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Abstract

We consider permutations sortable by k passes through a deterministic pop stack.
We show that for any k ∈ N the set is characterised by finitely many patterns,
answering a question of Claesson and Guðmundsson. Moreover, these sets of patterns
are algorithmically constructible.

Our characterisation demands a more precise definition than in previous liter-
ature of what it means for a permutation to avoid a set of barred and unbarred
patterns. We propose a new notion called 2-avoidance.
Mathematics Subject Classifications: 05A05

1 Introduction

A pop stack is a sorting device which operates as follows: at each step it can either push
one entry from the input stream onto the top of the stack, or else pop the entire stack
contents to the output stream. We consider the entries to be distinct real numbers with
the usual ordering. A deterministic pop stack always performs the push move unless the
entry on the top of the stack is smaller in value than the entry to be pushed from the
input, or if there is no further input. See for example Figure 1. For convenience from
now on we assume entries are integers and write a sequence 2, 1, 3 as 213 when entries are
single digits.

Observe that by definition the stack remains ordered from smallest on top to largest
on the bottom during the operation of a deterministic pop stack.

A permutation (ordered sequence of distinct real numbers) can be sorted by k passes
through a deterministic pop stack if after repeating the procedure k times, the sequence
∗Both authors supported by Australian Research Council grant DP160100486.
†Supported by the Australian Government Research Training Program.
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Figure 1: Sorting 213 using a deterministic pop stack.

is ordered from smallest to largest. For example, 41352 can be sorted by two passes
(Figure 2).
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(b) Second pass.

Figure 2: Sorting 41352 with a 2-pass pop stack.

Let p1(α) denote the sequence obtained by passing a sequence α through a determin-
istic pop stack once, and define pk(α) = pk−1(p1(α)). For example p1(41352) = 14325 and
p2(41352) = 12345. We say α is k-pass deterministic pop stack sortable, or k-pop stack
sortable for short, if pk(α) is an increasing sequence.

In 1981 Avis and Newborn characterised permutations sorted by a single pass through
a pop stack [1], initiating the study of pop stack sorting. Specifically they showed a per-
mutation can be sorted in one pass if and only if it avoids 231 and 312 in the usual sense of
pattern avoidance (see Section 2 for precise definitions). Pudwell and Smith characterised
permutations sorted by 2 passes, in terms of avoiding a set of six usual patterns and two
special barred patterns (defined in Subsection 2.1 below), and computed a rational gener-
ating function for the number of such permutations [11]. Claesson and Guðmundsson then
computed a rational generating function for permutations sorted by any finite number of
passes [3], and asked whether a “useful permutation pattern characterization of the k-pop
stack-sortable permutations” exists for k > 3.

In this paper we provide such a characterisation. To do so, we realised the current
notions of what it means to avoid a set of barred and unbarred patterns would not suffice
(see Subsection 2.1). We therefore introduce a new notion called 2-avoidance, which could
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be of independent interest. In Appendix B we explain how 2-avoidance differs from the
notion of mesh pattern avoidance.

We make the following observations. First, our present result is in contrast to the usual
(nondeterministic) stacks-in-series model where in many cases no finite pattern-avoidance
characterisation is possible due to the existence of infinite antichains [4, 10]. Second, the
operation of a pop stack is related to classical sorting: “bubble-sort” is exactly sorting by
arbitrarily many passes through a pop stack of depth 2. Third, pop stacks are a natural
model for genome rearrangement [11].

2 Preliminaries

Define a permutation to be a sequence of distinct real numbers, written as α = a1a2 · · · ar
(we continue the convention to write sequences without commas). The reduced form of a
permutation α, denoted red(α), is the permutation obtained by replacing the ith smallest
entry of α by the integer i. A permutation in reduced form is called reduced. We denote the
set of all reduced permutations by S∞. Two permutations α = a1 · · · ar and β = b1 · · · bs
are order-isomorphic, denoted α ∼ β, if they have the same reduced form. For example
253 and 132 are order-isomorphic. In general, we will write permutations in their reduced
form.

A subpermutation of α = a1 · · · ar is a sequence ai1 · · · ais where 1 6 i1 < . . . < is 6 r,
while a factor is a sequence ai1 · · · ais where ij+1 = ij + 1 for 1 6 j 6 s − 1. For
two permutations α and β, we say β contains α if some subpermutation of β is order-
isomorphic to α. We use the notation α 6 β if β contains α, and the notation α <subperm β
if α is a subpermutation of β. For example, 423 <subperm 14253, and 312 6 14253 since
312 ∼ 423, but 312 6<subperm 14253.

We say β avoids α if no subpermutation of β is order-isomorphic to α. For example
54123 contains 312 and avoids 231. For any set of permutations F , let Av(F ) ⊆ S∞

denote the set of all permutations that simultaneously avoid every α ∈ F .
Knuth famously observed that a permutation can be sorted by passing it through a

single stack if and only if it avoids 231 [8]. Avis and Newborn proved a permutation can
be sorted by passing it through a pop stack once if and only if it avoids both 231 and
312. However, for multiple passes through a pop stack, the situation arises that some
permutation cannot be sorted, while a longer permutation containing it can, so the usual
notion of pattern avoidance is not useful for characterising permutations in this context
(in other words, for k > 2, k-pass pop stack sortable permutations are not a closed class
with respect to usual pattern avoidance). As a concrete example, Figure 3 shows that
3241 is not 2-pass pop stack sortable, whereas 41352 is (as demonstrated by Figure 2),
and contains 3241.

This leads us to the following notion.

Definition 1 (2-containment). Let σ be a permutation and F,G ⊆ S∞ be two sets of
reduced permutations. We say that σ 2-contains (F,G) if there exists a subpermutation
γ of σ such that
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Figure 3: 3241 is not a 2-pass pop stack sortable.

– red(γ) ∈ F and

– there is no δ <subperm σ such that γ <subperm δ and red(δ) ∈ G.

Informally, we think of the setG as patterns which can potentially “save” a permutation
from being forbidden by F .

A permutation 2-avoids (F,G) if it does not 2-contain (F,G). Using propositional
logic we can express this as follows.

Definition 2 (2-avoidance). Let σ be a permutation and F,G ⊆ S∞ be two sets of
reduced permutations. We say that σ 2-avoids (F,G) if for all γ <subperm σ, if red(γ) ∈ F
then there exists δ <subperm σ such that γ <subperm δ and red(δ) ∈ G.

We denote the set of all permutations in S∞ which 2-avoid (F,G) by Av2(F,G).

Example 3. Let F = {3241}, G = {41352}. Then σ1 = 143562 has the subpermutation
4352 ∼ 3241 which is not part of a longer subpermutation of σ1 order-isomorphic to
41352, so σ1 2-contains (F,G). Now consider σ2 = 152463 which has subpermutation
5463 ∼ 3241. However 5463 is a subpermutation of 52463 ∼ 41352, so 5462 is saved by
G. Since there are no other subpermutations of σ2 that are order-isomorphic to 3241, we
have that σ2 2-avoids (F,G).

Example 4. Let F = {1}, G = {12, 21}. Then Av2(F,G) consists of all permutations
in S∞ except the permutation of length 1. This is a rather extreme example, but shows
that the growth of 2-avoidance sets can be factorial.

Using this notion, we can express the result of Pudwell and Smith as follows.

Theorem 5 (Pudwell and Smith [11]). The set of 2-pass pop stack sortable permutations
is equal to

Av2({2341, 3412, 3421, 4123, 4231, 4312, 3241, 4132}, {41352}).
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At this point the reader might object and say that Pudwell and Smith’s use of barred
patterns (see the next subsection) is more efficient to describe this set, which it is. However
for 3-pop stack sortable permutations, the usual definition of avoiding sets of barred and
unbarred patterns will fail.

2.1 The problem with barred patterns

A barred pattern is a permutation where certain entries (possibly none) are marked with
a bar. For example, β = 43̄51̄2. A barred pattern encodes two permutations, one
called removebar(β) obtained by deleting entries marked with a bar, and the other called
unbar(β) obtained by removing bars. For example, removebar(43̄51̄2) = 452 ∼ 231, and
unbar(43̄51̄2) = 43512.

In [7, Definition 1.2.3] a permutation σ is said to avoid a barred pattern β if each
occurrence of removebar(β) in σ (if any) is a part of an occurrence of unbar(β) in σ.
There are two issues with this definition. Firstly, as written, this does not agree with the
usual pattern avoidance when β itself has no bar entries. For example, σ = 21 obviously
does not avoid itself in the usual sense of pattern avoidance, but if β = 21 is considered as
a barred pattern then σ avoids β since it has a subpermutation, κ = 21 = removebar(β),
and κ is part of an occurrence of unbar(β) = 21 in σ.

Secondly and more seriously, in applications such as [11, 13] some set of permutations
S is characterised by being those permutations avoiding some list of barred and unbarred
patterns, where this means that each permutation in S must avoid every pattern individ-
ually. Explicitly, Tenner [12] defines, for P a collection of barred and unbarred patterns,
Av(P ) to be the set of permutations simultaneously avoiding all patterns in P :

Av(P ) =
⋂
p∈P

Av(p)

However, this notion does not suffice to describe 3-pop stack sortable permutations:
one may verify that 32451 is not 3-pop stack sortable while both 4631572 and 4731562
are. If we were to characterise 3-pop stack sortable permutations as those avoiding a
list containing 46̄31̄572 and 47̄31̄562, then we would be mistaken since 4731562 does not
avoid this list since it fails to avoid the barred pattern 46̄31̄572. Theorem 1 says that
even though some permutation may contain a subpermutation which is forbidden, it can
be saved if it extends to another subpermutation which appears somewhere on the list G.
For the applications in [11, 13] the sets of barred and unbarred patterns to be avoided
have no “overlap”: in the case of [11], the two barred patterns have removebar equal to
2341 and 4312 which are both different from the unbarred patterns in their list; and in
the case of [13] there is only one barred pattern whose removebar is different from the
unbarred pattern.

Note that our definition of 2-avoidance also differs from the notion of avoiding mesh
patterns as defined in [2]. See Appendix B for a brief discussion.
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2.2 Removing redundant patterns

In general, one cannot simply delete patterns from F if they contain shorter elements
of F , or delete patterns from G if they are contained in longer elements of G, since 2-
containment involves a subtle interplay between the two sets. The following two examples
demonstrate this.

Example 6. If F = {43251, 3241} and G = {41352} then we claim that the pattern
43251 ∈ F is not redundant, even though it contains a shorter element in F . Let F1 =
{3241}. Then σ = 6251473 2-avoids (F1, G), but 2-contains (F,G). Thus Av2(F,G) 6=
Av2(F1, G).

Example 7. If F = {4123, 4231, 43251, 3241} and G = {41352}, then we claim that the
pattern 43251 ∈ F is redundant. Suppose σ 2-contains (F,G). Either this is because
of β ∈ F \ {43251}, or not. If we suppose not, then σ must 2-contain (F,G) because
of 43251. If σ contains 43251 then it contains 3241, so each of the subpermutations
γ ∈ {4351, 4251, 3251} must be saved by 41352 ∈ G (otherwise we would say σ 2-contains
(F,G) because of some β ∈ F \ {43251}). Thus σ must have a subpermutation 4a3b251
such that 4a351 ∼ 4a251 ∼ 3b251 ∼ (41352), so a, b < 1. Therefore, 4a3b251 is either
order isomorphic to 403(−1)251 (so σ contains 4231) or 4(−1)30251 (so σ contains 4123).
Thus σ 2-contains F because of 4123 or 4231 which contradicts that it is because of 43251
only. Thus σ 2-contains (F \ {43251}, G). Conversely if σ 2-contains (F \ {43251}, G)
then it clearly 2-contains (F,G). Thus Av2(F,G) = Av2(F \ {43251}, G).

However, we can state some general rules for removing redundant elements of F or G.

Lemma 8. If α ∈ G and for all γ ∈ F , γ 66 α, then Av2(F,G) = Av2(F,G \ {α}).

Lemma 9. If α, β ∈ G, β 6 α, β 6= α, and for all κ ∈ F , κ 6 α implies κ 6 β, then
Av2(F,G) = Av2(F,G \ {α}).

Lemma 10. If κ, λ ∈ F , κ 6 λ and for all α ∈ G, κ 66 α, then Av2(F,G) = Av2(F \
{λ}, G).

Proofs can be found in Appendix A (no other results depend on them). Certainly
we believe that further lemmas could be stated and proved to remove more redundant
elements. For the purpose of this paper we do not pursue this; we content ourselves to
find a characterisation for k-pop stack sortable permutations in terms of finite sets only.

3 Blocks

Let σ be a permutation. Call a factor Bi = ai,1ai,2 · · · ai,ni
of σ a block if ni > 0 and

ai,j > ai,j+1 for all 1 6 j < ni. (Recall that factor means the entries are contiguous in σ.)
A (maximal) block decomposition of σ is an expression of the form σ = B1B2B3 · · ·Bm
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where each Bi is a block and for any two adjacent blocks Bi = ai,1ai,2 · · · ai,ni
and

Bi+1 = ai+1,1ai+1,2 · · · ai+1,ni+1
we have ai,ni

< ai+1,1. For example σ = 87634521 has
block decomposition B1 = 8763, B2 = 4, B3 = 521. For convenience we indicate the block
decomposition of σ by inserting | symbols to separate blocks, so for our example we write
8763 | 4 | 521.

If Bi = ai,1ai,2 · · · ai,ni
is a block, let B̃i = ai,ni

· · · ai,2ai,1. We have the following.

Lemma 11 ([11]). If σ has block decomposition B1B2B3 · · ·Bm then

p1(σ) = B̃1B̃2B̃3 · · · B̃m.

For example σ = 987354621 = 9873 | 54 | 621, so p1(σ) = 3789 45 126.

Lemma 12 ([3]). Let σ be a permutation. Then each block in the block decomposition of
p1(σ) contains at most 3 entries.

For example, if σ = 52341 = 52 | 3 | 41 then p1(σ) = 25314 = 2 | 531 | 4.

Lemma 13. Let σ be a permutation with block decomposition B1B2B3 · · ·Bm, and let
a ∈ Bi+1, b ∈ Bi+n be two entries of σ with a > b, n > 1. (See for example Figure 4). If
n > 3k then σ is not k-pass pop stack sortable.

Proof. We proceed by induction. For k = 0, σ is not sortable by 0 passes since a > b.
Assume the statement is true for k ∈ N, and consider σ = B1 · · ·Bi+1 · · ·Bi+n · · ·Bm,
a ∈ Bi+1, b ∈ Bi+n with n > 3k+1. Colour the entries a, b and all entries inBi+2, . . . , Bi+n−1
bold. Then the number of bold entries in σ is at least n > 3k+1 since each block con-
tains at least one entry. After one pass, each block of p1(σ) can contain at most 3

entries, so the number of blocks with bold entries is at least 3k+1

3
= 3k. Since p1(σ) =

B̃1 · · · B̃i+1B̃i+2 · · · B̃i+n−1B̃i+n · · · B̃m and B̃i+1, B̃i+n contain just one bold entry each (a, b
respectively), we have that a must be in the first block with bold entries in the block de-
composition of p1(σ), and b in the last, so by inductive hypothesis p1(σ) cannot be sorted
by k passes. Thus σ cannot be sorted by k + 1 passes.

We remark that the bound of 3k in the preceding statement is most likely an extreme
overestimate. However for the purpose of this paper any bound suffices.

4 General characterisation of k-pass pop stack sortable permu-
tations

Theorem 14. Let k ∈ N+. There exists a pair of finite sets (Fk, Gk) such that the set
of all k-pass pop stack sortable permutations is equal to Av2(Fk, Gk). Moreover, the sets
Fk, Gk can be algorithmically constructed.
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Proof. Let Sk denote the set of all k-pass pop stack sortable permutations. We proceed
by induction, with the base case k = 1 established by Avis and Newborn [1] (specifically,
F1 = {231, 312}, G1 = ∅). Assume Fk−1, Gk−1 have been constructed, are finite, and
Sk−1 = Av2(Fk−1, Gk−1).

Let fmax = max{|β| | β ∈ Fk−1} and C = 3k+2fmax. Then define the following two sets

Ω1 = {τ ∈ S∞ | |τ | 6 3fmax and τ 6∈ Sk},
Ω2 = {κ ∈ S∞ | |κ| 6 C, κ ∈ Sk and there exists τ ∈ Ω1 such that τ 6 κ}.

Claim 1: Ω1 and Ω2 are both finite: both are subsets of the set of all permutations of
length at most C.

Claim 2: Ω1 and Ω2 are algorithmically constructible: we only have finitely many τ, κ of
length at most 3fmax, C respectively. For each τ, κ we can check τ 6∈ Sk or κ ∈ Sk in
linear time by passing them according to the deterministic procedure, and we can check
all subpermutations of κ of length at most 3fmax to see whether or not at least one has
reduced form in Ω1.

Claim 3: σ 6∈ Sk if and only if σ 2-contains (Ω1,Ω2): we have σ 6∈ Sk if and only if
p1(σ) 6∈ Sk−1 if and only if p1(σ) 2-contains (Fk−1, Gk−1).

To prove the forwards direction of Claim 3, suppose p1(σ) 2-contains (Fk−1, Gk−1), and
further assume this is because of some ζ <subperm p1(σ) with red(ζ) ∈ Fk−1, and there is
no δ <subperm σ with ζ <subperm δ and red(δ) ∈ Gk−1. Note, there may be many choices of
ζ to take, but fix one choice.

1. Mark entries corresponding to ζ in p1(σ) bold. Let ζ ′ <subperm σ be such that
after one pass, the entries belonging to ζ ′ are the bold entries corresponding to
ζ <subperm p1(σ). Mark the ζ ′ entries bold as well. Note that |ζ ′| 6 fmax.

For example, if σ = 987354621 then p1(σ) = 378945126 which 2-contains
({231, 312}, ∅) because of (for instance) the subpermutation ζ = 956 ∼ 312 of p1(σ).
We write p1(σ) as 378945126, and thus σ as 987354621.

2. Next, write σ in block decomposition σ = B1B2B3 · · ·Bm with Bi = ai,1 · · · ai,ni
.

Say that Bi is bold if it contains at least one bold entry (from ζ ′). We wish to
delete non-bold entries of σ but we do not want to merge bold blocks, so we apply
the following subroutine.

– Set τ = σ.

– While ai,j is a non-bold letter,

- if removing ai,j from τ does not cause two or more bold blocks to merge,
delete ai,j from τ .
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We claim that at the end of this process |τ | 6 3|ζ ′| 6 3fmax. Let ai,j ∈ Bi with
1 < i < m be a non-bold entry in τ . If at most one of Bi−1, Bi, Bi+1 is bold, then
removing ai,j cannot merge bold blocks. Else assume at least two of Bi−1, Bi, Bi+1

are bold. If ai,j is not the first or last entry in Bi, it can be deleted without merging
blocks. This leaves at most two unbold entries in Bi. For B1 (resp. Bm) we can
delete all except the last (resp. first) entry without merging bold blocks. This leaves
at most two unbold entries in each block. Then in the worst case each block contains
just one bold entry, with an unbold entry on either side. For example, if we get
to τ = . . . | 12,10, 8 | 975 | 642 | 31 then we cannot delete 8, 9, 5, 6, 2, 3 without
merging blocks.

3. After this, we obtain a permutation τ <subperm σ such that the bold letters ζ ′ <subperm

τ and |τ | 6 3fmax.

We now claim that p1(τ) 2-contains (Fk−1, Gk−1) because of the same subpermutation ζ
of p1(σ). Since bold blocks are preserved in τ , we know that p1(τ) will also contain ζ. Now
suppose there is some δ <subperm p1(τ) (<subperm p1(σ)) with red(δ) ∈ Gk−1 and ζ <subperm

δ. This means that the same δ saves (ζ, p1(σ)), which contradicts our original assumption.
Thus p1(τ) 2-contains (Fk−1, Gk−1), which implies p1(τ) 6∈ Sk−1, which implies τ 6∈ Sk.

Thus since |τ | 6 3fmax and τ 6∈ Sk, we have τ ∈ Ω1 by definition. To finish this
direction, we will show that τ is not saved by any subpermutation order-isomorphic to
something in Ω2.

Suppose (for contradiction) that there is some δ <subperm σ with τ <subperm δ and
red(δ) ∈ Ω2. This means δ ∈ Sk, so p1(δ) ∈ Sk−1, and so p1(δ) 2-avoids (Fk−1, Gk−1).

Now p1(δ) will contain ζ since blocks containing ζ ′ <subperm τ <subperm δ will not
merge after one pass. Since p1(δ) 2-avoids (Fk−1, Gk−1) and contains ζ, there must be
some α ∈ Gk−1 which saves ζ <subperm p1(δ). This means there is some α′ <subperm p1(δ)
with ζ <subperm α′ and α′ ∼ α.

We claim α ∈ Gk−1 also saves ζ <subperm p1(σ), since there exists

α′ <subperm p1(δ) <subperm p1(σ)

with ζ <subperm α′ and α′ ∼ α. This contradicts that p1(σ) 2-contains (Fk−1, Gk−1)
because of ζ. Thus we have shown σ 6∈ Sk implies σ 2-contains (Ω1,Ω2).

Now for the converse direction of Claim 3, suppose that σ 2-contains (Ω1,Ω2). Then
we can assume that this is because of γ <subperm σ and τ ∈ Ω1 with γ ∼ τ , which is not
saved by any α ∈ Ω2, and so by definition γ 6∈ Sk. Thus p1(γ) 2-contains (Fk−1, Gk−1).

Assume (for contradiction) that σ ∈ Sk. We will show that this implies we can
construct some κ <subperm σ such that κ ∈ Sk, γ <subperm κ and |κ| 6 C. If so, then we
can construct α ∈ Ω2 with α ∼ κ and red(γ) 6 α, which means α saves γ <subperm σ, and
this gives a contradiction that σ 2-contains (Ω1,Ω2) because of γ.

Here is how we construct κ. In σ, mark the entries corresponding to γ bold.
Call a block of σ bold if it contains at least one bold entry, and otherwise call it

non-bold. Starting with κ = σ, we delete non-bold entries using the following procedure,
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which is more careful than the subroutine used in the proof of the forward direction above.
The goal is to delete non-bold entries to obtain a permutation κ with subpermutation γ
such that for every block B in κ there is a block B′ in σ so that the entries in B are
entries in B′. That is, we do not allow any (bold or unbold) blocks to merge, only to be
deleted entirely.

– Set κ = σ.

– While ai,j ∈ Bi is a non-bold letter,

- if removing ai,j from κ does not cause two or more blocks of any kind (bold or
non-bold) in κ to merge, delete ai,j from κ,

- if Bi is non-bold and removing the entire block Bi at once does not cause any
of the remaining blocks to merge, then delete Bi.

We claim that at the end of this process each block contains at most two non-bold entries,
which will be the first and last entries of the block. However, since we have not deleted non-
bold blocks if their removal would cause other blocks to merge, we could have arbitrarily
long factors of non-bold blocks, as in the example in Figure 4.

.

.

Figure 4: κ = 16, 14, 15, 12, 13, 10, 11, 896745231.

Suppose κ has block decomposition T1 · · ·Tm, and κ contains two bold entries a, b
with a ∈ Ti+1 and b ∈ Ti+n, where Ti+2, . . . , Ti+n−1 have no bold entries. (Note that each
Tj is a subset of some Bk in the block decomposition of σ, by construction.) If a < b
then the subroutine is not complete: we could delete Ti+2, . . . , Ti+n−1 completely without
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merging Ti+1 with Ti+n since the last entry of Ti+1 is smaller than the first entry of Ti+n.
Therefore since we assume the subroutine is complete, we know that a > b. If n > 3k

then, by Lemma 13, σ cannot be sorted by k passes, which is a contradiction. Thus we
have |κ| is bounded above by 3|γ| + 2.3k|γ|, where 3|γ| counts the bold blocks with a
non-bold first and last entry, and 2.3k|γ| counts the 3k factors each containing 2 entries,
in the worst case, occurring between every pair of bold entries from γ, as in Figure 4.

Thus
|κ| 6 (3 + 2.3k)|γ| 6 (3 + 2.3k)3fmax 6 3k+2fmax = C.

If κ cannot be sorted, then p1(κ) 6∈ Sk−1 because of some subpermutation τ with
red(τ) ∈ Fk−1, but since no block has merged in obtaining p1(κ), p1(σ) also contains
τ which cannot be saved since blocks containing the entries forming τ are fixed. Thus
p1(σ) 6∈ Sk−1, so σ 6∈ Sk, contradiction.

This proves Claim 3.

Claim 3 implies that we could take Fk = Ω1, Gk = Ω2 and the theorem is done.
However, we can first apply Theorems 9 and 10 1 to obtain smaller sets with the same
2-avoidance set, so we will call the result of applying these (in some order) (Fk, Gk). As
remarked in Subsection 2.2, the result of applying the lemmas is not guaranteed to give
a set that is minimal or unique. Note that each of these lemmas needs to check a finite
set, so each is algorithmic.

Applying the construction in the proof above to the case k = 2 yields a much larger
pair of sets than those appearing in Theorem 5 given by Pudwell and Smith. Explicitly,
we have fmax = 3 and k = 2, so C = 3.34 = 243. The point of our argument is that it is
general; our upper bounds can certainly be lowered, and more lemmas to reduce the size
of the sets F,G could be proved along the lines of Lemmas 8–10 to sharpen the result
and render it more tractable for computation. See [5] for a discussion of an attempt to
compute explicit avoidance sets for the case k = 3, where if we start with the sets F2, G2

in Theorem 5 given by Pudwell and Smith rather than the larger sets produced by our
algorithm, we have fmax = 4 and C = 4.35 = 972 (so a brute force calculation to find
Ω1,Ω2 would need to examine C! = 972! permutations).

5 Outlook

Our notion of 2-containment opens up some interesting possibilities. Recall that by
Kaiser-Klazar [6, Thm. 3.4] and Marcus-Tardos [9] the function counting the number
of permutations of length n in any Av(F ) for F non-empty is either polynomial or ex-
ponential. It is conceivable that some pair of (finite or infinite) sets (F,G) could have a
2-avoidance set with a growth function strictly between polynomial and exponential or
between exponential and factorial. Example 4 shows non-trivial 2-avoidance sets with
factorial growth.

1Note that by construction there is no need to apply Lemma 8.
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Generating functions for 2-avoidance sets might also exhibit interesting behaviour. For
the sets (Fk, Gk) in Theorem 14 we know by [3] the generating functions are rational for
all k, but for general sets F,G, the set Av2(F,G) could have interesting enumerations.
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A Removing redundant permutations

We start with the following observation.

Lemma 15. Let F1, F,G1, G ⊆ S∞ with F1 ⊂ F,G1 ⊂ G. Then

– Av2(F,G1) ⊆ Av2(F,G) and

– Av2(F,G) ⊆ Av2(F1, G).

Proof. If σ 2-contains (F,G), then there exists a subpermutation γ of σ with red(γ) ∈ F ,
such that there is no δ with γ <subperm δ <subperm σ and red(δ) ∈ G. In particular, there
is no δ with γ <subperm δ <subperm σ and red(δ) ∈ G1, so σ 2-contains (F,G1). Thus
Av2(F,G1) ⊆ Av2(F,G).

On the other hand, if σ 2-contains (F1, G) then there exists a subpermutation γ of σ
with red(γ) ∈ F1, such that there is no δ with γ <subperm δ <subperm σ and red(δ) ∈ G. In
particular red(γ) ∈ F , so σ 2-contains (F,G). Thus Av2(F,G) ⊆ Av2(F1, G).

Proof of Lemma 8. Recall that we wish to show that if α ∈ G and for all γ ∈ F , γ 66 α,
then Av2(F,G) = Av2(F,G \ {α}).

By Theorem 15 it suffices to show Av2(F,G) ⊆ Av2(F,G \ {α}). If σ 2-contains
(F,G \ {α}) then there exists a subpermutation γ of σ such that red(γ) ∈ F and there is
no δ satisfying γ <subperm δ <subperm σ and red(δ) ∈ G \ {α}. Since γ 66 α, then red(δ)
is not equal to α, so we have that there can be no δ with γ <subperm δ <subperm σ and
red(δ) ∈ G. Thus σ 2-contains (F,G), and so Av2(F,G) ⊆ Av2(F,G \ {α}).

Proof of Lemma 9. Recall that we wish to show that if α, β ∈ G, β 6 α, β 6= α, and for
all κ ∈ F , κ 6 α implies κ 6 β, then Av2(F,G) = Av2(F,G \ {α}).

By Theorem 15 it suffices to show Av2(F,G) ⊆ Av2(F,G \ {α}). If σ 2-contains
(F,G \ {α}) then there exists a subpermutation γ of σ such that red(γ) ∈ F , and there is
no δ satisfying γ <subperm δ <subperm σ and red(δ) ∈ G\{α}. If there is a δ′ with γ <subperm

δ′ <subperm σ and red(δ′) = α, then γ 6 α which implies γ 6 β. This contradicts that no
δ with red(δ) = β ∈ G \ {α} can exist with γ <subperm δ <subperm δ′ <subperm σ. Thus σ
2-contains (F,G), and so Av2(F,G) ⊆ Av2(F,G \ {α}).

Proof of Lemma 10. Recall that we wish to show that if κ, λ ∈ F , κ 6 λ and for all
α ∈ G, κ 66 α, then Av2(F,G) = Av2(F \ {λ}, G).

By Theorem 15 it suffices to show Av2(F \ {λ}, G) ⊆ Av2(F,G). If σ 2-contains
(F,G) then there exists a subpermutation γ of σ such that red(γ) ∈ F , and there is no
δ satisfying γ <subperm δ <subperm σ and red(δ) ∈ G. If red(γ) = λ, then there exists a
subpermutation γ′ of σ with red(γ′) = κ, since κ 6 λ. Since κ 66 α for all α ∈ G, then
there is no δ <subperm σ with γ′ <subperm δ and red(δ) ∈ G. Thus σ 2-contains (F \{λ}, G),
and so Av2(F \ {λ}, G) ⊆ Av2(F,G).
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B Mesh patterns

For the sake of disambiguation we show here that 2-avoidance is in general a different
notion from that of avoiding (a set of) mesh patterns.

For n ∈ N let Sn denote the set of all reduced permutations of length n, and let [a, b]
be the integer interval {i ∈ Z | a 6 i 6 b}.

Following [2], a mesh pattern is a pair (π,R) where π ∈ Sn and R ⊆ [0, n]× [0, n]. We
visualise it by drawing the points {(i, π(i)) | 1 6 i 6 n} in the [0, n]× [0, n] lattice, then
shading all squares whose bottom left corner lies in R. See Figure 5.

.
.

.

.

(a) Mesh pattern (3241, {(1, 0)}).

.

.

.
.

(b) Mesh pattern (4132, {(3, 4)}).

Figure 5: Two mesh patterns.

A permutation τ ∈ S∞ contains the mesh pattern (π,R) if π 6 τ (so π ∼ π′ <subperm τ)
and when τ is mapped to the [0, n]× [0, n] lattice sending the entries of π′ to the points
{(i, π(i)) | 1 6 i 6 n}, no entry from τ lies inside a shaded region. (See [2] for a formal
definition.) A permutation avoids a mesh pattern if it does not contain it. For example,
41352 avoids both mesh patterns (3241, {(1, 0)}) and (4132, {(3, 4)}) shown in Figure 5.

Barred patterns with a single barred entry can be viewed as mesh patterns, where
R consists of a single point. For example, the two mesh patterns in Figure 5 represent
the two barred patterns 41̄352 and 4135̄2 respectively. Explicitly, from [2], if π(i) is the
only barred letter of a given barred pattern π, then the corresponding mesh pattern is
(red(removebar(π)), {(i− 1, π(i)− 1)}). However, avoiding a barred pattern β with more
than one barred entry is not the same as avoiding the mesh pattern obtained in the
analogous way (that is, taking (red(removebar(β)), R), with R containing a point for each
barred entry of β in the appropriate location). To see this, let π = red(removebar(β)) and
note that by definition τ avoids (π,R) if for every subpermutation π′ of τ with π′ ∼ π,
there is at least one entry from τ inside a shaded square. By contrast, τ avoids the barred
pattern β if for every subpermutation π′ of τ with π′ ∼ π, there is a subpermutation δ of
τ with π′ <subperm δ and δ ∼ unbar(β). In other words, we would require one entry of τ
in every shaded square.

One could potentially fix this by modifying the definition of avoiding a meshed pat-
tern to encompass barred patterns with multiple barred entries. However, recall that in
Subsection 2.1 we observed that 32451 is not 3-pop stack sortable while both 4631572 and
4731562 are. It is not clear how avoiding a set of mesh patterns could be defined to describe
this situation. One might try to define mesh patterns (32451, R1) and (32451, R2) where
R1, R2 encode positions which must be present in any permutation containing 32451, and
modify the definition of avoiding a set of mesh patterns to say that a permutation τ avoids
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a set of mesh patterns if for every subpermutation π′ of τ with π′ ∼ π and π appears in
the first coordinate of a mesh pattern in the set, there is some R so that (π,R) is in the
set, and τ contains an entry in every region coded by R. Following this kind of reasoning,
we came to the definition of 2-avoidance rather than the existing notions.

the electronic journal of combinatorics 28(1) (2021), #P1.54 15


	Introduction
	Preliminaries
	The problem with barred patterns 
	Removing redundant patterns

	Blocks
	General characterisation of k-pass pop stack sortable permutations 
	Outlook
	Removing redundant permutations
	Mesh patterns

