although there is an impor-
tant difference. The numbers on the right of (19) are connected with C

(2)
2 , C

(2)
3 , C

(4)
2 , but

they enumerate proper subsets of the associated objects, not the full sets. Indeed, this
is obviously true, since both sides of (19) involve the same number C

(2)
3 ! We have not

attempted to explore this connection further.

5.4

We conclude this section by discussing asymptotics for the C
(m)
n . The results here are

purely experimental; none have been proved, although based on our numerical experiments
we are confident in them. We learned this technique from Don Zagier, who calls it
multiplying by n8; an excellent lecture by him at ICTP demonstrating the method can be
found online [20].

Suppose one has a sequence a = {an}n>0 that one believes satisfies an asymptotic of
the form

an ∼ C0 + C1/n+ C2/n
2 + · · · (n → ∞). (20)

It may be difficult to extract C0 to high precision even when n is large, since C1/n might
still be non-negligible. However it is possible to wash away the contributions of the
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nonconstant terms Ck/n
k, k > 1. One multiplies both sides of (20) by n8 (or any other

reasonable even power of n), and then applies the difference operator (8!)−1∆8 to both
sides, where ∆a is the sequence (∆a)n := an+1 − an. The operator ∆k annihilates any
polynomial p(n) of degree < k, takes nk to k!, and takes n−l to a rational function in n
of degree −l − k.4 Let b = {bn} be the sequence resulting from multiplying an by n8/8!
and applying the difference operator ∆ eight times. Then we have

bn ∼ C0 + C9p−9(n) + C10p−10(n) + · · · , (21)

where p−k(n) denotes a rational function in n of degree −k. If one then evaluates the left
of (21) at a large value of n, the effects of Ck, k > 9 are negligible on the right and one
clearly sees C0. One can then repeat the process with the sequence n(an−C0) to find C1,
and so on.

5.5

We illustrate with the series F2(x) = 1 + x+ 6x2 + 57x3 + 678x4 + · · · . Playing with the
data one makes the ansatz

C(2)
n ∼ KAn n!nρ (22)

for some constants K,A, ρ. Indeed, apart from the n!, the right of (22) is typical for these
kinds of problems, and was our initial guess; it quickly became evident that n! needed to
be included. The series

an := C(2)
n /n!

should then appear to grow exponentially, and the sequence of ratios {an/an−1} should
satisfy (20) with C0 = A. Indeed, using 100 terms of F2 and ∆16 we get

A ≈ 2.0000000000068961809 · · · .

Next we consider the sequence
an := C(2)

n /(2n n!),

which we expect to be asymptotic to Knρ. We can detect ρ using the sequence bn =
(∆ log a)n/(log(n + 1)− log n), which satisfies (20) with C0 = −ρ. Again with 100 terms
and ∆16 we get

−ρ ≈ 0.499999997726715 · · · .
Hence we have

C(2)
n ∼ K · 2

n n!√
n

and we must find the constant K. We consider bn = C
(2)
n

√
n/2nn! and look for C0. This

time finding K is more difficult. Taking 200 terms and applying ∆16, this number appears

4Here the degree of a rational function P/Q in one variable means degP − degQ.
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to be 5.05704458036912766 · · · . We use the Inverse Symbol Calculator [2], which attempts
to symbolically reconstruct a given real number using various techniques, and find

K ≈ 2e3/2/
√
π.

(The e3/2 is surprising, but is apparently correct. Using 600 terms of the sequence, we
find that K

√
π/2 agrees with e3/2 with relative error < 10−76.) The conclusion is

C(2)
n

?∼ e3/2 · 2
n+1 n!√
πn

, (n → ∞).

We present asymptotics for the C
(m)
n as a conjecture:

Conjecture 11. Let m > 1. Then as n → ∞, we have

C(m)
n ∼ Km ·

(

mm−1

(m−1)!

)n+1
(n!)m−1

(πn)(m−1)/2
,

where the constant Km is defined by

Km =











e3/2 if m = 2,

2
(

2
2

)(

4
2

)

· · ·
(

m−1
2

)

/m(2m−3)/2 if m > 3 and is odd, and√
2
(

3
2

)(

5
2

)

· · ·
(

m−1
2

)

/m(2m−3)/2 if m > 4 and is even.

Remark 12. We have tested Conjecture 11 numerically using 100 terms of Fm(x) for
all m 6 30. We have not systematically tried to find higher terms in the asymptotic
expansion of C

(m)
n , as in (20).

6 Connection with matrix models

6.1

We finish by explaining how the numbers C
(m)
n are related to hypergraphs and matrix

models [5]. We first explain the connection between graphs, matrix models, and the usual
Catalan numbers. For more information, we refer to Harer–Zagier [9], Etingof [6, §4],
Lando–Zvonkin [10], and Eynard [7].

6.2

Let dµ2(x) be the measure on polynomial functions on R with moments

〈xr〉2 :=
∫

R

xrdµ2(x) = W2(r),

where W2(r) is the number of pairings on a set of size r. It is well-known that dµ2(x) is
essentially the Gaussian measure, up to normalization: we have

〈xr〉2 = (2π)−1/2

∫

R

xre−x2/2 dx,

the electronic journal of combinatorics 28(1) (2021), #P1.52 24



where dx is the usual Lebesgue measure on R.
Let g1, g2, . . . be a family of indeterminates, and let S(x) be the formal power series

∑

r>1 grx
r/r!. We can compute the expectation 〈exp(S(tx))〉2 as a formal power series in

t with coefficients in the polynomial ring Q[g1, g2, . . . ]. We have

〈expS(tx)〉2 = 1 + A2t
2/2 + A4t

4/8 + A6t
6/48 + · · · (23)

where

A2 = g21 + g2, A4 = g41 + 6g21g2 + 4g1g3 + 3g22 + g4,

A6 = g61 + 15g41g2 + 20g31g3 + 45g21g
2
2 + 15g21g4

+ 60g1g2g3 + 6g1g5 + 15g32 + 15g2g4 + 10g23 + g6.

The series (23) can be interpreted as a generating function for graphs weighted by the
inverse of the orders of their automorphism groups (cf. [6, Theorem 3.3]). Let n =
(n1, n2, . . . ) be a vector of nonnegative integers, with ni nonzero only for finitely many i.
Let |n| = ∑

ni. We say a graph γ has profile n if it has ni vertices of degree i. Let G(n) be
the set of all graphs of profile n, up to isomorphism (we allow loops and multiple edges).
By an automorphism of a graph, we mean a self-map that permutes edges and vertices.
In particular, automorphisms include permuting multiedges between two vertices, and
flipping loops at a vertex (exchanging the two half-edges emanating from the vertex that
form the loop). For any γ ∈ G(n), let Γ(γ) be its automorphism group. Then we have

〈expS(tx)〉2 =
∑

n

t|n|
∑

γ∈G(n)

∏

i g
ni

i

|Γ(γ)| .

For example, consider the term 5g23/24 from A6 in (23). There are two graphs with this
profile, shown in Figure 13. The left has 2 · 2 · 2 automorphisms, and the right has 2 · 3!,
which gives 1/8 + 1/12 = 5/24.

Figure 13: The two graphs with profile g23.

6.3

Now we want to replace the Gaussian measure, which is connected to counting pair-
ings of a set, with something that is connected to the numbers W2m(r), which count set
partitions of [[r]] with blocks of size 2m. Let dµ2m(x) be the “measure” on polynomial
functions on R that gives the monomial xr the expectation W2m(r). More precisely, we
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consider the function taking xr to W2m(r) and extend linearly to polynomials. This is
not a measure in the usual sense, although formally we can regard it as such. The “ex-
pectation” 〈expS(tx)〉2m is then a well-defined power series in t, and has a combinatorial
interpretation via hyperbaggraphs.

Recall that a hypergraph on a vertex set V — a notion due to Berge [1] — is a collection
of subsets of V , called the hyperedges. The degree of a vertex is the number of hyperedges
it belongs to, and a hypergraph is regular if these numbers are the same for all vertices.
The order of a hyperedge is its number of vertices. If all hyperedges have the same order,
we say that the hypergraph is uniform.

Now suppose we allow V to be a multiset, in other words a set with a multiplicity
map V → Z>1. Then these constructions lead to hyperbaggraphs, due to Ouvrard–Le
Goff–Marchand-Maillet [13].(5) We extend the notions of regularity and uniformity above
by incorporating the multiplicity in an obvious way (the order of a subset of a multiset is
sum of the multiplicities of its elements).

With these definitions, the expectation 〈expS(tx)〉2m now enumerates uniform hyper-
baggraphs of all profiles weighted by the inverses of their automorphism groups, where
each hyperedge has 2m elements. For example,

〈expS(tx)〉4 = 1 +B4t
4/24 +B8t

8/1152 + · · · (24)

where

B4 = g41 + 6g21g2 + 4g1g3 + 3g22 + g4, B8 = g81 + 28g61g2 + 56g51g3 + · · ·+ 35g24 + g8.

The computation of the contribution 35g24/1152 from B8 in (24) is as follows. There
are three hyperbaggraphs of this profile, each with two hyperedges. The underlying set
of vertices has 2 elements a, b, and we represent a hyperedge by a monomial in these
variables. The profile g24 means that each vertex has degree 4, and since 2m = 4 we must
have uniformity 4. Thus we want pairs of monomials in a, b of total degree 4. This gives

{a4, b4}, {a3b, ab3}, {a2b2, a2b2}. (25)

The orders of the automorphism groups are

2 · (4!)2, 2 · (3!)2, 2 · 2 · (2!)2(2!)2. (26)

For example, the automorphisms of the last hyperbaggraph come from interchanging the
vertices, interchanging the two hyperedges, and the internal flips within the hyperedges;
the last type of automorphism cannot occur for graphs. Adding the inverses of these
orders, one finds 1/1152 + 1/72 + 1/64 = 35/1152, which agrees with B8 above.

As a final remark, we note that A4 = B4. This is a general phenomenon: one can
show that the coefficient of tn in 〈expS(tx)〉2m is the complete exponential Bell polynomial
Yn(g1, . . . , gn), divided by (2m)!d d!, where d = n/2m. We refer to [3, p. 134, eqn. 3b]
for the definition of these; the coefficients of the Yn can be found on OEIS as sequence
A178867.

5In the CS literature, multisets are sometimes called bags.
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6.4

Now we pass to matrix models. Let V = VN be the real vector space of N ×N complex
Hermitian matrices. The space V has real dimension N2. For any polynomial function
f : V → R, define

〈f〉 = C−1

∫

V

f(X) exp(−TrX2/2) dX, (27)

where Tr(X) =
∑

iXii is the sum of diagonal entries and the constant C is determined
by the normalization 〈1〉 = 1. The measure exp(−TrX2/2) dX is essentially the product
of the Gaussian measures dµ2(x) from §6.2 taken over the real coordinates of V . The
only difference is that for any off-diagonal entry Zij = Xij +

√
−1Yij , we have rescaled

the measure so that for even r we have
〈

Xr
ij

〉

2
=

〈

Y r
ij

〉

2
= W2(r)/2

r/2.
Now consider (27) evaluated on the polynomial given by taking the trace of the rth

power:
P (N, r) = 〈TrXr〉 . (28)

For r odd (28) vanishes for all N . On the other hand, for r even and N fixed, it turns
out that P (N, r) is an integer, and as a function of N is a polynomial of degree r/2 + 1
with integral coefficients.

Furthermore, the number P (N, r) has the following remarkable combinatorial inter-
pretation. Let Πr be a polygon with r sides. Any pairing π of the sides of Πr determines
a topological surface Σ(π) endowed with an embedded graph (the images of the edges
and vertices of Πr). Let v(π) be the number of vertices in this embedded graph. Then we
have

P (N, r) =
∑

π

Nv(π), (29)

where the sum is taken over all oriented pairings of the edges of Πr such that the resulting
topological surface Σπ is orientable. For example, we have

P (N, 0) = N,P (N, 2) = N2, P (N, 4) = 2N3 +N,

P (N, 6) = 5N4 + 10N2, P (N, 8) = 14N5 + 70N3 + 21N. (30)

The pairings yielding P (N, 4) are shown in Figure 14.

N3N3N

Figure 14: Computing P (N, 4) = 2N3 +N .
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6.5

One can see from (30) that the leading coefficient of P (N, r) is none other than the
Catalan number Cr/2. This follows easily from the interpretation of the Catalan numbers
in terms of polygon gluings ((vi) from §4.7). Indeed, the leading coefficient counts the
number of oriented pairings of Πr such that the number of vertices v(π) in the orientable
surface Σr is maximal ; this is exactly the interpretation above.

6.6

Now we modify the matrix model. We replace the Gaussian measure

exp(−TrX2/2) dX

by the product of the formal measures dµ2m(x) taken over the real coordinates; again
we rescale on the off-diagonal coordinates so that for r ≡ 0 mod 2m we have

〈

Xr
ij

〉

2m
=

〈

Y r
ij

〉

2m
= W2m(r)/2

r/(2m). We write the corresponding formal measure by dµ2m(X).
Then we obtain a new matrix model where polygons are glued by grouping their edges
into subsets of size 2m instead of pairs. As above one can see that for r ≡ 0 mod 2m, the
integrals

∫

V

TrXr dµ2m(X) (31)

are polynomials P2m(N, r) in the dimension N . For example, when 2m = 4 we have

P4(N, 4) = N2, P4(N, 8) = 6N3 + 21N2 + 8N,

P4(N, 12) = 57N4 + 715N3 + 2991N2 + 2012N.

The hypergraph Catalan numbers C
(m)
r are the leading coefficients of these polynomials:

we have
P2m(N, 2mr) = C(m)

r N r+1 + · · · .
A direct computation with the definition (31) shows that these numbers are computed
via Definition 3. For more details about these matrix models and the geometry of the
polynomials P2m(N, 2mr), see [5].
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