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Abstract

Let G be a graph on the vertex set V' = {0,1,...,n} with root 0. Postnikov
and Shapiro were the first to consider a monomial ideal Mg, called the G-parking
function ideal, in the polynomial ring R = K[z1, ..., x,] over a field K and explained
its connection to the chip-firing game on graphs. The standard monomials of the
Artinian quotient /\/% correspond bijectively to G-parking functions. Dochtermann
introduced and studied skeleton ideals of the graph G, which are subideals of the G-
parking function ideal with an additional parameter k (0 < k < n—1). A k-skeleton
ideal ./\/lgf) of the graph G is generated by monomials corresponding to non-empty
subsets of the set of non-root vertices [n] of size at most k£ + 1. Dochtermann ob-
tained many interesting homological and combinatorial properties of these skeleton
ideals. In this paper, we study the k-skeleton ideals of graphs and for certain classes
of graphs provide explicit formulas and combinatorial interpretation of standard
monomials and the Betti numbers.

Mathematics Subject Classifications: 05E40, 13D02

1 Introduction

Let G be a graph on the vertex set V' = {0,1,...,n} with a root 0. The graph G is
completely determined by a symmetric (n+1) x (n+ 1) matrix A(G) = [a;;]o<i j<n. called
its adjacency matriz, where a;; is the number of edges from ¢ to j. Let R = K[z, ..., z,)
be the standard polynomial ring in n variables over a field K. The G-parking function
tdeal Mg of G is a monomial ideal in R given by the generating set

MG:<mA:®7£Ag[n]:{lv""n}>a
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where ma = [],c4 :c?“‘(i) and d4(i) = >y 4 @i is the number of edges from i to a vertex

outside the set A in G. The standard monomial basis {x? = [/, 22} of the Artinian
quotient /\/% is determined by the set

PF(G) = {b=(by,...,by) € N": x" ¢ M}

of G-parking functions. Further, dimg (%) is the number of spanning trees of GG, given

by the determinant det(L¢) of the reduced Laplacian matrix L of G. Let SPT(G) be the
set of spanning trees of G. The edges of a spanning tree of GG are given orientation so that
all paths in the spanning tree are directed away from the root. As |PF(G)| = |SPT(G)],
one would like to construct an explicit bijection ¢ : PF(G) — SPT(G). Using the Depth-
First-Search version of burning algorithm, an algorithmic bijection ¢ : PF(G) — SPT(G)
for simple graphs G, preserving reverse sum rsum(P) of G-parking function P and the
number x(G, ¢(P)) of k-inversions of the spanning tree ¢(P), is constructed by Perkinson,
Yang and Yu [13]. A similar bijection for multigraphs G is constructed by Gaydarov and
Hopkins [5].

Postnikov and Shapiro [15] introduced the G-parking function ideal Mg and derived
many of its combinatorial and homological properties. In particular, they showed that
the cellular free complex supported on the first barycentric subdivision Bd(A,,_1) of an
(n — 1)-simplex A,_; is a free resolution of M. Further, the cellular resolution of Mg
is minimal, provided the graph G is saturated (i.e., a;; > 0 for ¢ # j). The minimal
resolution of the parking function ideal Mg for any graph G is described in [2, 10, 12].

In a series of papers, Dochtermann [3, 4] introduced and studied subideals of the
G-parking function ideal M described by k-dimensional ‘skeleta’. For an integer k
(0 <k <n—1), the k-skeleton ideal ./\/lgf) of the graph G is defined as the subideal

MP = (ma:0£AC ) A <k+1)

of the monomial ideal M. For k = 0, the ideal ./\/lg)) is generated by powers of variables
T1,...,T,. Hence, its minimal free resolution and the number of standard monomials
can be easily determined. For £ = 1 and G = K, .1, the minimal resolution of the
one-skeleton ideal M&QM is a cocellular resolution supported on the labelled polyhedral
complex induced by any generic arrangement of two tropical hyperplanes in R™ and the
i'" Betti number

R —~ [(j—1 .
E,(—l):Z]( ) for 1<i1<n—-1
Mﬁ«iﬂ =N

(see [3]). Also, the number of standard monomials of M% is given by
Kpt1

. R n—
dimg (M(—l)) = (2n - 1)(” - 1) b= det(QKn+1)7

Kn+1
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where Qk,,,, is the reduced signless Laplacian matrix of K.

In this paper, we determine all the Betti numbers of the k-skeleton ideal M&?LH
of the complete graph K,.;. The crucial observation is an identification of the ideal
M&QH with an Alexander dual of some multipermutohedron ideal. We first describe a
permutohedron and an associated permutohedron ideal. Let u = (uy,us,...,u,) € N
such that u; < uy < -+ < u, and let &,, be the set of permutations of [n]. For a
permutation o of [n], let ou = (Uyqr), ..., Up(my) and x7 = [, 2,°”. The convex
hull of all permutations ocu of u in R"™ is an (n — 1)-dimensional polytope P(u), called
a permutohedron. Also, the monomial ideal I(u) = (x™™ : 0 € &,,) of R is called a
permutohedron ideal. If some coordinates of u = (uy, us, ..., u,) are allowed to be equal,
then the polytope P(u) is called a multipermutohedron and the monomial ideal I(u) is
called a multipermutohedron ideal.

The multigraded Betti numbers of multipermutohedron ideals are described in [7].
Also, a combinatorial description of multigraded Betti numbers of Alexander duals of
multipermutohedron ideals is given in [8]. Now from the identification of M(Kkiﬂ with an

Alexander dual of some multipermutohedron ideal, we obtain a combinatorial expression
for the (i — 1) Betti number £;_; <./\/l(k) > (Theorem 12). In particular, for n > 3, we

Kn+1

show that /3;,_1 (M%{H) =i("!]) and By (M%_fl)) as in Corollary 13.

i+1
The main object of study in this paper are spherical G-parking functions. A finite
sequence P = (p1,...,p,) € N is called a G-parking function if x” =[]/, 27" ¢ Mg, on
the other hand, the sequence P = (p1,...,pn) is called a spherical G-parking function if
xP € ./\/lg\/\/l(Gn*m. A G-parking or a spherical G-parking function P = (py,...,p,) € N
can be equivalently thought of as a function P : [n] - N with P(i) =p; (1 <7 < n).
The sum (or degree) of P is given by sum(P) = >_,. ., P(é). Let

PF(G)={PeN":x" ¢ Mg} and sPF(G)={PeN":x" e Mg\ MI?}

be the sets of G-parking functions and spherical G-parking functions, respectively. The

standard monomials of /\% are of the form x” for P € PF(G) or P € sPF(G). Thus,
G

) R L R , Mg -
dimg (W) = dimg (M—G> + dimg (W) = [PF(G)| + [sPF(G)].

A notion of spherical K, i-parking functions is introduced in [4]. We recall that a
K, +1-parking function P = (py,...,p,) € N" is an ordinary parking function of length

n, i.e., a non-decreasing rearrangement p;; < p;, < -+ < p;,, of P = (p1,...,p,) satisfies
pi; < j, for all j. It can be easily checked that P = (pi,...,p,) € N" is a spherical
K, 11-parking function if a non-decreasing rearrangement p;, < p;, < -+ < p;, of P =

(p1,...,pn) satisfies p;; = 1 and p;; < j for 2 < j < n. The notion of spherical K, 1-
parking function has appeared earlier in the literature (see [16]) as prime parking functions
of length n. Prime parking functions were defined and enumerated by Ira Gessel. The
number of spherical K, -parking functions is (n — 1)"~!, which is same as the number of
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uprooted trees on the vertex set [n]. A (labelled) rooted tree T on the vertex set [n] is called
uprooted if the root is bigger than all its children. Let U,, be the set of uprooted trees on
the vertex set [n]. Dochtermann conjectured existence of a bijection ¢,, : sPF(K,, 1) — U,
such that sum(P) = () — k(Kn, on(P)) + 1, where £(K,, ¢,(P)) is the k-number of the
uprooted tree ¢,(P) in the complete graph K,, = K,,.; — {0} on the vertex set [n].

For a simple graph G on the vertex set V' whose root 0 is connected to all other
vertices, we construct an injective map ¢¢ : sSPF(G) — U(G’), where G' = G — {0} and

U(G") is the set of uprooted spanning trees of G'. Moreover, the injective map ¢ satisfies
sum(P) = g(G) — k(G',pa(P)) +1 forall P e sPF(G),

where g(G) is the genus of the graph G (Theorem 20). We have determined the image
of ¢ for many simple graphs G. In particular, we show that the map ¢, , = ¢, :
sPF(K,.1) — U, is a bijection and establish a conjecture of Dochtermann on spherical
K, 1-parking functions.

If e is an edge of GG, then G — {e} is the graph obtained from G by deleting the edge e.
We show that |[sPF(G)| = [sPF(G —{ep})| (Lemma 17), where e, is an edge from the root
to another vertex. As an application, we observe that |[sPF(K,,41.0)| = [SPF(Kp41,m)| for
complete bipartite graphs (Proposition 33). If e; is an edge in the complete graph K, .1,
not through the root, we show that [sPF(K,;1 — {ei})| = (n — 1)"3(n — 2)? (Theorem
31). In this case, spherical (K, 1 — {e1})-parking functions correspond bijectively with
some specified subset of uprooted trees on the vertex set [n] (Theorem 23).

Some extensions of these results for the complete multigraph KZfl and the complete

bipartite multigraph Kﬁl’ilm (a,b > 1) are also obtained.

Remark 1. This paper is motivated by [3] and an earlier version of [4] posted on the arXiv.
In the new version of [4], Dochtermann and King identify the standard monomials of k-
skeleton ideals M%’ZH with the vector parking functions and using a Breadth-First-Search
burning algorithm, they construct a bijection from spherical K, ;-parking functions to
uprooted spanning trees of K, that takes degree to an inversion statistic. In this paper,
we obtain the standard monomials and the Betti numbers of Mg;iﬂ by identifying it with
an Alexander dual of some multipermutohedron ideal. For constructing bijection, we use
a Depth-First-Search variant of burning algorithm.

2 Parking functions and Depth-First-Search algorithms

In this section, we briefly describe some known results on parking functions and the Depth-
First-Search algorithms. Most of the known results are stated without proof. These results
and notions will be used in the subsequent sections of this paper.

2.1 Parking functions

A sequence P = (p1,...,pn) € N is called an ordinary parking function of length n, if a
non-decreasing rearrangement p;, < p;, < -+ < p;, of P satisfies p;;, < jfor 1 < j < n.
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We denote the set of ordinary parking functions of length n by PF(n). The notion of
ordinary parking function has a nice generalization.

Definition 2. Let A = (Ay,...,\,) € N* with Ay > Ao > --- > )\, > 1. A finite sequence
P = (p1,...,pa) € N" is called a A-parking function of length n, if a non-decreasing
rearrangement p;, < p;, < --- < p;, of P satisfies p;; < A\,_jy1 for 1 < j <n. Let PF())
be the set of A-parking functions.

Clearly, the ordinary parking functions of length n are precisely A-parking functions
of length n for A = (n,n —1,...,2,1) € N*. The number of \-parking functions is given
by the ‘so-called’” Steck determinantal formula (see [14]). Let

/\] i+1
A, Ay) = |
9 Y n _ '
G-+ D
Jj—i+1
In other words, the (i,7)! entry of the n x n matrix A(Ay,...,\,) is (;\"Zfll,, where by
convention, ﬁ =0 for 7 > j+1. The determinant det(A(\y, ..., \,)) is called a Steck
determinant.

Theorem 3 (Pitman-Stanley). The number of A\-parking functions is given by

)\J i+1

PF(V)| = (n!) det(AQh,.... M) = nl det [m

1<i,j<n

For A = (A1,...,\,) € N" with Ay > Ay > -+ > A, > 1, Postnikov and Shapiro [15]
considered the monomial ideal

A4
M,\:<<ij> :@#Ag[n]>

in the polynomial ring R = Klzy,...,2,]. A monomial x* = ]7_, jj ¢ M, is called a

standard monomsial of % or M,. Clearly, x? = H?Il x?j is a standard monomial of M
if and only if b = (by,...,b,) € PF(\). In other words, a monomial basis of the K-vector
R

space - correspond bijectively with the A\-parking functions.

Theorem 4 (Pitman-Stanley, Postnikov-Shapiro). The dimension of /\% 15 given by

dimK<MiA>:|PF(>\)\: S H T

(b17 ,bn)GPF(
where the summation runs over ordinary parking functions of length n and \,11 = 0.

A closed formula for the number of A-parking functions for various specific values of A

is given in [14, 17]. For more on parking functions, we refer to an excellent survey article
by Yan [18].
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2.2 Graph theoretic notions and G-parking functions

Let G be a connected graph on the vertex set V(G) = V = {0,1,...,n}. Suppose
A(G) = [ajlo<ij<n s the (symmetric) adjacency matrix of G. We assume that G is a
loopless graph, i.e., a; = 0 for all i. Let E(i,7) = E(j,4) be the set of edges between
distinct pair of vertices i,7 € V. If E(4,7) # 0, then 7 and j are called adjacent vertices
and we write ¢ ~ 7. On the other hand, if ¢+ and j are non-adjacent, we write ¢ ~ j.
We have |E(i,j)| = a;;. The graph G is called a simple graph if |E(i, j)| = a;; < 1 for
i,7 € V. Otherwise, G is called a multigraph. The set E(G) = UMGV E(i,j) is the set of
edges of G.

If v € V, then G — {v} denotes the graph on the vertex set V' \ {v} obtained from G
by deleting the vertex v and all the edges through v. If e € F(G) is an edge of G, then
G — {e} denotes the graph on the vertex set V' obtained from G by deleting the edge e.
If E(i,j) # 0, then G — E(i,7) denotes the graph on vertex set V obtained from G on
deleting all the edges between 7 and j. B

Fix a root r € V of G (usually, we take r = 0). Set V' =V \ {r}. Let SPT(G) be the
set of spanning trees of G rooted at r. We orient spanning tree 7" € SPT(G) so that all
paths in T" are directed away from the root r. For every j € 17, there is a unique oriented
path in T from the root r to j. An ¢ € V lying on this unique path in 7T is called an
ancestor of j in T. Equivalently, we say that j is a descendent of ¢ in T'. If in addition, ¢
and j are adjacent in T', then we say that i is a parent of its child j. Every child j has a
unique parent parp(j) in 7.

Definition 5. By an inversion of T € SPT(G), we mean an ordered pair (i, j) of vertices
such that 7 is an ancestor of j in 7" with ¢ > 7. The total number of inversions of a
spanning tree T is denoted by inv(7"). An inversion (i, j) of T is called a k-inversion of
T if 7 is not the root r and par;(7) is adjacent to j in G.

The invariant ¢(G) = |E(G)| — |[V(G)| + 1 is called the genus of the graph G. The
k-number k(G,T) of T in G is given by

H(G7T) = Z |E(parT(Z)7.])|
i,je‘?;
1>]

For a simple graph G, the total number of k-inversions of T is k(G,T). If G = K,,;1 with
root 0, then k(K,1,T) = inv(T) for every T' € SPT(K,11).

Definition 6. Let G be a graph on the vertex set V = {0,1,...,n} with the adjacency
matrix A(G) = [a;;]o<ij<n. Let 7 € V be the root of G and V = V' \ {r}. A function
P:V — Nis called a G-parking function (with respect to the root r) if for every non-

empty set A C V, there exists ¢ € A such that P(i) < da(i) = 32y 4 @ij-

Note that, if root r = 0, then P is a G-parking function if and only if x* ¢ Mg,
i.e., x¥ is a standard monomial of the G-parking function ideal M. For a G-parking
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function P : V — N, the sum sum(P) and the reverse sum rsum(P) of P are respectively
given by

sum(P) = ZP(Z) and rsum(P) = g(G) — sum(P) = g(G) — ZP(@)

ieVv ieVv

Definition 7. A rooted tree on the vertex set [n] is called an uprooted tree if the root is
bigger than all its children.

Let U,, be the set of uprooted trees on the vertex set [n]. Then it is well known that
\U,| = (n —1)""!. For certain graphs G on the vertex set V, we shall show that the
spherical G-parking functions correspond to uprooted spanning trees of G’ = G — {0}.

2.3 Depth-First-Search Algorithms

We now describe the Depth-First-Search burning algorithm of Perkinson-Yang-Yu [13] for
simple graphs. Let GG be a simple graph on the vertex set V' with a root r € V. Applied
to an input function P : V \ {r} — N, the Depth-First-Search algorithm of Perkinson-
Yang-Yu [13] gives a subset burnt_vertices of burnt vertices and a subset tree_edges
of tree edges as an output. We imagine that a fire starts at the root r and spread to other
vertices of G according to the depth-first rule. The value P(5) of the input function P can
be considered as the number of water droplets available at vertex j that prevents spread
of fire to j. If 7 is a burnt vertex, then consider the largest non-burnt vertex j adjacent
to . If P(j) = 0, then fire from 7 will spread to j. In this case, add j in burnt_vertices
and include the edge (7,j) in tree_edges. Now the fire spreads from the burnt vertex
j. On the other hand, if P(j) > 0, then one water droplet available at j will be used to
prevent fire from reaching j through the edge (7, 7). In this case, the dampened edge (i, j)
is removed from G, number of water droplets available at j is reduced to P(j) — 1 and
the fire continue to spread from the burnt vertex ¢ through non-dampened edges. If all
the edges from 7 to unburnt vertices get dampened, then the search backtracks. At the
start, burnt_vertices = {r} and tree_edges = {}.

Perkinson, Yang and Yu [13] constructed a bijection ¢ : PF(G) — SPT(G) using their
Depth-First-Search algorithm.

Theorem 8 (Perkinson-Yang-Yu). Let G be a simple graph on the vertex set V with
root r. After applying Depth-First-Search burning algorithm to P : V \ {r} — N, if
burnt vertices =V, then P is a G-parking function and tree edges in the set tree_edges
form a spanning tree ¢(P) of G. If burnt vertices # V, then P is not a G-parking
function. Further, the mapping P — ¢(P) given by the Depth-First-Search algorithm
induces a bijection ¢ : PF(G) — SPT(G) such that

rsum(P) = g(G) —sum(P) = (G, ¢(P)) for all P e PF(G).
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Let ZP@F(G) ¢™"™(P) be the reversed sum enumerator for G-parking functions. The-
orem 8 establishes the identity

Z qrsum(P) — Z qH(G,T) 7

PEPF(G) TESPT(G)

that extends a similar identity obtained by Kreweras [6] for the complete graph K, .
We now describe the Depth-First-Search burning algorithm of Gaydarov-Hopkins [5]
for multigraphs. Consider a connected multigraph G on the vertex set V with root
r. Let E(i,j) = E(j,i) be the set of edges between distinct pair of vertices i and j.
Fix a total order on FE(i,j) for all distinct pairs {i,j} of vertices and write E(i,j) =
{e%, e}j, o ,e?jfl}, where |E(i, j)| = a;;. Thus we assume that edges of the multigraph
G are labelled. Applied to an input function P : V' \ {r} — N, the Depth-First-Search
algorithm for multigraphs gives a subset burnt_vertices of burnt vertices and a subset
tree_edges of tree edges with nonnegative labels on them as an output. As in the case of
Depth-First-Search algorithm for simple graphs, we imagine that a fire starts at the root
r and spread to other vertices of G according to the depth-first rule. If 7 is a burnt vertex,
then consider the largest non-burnt vertex j adjacent to i. If P(j) < a;; = |E(4,7)|, then

P(j) edges with higher labels, namely e?;jﬂ? o ’e?;j—P(j)

e%j_m])_l with label a;; — P(j) — 1 will be added to tree_edges and j in included in
burnt vertices. Now fire will spread from the burnt vertex j. On the other hand, if
P(j) = aij, then all the edges in E(i,j) get dampened and P(j) reduced to P(j) — a;j.
The fire continue to spread from the burnt vertex ¢ through non-dampened edges. If all
the edges from 7 to unburnt vertices get dampened, then the search backtracks. At the
start, burnt_vertices = {r} and tree_edges = {}. Gaydarov and Hopkins [5] extended

Theorem 8 to multigraphs using the Depth-First-Search burning algorithm for multigraph.

will get dampened, the edge

Theorem 9 (Gaydarov-Hopkins). Let G be a multigraph on V' with root r. After applying
Depth-First-Search burning algorithm to P : V' \ {r} — N, if burnt_vertices =V, then
P is a G-parking function and tree edges with labels in the set tree_edges form a labelled
spanning tree ¢(P) of G. If burnt vertices # V, then P is not a G-parking function.
Suppose L(e) is the label on an edge e of ¢(P). Then the mapping P +— ¢(P) given by
Depth-First-Search burning algorithm induces a bijection ¢ : PF(G) — SPT(G) such that

rsum(P) = k(G,T)+ »_ L(e) forall PePF(G), where T =g¢(P).
ecE(T)

The bijective map induced by the Depth-First-Search algorithms is always denoted by
¢ in this paper ignoring its dependence on the graph and the root.
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3 k-skeleton ideals of complete graphs

Let 0 < k <n —1. Consider the k-skeleton ideal M@LH of the complete graph K, 1 on
the vertex set V' =4{0,1,...,n}. As stated in the Introduction, we have

n—|A|+1
Mﬁ'?iﬂ=<(chj) D4 AC ) !A|<k+1>.

jeA
For k = 0, M%H = (z7,...,2") is a monomial ideal in R generated by n'" power of
variables. Thus, its minimal free resolution is given by the Koszul complex associated
to the regular sequence z7,...,2) in R. Also, dimg % =n" For k =n—1,
Kpia

/\/l([?;:l) = Mk, ,,- The minimal free resolution of the K, -parking function ideal Mg,

is the cellular resolution supported on the first barycentric subdivision Bd(A,,—1) of an
n — l-simplex A,,_; and

) R B
i () = IPF(y11)| = [SPT ()| = -+ 1)
K

n+1

For k = 1, the 1-skeleton ideal M%H has a minimal cocellular resolution supported
on the labelled polyhedral complex induced by any generic arrangement of two tropical
hyperplanes in R"™! (see Theorem 4.6 of [3]) and dimgk ﬁ) =2n—1)(n—1)" "

Kn+1

3.1 Betti numbers of Mﬁ’g{“

We now express the k-skeleton ideal ME;];ZH of K1 as an Alexander dual of a multi-
permutohedron ideal. Let u = (uy, ug, ..., u,) € N" such that u; < us < ... < u,. Set
m = (my, ..., m,) such that the smallest entry in u is repeated exactly m; times, second
smallest entry in u is repeated exactly msy times, and so on. Then ijl m; = n and
m; > 1 for all j. In this case, we write u(m) for u. The monomial ideal /(u(m)) =
(x7m) 5 € &,) of R is called a multipermutohedron ideal. If m = (1,...,1) € N, then
I(u(m)) is a permutohedron ideal.

Let u(m) = (1,2,...,k,k+1,...,k+1) € N*, where m = (1,...,1,n — k) € NFL,
For k =0, u(m) = (1,...,1) € N*, while for k =n — 1, u(m) = (1,2,...,n) € N". Let
I(u(m))™ be the Alexander dual of the multipermutohedron ideal /(u(m)) with respect
ton=(n,...,n) € N

Theorem 10. For0 < k< n—1, Mﬁ?}w = I(u(m))m.
Proof. Using Proposition 5.23 of [11], it follows from the Lemma 2.3 of [8]. O

Let b = (by,...,b,) € N”. The (i — 1) multigraded Betti number 8;_, p(M ) of

Kni1
M(KkiHm degree b is given by
51_1,b<./\/lg2+1) = dimK ﬁ'sul@p(b)'iiil <Kb(./\/l(k) ); K) for 1 2 1,

K'n,+1
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where Kb(/\/l(k) ) is the lower Koszul simplicial complex of M@LH in degree b and

Kn+1
Supp(b) = {j : b; > 0} (see Theorem 5.11 of [11]). Since M@LH = I(u(m))® a

combinatorial description of all multidegrees b such that ﬁi_Lb(MgﬁL ) # 0 is given in

terms of dual m-isolated subsets (see Definition 3.1 and Theorem 3.2 of [8]). For the
particular case of m = (1,...,1,n— k) € N**! the notion of dual m-isolated subsets can
be easily described. Let J = {j1,...,J:} C [n] be a non-empty subset with 0 = jp < j; <
el < jt-

1. Jisadual m-isolated subset of type-1if J C [k+1] and its dual weight dwt(.J) = t—1.
Let Z5! be the set of dual m-isolated subsets of type-1 and let Z51(i) = {J € ! -
dwt(J) =1i}.

2. J={j,...,j} is a dual m-isolated subset of type-2 if J\{j:} C k], k+1<ji <n
and its dual weight dwt(J) = (t—2)+ (j; — k). Let Z;:? be the set of dual-m isolated
subsets of type-2 and let Zj52(i) = {J € Z};* : dwt(J) = i}.

Let 77 = Zx ] 2 be the set of all dual m-isolated subsets and Z7, (i) = Z:1(i) [ 252 (i).
Consider A = (A, Ag,..., \,) with \; =n—i+1for 1 <i<kand \; =n—k for
k+1<i<n. Letey,...,e,bethestandard basis vectors of R". For 0 <i < j < n, we set
(i, j) = Y1 - Forany J = {ji,..., 5} € I}, let b(J) = 22:1 N €(Ja=1,Ja) € N™
We illustrate the concept of dual m-isolated subsets and its relation with multigraded
Betti numbers with an example.

Example 11. Let n = 6 and k£ = 2. Take u(m) = (1,2,3,3,3,3). Then m = (1,1,4)
and A = (6,5,4,4,4,4). Consider the multipermutohedron ideal I(u(m)) and the 2-
skeleton ideal M%H. Set 6 = (6,6,6,6,6,6). The Alexander dual I(u(m))¢) = MY

Ke41-

A subset J C [3] is a dual m-isolated subset of type-1. For example, J = {2} and

J = {1, 3} are dual m-isolated subsets of type-1 with dual weights 0 and 1, respectively.

Also, the associated multidegrees are b(J) = (5,5,0,0,0,0) and b(J) = (6,4,4,0,0,0).

The lower Koszul simplicial complex Kb(./\/lgzﬂ) for b = b(.J) or b(J) is isomorphic to

the 0-dimensional simplicial complex consisting of two points. Thus By . (./\/l%)3+ 1) =1

and B1,b(j)(M(2) ) = 1. Further, the subsets J' = {4} and J” = {1,5} are examples

Ket1

of dual m-isolated subsets of type-2 with dual weights 1 and 3, respectively. We have
b(J") = (4,4,4,4,0,0) and b(J") = (6,4,4,4,4,0). The lower Koszul simplicial com-
plex Kb(Jl)(M%H) is isomorphic to the 0-skeleton of a 3-simplex, while Kb(Jn)(M%H)
is isomorphic to the 1-skeleton of a 3-simplex. Therefore 3y J/)(M(z) ) = 3 and

@ Ke41
2
537]3(]//) (MK6+1) = 3

Theorem 12. For b = (by,....b)) € N and 1 < i < n, let firp (Mﬁ’;}m) be the

(1 — 1)th multigraded Betti number of M%H in degree b. Then the following statements
hold.

(i) For J={j1,.... 5 € T5Hi — 1), Biivnen (M(k) ) — 1, where t = i.

Kn+1
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(ii) ForJ = {ji,-..,j:} € I3(i—1), Bi-1p (MK"+1> = (25000, where t+ji—k =
1+ 1.

(iii) If b = wb(J) is a permutation of b(J) for some J € I} (i — 1) and some w € &,
then Bi_1p (M(k)+1> — 5i—1,b(J) (M(Kki+1> Otherwise, Bi—1 b (M%ﬂLl) = 0.

n

(iv) The (i — 1)"-Betti number 3;_, ( pe +1> f./\/l ",y s given by,

R -
fior (M I@m):ﬁi(MT): 2. Bt D Bl

Kn+t1 JeT (i—1) JeTi2(i—1)

where B | = H; | (’“:1) and 6‘] = [ngl (lo‘lzl)] (ltlitl;:l) for J={j1,...,5i} €
ZuMi— 1) and J = {ly,...,l;} € Z2(i — 1). Here, jis1 = li1 =n and ly = 0.

Proof. Since M@H = I(u(m)) theorem follows from Theorem 3.2 and Corollary 3.4
of [8]. O

Theorem 12 describes all multigraded Betti numbers of /\/ly;)lﬂ. We hope that it could

be helpful in constructing a concrete minimal resolution of Mg’(ﬁiﬂ.

Corollary 13. Assume thatn >3 and 1 <i < n. Then 5;_1 <M%H> = z(’fi’ll) and

2\ n n‘n—lzg—l)
ﬁz 1( nfl)—JZ- le (n—li_Q)!7

Jil(Gz — g)t - (n = gi)! ly —Iy)!
where the first and second summations run over all sequences of integers j = (ji, ..., Ji)
with 0 < jy < -+~ <ji<mnand { = (lo,l1,...,lio) with0 =1y <l <--- <li_g<n-—1,
respectively.

Proof. For k = 1, we have m = (1,n — 1) € N2. We can easily see that Z) (i — 1) =
{{1,i},{i + 1}} for i > 2 and Z} (0) = {{1},{2}}. Thus, So(M Kn+1) {1} + 8 =
(1) + () = (") Foriz2,

BaMi,) = BT+ = (i)(?)(if)*(@il)(i)
ORI ANE )

which is same as §3; (ﬁ) = Z; 1](2 11) = Z?:ﬂ(i) = (1) Z;’L:1 (g) = Z(?:) ob-
Kpt1
tained in [3]. :
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Fork=n—2,J={j,...,5 € Ixi—1) if and only if J C [n — 1] and 3/, =
I (]3“). Also, J = {ly,...,l;} € T:2(i — 1) if and only if [,_, < n —2, I, = n

a=1
and t = ¢ — 1. Since, 557_1 = |:H;;21 (17:1)} (Z:Z:i:é), we get the desired expression for
n—2
Bioy ( W)). O

Consider the first barycentric subdivision Bd(A,,_;) of an n—1-simplex A,,_;. We con-
struct a polyhedral cell complex BA®)(A,,_;) whose vertices are the vertices of Bd(A,_;)
corresponding to subsets A C [n] with |A] < k + 1. An edge in BA®(A,_;) corresponds
either to a chain A; C Ay C [n] with |[As| < k4 1 or a pair {A, B} of subsets of [n] with
|A| = |B| = k+1and |A\ B| = 1. The higher dimensional faces of Bd"™ (A, _;) are poly-
topes spanned by its edges. A vertex of Bd(k)(An,l) corresponding to A with |[A| < k+1

n—|A|+1
has a natural label (H jeA :L“j> . The cellular resolution supported on the polyhe-

dral cell complex Bd(k)(An_l) is a non-minimal resolution of M(Kkiﬂ fl<k<n-—2.
The minimal cellular resolution of /\/lgg1+1 constructed in [3] can be obtained by deleting

certain edges of the polyhedral cell complex Bd(l)(Ag).

3.2 Standard monomials of M(k)

Kn+1
A monomial xP = [T, ]J ¢ M +1 is called a standard monomial of or M%)H.
n+1
Let A= (A1,..., ), where \; =n—i+1for l1<i<kand \;=n—kfork+1<j<n.

We have seen that I(u(m))® = ./\/lg;?n w = ./\/l r- In view of Theorem 4, the number

of standard monomials of M&?LH is precisely the number of A-parking functions and

dimg <M%) = |PF(\)| =n! det(A(n,n—1,....n—k+1n—Fk, ...,n—k)).
Kn+1

More generally, for a,b > 1, we consider the complete multigraph K’ +1 on the vertex

set V with adjacency matrix A(K®",) = [ailocijn given by ag; = a;p = a and a;; = b

for i,7 € V' \ {0}; i # j. In other words, KZ’fl has exactly a number of edges between

the root 0 and any other vertex ¢, while it has exactly b number of edges between dlstlnct

non-root vertices ¢ and j. Clearly, K}lil = K, 41. The k-skeleton ideal M Ko fl Kn 1 18
given by
a+(n—|A|)b
sz1—<<Hx]) ) #AC n); |Al < k+1>
JEA
Let \@0 = (Xl“’, -, A%h), where AP = a+(n—i)bfor 1 <i < kand A" = a+(n—k—1)b
for k+1 < j <n. Then, ./\/l(ka » = Myas and from Theorem 4,
n+1
. R | a,b a,b
dimg | —5— | =n! det(A(A]”, ..., AZY)).
K% b
n+1
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We proceed to evaluate the Steck determinant and compute the number of standard

monomials of Mg;?lb . Consider the polynomial
n—+1

folz) =det(Alz+ (n — 1)b,x + (n —2)b,..., 2+ b, 7))

in an indeterminate x. In other words, we have

E z? x3 gzn—1 2" -
oo T (el o)
]. w M e (93+b)n_2 ($+b)n 1
1! 2! (n—2)!" (n—1) .
0 1 oz .. (@r2o)nTt (a426)"
fn<l’> = det 1 (n—=3)! (n—2)!
0 O 0 AU +(1! 2)b)  ( 1((2!_21);)
00 0 1 :

The polynomial f,(z) = m(HZ—?)n_l and dimg (MR - ) = a(a + nb)"! (see [14, 15]).
‘ K

Also, for 1 < k < n — 2, consider another polynomial g,.x(z) in « given by
Gni(z) = det(A(x + kb,z + (k= 1)b, ...,z + b,x,..., 7)),
where the last n — k coordinates in (x + kb,z + (k. — 1)b,...,x + b,z,...,x) are z.

Proposition 14. The polynomial g, () is given by

(k= 1)k 41y

x(z+nb)" 1
n!

Proof. We first give a simple proof of f,(x) = as in [9]. Clearly, fi(z) = x

and fo(z) = M Proceeding by induction on n, we assume that f;(z) = —m(”jf’)jﬂ for

1<j<n—1 Further using properties of determinants, we observe that the derivative
n—2
F(x) of fu(x) satisfies f/(x) = fa_1(z +b). This shows that f/(z) = EHEE"" - Aq

(n—1)!

fn(0) = 0, on integrating f/ (x) = % by parts, we get f,(z) = —m(“:f’)"_l'

Again using properties of determinants, we see that the (n — k — 1) derivative

gf:k_k_l)(m) of gn.i(z) satisfies

(k1)) _ . z(z + (k+1)b) - pojar (K + 17V
gn;k ( ) fk+1( ) jz< ) .

(k+1)! (k+1)!
Since gnx(0) = g,,(0) = -+ = gfl?l;k_l)(()) = 0 and the (n — k — 1) derivative of
"I . k—1 o k k =3I (k+1)Jb]
(=) (n—j—1)(h—j+2) BT i1 we get gnsk(2) = ijo (]) (n—j)(n—j—1)-(k—j+2) (k+1)! - —~
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Theorem 15 (Yan). The number of standard monomials of M% 1S given by

a,b

Kn+1
k
TS D " k=B (k— 4 1) (k+ 1)
| = | =2 () = k== e+ )
VA

In particular, we have dimg (ﬁ) =(a+(n—2)b)""(a+ (2n—2)b) for k=1 and
a,b
n+1

dimg (ﬁ) =ala+nb)" '+ (n—1)""1" fork =n—2.
a,b
n+1

K

K

Proof. The first part follows from dimg <M<+> = n! gnr(a + (n — k — 1)b) using
a,b

Kn+1

Proposition 14. .
For k =1, g,(ﬁl_z)(x) = fo(z) = I(x;%) = "’;—? +bx. As gﬁf%((}) =0for0<j<n—2, we
obtain

" b:lj'n_l xn—l(x + nb)

9o () = T T T T

Now dimg (M%) =n! gua(a+ (n—2)b) = (a+ (n—2)b)"" (a+ (2n — 2)b).

b
KZ_H
z(x4(n—1)b)n—2

Also, for k = n — 2, we have g, »(v) = fo_1(7) = . On integrating

(n—1)!
it by parts, we get gn.n—o(z) = Z(f;f?;(lrzi)f)_l - (m;!(g:l))b )" + O, where C is a constant of
integration. Since g,,.,—2(0) = 0, we get C' = (71—11)1+1b" Hence,

Gun2(2) = (@ = )+ (= D"+ (0= 177

Again, from dimg (%) =n! gnn—2(a+0b), we get the desired result. ]
a,b

Kn+1

Remark 16. The determinant det(Q ..+ ) of the reduced signless Laplacian matrix @ a.

n+1 n+1

a,b
n+1

z(x+(n— n—2 n—2 (n—2\ gn—1-J P14
we have g,.. o(7) = fa(z) = % = ijg( j2) (n_11)!] (n — 1)’%. Thus on

integrating g,,.,, () in two ways, we get gn.,—2(z) and a polynomial identity

of K&!| satisfies dimg <M%> = (a+(n—2)b)"" (a4 (2n—2)b) = det(QK;ﬁfl)‘ Also,

K

(2= B)(ar + (n— D)™™+ (n— )0 3555 (e n—j = D~ 1)

n! n!
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On substituting * = a + b, we get an identity

n—2

Z< ) (a+0)"7(n—j = 1)(n— 177V = ala+nb)"" + (n—1)"7¥"

for positive integers a and b. Taking a = b = 1, it justifies the equality

n—2

Z( )2" == D —1P = (n+ 1)+ (n— 1))
i=
described in [4](Corollary 3.7).

4 Spherical G-parking functions

Let G be a connected graph on the vertex set V' = {0,1,...,n} with root 0. As stated
in the Introduction, P : [n] — N is a spherical G-parking function if x” = [Ticpn xf(i) €
Me\ M(GH). Let PF(G) (or sPF(G)) be the set of G-parking functions (respectively,
spherical G-parking functions).

Let eq be an edge of G joining the root 0 to another vertex. We shall compare sPF(G)
with sPF(G), where G = G — {ep}. After renumbering vertices, we may assume that
€y = €y, is an edge joining the root 0 with n.

Lemma 17. Let G be a connected graph on the vertex set V and G = G — {eo}. Then
Mag=(Mg:x,)={2€ R: zx, € Mg}.

Further, the multiplication map fi,, - {x” : P € sPF(G)} = {x" : P € sPF(G)} induced
by x, is a bijection. In particular, |[sPF(G)| = |sPF(G)].

Proof. For ) # A C [n], let m4 and m/; be the generators of Mg and Mg, respectively.
Clearly, my = m/y if n ¢ A and my = m/yx,, if n € A. This shows that Mg = (Mg : z,,).
Also, Mg_m = (M(Gn R Z). Thus the natural sequences of R-modules (or K-vectors
spaces)

0— r Hog r — i —0and 0 — 52)’@ 5_2)—> (ni) —0

._R R R
are short exact. Let « : W — X and [ : Vi) = T be the natural projections.

Since (Mg, x,) = <M(C? -2 x,), the multiplication map p,, induces an isomorphism
ker(a) = ker(f) between kernels ker(a) and ker(3). Also {x” : P € sPF(G)} and
{x” : P € sPF(G)} are monomial basis of ker(a) and ker(3), respectively. Thus .,
induces a bijection between the bases. O]

We now give a few applications of the Lemma 17.
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Proposition 18. Let E be the set of all edges of K, 1 or K’ +1 through the root 0. Then
(1) [sPF(Kns1 — E)| = [sPF(Kpaa)]-
(2) [sPF(KGYy — E)| = [sPF(K3)]-
(3) ISPR(KEL)| = b(n — 1)
Proof. By Lemma 17, we know that the number of spherical G-parking functions and
the number of spherical (G — {eg})-parking functions are the same for any edge ey of G

through the root 0. Now, repeatedly applying Lemma 17, we see that (1) and (2) hold.
Let A = ((n — 1)b,(n — 2)b,...,2b,b,b). Consider the graph KnJrl E and its (n —

2)-skeleton ideal M(I:“ z ) Clearly, ME;MQ = M,. As Kz v1 — I is disconnected,
n+1" n+1

PF(K®’ — E) = . Thus

R
(n—2)

a,b
K, —FE

= [PF(\)| = () gnsn-2(b) = b"(n — 1)",

where the polynomial g,.,—2(z) is given in the Remark 16. O

|SPF( n+1)| - |SPF( n+1 )|:d1mK

Note that the cardinality |sPF (K] % +1)| is independent of a. As we have seen that
IPE(KX?)| = a(a + bn)" 1, [sPF(K))| = b*(n — 1)** also follows from Theorem 15.

4.1 A modified Depth-First-Search burning algorithm

Let G be a connected simple graph on the vertex set V' with aroot 0. Let Mg = (ma : 0 #
A C [n]) be the G-parking functlon ideal. For a spherical G-parking function P € sPF(G),

define P : [n] — N so that xP = m where my,) is the generator of Mg corresponding to

[n]. We say that P is the reduced spherical G-parking function associated to P € sPF(G).
Let sSPR(G) = {P: P ¢ sPF(G)} be the set of reduced spherical G-parking functions. We
shall analyse the condition SPF(G) C PF(G). Since removing (or adding) edges from the
root 0 to another vertex in G do not change the number of spherical G-parking functions
(Lemma 17), we may assume that the root 0 is connected to all the other vertices in G.

In this case, my,) = 122 - - -z, and P(i) =P(i) — 1 for i € [n].

Lemma 19. Let G be a connected simple graph on the vertex set V with a root 0. Suppose
the root 0 is connected to all other vertices of G. Then

(i) sPF(G) C PF(G).

(ii) Let P € sPF(G) and r € [n] be the unique vertex such that P(r) = 0 but P(j) > 1
for j >r. Consider the graph G' = G — {0} on the vertex set [n] with root r. Then

P= P|[n]\{r} is a G'-parking function.
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Proof. Let P € sPF(G) such that P ¢ PF(G). Then there exists §) # A C [n] such that
my | xP . i.e., my divides x?. Thus mamp | x7. If A % [n], then m4 | x”, a contradiction
to P € sPF(G). Also, if A = [n], then (my,)? | x”. Since G is a simple graph and the
root 0 is connected to all other vertices of G, mp | (z173---x,)?* for any B C [n] with
|B| = n — 1. Again a contradiction. This proves the first part.

Let P € sPF(G). TIf P(i) > 1 for all i € [n], then P() > 2 for all i. Thus (my,)? | x”,
which leads to a contradiction. Thus P(i) = 0 for some i. Let r = max{i € [n] : P(i) = 0}.

Now consider the graph G’ = G—{0} on the vertex set [n] with root . When we emphasize
the root r of G', we denote this graph by (G',r). Let M (mA 0#£AC[n]\{r}

be the G’-parking function ideal in the polynomial ring K[ml, ey Ty ..o, ). We see that
my = mem) fP = 73|[n]\{r} is not a G'-parking functlon then m 4 | Hze[n \{r}(:v,)P( i)
for some non-empty subset A C [n] \ {r}. As P(r) =0, x” = Hze[n]\{r}(xz)m’) = 77’1‘[73]

Thus my4 | x”7, a contradiction to P € sPF(G). O

We now proceed to associate uprooted trees to spherical parking functions by mod-
ifying the Depth-First-Search burning algorithm. Let G be a connected simple graph
satisfying the hypothesis of Lemma 19. Let P € sPF(G) and P be the associated reduced
spherical G-parking function. In the following three steps, an uprooted spanning tree of
G’ is associated to each P € sPF(G).

1. Set r = max{i € [n] : P(i) = 0} and consider the graph ' = G — {0} with root .

2. Let ¢ : PF(G',r) — SPT(G’, r) be the bijective map induced by Depth-First-Search
algorithm (Theorem 8). As P = P|jup\(y is a (G, r)-parking function, ¢(P) is a
spanning tree of G'. Also, sum(P) = ¢g(G’) — k(G', ¢(P)).

3. Since P € PF(G',r) and 73( ) = 1 for all j > r, there exists ¢ < r such that
73( ) = 0. On applying the Depth-First-Search algorithm to P, all the edges (r,7)

for j > r get dampened. Thus the spanning tree ¢(P ) is an uprooted spanning tree
of G'.

Let U(G") be the set of uprooted spanning trees of the graph G'. We define a map
¢¢ : sPF(G) — U(G') given by ¢¢(P) = ¢(P), where P = P|p,\ 3. We say that the map
¢¢ is induced by a modified Depth-First-Search algorithm.

Theorem 20. Let G be a simple graph on the vertex set V' with root 0 and G' = G —{0}.
Suppose the root 0 is connected to all other vertices of G. Then there exists an injective
map ¢¢ : sSPF(G) — U(G") such that sum(P) = ¢g(G) — k(G',¢c(P)) +1  for all
P € sPE(G).

Proof. We have already constructed the map ¢g. Let P, P’ € sPF(G) such that ¢g(P) =
¢c(P') =T € U(G'). Let r be the root of 7' Since ¢ : PF(G',r) — SPT(G',r) is a
bijection and ¢(P) = ¢(P), we have P = P’ and hence P = P’. Note that sum(P) =
sum(P) + n and g(G) = g(G’) +n — 1. Thus sum(P) = ¢(G) — k(G ¢ (P)) + 1 follows
from sum(P) = g(G") — (G, (P)). 0
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Let Im(¢g) = {¢pc(P) : P € sPF(G)} be the image of ¢¢ in U(G'). Theorem 20
shows that under some mild conditions on the simple graph G, the spherical G-parking
functions correspond bijectively with the uprooted trees in Im(¢¢). In general, it is not
easy to give a combinatorial description for the image Im(¢g).

Let T € U(G") be an uprooted spanning tree of G' = G — {0}. Suppose root(T") = r.
Consider the bijective map ¢ : PF(G',r) — SPT(G’,r). Then there exists a unique
(G',r)-parking function Pr such that ¢(Pr) =T. Let

UG ={T € U(G") : Pr(j) =1 for j >r =root(T)}.

Proposition 21. Im(¢g) CU(G') = {T € U(G") : Pr(j) > 1 for j > r =root(T)}.

~

Proof. Let ¢a(P) = ¢(P) = T, where P = Plipiry- As Pr = P and the root is given by

root(7') = max{i € [n] : P(i) = 0}, the result follows. O

4.2 Spherical parking functions for complete graphs

Let K, 11 be the complete graph on the vertex set V and K,, = K,,.1 —{0} be the complete
graph on the vertex set [n]. Let U, = U(K,,) be the set of uprooted trees on the vertex
set [n]. From Theorem 20, there exists an injective map ¢, = ¢k, ., : SPF(K,11) = U,.
We show that ¢, is a bijection and solve a conjecture of Dochtermann on spherical K-
parking functions.

Theorem 22. There exists a bijection ¢, : SPF(K,y1) — U, such that
sum(P) = <Z) — K(Ky, dn(P))+ 1 for all P € sPF(K,41).

Proof. The existence of injective map ¢, = ¢k, ,, : SPF(K,1) — U, with the desired
property follows from the Theorem 20. We just need to show that ¢, is surjective. Let
T € U, and root(T) = r. Consider the bijective map ¢ : PF(K,,r) — SPT(K,,r)
induced by Depth-First-Search algorithm and Pr is the unique (K, r)-parking function
such that ¢(Pr) = T. Since T is uprooted, Pr(j) = 1 for j > r. Now consider ideals
Mg, ., =(ma:0#AC[n]) and Mg, ) = (mp:0# B C [n]\{r}).

Suppose, if possible, Pr # P for all P € sPF(Ky41). Then my, Hje

a standard monomial of Mﬁ?;fl). Thus there exists ) # A C [n] such that m4 divides

P . . n—
mp) [ e in a:jT(]). If r € A, then z, appearing in ma = ([[;c,4 7)) A+

the multiplicity 1. This is possible, only if A = [n], a contradiction. If ¢ A, then

() xfT(j) is not

must have

ma = % and my | Hje[n]\{T} x;-)T(J). This shows that Pr is not a (K, r)-parking

ged(ma,mpy
function, again a contradiction. Hence ¢,, is surjective.
The surjectivity of ¢, also follows from [sPF (K, 1)| = [U,| = (n — 1)"L. O

We now study spherical G-parking functions for G = K, — {e}, where e is an
edge not through the root 0. Let e = e,, = (p,q) be the edge in K, joining p and
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g with 1 < p < ¢ < n. Let G = G- {0} be the graph on the vertex set [n] and
U(G") be the set of uprooted spanning trees of G'. In fact, Ur? = U(G") is the set
of uprooted trees on the vertex set [n] with no edge between p and ¢ (i.e., p » ¢q). Let
I/{(pwq) =U(G") ={T €cU(G") : Pr(j) = 1 for j > r = root(T)} as in Proposition 21 and
set U = U™ . In view of Theorem 20 and Proposition 21, there exists an injective map
¢ : SPE(G) = U™,

Theorem 23. Forn > 3 and G = K11 — {ep,}, the map ¢c : sPF(G) — Zjifqu)
is a bijection such that sum(P) = (}) — k(G',¢c(P)) for all P € sPF(G), where
G'=G—{0}.

Proof. We only need to show that Im(¢g) = U(G’). This proof is similar to the proof
of Theorem 22. Let T € U(G') = U and root(T") = r. Consider the bijective map

¢ : PF(G',r) — SPT(G',r) induced by Depth-First-Search algorithm and Pr is the
unique (G’ r)-parking function such that ¢(Pr) = T. Let Mg = (m4 : 0 # A C [n]) and
My = (ma 0 # A C [n]\ {r}) be the parking function ideals. Suppose, if possible,
Pr # P for all P € sPF(G). Then M) [ e @ ;DT(J) is not a standard monomial of
M7 Thus there exists §) # A C [n] such that m4 divides M) [ e oy 25 P,

Let r € Abut r € {p,q}. As ma | mp H]E[n]\{r} i (J), x, appearing in m,4 must
have multiplicity 1. Thus A = [n], a contradiction. Now suppose r = ¢ € A (or r =
p € A). Then A # [n]| implies that A = [n] \ {p} (respectively, A = [n] \ {q¢}).
fact, mpp oy = (Ijepnpa z3)zg and M)\ = (I Licpp ot 23)xp. Clearly, in either of
the cases, Mpup\(pgy = [Licpppgy 7 divides [Licpp iy @ fT(] a contradiction to Pr being
(G, r)-parking function.

Finally, if r ¢ A, then my = me[n]) and m 4 divides H]G[n]\{r} ; PrU) This shows
that Pr is not a (G’,r)-parking function, again a contradiction. This completes the
proof. O]

We now determine conditions so that U™ = ff”‘q).

Proposition 24. Y%\ I{! (pea) _ ={T e U : root(T) = p and Pr(q) = 0}.

Proof. Let T € UP*? such that root(7') = r # p. Consider the unique (G’,r)-parking
function Pr such that ¢(Pr) = T. As T is uprooted, all the edges (r,j) in G’ for j > r
must get dampened. Thus Pr(j) > 1 for all j > r such that » ~ j in G’ or G. Since

G = Knp1 — {epg}, T €U, O

Since there are no uprooted tree 7' on the vertex set [n] with root(7") = 1, it follows
from Proposition 24 that Ur? = Hflpwq) if and only if p = 1. The following corollary is
immediate.

Corollary 25. Forn >3 and G = K,.1 — {e1,}, the map ¢¢ : sPF(G) — Ul — u
induces a bijection between the set of spherical G-parking functions and the set of uprooted
trees on the vertex set [n| with 1 ~ n.
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Remark 26. By renumbering vertices of GG, we easily see that
SPF (K1 — {epg})| = [SPF(Kpp1 — {ern})| = U],

for any edge e, , between vertices p, ¢ € [n] with p < ¢. Thus, |ﬂ£lpwq)| = U]
The bijection ¢, : sSPF(K,411) — U, constructed in Theorem 22 can be extended to
the case of the complete multigraph K’ +1 on the vertex set V.

Let SPF(stl) be the set of spherical K 1-parking functions. Let U] be the set of
uprooted tree T" on the vertex set [n] with label ¢ : E(T) — {0,1,...,b — 1} on the
edges of T and a weight w(r) € {0,1,...,b — 1} assigned to the root r of T. Clearly,
Ut = vru,| = b"(n — 1)1 Also, |sPF( K*')| = b*(n — 1)»" is independent of a.
We may assume that a > b. As an application of the Depth-First-Search algorithm for
multigraph (Theorem 9), we construct a bijection

o sSPR(IGy) — Uy,

The reduced spherical K*° i1 -parking function P associated to P € sPF(K, +1) is given
by P(i) = P(i) — a for all i € [n]. Let sPF(st:l) —{P:Pe sPF(K*")}. Then as
a > b, we can verify that SPF(KSfl) C PF(K™"). Let K = K*", — {0} be the complete
multigraph on the vertex set [n] such that |E(i,j)| = b for every distinct pair {4, j} of
vertices.

Theorem 27. There exists a bijection ¢P : SPF(KZfl) — U° such that

rsum(P) +w(r) + 1 = k(K2 T) + Z ((e) forall P esPF(KY)),

ecE(T)
where T = ¢° (P) and weight w(r) € {0,1,...,b— 1} at the root(T) =

Proof. Let P € SPF(KZfl) Then P € PF(K?,). Choose the largest vertex r of K? =
Kgfl — {0} such that P(r) < b. We claim that P(j) < b for some j < r. Otherwise,
P(i) = a+b, for all i € [n] \ {r}, a contradiction to P € sPF(K*",). Now consider r to
be the root of the complete multigraph K on the vertex set [n]. Then P="P |\ fr} 18 &
(K?,r)-parking function. On applying the Depth-First-Search algorlthm for multigraph
(Theorem 9), we get ¢(P ) € U’ with root r and weight w(r) = P( ). The mapping
¢b : SPR(KX’)) — UY given by ¢ (P) = ¢(P) is clearly injective. Since SPF(K&!)| =
U8| = b"(n — 1)"~1, the map ¢ is a bijection. Also,

— Y Pl)=rsum(P) = k(KL 6(P) + > l(e).

i€[n]\{r} ecE(¢(P))

Since rsum(P) = g(K*))— > i) P (1), we verify that rsum(P) = rsum(P)+w(r)+1. O
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4.3 Counting uprooted trees

In this subsection, we determine the number |U,| of uprooted trees on the vertex set [n]
with 1 = n. Let 7,0 be the set of labelled trees on the vertex set [n] such that the root
has no child (or son) with smaller labels. Let A, be the set of labelled rooted-trees on
the vertex set [n] with a non-rooted leaf n. Chauve, Dulucq and Guibert [1] constructed
a bijection n : 7,0 — A,,. As earlier, let U,, be the set of uprooted trees on the vertex set
[n]. Also, let B, be the set of labelled rooted-trees on the vertex set [n] with a non-rooted
leaf 1. We see that there are bijections U,, — T, o and B, — A,, obtained by simply
changing label ¢ to n — 4 + 1 for all ¢. The bijection n : 7,0 — A, induces a bijection
v U, — B,. For sake of completeness, we briefly describe construction of the bijection
1 essentially as in [1].

Let T € U,, with root r. Note that r # 1.
Step (1) : Consider a maximal increasing subtree Ty of T' containing 1. Let 77, ...,7; be
the subtrees (with at least one edge) of T' obtained by deleting edges in Ty. Let r; be the
root of T; for 1 < i < [I. The root r of T" must be a root of one of the subtrees T;. Let
r; =r. Then 1 is a leaf of Tj.
Step (2) : If Ty has m vertices, then Ty is determined by an increasing tree Ty on the
vertex set [m] and a set Sy of labels on T. We write Ty = (Tp, Sp).
Step (3) : Let Sy = (So \ {1}) U {r}. Then (Ty, Sy) determines an increasing subtree Ty
with root ' = min{Sp}. Graft T; on the increasing subtree Ty at the root r and obtain a
tree T7. Now graft T; (i # j) on T} at r; and obtain a tree T” with root 7’. Also note that
1 is a non-rooted leaf of T".

All the above steps can be reversed, thus ¢(7") = T" defines a bijection ¢ : U, — B,,.

Lemma 28. |U,| = |B,| = (n —1)""%.

Proof. The bijection ¢ : U, — B, gives [U,| = |B,|. The number of labelled rooted-
trees on the vertex set {2,3,...,n} by Cayley’s formula is (n — 1)""2. Any tree in B, is
obtained uniquely by attaching 1 to any node ¢ of a labelled rooted tree on the vertex
set {2,3,...,n}. Since there are exactly n — 1 possibilities for ¢, we have |B,| = (n —
" 2(n—1)=(n—1)""L O

Forn >3, let U, = {T €U, : 1 = nin T}. We shall determine the image ¥(U) C B,
of U], under the bijection ¢ : U,, — B,,. Let B, ={1" € B, : 1 =« n in T'}. Set
A = {T'e B, : root(T') =r"=n},
B = {T'e€B),: root(T") =r" # n with v’ ~n and 1 is a descendent of n},
B" = {T'e€ B, :root(T") =" # n with r' = n}.

Lemma 29. ¢(U),) = A[[B'[[B".

Proof. Let T" € B,,. Then there is a unique 7' € U,, such that 7" = ¢(T'). Let r and ' be
the roots of T" and T”, respectively. Clearly, r # 1. Let Sonz(1) be the set of sons of 1 in
T. Then from the construction of 7" = ¢(T), v = min{{r} U Sony(1)}. Also, the leaf 1
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in 7" is adjacent to j if and only if j = pary(1) is the parent of 1 in 7". This shows that
1 = nin T if and only if 1 ~ n in 7”. Hence, ¥(U),) C B!,. Further, we see that ' =n
if and only if 1 is already a leaf in 7', and in this case, 7" = ¢(T') = T In other words,
ACU! and Y(T) =T for all T € A.

If 7" € B”, then the unique T' € U,, with ¥)(T") = T" must have 1 » n in T, that is,
T € U/. Now we consider the remaining case. Let 7' € B!, with root(T") =’ # n and
" ~nin T'. We shall show that ¢(T") = 7" for T' € U] if and only if 1 is a descendent
of nin 7" (or equivalently, 77 € B’). Consider the maximal increasing subtree Tj of 7"
containing the root r’. If 1 is a descendent of a leaf 1 of T, then the maximal increasing
subtree Ty of T' containing 1 is obtained by replacing r; with 1 in the vertex set of Tj
and labeling it as indicated in Step (2) of the construction of 1. Clearly, r; = 7 is the
root of T. If v = r # n, then 1 ~ nin T as " ~ n in T". Thus, if 7% # n, ie, 1is
not a descendent of n in 7", then T" ¢ ¢)(U,). On the other hand, if 7} = n, ie., 1is a
descendent of n in 7" with 1 ~ n, then root(7) =r =n and 1 » n in 7. O

Proposition 30. Forn > 3, we have |[U,| = (n — 1)"3(n — 2)*.

Proof. By Lemma 29, we have [U,| = [¢(U),)| = |A| + |B'| + |B”|. First we enumerate the
subset A = {T" € B], : root(T7") = " = n}. The number of labelled trees on the vertex
set {2,3,...,n} with root n is (n — 1)"~®. Since any tree in A is uniquely obtained by
attaching 1 to any node i € {2,...,n — 1} of a labelled tree on the vertex set {2,...,n}
with root n, we have |A| = (n — 1)"3(n — 2).

Let us consider the subset C = {T" € B : root(T") = r’ # n} C Bl,. Clearly,
B = B'[[B" C C. The enumeration of C is similar to that of A, except now the root
r" € {2,...,n—1} can take any one of the n —2 values. Thus |C| = (n—1)""3(n—2)%. We
can easily construct a bijective correspondence between A and C \ B. Let 7" € A. Then
1 » nin 7" and root(7T") = n. Consider the unique path from the root n to the leaf 1 in
T'. As 1~ nin 77, the child 7 of n lying on this unique path is different from 1. Let 7" be
rooted tree consisting of the tree 7" with the new root 7. As root(1") = # # n, ¥ ~ n and
1 is not a descendent of n in 77, we have T/ € C\ B. The mapping 7" +— 1" from A to C\ B
is clearly a bijection. If 7" € C\ B, then root(1") = 7 # n, # ~ n and 1 is not a descendent
of n in T'. Now unique 7" € A that maps to 7" is the rooted tree obtained from 7" by
taking n as the new root. Thus |A| = |C\B| and hence, || = |C| = (n—1)"3(n—2)2. O

Theorem 31. Let e, , be an edge of K, 11 joining distinct vertices p,q € [n]. Forn > 3,
the number of spherical parking functions of K11 — {epq} is given by

SPF (K1 — {epg )l = Uy | = (n = 1)"*(n — 2)*.
Proof. In view of Theorem 23 and Remarks 26, the result follows. [

Let F; = {e1n,€1n-1,---,€1n-1+1} be a set of l-edges through the vertex 1 in the
complete graph K, ;. We consider the graph K, 1 — F} and ask the following question.

Question 32. What is the number of spherical (K, 1 — F;)-parking functions?
Computations for smaller values of n and [ indicate that

SPF(Kpi1 — F))| = (n—1)"3(n—1-1)%
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5 Spherical K, ,-parking functions

Let K41, be the complete bipartite graph on the vertex set V' = [0, m] [[[m+ 1, m+n],
where [0,m] = {0,1,...,m} and [/m+1,m+n] = {m+1,...,m+n}. Let Kggiljn be
the complete bipartite multigraph on V’. More precisely, there are a number of edges in
Kg’;il,n between the root 0 and j, while b number of edges between i and j, where i € [m]
and j € [m+1,m+n].

Proposition 33. We have |sPF(Kf,;il,n)] = |sPF(K§fLm)|.

Proof. Let E and E’ be the set of all edges of Kﬁ;ilm and KZfl,m through the root 0,
respectively. On repeatedly applying the Lemma 17, we see that

[SPF(KGS )| = [sPR(KGS, , — B)| and  [sPF(KGY, )| = [SPF(KGY, , — E)].

Since graphs KZ{iLn — F and Kgfl’m — E' are obtained from each other by interchanging
vertices as ¢ <> n+ 7 and m+ j < j (for i € [m],j € [n]), ]sPF(K,‘fl’il’n —F)| =
[SPE (K1 — BN O

Although the root 0 is not connected to all the other vertices in the simple complete
bipartite graph K11, we can construct a map ¢ i SPF(Kpy10) = U(K ) as in

Theorem 20, where U(K,, ) is the set of uprooted sprggllr!;ing trees of Ky, = K1, —{0}.

The reduced spherical K, 1 ,-parking function P associated to P € sPF(Kpi1) 18
given by P(j) = P(j) for 1 < j < mand P(j) = P(j) —Lfor m+1 < j < m+n.
We see that K,,,, = Kpi1, — {0} is the complete bipartite graph on the vertex set
[m] [[[m + 1, m + n]. The following statements can be easily verified.

() SPF(Kominn) © PF(Kyinr)
(i) Let r = max{i € [m+n]: P(i) =0}. Then m+ 1 <r < m+n.
(iii) P = Plimin\ ) 18 & (Kypp, 7)-parking function.

)

(iv) If ¢ : PF(K,,,7) = SPT(K,, ., 1) is the bijection induced by Depth-First-Search
algorithm, then ¢(P) is an uprooted spanning tree of K, .

Now define a map ¢ p

i - SPE(Kny1 ) = U(Kp ) given by ¢k, (P) = ¢(P) for
P € sPF(K41,). For each T' € U(K ), let Pr be the unique (K, ,,, r)-parking function
such that ¢(Pr) =T. Let U(Kyn ) = {T € U(K ) : Pr(j) = 1 for j > root(T)}.

Theorem 34. The map ¢k,,.,,, : SPF(Kpi1,) — UKy ) is injective with the image
U(Kpp) and  sum(P) =m(n — 1) — k(Kpn, Gr,0pr..(P)) + 1 for all P € sPF(K, 1)

Proof. Proceed as in the proof of Theorems 20 and 22. [
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Remark 35. The following three statements can be easily verified.
(1) [SPF(Kpi1.1)| = 1 = [SPP(Kq41,0)] -
(2) Every spanning tree T" of K,,,, with root(T") = m + n lies in U(K,,,,). Thus

{P € SPF(Kpi1n) : P(m+n) =0} = [PF(Kp,)| =m" n™

(3) We have  |sPF(K", )| = 0™+ |sPF (K1),

We could not enumerate sPF(K,,11,,) or UK m.n). Thus we ask the following question.
Question 36. What is the number of spherical K, ,-parking functions?

For n = 2, this question has an easy answer.
Proposition 37. Form > 1, |sPF(K,,112)| = (m —1)2™ + 1.

Proof. We know that |[sPF(K,,112)| = [sSPF(K,,4+12 — F)|, where E is the set of all edges
of K412 through the root 0. Now the m-skeleton ideal of the (disconnected) graph
K112 — E is given by

Mg'r:Jrl’ng = <x?7y;nay1y27xi1xi2 T xisy;nis S [m]v J= 1,2 and {ila s 7i8} C [m]>7

where y; = x,4; for 7 = 1,2. The standard monomials of M%JH ,_p are of the forms
Ty Tiy ... T, yf with 0 <a<m—s or z,w, - -xisyg with 1 < 8 < m — s. Thus the

number of standard monomials of the first type is > () (m — s) = m2™~!, while that

of the second type is 3.7 (™ (m—s—1) = (m—2)2""! + 1. -

s
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