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Abstract

Let G be a graph on the vertex set V = {0, 1, . . . , n} with root 0. Postnikov
and Shapiro were the first to consider a monomial ideal MG, called the G-parking
function ideal, in the polynomial ring R = K[x1, . . . , xn] over a field K and explained
its connection to the chip-firing game on graphs. The standard monomials of the
Artinian quotient R

MG
correspond bijectively to G-parking functions. Dochtermann

introduced and studied skeleton ideals of the graph G, which are subideals of the G-
parking function ideal with an additional parameter k (0 6 k 6 n−1). A k-skeleton

idealM(k)
G of the graph G is generated by monomials corresponding to non-empty

subsets of the set of non-root vertices [n] of size at most k + 1. Dochtermann ob-
tained many interesting homological and combinatorial properties of these skeleton
ideals. In this paper, we study the k-skeleton ideals of graphs and for certain classes
of graphs provide explicit formulas and combinatorial interpretation of standard
monomials and the Betti numbers.

Mathematics Subject Classifications: 05E40, 13D02

1 Introduction

Let G be a graph on the vertex set V = {0, 1, . . . , n} with a root 0. The graph G is
completely determined by a symmetric (n+ 1)× (n+ 1) matrix A(G) = [aij]06i,j6n, called
its adjacency matrix, where aij is the number of edges from i to j. Let R = K[x1, . . . , xn]
be the standard polynomial ring in n variables over a field K. The G-parking function
ideal MG of G is a monomial ideal in R given by the generating set

MG = 〈mA : ∅ 6= A ⊆ [n] = {1, . . . , n}〉 ,
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where mA =
∏

i∈A x
dA(i)
i and dA(i) =

∑
j∈V \A aij is the number of edges from i to a vertex

outside the set A in G. The standard monomial basis {xb =
∏n

i=1 x
bi
i } of the Artinian

quotient R
MG

is determined by the set

PF(G) = {b = (b1, . . . , bn) ∈ Nn : xb /∈MG}

of G-parking functions. Further, dimK

(
R
MG

)
is the number of spanning trees of G, given

by the determinant det(LG) of the reduced Laplacian matrix LG of G. Let SPT(G) be the
set of spanning trees of G. The edges of a spanning tree of G are given orientation so that
all paths in the spanning tree are directed away from the root. As |PF(G)| = |SPT(G)|,
one would like to construct an explicit bijection φ : PF(G)→ SPT(G). Using the Depth-
First-Search version of burning algorithm, an algorithmic bijection φ : PF(G)→ SPT(G)
for simple graphs G, preserving reverse sum rsum(P) of G-parking function P and the
number κ(G, φ(P)) of κ-inversions of the spanning tree φ(P), is constructed by Perkinson,
Yang and Yu [13]. A similar bijection for multigraphs G is constructed by Gaydarov and
Hopkins [5].

Postnikov and Shapiro [15] introduced the G-parking function ideal MG and derived
many of its combinatorial and homological properties. In particular, they showed that
the cellular free complex supported on the first barycentric subdivision Bd(∆n−1) of an
(n − 1)-simplex ∆n−1 is a free resolution of MG. Further, the cellular resolution of MG

is minimal, provided the graph G is saturated (i.e., aij > 0 for i 6= j). The minimal
resolution of the parking function ideal MG for any graph G is described in [2, 10, 12].

In a series of papers, Dochtermann [3, 4] introduced and studied subideals of the
G-parking function ideal MG described by k-dimensional ‘skeleta’. For an integer k
(0 6 k 6 n− 1), the k-skeleton ideal M(k)

G of the graph G is defined as the subideal

M(k)
G = 〈mA : ∅ 6= A ⊆ [n]; |A| 6 k + 1〉

of the monomial idealMG. For k = 0, the idealM(0)
G is generated by powers of variables

x1, . . . , xn. Hence, its minimal free resolution and the number of standard monomials
can be easily determined. For k = 1 and G = Kn+1, the minimal resolution of the

one-skeleton ideal M(1)
Kn+1

is a cocellular resolution supported on the labelled polyhedral
complex induced by any generic arrangement of two tropical hyperplanes in Rn and the
ith Betti number

βi

(
R

M(1)
Kn+1

)
=

n∑
j=1

j

(
j − 1

i− 1

)
for 1 6 i 6 n− 1

(see [3]). Also, the number of standard monomials of R

M(1)
Kn+1

is given by

dimK

(
R

M(1)
Kn+1

)
= (2n− 1)(n− 1)n−1 = det(QKn+1),
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where QKn+1 is the reduced signless Laplacian matrix of Kn+1.

In this paper, we determine all the Betti numbers of the k-skeleton ideal M(k)
Kn+1

of the complete graph Kn+1. The crucial observation is an identification of the ideal

M(k)
Kn+1

with an Alexander dual of some multipermutohedron ideal. We first describe a
permutohedron and an associated permutohedron ideal. Let u = (u1, u2, . . . , un) ∈ Nn
such that u1 < u2 < · · · < un and let Sn be the set of permutations of [n]. For a
permutation σ of [n], let σu = (uσ(1), . . . , uσ(n)) and xσu =

∏n
i=1 x

uσ(i)

i . The convex
hull of all permutations σu of u in Rn is an (n − 1)-dimensional polytope P(u), called
a permutohedron. Also, the monomial ideal I(u) = 〈xσu : σ ∈ Sn〉 of R is called a
permutohedron ideal. If some coordinates of u = (u1, u2, . . . , un) are allowed to be equal,
then the polytope P(u) is called a multipermutohedron and the monomial ideal I(u) is
called a multipermutohedron ideal.

The multigraded Betti numbers of multipermutohedron ideals are described in [7].
Also, a combinatorial description of multigraded Betti numbers of Alexander duals of
multipermutohedron ideals is given in [8]. Now from the identification ofM(k)

Kn+1
with an

Alexander dual of some multipermutohedron ideal, we obtain a combinatorial expression

for the (i− 1)th Betti number βi−1

(
M(k)

Kn+1

)
(Theorem 12). In particular, for n > 3, we

show that βi−1

(
M(1)

Kn+1

)
= i
(
n+1
i+1

)
and βi−1

(
M(n−2)

Kn+1

)
as in Corollary 13.

The main object of study in this paper are spherical G-parking functions. A finite
sequence P = (p1, . . . , pn) ∈ Nn is called a G-parking function if xP =

∏n
i=1 x

pi
i /∈MG, on

the other hand, the sequence P = (p1, . . . , pn) is called a spherical G-parking function if

xP ∈MG\M(n−2)
G . A G-parking or a spherical G-parking function P = (p1, . . . , pn) ∈ Nn

can be equivalently thought of as a function P : [n] → N with P(i) = pi (1 6 i 6 n).
The sum (or degree) of P is given by sum(P) =

∑
i∈[n]P(i). Let

PF(G) = {P ∈ Nn : xP /∈MG} and sPF(G) = {P ∈ Nn : xP ∈MG \M(n−2)
G }

be the sets of G-parking functions and spherical G-parking functions, respectively. The
standard monomials of R

M(n−2)
G

are of the form xP for P ∈ PF(G) or P ∈ sPF(G). Thus,

dimK

(
R

M(n−2)
G

)
= dimK

(
R

MG

)
+ dimK

(
MG

M(n−2)
G

)
= |PF(G)|+ |sPF(G)|.

A notion of spherical Kn+1-parking functions is introduced in [4]. We recall that a
Kn+1-parking function P = (p1, . . . , pn) ∈ Nn is an ordinary parking function of length
n, i.e., a non-decreasing rearrangement pi1 6 pi2 6 · · · 6 pin of P = (p1, . . . , pn) satisfies
pij < j, for all j. It can be easily checked that P = (p1, . . . , pn) ∈ Nn is a spherical
Kn+1-parking function if a non-decreasing rearrangement pi1 6 pi2 6 · · · 6 pin of P =
(p1, . . . , pn) satisfies pi1 = 1 and pij < j for 2 6 j 6 n. The notion of spherical Kn+1-
parking function has appeared earlier in the literature (see [16]) as prime parking functions
of length n. Prime parking functions were defined and enumerated by Ira Gessel. The
number of spherical Kn+1-parking functions is (n−1)n−1, which is same as the number of
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uprooted trees on the vertex set [n]. A (labelled) rooted tree T on the vertex set [n] is called
uprooted if the root is bigger than all its children. Let Un be the set of uprooted trees on
the vertex set [n]. Dochtermann conjectured existence of a bijection φn : sPF(Kn+1)→ Un
such that sum(P) =

(
n
2

)
− κ(Kn, φn(P)) + 1, where κ(Kn, φn(P)) is the κ-number of the

uprooted tree φn(P) in the complete graph Kn = Kn+1 − {0} on the vertex set [n].
For a simple graph G on the vertex set V whose root 0 is connected to all other

vertices, we construct an injective map φG : sPF(G) → U(G′), where G′ = G − {0} and
U(G′) is the set of uprooted spanning trees of G′. Moreover, the injective map φG satisfies

sum(P) = g(G)− κ(G′, φG(P)) + 1 for all P ∈ sPF(G),

where g(G) is the genus of the graph G (Theorem 20). We have determined the image
of φG for many simple graphs G. In particular, we show that the map φKn+1 = φn :
sPF(Kn+1) → Un is a bijection and establish a conjecture of Dochtermann on spherical
Kn+1-parking functions.

If e is an edge of G, then G−{e} is the graph obtained from G by deleting the edge e.
We show that |sPF(G)| = |sPF(G−{e0})| (Lemma 17), where e0 is an edge from the root
to another vertex. As an application, we observe that |sPF(Km+1,n)| = |sPF(Kn+1,m)| for
complete bipartite graphs (Proposition 33). If e1 is an edge in the complete graph Kn+1,
not through the root, we show that |sPF(Kn+1 − {e1})| = (n − 1)n−3(n − 2)2 (Theorem
31). In this case, spherical (Kn+1 − {e1})-parking functions correspond bijectively with
some specified subset of uprooted trees on the vertex set [n] (Theorem 23).

Some extensions of these results for the complete multigraph Ka,b
n+1 and the complete

bipartite multigraph Ka,b
m+1,n (a, b > 1) are also obtained.

Remark 1. This paper is motivated by [3] and an earlier version of [4] posted on the arXiv.
In the new version of [4], Dochtermann and King identify the standard monomials of k-

skeleton idealsM(k)
Kn+1

with the vector parking functions and using a Breadth-First-Search
burning algorithm, they construct a bijection from spherical Kn+1-parking functions to
uprooted spanning trees of Kn that takes degree to an inversion statistic. In this paper,
we obtain the standard monomials and the Betti numbers ofM(k)

Kn+1
by identifying it with

an Alexander dual of some multipermutohedron ideal. For constructing bijection, we use
a Depth-First-Search variant of burning algorithm.

2 Parking functions and Depth-First-Search algorithms

In this section, we briefly describe some known results on parking functions and the Depth-
First-Search algorithms. Most of the known results are stated without proof. These results
and notions will be used in the subsequent sections of this paper.

2.1 Parking functions

A sequence P = (p1, . . . , pn) ∈ Nn is called an ordinary parking function of length n, if a
non-decreasing rearrangement pi1 6 pi2 6 · · · 6 pin of P satisfies pij < j for 1 6 j 6 n.
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We denote the set of ordinary parking functions of length n by PF(n). The notion of
ordinary parking function has a nice generalization.

Definition 2. Let λ = (λ1, . . . , λn) ∈ Nn with λ1 > λ2 > · · · > λn > 1. A finite sequence
P = (p1, . . . , pn) ∈ Nn is called a λ-parking function of length n, if a non-decreasing
rearrangement pi1 6 pi2 6 · · · 6 pin of P satisfies pij < λn−j+1 for 1 6 j 6 n. Let PF(λ)
be the set of λ-parking functions.

Clearly, the ordinary parking functions of length n are precisely λ-parking functions
of length n for λ = (n, n− 1, . . . , 2, 1) ∈ Nn. The number of λ-parking functions is given
by the ‘so-called’ Steck determinantal formula (see [14]). Let

Λ(λ1, . . . , λn) =

[
λj−i+1
n−i+1

(j − i+ 1)!

]
16i,j6n

.

In other words, the (i, j)th entry of the n × n matrix Λ(λ1, . . . , λn) is
λj−i+1
n−i+1

(j−i+1)!
, where by

convention, 1
(j−i+1)!

= 0 for i > j+1. The determinant det(Λ(λ1, . . . , λn)) is called a Steck
determinant.

Theorem 3 (Pitman-Stanley). The number of λ-parking functions is given by

|PF(λ)| = (n!) det(Λ(λ1, . . . , λn)) = n! det

[
λj−i+1
n−i+1

(j − i+ 1)!

]
16i,j6n

.

For λ = (λ1, . . . , λn) ∈ Nn with λ1 > λ2 > · · · > λn > 1, Postnikov and Shapiro [15]
considered the monomial ideal

Mλ =

〈(∏
j∈A

xj

)λ|A|

: ∅ 6= A ⊆ [n]

〉

in the polynomial ring R = K[x1, . . . , xn]. A monomial xb =
∏n

j=1 x
bj
j /∈ Mλ is called a

standard monomial of R
Mλ

orMλ. Clearly, xb =
∏n

j=1 x
bj
j is a standard monomial ofMλ

if and only if b = (b1, . . . , bn) ∈ PF(λ). In other words, a monomial basis of the K-vector
space R

Mλ
correspond bijectively with the λ-parking functions.

Theorem 4 (Pitman-Stanley, Postnikov-Shapiro). The dimension of R
Mλ

is given by

dimK

(
R

Mλ

)
= |PF(λ)| =

∑
(b1,...,bn)∈PF(n)

n∏
i=1

(λn−bi − λn−bi+1) ,

where the summation runs over ordinary parking functions of length n and λn+1 = 0.

A closed formula for the number of λ-parking functions for various specific values of λ
is given in [14, 17]. For more on parking functions, we refer to an excellent survey article
by Yan [18].
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2.2 Graph theoretic notions and G-parking functions

Let G be a connected graph on the vertex set V (G) = V = {0, 1, . . . , n}. Suppose
A(G) = [aij]06i,j6n is the (symmetric) adjacency matrix of G. We assume that G is a
loopless graph, i.e., aii = 0 for all i. Let E(i, j) = E(j, i) be the set of edges between
distinct pair of vertices i, j ∈ V . If E(i, j) 6= ∅, then i and j are called adjacent vertices
and we write i ∼ j. On the other hand, if i and j are non-adjacent, we write i � j.
We have |E(i, j)| = aij. The graph G is called a simple graph if |E(i, j)| = aij 6 1 for
i, j ∈ V . Otherwise, G is called a multigraph. The set E(G) =

⋃
i,j∈V E(i, j) is the set of

edges of G.
If v ∈ V , then G− {v} denotes the graph on the vertex set V \ {v} obtained from G

by deleting the vertex v and all the edges through v. If e ∈ E(G) is an edge of G, then
G − {e} denotes the graph on the vertex set V obtained from G by deleting the edge e.
If E(i, j) 6= ∅, then G − E(i, j) denotes the graph on vertex set V obtained from G on
deleting all the edges between i and j.

Fix a root r ∈ V of G (usually, we take r = 0). Set Ṽ = V \ {r}. Let SPT(G) be the
set of spanning trees of G rooted at r. We orient spanning tree T ∈ SPT(G) so that all

paths in T are directed away from the root r. For every j ∈ Ṽ , there is a unique oriented
path in T from the root r to j. An i ∈ Ṽ lying on this unique path in T is called an
ancestor of j in T . Equivalently, we say that j is a descendent of i in T . If in addition, i
and j are adjacent in T , then we say that i is a parent of its child j. Every child j has a
unique parent parT (j) in T .

Definition 5. By an inversion of T ∈ SPT(G), we mean an ordered pair (i, j) of vertices
such that i is an ancestor of j in T with i > j. The total number of inversions of a
spanning tree T is denoted by inv(T ). An inversion (i, j) of T is called a κ-inversion of
T if i is not the root r and parT (i) is adjacent to j in G.

The invariant g(G) = |E(G)| − |V (G)| + 1 is called the genus of the graph G. The
κ-number κ(G, T ) of T in G is given by

κ(G, T ) =
∑
i,j∈Ṽ ;
i>j

|E(parT (i), j)|.

For a simple graph G, the total number of κ-inversions of T is κ(G, T ). If G = Kn+1 with
root 0, then κ(Kn+1, T ) = inv(T ) for every T ∈ SPT(Kn+1).

Definition 6. Let G be a graph on the vertex set V = {0, 1, . . . , n} with the adjacency

matrix A(G) = [aij]06i,j6n. Let r ∈ V be the root of G and Ṽ = V \ {r}. A function

P : Ṽ → N is called a G-parking function (with respect to the root r) if for every non-

empty set A ⊆ Ṽ , there exists i ∈ A such that P(i) < dA(i) =
∑

j∈V \A aij.

Note that, if root r = 0, then P is a G-parking function if and only if xP /∈ MG,
i.e., xP is a standard monomial of the G-parking function ideal MG. For a G-parking
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function P : Ṽ → N, the sum sum(P) and the reverse sum rsum(P) of P are respectively
given by

sum(P) =
∑
i∈Ṽ

P(i) and rsum(P) = g(G)− sum(P) = g(G)−
∑
i∈Ṽ

P(i).

Definition 7. A rooted tree on the vertex set [n] is called an uprooted tree if the root is
bigger than all its children.

Let Un be the set of uprooted trees on the vertex set [n]. Then it is well known that
|Un| = (n − 1)n−1. For certain graphs G on the vertex set V , we shall show that the
spherical G-parking functions correspond to uprooted spanning trees of G′ = G− {0}.

2.3 Depth-First-Search Algorithms

We now describe the Depth-First-Search burning algorithm of Perkinson-Yang-Yu [13] for
simple graphs. Let G be a simple graph on the vertex set V with a root r ∈ V . Applied
to an input function P : V \ {r} → N, the Depth-First-Search algorithm of Perkinson-
Yang-Yu [13] gives a subset burnt vertices of burnt vertices and a subset tree edges

of tree edges as an output. We imagine that a fire starts at the root r and spread to other
vertices of G according to the depth-first rule. The value P(j) of the input function P can
be considered as the number of water droplets available at vertex j that prevents spread
of fire to j. If i is a burnt vertex, then consider the largest non-burnt vertex j adjacent
to i. If P(j) = 0, then fire from i will spread to j. In this case, add j in burnt vertices

and include the edge (i, j) in tree edges. Now the fire spreads from the burnt vertex
j. On the other hand, if P(j) > 0, then one water droplet available at j will be used to
prevent fire from reaching j through the edge (i, j). In this case, the dampened edge (i, j)
is removed from G, number of water droplets available at j is reduced to P(j) − 1 and
the fire continue to spread from the burnt vertex i through non-dampened edges. If all
the edges from i to unburnt vertices get dampened, then the search backtracks. At the
start, burnt vertices = {r} and tree edges = {}.

Perkinson, Yang and Yu [13] constructed a bijection φ : PF(G)→ SPT(G) using their
Depth-First-Search algorithm.

Theorem 8 (Perkinson-Yang-Yu). Let G be a simple graph on the vertex set V with
root r. After applying Depth-First-Search burning algorithm to P : V \ {r} → N, if
burnt vertices = V , then P is a G-parking function and tree edges in the set tree edges

form a spanning tree φ(P) of G. If burnt vertices 6= V , then P is not a G-parking
function. Further, the mapping P 7→ φ(P) given by the Depth-First-Search algorithm
induces a bijection φ : PF(G)→ SPT(G) such that

rsum(P) = g(G)− sum(P) = κ(G, φ(P)) for all P ∈ PF(G).
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Let
∑
P∈PF(G) q

rsum(P) be the reversed sum enumerator for G-parking functions. The-
orem 8 establishes the identity∑

P∈PF(G)

qrsum(P) =
∑

T∈SPT(G)

qκ(G,T ),

that extends a similar identity obtained by Kreweras [6] for the complete graph Kn+1.
We now describe the Depth-First-Search burning algorithm of Gaydarov-Hopkins [5]

for multigraphs. Consider a connected multigraph G on the vertex set V with root
r. Let E(i, j) = E(j, i) be the set of edges between distinct pair of vertices i and j.
Fix a total order on E(i, j) for all distinct pairs {i, j} of vertices and write E(i, j) =

{e0
ij, e

1
ij, . . . , e

aij−1
ij }, where |E(i, j)| = aij. Thus we assume that edges of the multigraph

G are labelled. Applied to an input function P : V \ {r} → N, the Depth-First-Search
algorithm for multigraphs gives a subset burnt vertices of burnt vertices and a subset
tree edges of tree edges with nonnegative labels on them as an output. As in the case of
Depth-First-Search algorithm for simple graphs, we imagine that a fire starts at the root
r and spread to other vertices of G according to the depth-first rule. If i is a burnt vertex,
then consider the largest non-burnt vertex j adjacent to i. If P(j) < aij = |E(i, j)|, then

P(j) edges with higher labels, namely e
aij−1
ij , . . . , e

aij−P(j)
ij will get dampened, the edge

e
aij−P(j)−1
ij with label aij − P(j) − 1 will be added to tree edges and j in included in
burnt vertices. Now fire will spread from the burnt vertex j. On the other hand, if
P(j) > aij, then all the edges in E(i, j) get dampened and P(j) reduced to P(j) − aij.
The fire continue to spread from the burnt vertex i through non-dampened edges. If all
the edges from i to unburnt vertices get dampened, then the search backtracks. At the
start, burnt vertices = {r} and tree edges = {}. Gaydarov and Hopkins [5] extended
Theorem 8 to multigraphs using the Depth-First-Search burning algorithm for multigraph.

Theorem 9 (Gaydarov-Hopkins). Let G be a multigraph on V with root r. After applying
Depth-First-Search burning algorithm to P : V \ {r} → N, if burnt vertices = V , then
P is a G-parking function and tree edges with labels in the set tree edges form a labelled
spanning tree φ(P) of G. If burnt vertices 6= V , then P is not a G-parking function.
Suppose `(e) is the label on an edge e of φ(P). Then the mapping P 7→ φ(P) given by
Depth-First-Search burning algorithm induces a bijection φ : PF(G)→ SPT(G) such that

rsum(P) = κ(G, T ) +
∑

e∈E(T )

`(e) for all P ∈ PF(G), where T = φ(P).

The bijective map induced by the Depth-First-Search algorithms is always denoted by
φ in this paper ignoring its dependence on the graph and the root.

the electronic journal of combinatorics 28(1) (2021), #P1.53 8



3 k-skeleton ideals of complete graphs

Let 0 6 k 6 n− 1. Consider the k-skeleton ideal M(k)
Kn+1

of the complete graph Kn+1 on
the vertex set V = {0, 1, . . . , n}. As stated in the Introduction, we have

M(k)
Kn+1

=

〈(∏
j∈A

xj

)n−|A|+1

: ∅ 6= A ⊆ [n]; |A| 6 k + 1

〉
.

For k = 0, M(0)
Kn+1

= 〈xn1 , . . . , xnn〉 is a monomial ideal in R generated by nth power of
variables. Thus, its minimal free resolution is given by the Koszul complex associated

to the regular sequence xn1 , . . . , x
n
n in R. Also, dimK

(
R

M(0)
Kn+1

)
= nn. For k = n − 1,

M(n−1)
Kn+1

=MKn+1 . The minimal free resolution of the Kn+1-parking function idealMKn+1

is the cellular resolution supported on the first barycentric subdivision Bd(∆n−1) of an
n− 1-simplex ∆n−1 and

dimK

(
R

MKn+1

)
= |PF(Kn+1)| = |SPT(Kn+1)| = (n+ 1)n−1.

For k = 1, the 1-skeleton ideal M(1)
Kn+1

has a minimal cocellular resolution supported
on the labelled polyhedral complex induced by any generic arrangement of two tropical

hyperplanes in Rn−1 (see Theorem 4.6 of [3]) and dimK

(
R

M(1)
Kn+1

)
= (2n− 1)(n− 1)n−1.

3.1 Betti numbers of M(k)
Kn+1

We now express the k-skeleton ideal M(k)
Kn+1

of Kn+1 as an Alexander dual of a multi-
permutohedron ideal. Let u = (u1, u2, . . . , un) ∈ Nn such that u1 6 u2 6 . . . 6 un. Set
m = (m1, . . . ,ms) such that the smallest entry in u is repeated exactly m1 times, second
smallest entry in u is repeated exactly m2 times, and so on. Then

∑s
j=1mj = n and

mj > 1 for all j. In this case, we write u(m) for u. The monomial ideal I(u(m)) =
〈xσu(m) : σ ∈ Sn〉 of R is called a multipermutohedron ideal. If m = (1, . . . , 1) ∈ Nn, then
I(u(m)) is a permutohedron ideal.

Let u(m) = (1, 2, . . . , k, k + 1, . . . , k + 1) ∈ Nn, where m = (1, . . . , 1, n − k) ∈ Nk+1.
For k = 0, u(m) = (1, . . . , 1) ∈ Nn, while for k = n − 1, u(m) = (1, 2, . . . , n) ∈ Nn. Let
I(u(m))[n] be the Alexander dual of the multipermutohedron ideal I(u(m)) with respect
to n = (n, . . . , n) ∈ Nn.

Theorem 10. For 0 6 k 6 n− 1, M(k)
Kn+1

= I(u(m))[n].

Proof. Using Proposition 5.23 of [11], it follows from the Lemma 2.3 of [8].

Let b = (b1, . . . , bn) ∈ Nn. The (i − 1)th multigraded Betti number βi−1,b(M(k)
Kn+1

) of

M(k)
Kn+1

in degree b is given by

βi−1,b(M(k)
Kn+1

) = dimK H̃
|Supp(b)|−i−1

(
Kb(M(k)

Kn+1
); K

)
for i > 1,
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where Kb(M(k)
Kn+1

) is the lower Koszul simplicial complex of M(k)
Kn+1

in degree b and

Supp(b) = {j : bj > 0} (see Theorem 5.11 of [11]). Since M(k)
Kn+1

= I(u(m))[n], a

combinatorial description of all multidegrees b such that βi−1,b(M(k)
Kn+1

) 6= 0 is given in
terms of dual m-isolated subsets (see Definition 3.1 and Theorem 3.2 of [8]). For the
particular case of m = (1, . . . , 1, n− k) ∈ Nk+1, the notion of dual m-isolated subsets can
be easily described. Let J = {j1, . . . , jt} ⊆ [n] be a non-empty subset with 0 = j0 < j1 <
· · · < jt.

1. J is a dual m-isolated subset of type-1 if J ⊆ [k+1] and its dual weight dwt(J) = t−1.
Let I∗,1m be the set of dual m-isolated subsets of type-1 and let I∗,1m 〈i〉 = {J ∈ I∗,1m :
dwt(J) = i}.

2. J = {j1, . . . , jt} is a dual m-isolated subset of type-2 if J \{jt} ⊆ [k], k+ 1 < jt 6 n
and its dual weight dwt(J) = (t−2)+(jt−k). Let I∗,2m be the set of dual-m isolated
subsets of type-2 and let I∗,2m 〈i〉 = {J ∈ I∗,2m : dwt(J) = i}.

Let I∗m = I∗,1m

∐
I∗,2m be the set of all dual m-isolated subsets and I∗m〈i〉 = I∗,1m 〈i〉

∐
I∗,2m 〈i〉.

Consider λ = (λ1, λ2, . . . , λn) with λi = n − i + 1 for 1 6 i 6 k and λi = n − k for
k+1 6 i 6 n. Let e1, . . . , en be the standard basis vectors of Rn. For 0 6 i < j 6 n, we set
ε(i, j) =

∑j
l=i+1 el. For any J = {j1, . . . , jt} ∈ I∗m, let b(J) =

∑t
α=1 λjα ε(jα−1, jα) ∈ Nn.

We illustrate the concept of dual m-isolated subsets and its relation with multigraded
Betti numbers with an example.

Example 11. Let n = 6 and k = 2. Take u(m) = (1, 2, 3, 3, 3, 3). Then m = (1, 1, 4)
and λ = (6, 5, 4, 4, 4, 4). Consider the multipermutohedron ideal I(u(m)) and the 2-

skeleton ideal M(2)
K6+1

. Set 6 = (6, 6, 6, 6, 6, 6). The Alexander dual I(u(m))[6] =M(2)
K6+1

.
A subset J ⊆ [3] is a dual m-isolated subset of type-1. For example, J = {2} and
J̃ = {1, 3} are dual m-isolated subsets of type-1 with dual weights 0 and 1, respectively.
Also, the associated multidegrees are b(J) = (5, 5, 0, 0, 0, 0) and b(J̃) = (6, 4, 4, 0, 0, 0).

The lower Koszul simplicial complex Kb(M(2)
K6+1

) for b = b(J) or b(J̃) is isomorphic to

the 0-dimensional simplicial complex consisting of two points. Thus β0,b(J)(M(2)
K6+1

) = 1

and β1,b(J̃)(M
(2)
K6+1

) = 1. Further, the subsets J ′ = {4} and J ′′ = {1, 5} are examples
of dual m-isolated subsets of type-2 with dual weights 1 and 3, respectively. We have
b(J ′) = (4, 4, 4, 4, 0, 0) and b(J ′′) = (6, 4, 4, 4, 4, 0). The lower Koszul simplicial com-

plex Kb(J ′)(M(2)
K6+1

) is isomorphic to the 0-skeleton of a 3-simplex, while Kb(J ′′)(M(2)
K6+1

)

is isomorphic to the 1-skeleton of a 3-simplex. Therefore β1,b(J ′)(M(2)
K6+1

) = 3 and

β3,b(J ′′)(M(2)
K6+1

) = 3.

Theorem 12. For b = (b1, . . . , bn) ∈ Nn and 1 6 i 6 n, let βi−1,b

(
M(k)

Kn+1

)
be the

(i− 1)th multigraded Betti number of M(k)
Kn+1

in degree b. Then the following statements
hold.

(i) For J = {j1, . . . , jt} ∈ I∗,1m 〈i− 1〉, βi−1,b(J)

(
M(k)

Kn+1

)
= 1, where t = i.
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(ii) For J = {j1, . . . , jt} ∈ I∗,2m 〈i−1〉, βi−1,b(J)

(
M(k)

Kn+1

)
=
(
jt−jt−1−1
k−jt−1

)
, where t+jt−k =

i+ 1.

(iii) If b = πb(J) is a permutation of b(J) for some J ∈ I∗m〈i − 1〉 and some π ∈ Sn,

then βi−1,b

(
M(k)

Kn+1

)
= βi−1,b(J)

(
M(k)

Kn+1

)
. Otherwise, βi−1,b

(
M(k)

Kn+1

)
= 0.

(iv) The (i− 1)th-Betti number βi−1

(
M(k)

Kn+1

)
of M(k)

Kn+1
is given by,

βi−1

(
M(k)

Kn+1

)
= βi

(
R

M(k)
Kn+1

)
=

∑
J∈I∗,1m 〈i−1〉

βJi−1 +
∑

J̃∈I∗,2m 〈i−1〉

βJ̃i−1,

where βJi−1 =
∏i

α=1

(
jα+1

jα

)
and βJ̃i−1 =

[∏t
α=1

(
lα+1

lα

)] (
lt−lt−1−1
k−lt−1

)
for J = {j1, . . . , ji} ∈

I∗,1m 〈i− 1〉 and J̃ = {l1, . . . , lt} ∈ I∗,2m 〈i− 1〉. Here, ji+1 = lt+1 = n and l0 = 0.

Proof. Since M(k)
Kn+1

= I(u(m))[n], theorem follows from Theorem 3.2 and Corollary 3.4
of [8].

Theorem 12 describes all multigraded Betti numbers ofM(k)
Kn+1

. We hope that it could

be helpful in constructing a concrete minimal resolution of M(k)
Kn+1

.

Corollary 13. Assume that n > 3 and 1 6 i 6 n. Then βi−1

(
M(1)

Kn+1

)
= i
(
n+1
i+1

)
and

βi−1

(
M(n−2)

Kn+1

)
=
∑
j

n!

j1!(j2 − j1)! · · · (n− ji)!
+
∑
`

n!(n− li−2 − 1)

l1!(l2 − l1)! · · · (n− li−2)!
,

where the first and second summations run over all sequences of integers j = (j1, . . . , ji)
with 0 < j1 < · · · < ji < n and ` = (l0, l1, . . . , li−2) with 0 = l0 < l1 < · · · < li−2 < n− 1,
respectively.

Proof. For k = 1, we have m = (1, n − 1) ∈ N2. We can easily see that I∗m〈i − 1〉 =

{{1, i}, {i + 1}} for i > 2 and I∗m〈0〉 = {{1}, {2}}. Thus, β0(M(1)
Kn+1

) = β
{1}
0 + β

{2}
0 =(

n
1

)
+
(
n
2

)
=
(
n+1

2

)
. For i > 2,

βi−1(M(1)
Kn+1

) = β
{1,i}
i−1 + β

{i+1}
i−1 =

(
i

1

)(
n

i

)(
i− 2

0

)
+

(
n

i+ 1

)(
i

1

)
= i

(
n

i

)
+ i

(
n

i+ 1

)
= i

(
n+ 1

i+ 1

)
,

which is same as βi

(
R

M(1)
Kn+1

)
=
∑n

j=1 j
(
j−1
i−1

)
=
∑n

j=1 i
(
j
i

)
= (i)

∑n
j=1

(
j
i

)
= i
(
n+1
i+1

)
ob-

tained in [3].
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For k = n − 2, J = {j1, . . . , ji} ∈ I∗,1m 〈i − 1〉 if and only if J ⊆ [n − 1] and βJi−1 =∏i
α=1

(
jα+1

jα

)
. Also, J̃ = {l1, . . . , lt} ∈ I∗,2m 〈i − 1〉 if and only if lt−1 6 n − 2, lt = n

and t = i − 1. Since, βJ̃i−1 =
[∏i−2

α=1

(
lα+1

lα

)] (
n−li−2−1
n−li−2−2

)
, we get the desired expression for

βi−1

(
M(n−2)

Kn+1

)
.

Consider the first barycentric subdivision Bd(∆n−1) of an n−1-simplex ∆n−1. We con-
struct a polyhedral cell complex Bd(k)(∆n−1) whose vertices are the vertices of Bd(∆n−1)
corresponding to subsets A ⊆ [n] with |A| 6 k + 1. An edge in Bd(k)(∆n−1) corresponds
either to a chain A1 ( A2 ⊆ [n] with |A2| 6 k + 1 or a pair {A,B} of subsets of [n] with
|A| = |B| = k+ 1 and |A\B| = 1. The higher dimensional faces of Bd(k)(∆n−1) are poly-
topes spanned by its edges. A vertex of Bd(k)(∆n−1) corresponding to A with |A| 6 k+ 1

has a natural label
(∏

j∈A xj

)n−|A|+1

. The cellular resolution supported on the polyhe-

dral cell complex Bd(k)(∆n−1) is a non-minimal resolution of M(k)
Kn+1

if 1 6 k 6 n − 2.

The minimal cellular resolution of M(1)
K4+1

constructed in [3] can be obtained by deleting

certain edges of the polyhedral cell complex Bd(1)(∆3).

3.2 Standard monomials of M(k)
Kn+1

A monomial xb =
∏n

j=1 x
bj
j /∈M(k)

Kn+1
is called a standard monomial of R

M(k)
Kn+1

or M(k)
Kn+1

.

Let λ = (λ1, . . . , λn), where λi = n− i+ 1 for 1 6 i 6 k and λj = n− k for k+ 1 6 j 6 n.

We have seen that I(u(m))[n] = M(k)
Kn+1

= Mλ. In view of Theorem 4, the number

of standard monomials of M(k)
Kn+1

is precisely the number of λ-parking functions and

dimK

(
R

M(k)
Kn+1

)
= |PF(λ)| = n! det(Λ(n, n− 1, . . . , n− k + 1, n− k, . . . , n− k)).

More generally, for a, b > 1, we consider the complete multigraph Ka,b
n+1 on the vertex

set V with adjacency matrix A(Ka,b
n+1) = [aij]06i,j6n given by a0,i = ai,0 = a and ai,j = b

for i, j ∈ V \ {0}; i 6= j. In other words, Ka,b
n+1 has exactly a number of edges between

the root 0 and any other vertex i, while it has exactly b number of edges between distinct
non-root vertices i and j. Clearly, K1,1

n+1 = Kn+1. The k-skeleton ideal M(k)

Ka,b
n+1

of Ka,b
n+1 is

given by

M(k)

Ka,b
n+1

=

〈(∏
j∈A

xj

)a+(n−|A|)b

: ∅ 6= A ⊆ [n]; |A| 6 k + 1

〉
.

Let λa,b = (λa,b1 , . . . , λa,bn ), where λa,bi = a+(n−i)b for 1 6 i 6 k and λa,bj = a+(n−k−1)b

for k + 1 6 j 6 n. Then, M(k)

Ka,b
n+1

=Mλa,b and from Theorem 4,

dimK

 R

M(k)

Ka,b
n+1

 = n! det(Λ(λa,b1 , . . . , λa,bn )).
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We proceed to evaluate the Steck determinant and compute the number of standard
monomials of M(k)

Ka,b
n+1

. Consider the polynomial

fn(x) = det(Λ(x+ (n− 1)b, x+ (n− 2)b, . . . , x+ b, x))

in an indeterminate x. In other words, we have

fn(x) = det



x
1!

x2

2!
x3

3!
· · · xn−1

(n−1)!
xn

n!

1 x+b
1!

(x+b)2

2!
· · · (x+b)n−2

(n−2)!
(x+b)n−1

(n−1)!

0 1 x+2b
1!

· · · (x+2b)n−3

(n−3)!
(x+2b)n−2

(n−2)!
...

...
...

. . .
...

...

0 0 0 · · · (x+(n−2)b)
1!

(x+(n−2)b)2

2!

0 0 0 · · · 1 x+(n−1)b
1!


.

The polynomial fn(x) = x(x+nb)n−1

n!
and dimK

(
R

M
K
a,b
n+1

)
= a(a + nb)n−1 (see [14, 15]).

Also, for 1 6 k 6 n− 2, consider another polynomial gn;k(x) in x given by

gn;k(x) = det(Λ(x+ kb, x+ (k − 1)b, . . . , x+ b, x, . . . , x)),

where the last n− k coordinates in (x+ kb, x+ (k − 1)b, . . . , x+ b, x, . . . , x) are x.

Proposition 14. The polynomial gn;k(x) is given by

gn;k(x) =
k∑
j=0

1

j!

xn−j

(n− j)!
(k − j + 1)(k + 1)j−1bj.

Proof. We first give a simple proof of fn(x) = x(x+nb)n−1

n!
as in [9]. Clearly, f1(x) = x

and f2(x) = x(x+2b)
2!

. Proceeding by induction on n, we assume that fj(x) = x(x+jb)j−1

j!
for

1 6 j 6 n− 1. Further, using properties of determinants, we observe that the derivative

f ′n(x) of fn(x) satisfies f ′n(x) = fn−1(x + b). This shows that f ′n(x) = (x+b)(x+nb)n−2

(n−1)!
. As

fn(0) = 0, on integrating f ′n(x) = (x+b)(x+nb)n−2

(n−1)!
by parts, we get fn(x) = x(x+nb)n−1

n!
.

Again using properties of determinants, we see that the (n − k − 1)th derivative

g
(n−k−1)
n;k (x) of gn;k(x) satisfies

g
(n−k−1)
n;k (x) = fk+1(x) =

x(x+ (k + 1)b)k

(k + 1)!
=

k∑
j=0

(
k

j

)
xk−j+1 (k + 1)jbj

(k + 1)!
.

Since gn;k(0) = g′n;k(0) = · · · = g
(n−k−1)
n;k (0) = 0 and the (n − k − 1)th derivative of

xn−j

(n−j)(n−j−1)...(k−j+2)
is xk−j+1, we get gn;k(x) =

∑k
j=0

(
k
j

)
xn−j

(n−j)(n−j−1)···(k−j+2)
(k+1)jbj

(k+1)!
.
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Theorem 15 (Yan). The number of standard monomials of R

M(k)

K
a,b
n+1

is given by

dimK

 R

M(k)

Ka,b
n+1

 =
k∑
j=0

(
n

j

)
(a+ (n− k − 1)b)n−j(k − j + 1)(k + 1)j−1bj.

In particular, we have dimK

(
R

M(1)

K
a,b
n+1

)
= (a+ (n− 2)b)n−1 (a+ (2n− 2)b) for k = 1 and

dimK

(
R

M(n−2)

K
a,b
n+1

)
= a(a+ nb)n−1 + (n− 1)n−1bn for k = n− 2.

Proof. The first part follows from dimK

(
R

M(k)

K
a,b
n+1

)
= n! gn;k(a + (n − k − 1)b) using

Proposition 14.
For k = 1, g

(n−2)
n;1 (x) = f2(x) = x(x+2b)

2!
= x2

2!
+ bx. As g

(j)
n;1(0) = 0 for 0 6 j 6 n− 2, we

obtain

gn;1(x) =
xn

n!
+

bxn−1

(n− 1)!
=
xn−1(x+ nb)

n!
.

Now dimK

(
R

M(1)

K
a,b
n+1

)
= n! gn;1(a+ (n− 2)b) = (a+ (n− 2)b)n−1 (a+ (2n− 2)b).

Also, for k = n − 2, we have g′n;n−2(x) = fn−1(x) = x(x+(n−1)b)n−2

(n−1)!
. On integrating

it by parts, we get gn;n−2(x) = x(x+(n−1)b)n−1

(n−1)!(n−1)
− (x+(n−1)b)n

n!(n−1)
+ C, where C is a constant of

integration. Since gn;n−2(0) = 0, we get C = (n−1)n−1bn

n!
. Hence,

gn;n−2(x) =
1

n!
[(x− b)(x+ (n− 1)b)n−1 + (n− 1)n−1bn].

Again, from dimK

(
R

M(n−2)

K
a,b
n+1

)
= n! gn;n−2(a+ b), we get the desired result.

Remark 16. The determinant det(QKa,b
n+1

) of the reduced signless Laplacian matrix QKa,b
n+1

of Ka,b
n+1 satisfies dimK

(
R

M(1)

K
a,b
n+1

)
= (a+ (n− 2)b)n−1 (a+ (2n− 2)b) = det(QKa,b

n+1
). Also,

we have g′n;n−2(x) = fn−1(x) = x(x+(n−1)b)n−2

(n−1)!
=
∑n−2

j=0

(
n−2
j

)
xn−1−j

(n−1)!
(n − 1)jbj. Thus on

integrating g′n;n−2(x) in two ways, we get gn;n−2(x) and a polynomial identity

(x− b)(x+ (n− 1)b)n−1 + (n− 1)n−1bn

n!
=

∑n−2
j=0

(
n
j

)
xn−j(n− j − 1)(n− 1)j−1bj

n!
.
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On substituting x = a+ b, we get an identity

n−2∑
j=0

(
n

j

)
(a+ b)n−j(n− j − 1)(n− 1)j−1bj = a(a+ nb)n−1 + (n− 1)n−1bn

for positive integers a and b. Taking a = b = 1, it justifies the equality

n−2∑
j=0

(
n

j

)
2n−j(n− j − 1)(n− 1)j−1 = (n+ 1)n−1 + (n− 1)n−1

described in [4](Corollary 3.7).

4 Spherical G-parking functions

Let G be a connected graph on the vertex set V = {0, 1, . . . , n} with root 0. As stated

in the Introduction, P : [n] → N is a spherical G-parking function if xP =
∏

i∈[n] x
P(i)
i ∈

MG \ M(n−2)
G . Let PF(G) (or sPF(G)) be the set of G-parking functions (respectively,

spherical G-parking functions).
Let e0 be an edge of G joining the root 0 to another vertex. We shall compare sPF(G)

with sPF(Ḡ), where Ḡ = G − {e0}. After renumbering vertices, we may assume that
e0 = e0,n is an edge joining the root 0 with n.

Lemma 17. Let G be a connected graph on the vertex set V and Ḡ = G− {e0}. Then

MḠ = (MG : xn) = {z ∈ R : zxn ∈MG}.

Further, the multiplication map µxn : {xP : P ∈ sPF(Ḡ)} → {xP : P ∈ sPF(G)} induced
by xn is a bijection. In particular, |sPF(G)| = |sPF(Ḡ)|.

Proof. For ∅ 6= A ⊆ [n], let mA and m′A be the generators of MG and MḠ, respectively.
Clearly, mA = m′A if n /∈ A and mA = m′Axn if n ∈ A. This shows thatMḠ = (MG : xn).

Also, M(n−2)

Ḡ
= (M(n−2)

G : xn). Thus the natural sequences of R-modules (or K-vectors
spaces)

0→ R

MḠ

µxn→ R

MG

→ R

〈MG, xn〉
→ 0 and 0→ R

M(n−2)

Ḡ

µxn→ R

M(n−2)
G

→ R

〈M(n−2)
G , xn〉

→ 0

are short exact. Let α : R

M(n−2)

Ḡ

→ R
MḠ

and β : R

M(n−2)
G

→ R
MG

be the natural projections.

Since 〈MG, xn〉 = 〈M(n−2)
G , xn〉, the multiplication map µxn induces an isomorphism

ker(α)
∼→ ker(β) between kernels ker(α) and ker(β). Also {xP : P ∈ sPF(Ḡ)} and

{xP : P ∈ sPF(G)} are monomial basis of ker(α) and ker(β), respectively. Thus µxn
induces a bijection between the bases.

We now give a few applications of the Lemma 17.
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Proposition 18. Let E be the set of all edges of Kn+1 or Ka,b
n+1 through the root 0. Then

(1) |sPF(Kn+1 − E)| = |sPF(Kn+1)|.

(2) |sPF(Ka,b
n+1 − E)| = |sPF(Ka,b

n+1)|.

(3) |sPF(Ka,b
n+1)| = bn(n− 1)n−1.

Proof. By Lemma 17, we know that the number of spherical G-parking functions and
the number of spherical (G − {e0})-parking functions are the same for any edge e0 of G
through the root 0. Now, repeatedly applying Lemma 17, we see that (1) and (2) hold.

Let λ = ((n − 1)b, (n − 2)b, . . . , 2b, b, b). Consider the graph Ka,b
n+1 − E and its (n −

2)-skeleton ideal M(n−2)

Ka,b
n+1−E

. Clearly, M(n−2)

Ka,b
n+1−E

= Mλ. As Ka,b
n+1 − E is disconnected,

PF(Ka,b
n+1 − E) = ∅. Thus

|sPF(Ka,b
n+1)| = |sPF(Ka,b

n+1 − E)| = dimK

 R

M(n−2)

Ka,b
n+1−E


= |PF(λ)| = (n!)gn;n−2(b) = bn(n− 1)n−1,

where the polynomial gn;n−2(x) is given in the Remark 16.

Note that the cardinality |sPF(Ka,b
n+1)| is independent of a. As we have seen that

|PF(Ka,b
n+1)| = a(a+ bn)n−1, |sPF(Ka,b

n+1)| = bn(n− 1)n−1 also follows from Theorem 15.

4.1 A modified Depth-First-Search burning algorithm

Let G be a connected simple graph on the vertex set V with a root 0. LetMG = 〈mA : ∅ 6=
A ⊆ [n]〉 be the G-parking function ideal. For a spherical G-parking function P ∈ sPF(G),

define P̃ : [n]→ N so that xP̃ = xP

m[n]
, where m[n] is the generator ofMG corresponding to

[n]. We say that P̃ is the reduced spherical G-parking function associated to P ∈ sPF(G).

Let s̃PF(G) = {P̃ : P ∈ sPF(G)} be the set of reduced spherical G-parking functions. We

shall analyse the condition s̃PF(G) ⊆ PF(G). Since removing (or adding) edges from the
root 0 to another vertex in G do not change the number of spherical G-parking functions
(Lemma 17), we may assume that the root 0 is connected to all the other vertices in G.

In this case, m[n] = x1x2 · · ·xn and P̃(i) = P(i)− 1 for i ∈ [n].

Lemma 19. Let G be a connected simple graph on the vertex set V with a root 0. Suppose
the root 0 is connected to all other vertices of G. Then

(i) s̃PF(G) ⊆ PF(G).

(ii) Let P ∈ sPF(G) and r ∈ [n] be the unique vertex such that P̃(r) = 0 but P̃(j) > 1
for j > r. Consider the graph G′ = G− {0} on the vertex set [n] with root r. Then

P̂ = P̃|[n]\{r} is a G′-parking function.
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Proof. Let P ∈ sPF(G) such that P̃ /∈ PF(G). Then there exists ∅ 6= A ⊆ [n] such that

mA | xP̃ , i.e., mA divides xP̃ . Thus mAm[n] | xP . If A 6= [n], then mA | xP , a contradiction
to P ∈ sPF(G). Also, if A = [n], then (m[n])

2 | xP . Since G is a simple graph and the
root 0 is connected to all other vertices of G, mB | (x1x2 · · ·xn)2 for any B ⊆ [n] with
|B| = n− 1. Again a contradiction. This proves the first part.

Let P ∈ sPF(G). If P̃(i) > 1 for all i ∈ [n], then P(i) > 2 for all i. Thus (m[n])
2 | xP ,

which leads to a contradiction. Thus P̃(i) = 0 for some i. Let r = max{i ∈ [n] : P̃(i) = 0}.
Now consider the graphG′ = G−{0} on the vertex set [n] with root r. When we emphasize
the root r of G′, we denote this graph by (G′, r). Let M(G′,r) = 〈m̄A : ∅ 6= A ⊆ [n] \ {r}〉
be the G′-parking function ideal in the polynomial ring K[x1, . . . , x̂r, . . . , xn]. We see that

m̄A = mA
gcd(mA,m[n])

. If P̂ = P̃|[n]\{r} is not a G′-parking function, then m̄A |
∏

i∈[n]\{r}(xi)
P̂(i)

for some non-empty subset A ⊆ [n] \ {r}. As P̃(r) = 0, xP̃ =
∏

i∈[n]\{r}(xi)
P̂(i) = xP

m[n]
.

Thus mA | xP , a contradiction to P ∈ sPF(G).

We now proceed to associate uprooted trees to spherical parking functions by mod-
ifying the Depth-First-Search burning algorithm. Let G be a connected simple graph
satisfying the hypothesis of Lemma 19. Let P ∈ sPF(G) and P̃ be the associated reduced
spherical G-parking function. In the following three steps, an uprooted spanning tree of
G′ is associated to each P ∈ sPF(G).

1. Set r = max{i ∈ [n] : P̃(i) = 0} and consider the graph G′ = G− {0} with root r.

2. Let φ : PF(G′, r)→ SPT(G′, r) be the bijective map induced by Depth-First-Search

algorithm (Theorem 8). As P̂ = P̃|[n]\{r} is a (G′, r)-parking function, φ(P̂) is a

spanning tree of G′. Also, sum(P̂) = g(G′)− κ(G′, φ(P̂)).

3. Since P̂ ∈ PF(G′, r) and P̂(j) > 1 for all j > r, there exists i < r such that

P̂(i) = 0. On applying the Depth-First-Search algorithm to P̂ , all the edges (r, j)

for j > r get dampened. Thus the spanning tree φ(P̂) is an uprooted spanning tree
of G′.

Let U(G′) be the set of uprooted spanning trees of the graph G′. We define a map

φG : sPF(G)→ U(G′) given by φG(P) = φ(P̂), where P̂ = P̃|[n]\{r}. We say that the map
φG is induced by a modified Depth-First-Search algorithm.

Theorem 20. Let G be a simple graph on the vertex set V with root 0 and G′ = G−{0}.
Suppose the root 0 is connected to all other vertices of G. Then there exists an injective
map φG : sPF(G) → U(G′) such that sum(P) = g(G) − κ(G′, φG(P)) + 1 for all
P ∈ sPF(G).

Proof. We have already constructed the map φG. Let P ,P ′ ∈ sPF(G) such that φG(P) =
φG(P ′) = T ∈ U(G′). Let r be the root of T . Since φ : PF(G′, r) → SPT(G′, r) is a

bijection and φ(P̂) = φ(P̂ ′), we have P̂ = P̂ ′ and hence P = P ′. Note that sum(P) =

sum(P̂) + n and g(G) = g(G′) + n− 1. Thus sum(P) = g(G)− κ(G′, φG(P)) + 1 follows

from sum(P̂) = g(G′)− κ(G′, φ(P̂)).
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Let Im(φG) = {φG(P) : P ∈ sPF(G)} be the image of φG in U(G′). Theorem 20
shows that under some mild conditions on the simple graph G, the spherical G-parking
functions correspond bijectively with the uprooted trees in Im(φG). In general, it is not
easy to give a combinatorial description for the image Im(φG).

Let T ∈ U(G′) be an uprooted spanning tree of G′ = G− {0}. Suppose root(T ) = r.
Consider the bijective map φ : PF(G′, r) → SPT(G′, r). Then there exists a unique
(G′, r)-parking function PT such that φ(PT ) = T . Let

U(G′) = {T ∈ U(G′) : PT (j) > 1 for j > r = root(T )}.

Proposition 21. Im(φG) ⊆ U(G′) = {T ∈ U(G′) : PT (j) > 1 for j > r = root(T )}.

Proof. Let φG(P) = φ(P̂) = T , where P̂ = P̃|[n]\{r}. As PT = P̂ and the root is given by

root(T ) = max{i ∈ [n] : P̃(i) = 0}, the result follows.

4.2 Spherical parking functions for complete graphs

Let Kn+1 be the complete graph on the vertex set V and Kn = Kn+1−{0} be the complete
graph on the vertex set [n]. Let Un = U(Kn) be the set of uprooted trees on the vertex
set [n]. From Theorem 20, there exists an injective map φn = φKn+1 : sPF(Kn+1) → Un.
We show that φn is a bijection and solve a conjecture of Dochtermann on spherical Kn+1-
parking functions.

Theorem 22. There exists a bijection φn : sPF(Kn+1)→ Un such that

sum(P) =

(
n

2

)
− κ(Kn, φn(P)) + 1 for all P ∈ sPF(Kn+1).

Proof. The existence of injective map φn = φKn+1 : sPF(Kn+1) → Un with the desired
property follows from the Theorem 20. We just need to show that φn is surjective. Let
T ∈ Un and root(T ) = r. Consider the bijective map φ : PF(Kn, r) → SPT(Kn, r)
induced by Depth-First-Search algorithm and PT is the unique (Kn, r)-parking function
such that φ(PT ) = T . Since T is uprooted, PT (j) > 1 for j > r. Now consider ideals
MKn+1 = 〈mA : ∅ 6= A ⊆ [n]〉 and M(Kn,r) = 〈m̄B : ∅ 6= B ⊆ [n] \ {r}〉.

Suppose, if possible, PT 6= P̂ for all P ∈ sPF(Kn+1). Then m[n]

∏
j∈[n]\{r} x

PT (j)
j is not

a standard monomial of M(n−2)
Kn+1

. Thus there exists ∅ 6= A ( [n] such that mA divides

m[n]

∏
j∈[n]\{r} x

PT (j)
j . If r ∈ A, then xr appearing in mA = (

∏
j∈A xj)

n−|A|+1 must have

the multiplicity 1. This is possible, only if A = [n], a contradiction. If r /∈ A, then

m̄A = mA
gcd(mA,m[n])

and m̄A |
∏

j∈[n]\{r} x
PT (j)
j . This shows that PT is not a (Kn, r)-parking

function, again a contradiction. Hence φn is surjective.
The surjectivity of φn also follows from |sPF(Kn+1)| = |Un| = (n− 1)n−1.

We now study spherical G-parking functions for G = Kn+1 − {e}, where e is an
edge not through the root 0. Let e = ep,q = (p, q) be the edge in Kn+1 joining p and

the electronic journal of combinatorics 28(1) (2021), #P1.53 18



q with 1 6 p < q 6 n. Let G′ = G − {0} be the graph on the vertex set [n] and

U(G′) be the set of uprooted spanning trees of G′. In fact, U (p�q)
n = U(G′) is the set

of uprooted trees on the vertex set [n] with no edge between p and q (i.e., p � q). Let

U (p�q)
n = U(G′) = {T ∈ U(G′) : PT (j) > 1 for j > r = root(T )} as in Proposition 21 and

set U ′n = U (1�n)
n . In view of Theorem 20 and Proposition 21, there exists an injective map

φG : sPF(G)→ U (p�q)
n .

Theorem 23. For n > 3 and G = Kn+1 − {ep,q}, the map φG : sPF(G) → U (p�q)
n

is a bijection such that sum(P) =
(
n
2

)
− κ(G′, φG(P)) for all P ∈ sPF(G), where

G′ = G− {0}.

Proof. We only need to show that Im(φG) = U(G′). This proof is similar to the proof

of Theorem 22. Let T ∈ U(G′) = U (p�q)
n and root(T ) = r. Consider the bijective map

φ : PF(G′, r) → SPT(G′, r) induced by Depth-First-Search algorithm and PT is the
unique (G′, r)-parking function such that φ(PT ) = T . LetMG = 〈mA : ∅ 6= A ⊆ [n]〉 and
M(G′,r) = 〈m̄A : ∅ 6= A ⊆ [n] \ {r}〉 be the parking function ideals. Suppose, if possible,

PT 6= P̂ for all P ∈ sPF(G). Then m[n]

∏
j∈[n]\{r} x

PT (j)
j is not a standard monomial of

M(n−2)
G . Thus there exists ∅ 6= A ( [n] such that mA divides m[n]

∏
j∈[n]\{r} x

PT (j)
j .

Let r ∈ A but r /∈ {p, q}. As mA | m[n]

∏
j∈[n]\{r} x

PT (j)
j , xr appearing in mA must

have multiplicity 1. Thus A = [n], a contradiction. Now suppose r = q ∈ A (or r =
p ∈ A). Then A 6= [n] implies that A = [n] \ {p} (respectively, A = [n] \ {q}). In
fact, m[n]\{p} = (

∏
j∈[n]\{p,q} x

2
j)xq and m[n]\{q} = (

∏
j∈[n]\{p,q} x

2
j)xp. Clearly, in either of

the cases, m̄[n]\{p,q} =
∏

j∈[n]\{p,q} xj divides
∏

j∈[n]\{r} x
PT (j)
j , a contradiction to PT being

(G′, r)-parking function.

Finally, if r /∈ A, then m̄A = mA
gcd(mA,m[n])

and m̄A divides
∏

j∈[n]\{r} x
PT (j)
j . This shows

that PT is not a (G′, r)-parking function, again a contradiction. This completes the
proof.

We now determine conditions so that U (p�q)
n = U (p�q)

n .

Proposition 24. U (p�q)
n \ U (p�q)

n = {T ∈ U (p�q)
n : root(T ) = p and PT (q) = 0}.

Proof. Let T ∈ U (p�q)
n such that root(T ) = r 6= p. Consider the unique (G′, r)-parking

function PT such that φ(PT ) = T . As T is uprooted, all the edges (r, j) in G′ for j > r
must get dampened. Thus PT (j) > 1 for all j > r such that r ∼ j in G′ or G. Since

G = Kn+1 − {ep,q}, T ∈ U
(p�q)
n .

Since there are no uprooted tree T on the vertex set [n] with root(T ) = 1, it follows

from Proposition 24 that U (p�q)
n = U (p�q)

n if and only if p = 1. The following corollary is
immediate.

Corollary 25. For n > 3 and G = Kn+1 − {e1,n}, the map φG : sPF(G) → U (1�n)
n = U ′n

induces a bijection between the set of spherical G-parking functions and the set of uprooted
trees on the vertex set [n] with 1 � n.
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Remark 26. By renumbering vertices of G, we easily see that

|sPF(Kn+1 − {ep,q})| = |sPF(Kn+1 − {e1,n})| = |U ′n|,

for any edge ep,q between vertices p, q ∈ [n] with p < q. Thus, |U (p�q)
n | = |U ′n|.

The bijection φn : sPF(Kn+1) → Un constructed in Theorem 22 can be extended to
the case of the complete multigraph Ka,b

n+1 on the vertex set V .

Let sPF(Ka,b
n+1) be the set of spherical Ka,b

n+1-parking functions. Let U bn be the set of
uprooted tree T on the vertex set [n] with label ` : E(T ) → {0, 1, . . . , b − 1} on the
edges of T and a weight ω(r) ∈ {0, 1, . . . , b − 1} assigned to the root r of T . Clearly,
|U bn| = bn|Un| = bn(n − 1)n−1. Also, |sPF(Ka,b

n+1)| = bn(n − 1)n−1 is independent of a.
We may assume that a > b. As an application of the Depth-First-Search algorithm for
multigraph (Theorem 9), we construct a bijection

φbn : sPF(Ka,b
n+1)→ U bn.

The reduced spherical Ka,b
n+1-parking function P̃ associated to P ∈ sPF(Ka,b

n+1) is given

by P̃(i) = P(i) − a for all i ∈ [n]. Let s̃PF(Ka,b
n+1) = {P̃ : P ∈ sPF(Ka,b

n+1)}. Then as

a > b, we can verify that s̃PF(Ka,b
n+1) ⊆ PF(Ka,b

n+1). Let Kb
n = Ka,b

n+1−{0} be the complete
multigraph on the vertex set [n] such that |E(i, j)| = b for every distinct pair {i, j} of
vertices.

Theorem 27. There exists a bijection φbn : sPF(Ka,b
n+1)→ U bn such that

rsum(P) + ω(r) + 1 = κ(Kb
n, T ) +

∑
e∈E(T )

`(e) for all P ∈ sPF(Ka,b
n+1),

where T = φbn(P) and weight ω(r) ∈ {0, 1, . . . , b− 1} at the root(T ) = r.

Proof. Let P ∈ sPF(Ka,b
n+1). Then P̃ ∈ PF(Ka,b

n+1). Choose the largest vertex r of Kb
n =

Ka,b
n+1 − {0} such that P̃(r) < b. We claim that P̃(j) < b for some j < r. Otherwise,

P(i) > a + b, for all i ∈ [n] \ {r}, a contradiction to P ∈ sPF(Ka,b
n+1). Now consider r to

be the root of the complete multigraph Kb
n on the vertex set [n]. Then P̂ = P̃ |[n]\{r} is a

(Kb
n, r)-parking function. On applying the Depth-First-Search algorithm for multigraph

(Theorem 9), we get φ(P̂ ) ∈ U bn with root r and weight ω(r) = P̃(r). The mapping

φbn : sPF(Ka,b
n+1) → U bn given by φbn(P) = φ(P̂ ) is clearly injective. Since |sPF(Ka,b

n+1)| =
|U bn| = bn(n− 1)n−1, the map φbn is a bijection. Also,

g(Kb
n)−

∑
i∈[n]\{r}

P̃(i) = rsum(P̂ ) = κ(Kb
n, φ(P̂ )) +

∑
e∈E(φ(P̂ ))

`(e).

Since rsum(P) = g(Ka,b
n+1)−

∑
i∈[n]P(i), we verify that rsum(P̂ ) = rsum(P)+ω(r)+1.
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4.3 Counting uprooted trees

In this subsection, we determine the number |U ′n| of uprooted trees on the vertex set [n]
with 1 � n. Let Tn,0 be the set of labelled trees on the vertex set [n] such that the root
has no child (or son) with smaller labels. Let An be the set of labelled rooted-trees on
the vertex set [n] with a non-rooted leaf n. Chauve, Dulucq and Guibert [1] constructed
a bijection η : Tn,0 → An. As earlier, let Un be the set of uprooted trees on the vertex set
[n]. Also, let Bn be the set of labelled rooted-trees on the vertex set [n] with a non-rooted
leaf 1. We see that there are bijections Un → Tn,0 and Bn → An obtained by simply
changing label i to n − i + 1 for all i. The bijection η : Tn,0 → An induces a bijection
ψ : Un → Bn. For sake of completeness, we briefly describe construction of the bijection
ψ essentially as in [1].

Let T ∈ Un with root r. Note that r 6= 1.
Step (1) : Consider a maximal increasing subtree T0 of T containing 1. Let T1, . . . , Tl be
the subtrees (with at least one edge) of T obtained by deleting edges in T0. Let ri be the
root of Ti for 1 6 i 6 l. The root r of T must be a root of one of the subtrees Ti. Let
rj = r. Then 1 is a leaf of Tj.
Step (2) : If T0 has m vertices, then T0 is determined by an increasing tree T0 on the
vertex set [m] and a set S0 of labels on T0. We write T0 = (T0, S0).

Step (3) : Let S0 = (S0 \ {1}) ∪ {r}. Then (T0, S0) determines an increasing subtree T̃0

with root r′ = min{S0}. Graft Tj on the increasing subtree T̃0 at the root r and obtain a
tree T ′j . Now graft Ti (i 6= j) on T ′j at ri and obtain a tree T ′ with root r′. Also note that
1 is a non-rooted leaf of T ′.

All the above steps can be reversed, thus ψ(T ) = T ′ defines a bijection ψ : Un → Bn.

Lemma 28. |Un| = |Bn| = (n− 1)n−1.

Proof. The bijection ψ : Un → Bn gives |Un| = |Bn|. The number of labelled rooted-
trees on the vertex set {2, 3, . . . , n} by Cayley’s formula is (n− 1)n−2. Any tree in Bn is
obtained uniquely by attaching 1 to any node i of a labelled rooted tree on the vertex
set {2, 3, . . . , n}. Since there are exactly n − 1 possibilities for i, we have |Bn| = (n −
1)n−2(n− 1) = (n− 1)n−1.

For n > 3, let U ′n = {T ∈ Un : 1 � n in T}. We shall determine the image ψ(U ′n) ⊆ Bn
of U ′n under the bijection ψ : Un → Bn. Let B′n = {T ′ ∈ Bn : 1 � n in T ′}. Set

A = {T ′ ∈ B′n : root(T ′) = r′ = n},
B′ = {T ′ ∈ B′n : root(T ′) = r′ 6= n with r′ ∼ n and 1 is a descendent of n},
B′′ = {T ′ ∈ B′n : root(T ′) = r′ 6= n with r′ � n}.

Lemma 29. ψ(U ′n) = A
∐
B′
∐
B′′.

Proof. Let T ′ ∈ Bn. Then there is a unique T ∈ Un such that T ′ = ψ(T ). Let r and r′ be
the roots of T and T ′, respectively. Clearly, r 6= 1. Let SonT (1) be the set of sons of 1 in
T . Then from the construction of T ′ = ψ(T ), r′ = min{{r} ∪ SonT (1)}. Also, the leaf 1
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in T ′ is adjacent to j if and only if j = parT (1) is the parent of 1 in T . This shows that
1 � n in T if and only if 1 � n in T ′. Hence, ψ(U ′n) ⊆ B′n. Further, we see that r′ = n
if and only if 1 is already a leaf in T , and in this case, T ′ = ψ(T ) = T . In other words,
A ⊆ U ′n and ψ(T ) = T for all T ∈ A.

If T ′ ∈ B′′, then the unique T ∈ Un with ψ(T ) = T ′ must have 1 � n in T , that is,
T ∈ U ′n. Now we consider the remaining case. Let T ′ ∈ B′n with root(T ′) = r′ 6= n and
r′ ∼ n in T ′. We shall show that ψ(T ) = T ′ for T ∈ U ′n if and only if 1 is a descendent
of n in T ′ (or equivalently, T ′ ∈ B′). Consider the maximal increasing subtree T ′0 of T ′

containing the root r′. If 1 is a descendent of a leaf r′j of T ′0, then the maximal increasing
subtree T0 of T containing 1 is obtained by replacing r′j with 1 in the vertex set of T ′0
and labeling it as indicated in Step (2) of the construction of ψ. Clearly, r′j = r is the
root of T . If r′j = r 6= n, then 1 ∼ n in T as r′ ∼ n in T ′. Thus, if r′j 6= n, i.e., 1 is
not a descendent of n in T ′, then T ′ /∈ ψ(U ′n). On the other hand, if r′j = n, i.e., 1 is a
descendent of n in T ′ with 1 � n, then root(T ) = r = n and 1 � n in T .

Proposition 30. For n > 3, we have |U ′n| = (n− 1)n−3(n− 2)2.

Proof. By Lemma 29, we have |U ′n| = |ψ(U ′n)| = |A|+ |B′|+ |B′′|. First we enumerate the
subset A = {T ′ ∈ B′n : root(T ′) = r′ = n}. The number of labelled trees on the vertex
set {2, 3, . . . , n} with root n is (n − 1)n−3. Since any tree in A is uniquely obtained by
attaching 1 to any node i ∈ {2, . . . , n− 1} of a labelled tree on the vertex set {2, . . . , n}
with root n, we have |A| = (n− 1)n−3(n− 2).

Let us consider the subset C = {T ′ ∈ B′n : root(T ′) = r′ 6= n} ⊆ B′n. Clearly,
B = B′

∐
B′′ ⊆ C. The enumeration of C is similar to that of A, except now the root

r′ ∈ {2, . . . , n−1} can take any one of the n−2 values. Thus |C| = (n−1)n−3(n−2)2. We
can easily construct a bijective correspondence between A and C \ B. Let T ′ ∈ A. Then
1 � n in T ′ and root(T ′) = n. Consider the unique path from the root n to the leaf 1 in
T ′. As 1 � n in T ′, the child r̃ of n lying on this unique path is different from 1. Let T̃ ′ be
rooted tree consisting of the tree T ′ with the new root r̃. As root(T̃ ′) = r̃ 6= n, r̃ ∼ n and
1 is not a descendent of n in T̃ ′, we have T̃ ′ ∈ C\B. The mapping T ′ 7→ T̃ ′ from A to C \B
is clearly a bijection. If T̃ ′ ∈ C\B, then root(T̃ ′) = r̃ 6= n, r̃ ∼ n and 1 is not a descendent
of n in T̃ ′. Now unique T ′ ∈ A that maps to T̃ ′ is the rooted tree obtained from T̃ ′ by
taking n as the new root. Thus |A| = |C\B| and hence, |U ′n| = |C| = (n−1)n−3(n−2)2.

Theorem 31. Let ep,q be an edge of Kn+1 joining distinct vertices p, q ∈ [n]. For n > 3,
the number of spherical parking functions of Kn+1 − {ep,q} is given by

|sPF(Kn+1 − {ep,q})| = |U ′n| = (n− 1)n−3(n− 2)2.

Proof. In view of Theorem 23 and Remarks 26, the result follows.

Let Fl = {e1,n, e1,n−1, . . . , e1,n−l+1} be a set of l-edges through the vertex 1 in the
complete graph Kn+1. We consider the graph Kn+1 − Fl and ask the following question.

Question 32. What is the number of spherical (Kn+1 − Fl)-parking functions?

Computations for smaller values of n and l indicate that

|sPF(Kn+1 − Fl)| = (n− 1)n−3(n− l − 1)2.
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5 Spherical Km+1,n-parking functions

Let Km+1,n be the complete bipartite graph on the vertex set V ′ = [0,m]
∐

[m+1,m+n],

where [0,m] = {0, 1, . . . ,m} and [m + 1,m + n] = {m + 1, . . . ,m + n}. Let Ka,b
m+1,n be

the complete bipartite multigraph on V ′. More precisely, there are a number of edges in
Ka,b
m+1,n between the root 0 and j, while b number of edges between i and j, where i ∈ [m]

and j ∈ [m+ 1,m+ n].

Proposition 33. We have |sPF(Ka,b
m+1,n)| = |sPF(Ka,b

n+1,m)|.

Proof. Let E and E ′ be the set of all edges of Ka,b
m+1,n and Ka,b

n+1,m through the root 0,
respectively. On repeatedly applying the Lemma 17, we see that

|sPF(Ka,b
m+1,n)| = |sPF(Ka,b

m+1,n − E)| and |sPF(Ka,b
n+1,m)| = |sPF(Ka,b

n+1,m − E ′)|.

Since graphs Ka,b
m+1,n−E and Ka,b

n+1,m−E ′ are obtained from each other by interchanging

vertices as i ↔ n + i and m + j ↔ j (for i ∈ [m], j ∈ [n]), |sPF(Ka,b
m+1,n − E)| =

|sPF(Ka,b
n+1,m − E ′)|.

Although the root 0 is not connected to all the other vertices in the simple complete
bipartite graph Km+1,n, we can construct a map φKm+1,n : sPF(Km+1,n)→ U(Km,n) as in
Theorem 20, where U(Km,n) is the set of uprooted spanning trees of Km,n = Km+1,n−{0}.

The reduced spherical Km+1,n-parking function P̃ associated to P ∈ sPF(Km+1,n) is

given by P̃(j) = P(j) for 1 6 j 6 m and P̃(j) = P(j) − 1 for m + 1 6 j 6 m + n.
We see that Km,n = Km+1,n − {0} is the complete bipartite graph on the vertex set
[m]
∐

[m+ 1,m+ n]. The following statements can be easily verified.

(i) s̃PF(Km+1,n) ⊆ PF(Km+1,n).

(ii) Let r = max{i ∈ [m+ n] : P̃(i) = 0}. Then m+ 1 6 r 6 m+ n.

(iii) P̂ = P̃|[m+n]\{r} is a (Km,n, r)-parking function.

(iv) If φ : PF(Km,n, r) → SPT(Km,n, r) is the bijection induced by Depth-First-Search

algorithm, then φ(P̂) is an uprooted spanning tree of Km,n.

Now define a map φKm+1,n : sPF(Km+1,n)→ U(Km,n) given by φKm+1,n(P) = φ(P̂) for
P ∈ sPF(Km+1,n). For each T ∈ U(Km,n), let PT be the unique (Km,n, r)-parking function
such that φ(PT ) = T . Let U(Km,n) = {T ∈ U(Km,n) : PT (j) > 1 for j > root(T )}.

Theorem 34. The map φKm+1,n : sPF(Km+1,n) → U(Km,n) is injective with the image

U(Km,n) and sum(P) = m(n− 1)− κ(Km,n, φKm+1,n(P)) + 1 for all P ∈ sPF(Km+1,n).

Proof. Proceed as in the proof of Theorems 20 and 22.
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Remark 35. The following three statements can be easily verified.
(1) |sPF(Km+1,1)| = 1 = |sPF(K1+1,n)|.
(2) Every spanning tree T of Km,n with root(T ) = m+ n lies in U(Km,n). Thus

|{P ∈ sPF(Km+1,n) : P̃(m+ n) = 0}| = |PF(Km,n)| = mn−1nm−1.

(3) We have |sPF(Ka,b
m+1,n)| = bm+n|sPF(Km+1,n)|.

We could not enumerate sPF(Km+1,n) or U(Km,n). Thus we ask the following question.

Question 36. What is the number of spherical Km+1,n-parking functions?

For n = 2, this question has an easy answer.

Proposition 37. For m > 1, |sPF(Km+1,2)| = (m− 1)2m + 1.

Proof. We know that |sPF(Km+1,2)| = |sPF(Km+1,2−E)|, where E is the set of all edges
of Km+1,2 through the root 0. Now the m-skeleton ideal of the (disconnected) graph
Km+1,2 − E is given by

M(m)
Km+1,2−E =

〈
x2
i , y

m
j , y1y2, xi1xi2 · · · xisym−sj : i ∈ [m]; j = 1, 2 and {i1, . . . , is} ⊆ [m]

〉
,

where yj = xm+j for j = 1, 2. The standard monomials of M(m)
Km+1,2−E are of the forms

xi1xi2 . . . xisy
α
1 with 0 6 α < m − s or xi1xi2 · · · xisy

β
2 with 1 6 β < m − s. Thus the

number of standard monomials of the first type is
∑m

s=0

(
m
s

)
(m− s) = m2m−1, while that

of the second type is
∑m−1

s=0

(
m
s

)
(m− s− 1) = (m− 2)2m−1 + 1.
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