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Abstract

We write F
ind−→(H,G) for graphs F,G, and H, if for any coloring of the edges of

F in red and blue, there is either a red induced copy of H or a blue induced copy of
G. For graphs G and H, let IR(H,G) be the smallest number of vertices in a graph

F such that F
ind−→(H,G).

In this note we consider the case when G is a star on n edges, for large n and
H is a fixed graph. We prove that

(χ(H)− 1)n 6 IR(H,K1,n) 6 (χ(H)− 1)2n+ εn,

for any ε > 0, sufficiently large n, and χ(H) denoting the chromatic number of
H. The lower bound is asymptotically tight for any fixed bipartite H. The upper
bound is attained up to a constant factor, for example when H is a clique.

Mathematics Subject Classifications: 05C55, 05D10

1 Introduction

We write F
ind−→(H,G) for graphs F,G, and H, if for any coloring of the edges of F in

red and blue, there is either a red induced copy of H or a blue induced copy of G. For
graphs G and H, the induced Ramsey number for H and G, denoted by IR(H,G), is the

smallest number of vertices in a graph F such that F
ind−→(H,G). The existence of such

a graph F for any graphs H and G was first proven by Deuber [4], extending a classical
result by Ramsey [17]. This led to extensive research on induced Ramsey numbers. For
more recent results, see papers of Conlon, Fox, and Sudakov [3, 7], Dudek, Frankl, and
Rödl [5], as well as Kostochka and Sheikh [14], Schaefer and Shah [18], and Kohayakawa,
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Prömel, and Rödl [13]. We do not attempt to mention the numerous results on induced
hypergraph Ramsey numbers here.

In this note we consider the case when G is a star on n edges, i.e., G = K1,n, and H
is a fixed graph.

Finding the classical Ramsey number of a graph H versus a star, R(H,K1,n), translates
into finding graphs with maximum degree less than n and having no H in the complement,
i.e., the so-called min-degree extremal problem for H. The corresponding induced Ramsey
problem has a very different nature. It becomes nontrivial already when H is a matching.
Specifically IR(nK2, K1,n) is superlinear as shown by Conlon, Fox, and Sudakov [3, 6];
see also a related result by Fox, Huang, and Sudakov [8]: nec log

∗ n 6 IR(nK2, K1,n) 6
nec

′√logn, where log∗ n = 0 if n 6 1 and log∗ n = 1 + log∗(log n) if n > 1.
Our focus is the case when H is a fixed graph and n grows. In this regime, one can

easily show that IR(H,K1,n) = Θ(n). We provide easy general bounds n 6 IR(H,K1,n) 6
|E(H)|(n−1)+|V (H)|, confirming this fact. Since IR(H,K1,n) > (χ(H)−1)n, where χ(H)
denotes the chromatic number of H, we see that IR(H,K1,n) > 2n for non-bipartite H.
We show that for bipartite H, the trivial lower bound IR(H,K1,n) > n is asymptotically
tight. We also provide general bounds on IR(H,K1,n) in terms of χ(H). Note that
when H is a star, the situation is quite special, namely IR(K1,`, K1,n) = n + ` with

K1,n+`−1
ind−→(K1,`, K1,n). We include the proof of this fact for completeness in Lemma 4.

Here are the three main results of this paper.

Theorem 1. Let H be a fixed graph that is not a star and that has no isolated vertices.
There is a positive constant c such that for any sufficiently large n, IR(H,K1,n) > n+c

√
n.

Theorem 2. For any γ > 0 and any graph H there is n0 ∈ N such that for any n > n0,
IR(H,K1,n) 6 (χ(H)− 1)2n+ γn.

The following gives more precise upper bounds for some bipartite graphs that allows
to replace the γn term of Theorem 2 with a o(n) term.

Theorem 3. Let t be an integer, t > 2. There is a positive constant c and n0 ∈ N, such
that for any n > n0, IR(2K2, K1,n) 6 n+ cn log−1/4 n, IR(P4, K1,n) 6 n+ cn ln−1/4 n, and

n+ n1− 2
t+1 ln−1 n 6 IR(Kt,t, K1,n) 6 n+ cn1− 1

t+1 .

The paper is structured as follows. We provide some known results on related induced
Ramsey numbers and give basic general bounds in Section 2. We prove our main results
in Section 3. For standard graph theoretic notions and terminology, we refer the reader
to West [19].

2 Known results and general bounds

2.1 IR(H,K1,n) for H complete, complete bipartite, path, star, and cycle

The known results for IR(H,K1,n) include IR(Kt, K1,n) = (n−1)t(t−1)/2+ t, see Gorgol
[10], IR(Kt,t, K1,n) 6 (n+ 1)t, IR(Pt, K1,n) 6 (t− 1)n+ 1, IR(Ct, K1,n) 6 tn, see Gorgol
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[11]. Note that IR(C4, K1,n) > R(C4, K1,n) > n + b
√
n − 6n11/40c, as shown by Burr,

Erdős, Faudree, Rousseau, and Schelp in 1989 [2]. The term n11/40 came from the best
known upper bound, at that time, on the difference between two consecutive primes. In
fact, Parsons [16] earlier proved that when q is a power of a prime and n = q2 + 1 then
R(C4, K1,n) = q2 + q + 2. While the result for stars was announced by Harary et al.
[12] in the diagonal case, the proof was not included in that paper. We state it here for
completeness.

Lemma 4. For any positive integers ` and n, IR(K1,`, K1,n) = n+ `.

Proof. For the upper bound, observe that K1,n+`−1
ind−→(K1,`, K1,n). For the lower bound,

we claim that any graph G on k vertices, k < n+ ` can be colored with no blue induced
star on n edges and no red induced star on ` edges. Note that we can assume that
`, n > 2 since otherwise the result trivially holds. Let ∆(G) denote the maximum degree
of G. If ∆(G) < k − 1, then by Vizing’s theorem we can edge-decompose G into at most
∆ + 1 6 k− 2 + 1 = k− 1 6 n+ `− 2 matchings. Color n− 1 of these matchings blue and
` − 1 of these matchings red. This coloring contains no blue star on n edges and no red
star on ` edges. If ∆(G) = k− 1, then there is a vertex v adjacent to all other vertices of
G. Note that in this case no induced star with at least 2 edges can have v as a leaf. Let G′

be the graph obtained from G by deleting the edges incident to v. Then ∆(G′) < k − 1,
so G′ can be colored with no blue induced star on n edges and no red induced star on `
edges. Now, color n− 1 edges incident to v blue and the remaining, (k− 1)− (n− 1) < `
edges incident to v red.

2.2 General bounds on IR(H,K1,n)

Gorgol [9] proved that IR(H,K1,n) > (n−1)ω(ω−1)/2 +ω, where ω = ω(H) is the order
of a largest clique in H. On the other hand, the classical lower bound IR(H,K1,n) >
n(χ(H)−1)+1 holds by splitting the vertex set of any graph on n(χ(H)−1) vertices into
χ(H)− 1 sets of equal sizes, coloring all edges inside the sets blue and all edges between
the sets red. This coloring then has no red copy of H and no blue copy of K1,n.

The following easy lemma generalizes the upper bound on IR(H,K1,2) by Kostochka
and Sheikh [14]. While this bound is much weaker than our general upper bound, we
include it here since it holds for any n and does not use the Regularity Lemma. So, it is
more applicable for bounding induced Ramsey numbers of fixed small graphs.

For a graph H with vertices v1, . . . , vn, a blow-up of H is a graph whose vertex set is a
pairwise disjoint union of sets V1, . . . , Vn, called the parts of the blow-up and two vertices
adjacent if and only if they are from sets Vi and Vj for some i 6= j such that vivj is an
edge in H.

Lemma 5. Let H be a graph, then IR(H,K1,n) 6 |E(H)|(n − 1) + |V (H)|. If H ′ is a
blow-up of H with s vertices in each part, then IR(H ′, K1,n) 6 s(|E(H)|(n−1)+ |V (H)|).

Proof. Let the vertices ofH be v1, . . . , vk such that vi has di neighbours among v1, . . . , vi−1,
for i = 2, . . . , k. Then in particular d2+· · ·+dk = |E(H)|. Consider G a blow-up of H with
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the vertex set being a union of pairwise disjoint sets V1, . . . , Vk (representing v1, . . . , vk,
respectively), with |V1| = 1, |Vi| = (n − 1)di + 1, i = 2, . . . , k. We see that any induced
subgraph of G, formed by choosing a single vertex from each set Vi is isomorphic to H.

We claim that G
ind−→(H,K1,n) in a stronger form, i.e., such that any red/blue edge coloring

of G contains either a blue star on n edges or a red induced copy of H with respective
vertices u1, . . . , uk in the corresponding sets V1, . . . , Vk. Consider a red/blue coloring of
G with no blue star on n edges. Let u1 be from V1. Assume we found a red induced
copy of Hi−1 of H[{v1, . . . , vi−1}] with vertices uj ∈ Vj, j = 1, . . . , i − 1, corresponding
to the vj’s. Consider Vi. There are di edges from vi to {v1, . . . , vi−1} in H, so there
are at most (n − 1)di vertices of Vi that send a blue edge to some of u1, . . . , ui−1. Since
|Vi| = (n − 1)di + 1, there is a vertex in Vi that sends only red edges to {u1, . . . , ui−1}.
Let ui be that vertex. Then G[V (Hi−1) ∪ {ui}] is a red induced copy of H[{v1, . . . , vi}].

When H ′ is a blow-up of H, we proceed similarly by taking G′ to be a blow-up of H
with parts of sizes s, s((n− 1)d2 + 1), . . . , s((n− 1)di + 1), . . . and embedding a part of H ′

corresponding to the blow-up of vi in Vi.

3 Proofs of the main results

3.1 Proof of Theorem 1

Theorem 6. Let H be a graph that is neither empty nor complete bipartite. Then
IR(H,K1,n) > n+ q + 1, for q =

√
n+ 1/4− 1/2.

Proof. Consider a graph G on n + q vertices. We shall show that we can color its edges
such that the red graph is complete bipartite and there is no blue induced star on n edges.
We say that a star is large if it has at least n edges and is induced. We call a vertex large
if it is a center of a large star. Consider all maximal large stars. Let X be the set of
centers of these stars.

Let Y be a set of leaves of a large star such that |Y | = n. Note first that no vertex
in Y is large because Y is an independent set, so its members have neighbors only in
V (G) − Y , a set of size at most n + q − n < n. Thus X ∩ Y = ∅ and thus there are at
most q large vertices, i.e., |X| 6 q.

Consider the bipartite subgraph of G with parts X and Y . We claim that all but at
most q2 vertices of Y send |X| edges to X. Let e be the number of edges between X and
Y . Let ` be the number of vertices in Y that send at most |X| − 1 edges to X. Then on
the one hand we have that e > |X|(n−q) since each large vertex has at least n neighbors,
at most q of those outside of Y . On the other hand e 6 `(|X| − 1) + (n− `)|X|. Setting
these two inequalities together, we have that |X|(n− q) 6 `(|X| − 1) + (n− `)|X|. Thus
` 6 |X|q 6 q2.

Thus there is a set Y ′ ⊆ Y , so that Y ′, X form a complete bipartite graph and
|Y ′| > n− q2 > q, for q 6

√
n+ 1/4− 1/2. Now color this complete bipartite graph with

parts X and Y ′ red, and color all remaining edges blue. Clearly there is no induced red
H. We see that each large vertex has at least q of its incident edges colored red. Thus,

the electronic journal of combinatorics 28(1) (2021), #P1.55 4



there are at most n+ q− 1− q < n blue edges incident to a large vertex. Therefore there
is no blue large star.

Proof of Theorem 1. Let H be a graph that is not a star and that doesn’t have isolated
vertices. If H is not a complete bipartite graph, Theorem 6 gives us the desired result. If
H is a complete bipartite graph, it contains C4 since H is not a star. Then IR(H,K1,n) >
n+ b

√
n− 6n11/40c, as follows from the above mentioned result of Burr et al. [2].

3.2 Proof of Theorem 2

In order to prove the main result, we shall be applying a multicolored version of Sze-
merédi’s Regularity Lemma. The following Lemma will be used to analyze the reduced
graph, with pink corresponding to sparse in red regular pairs and yellow corresponding
to non-regular pairs.

Lemma 7. Let ε′ > 0 be a fixed small constant, r be an integer, r > 2, C > 1, ε′ �
C−36−r, and n0 be sufficiently large. Let G be an edge-colored complete r-partite graph
with parts X1, . . . , Xr each of size at least n0, with edge colors yellow, pink, and white.
Assume that the following conditions hold:
1. |X1| > |X2| > · · · > |Xr|,
2. 1

C
6 |Xi|
|Xj | 6 C for any i, j ∈ [r],

3. for any i, j ∈ [r], 1 6 j < i, and any v ∈ Xi, v sends at most ( 1
r−1 −

ε′C3

r−1 )|Xj| pink
edges to Xj, and
4. the total number of yellow edges is at most ε′6−r

∑
16i<j6r |Xi||Xj|.

Then there is a copy of Kr in G with all edges colored white.

Proof. We shall proceed by induction on r.

Let r = 2. We first claim that there is a vertex v in X2 such that v is incident to at
most ε′6−2|X1| yellow edges. Indeed, otherwise the total number of yellow edges would be
larger than assumed. So, we see that v is incident to at most ε′6−2|X1| yellow edges and
at most (1

1
− ε′C3)|X1| pink edges. Thus there are at least ((C3 − 6−2)ε′)|X1| > 0 white

edges, and in particular there is a white K2.

Assume that r > 3 and that the statement of the lemma holds for smaller values of r.
We shall be using the fact that C2|Xr|2 > |Xi||Xj| > 1

C2 |Xr|2 for any i, j ∈ [r]. We shall
find a vertex u in Xr that sends a lot of white edges to each of the Xi’s, i ∈ [r− 1]. Then
we shall apply induction to the subgraph spanned by the white neighborhood of u.

First, we claim that there is a vertex in Xr that sends at most ε′6−r(C3
(
r
2

)
)|Xi| yellow

edges to each Xi, i ∈ [r−1]. Otherwise each vertex of Xr sends more than ε′6−rC3
(
r
2

)
|Xi|

yellow edges to some Xi, thus the total number of yellow edges between Xr and the rest
of the graph is more than
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ε′6−rC3

(
r

2

)
|Xr||Xr−1| > ε′6−rC3

(
r

2

)
1

C
|Xr|2

> ε′6−rC3

(
r

2

)
1

C

1

C2

1(
r
2

) ∑
16i<j6r

|Xi||Xj|

= ε′6−r
∑

16i<j6r

|Xi||Xj|.

This contradicts the assumption on the total number of yellow edges.

Let u = ur be such a vertex, i.e., a vertex from Xr that sends at most ε′6−rC3
(
r
2

)
|Xi|

yellow edges to each Xi, i ∈ [r − 1]. So, we know that for any i ∈ [r − 1], the number of
vertices of Xi joined to u by a pink or a yellow edge is at most(

1

r − 1
− ε′C3

r − 1
+ ε′6−rC3

(
r

2

))
|Xi| 6

1

r − 1
|Xi|.

Thus u is joined to at least (1 − 1
r−1)|Xi| vertices of Xi via white edges, for each

i ∈ [r − 1].

We choose a subset X ′i of Xi, such that |X ′i| = (1 − 1
r−1)|Xi| = r−2

r−1 |Xi| and u sends
only white edges to X ′i, for each i ∈ [r − 1]. Let G′ be a subgraph of G induced by
X ′1, . . . , X

′
r−1 with the inherited coloring. We shall argue that we can apply induction to

G′. For that we need to check that
1. |X ′1| > . . . > |X ′r−1|,
2. 1

C
6 |X′i|
|X′j |

6 C for any i, j ∈ [r − 1],

3. the total number of yellow edges in G′ is at most ε′6−r+1
∑

16i<j6r−1 |X ′i||X ′j|, and

4. for any i, j ∈ [r− 1], 1 6 j < i, each vertex v in X ′i sends at most ( 1
r−2 −

ε′C3

r−2 )|X ′j| pink
edges to X ′j.

The first two statements follow trivially since |X ′i| = r−2
r−1 |Xi|, i ∈ [r − 1]. Let us

verify item 3. Here, we shall be using the fact that |Xr| 6 |Xi| for any ∈ [r − 1], thus
|Xr| 6 (|X1| + · · · + |Xr−1|)/(r − 1). We know that the total number of yellow edges in
G′ is at most the total number of yellow edges in G, that is

ε′6−r
∑

16i<j6r

|Xi||Xj|

= ε′6−r

( ∑
16j6r−1

|Xr||Xj|+
∑

16i<j6r−1

|Xi||Xj|

)

6 ε′6−r

( ∑
16j6r−1

(|X1|+ · · ·+ |Xr−1|)
r − 1

|Xj|+
∑

16i<j6r−1

|Xi||Xj|

)
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= ε′6−r

(
r

r − 1

∑
16i<j6r−1

|Xi||Xj|

)

= ε′6−r

(
r

r − 1

(r − 1)2

(r − 2)2

∑
16i<j6r−1

|X ′i||X ′j|

)

6 ε′6−r+1

( ∑
16i<j6r−1

|X ′i||X ′j|

)
.

To verify the last inequality observe that r(r−1)
(r−2)2 6 6 for any r > 3.

Finally, lets verify item 4. We have that the number of pink edges from a vertex
v ∈ X ′i to X ′j, for j < i is at most the number of pink edges from v to Xj in G, that is at
most

(
1

r − 1
− ε′C3

r − 1

)
|Xj| =

(
1

r − 1
− ε′C3

r − 1

)
r − 1

r − 2
|X ′j| =

(
1

r − 2
− ε′C3

r − 2

)
|X ′j|.

So, now, as items 1.-4. are verified, we have a white Kr−1 in G′ that, together with u,
forms a white Kr in G.

Proof of Theorem 2. Consider γ′, 0 < γ′ < 1 and let H be a graph of chromatic number
r. Let n0 be sufficiently large. We need to show that IR(H,K1,n) 6 (r − 1)2n+ γ′n.

Let γ = γ′

2(r−1)2+1
and constants ε, σ, η be chosen such that 0 < ε � η � σ � γ.

Note that γ < 1/2 for any r > 2. Let Y1, . . . , Yr be pairwise disjoint vertex sets,
such that |Yr| = γn and |Yi| = (1 + 2γ)(r − 1)n, i ∈ [r − 1]. Then

∑
16i6r |Yi| =

(r − 1)2n+ (2(r − 1)2 + 1)γn = (r − 1)2n+ γ′n.

Let G′ be a random r-partite graph with parts Y1, . . . , Yr with probability σ of a given
edge between different parts not to be selected. Then with positive probability each ver-
tex not in a part Yi sends between 0.9σ|Yi| and 1.1σ|Yi| “non-edges” to Yi, i ∈ [r]. In
addition, with high probability there is at least a σ/2-proportion of “non-edges” between
any Ỹi ⊆ Yi and Ỹj ⊆ Yj with |Ỹi| > |Yi|/M and |Ỹj| > |Yj|/M , for any distinct i, j ∈ [r]
and any constant M . Therefore with a positive probability there is a graph satisfying
these properties. We call such a graph G.

Formally, let G be an r-partite graph with parts Y1, . . . , Yr such that:
1. each vertex not in a part Yi sends between 0.9σ|Yi| and 1.1σ|Yi| “non-edges” to Yi,
for any i ∈ [r],
2. there is at least a σ/2-proportion of “non-edges” between any Ỹi ⊆ Yi and Ỹj ⊆ Yj
with |Ỹi| > |Yi|/M and |Ỹj| > |Yj|/M , for any distinct i, j ∈ [r] and any constant M .
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Consider an edge-coloring c of G in red and blue and treat the “non-edges” between
parts as a third color, “non-edge”. We assume that there is no blue induced star on n
edges and will prove that there is an induced red copy of H.

We apply Szemerédi’s Regularity Lemma to G with ε and find a partition of V (G)
into an exceptional part V0 of size at most ε|V (G)| and parts of equal sizes contained
in respective Yi’s, i.e., parts Y 1

i , . . . , Y
ki
i , with a total number of parts k 6 M such that

all but ε
(
k
2

)
pairs Y `

i , Y
m
j , i, j ∈ [r], ` ∈ [ki],m ∈ [kj], are ε-regular in each of the three

colors - blue edges of G, red edges of G, and “non-edges” of G. Recall that the proof of
the Regularity Lemma allows us to start with an arbitrary partition into a fixed number
of parts of equal sizes, and then refine the partition. Thus, we could assume that each
part is contained in Yi for some i. Note that since the parts are of equal sizes, we have
that k1 = . . . = kr−1 = k′ and kr = γ/((r−1)(1+2γ))k′+xk′, with a small term |x| = O(ε).

By the embedding lemma (for example, see Axenovich and Martin [1]), if there are

parts Y
f(i)
i , i ∈ [r], f(i) ∈ [ki], such that all pairs of these parts are ε-regular with den-

sity at least η in both red and in “non-edges”, then there is a red induced copy of H.
Next we shall argue that we can find such a set of r parts. We say it is a good set of r parts.

Consider an auxiliary graph F that is r-partite with parts Xi, i ∈ [r] corresponding
to Yi’s, such that |Xi| = ki for each i ∈ [r] and vertices of Xi {x1i , . . . , x

ki
i } corresponding

to parts Y 1
i , . . . , Y

ki
i . We say that an edge e = x`ix

m
j is associated with the pair Y `

i , Y
m
j .

Note that 1/C 6 |Xi|/|Xj| 6 C, for C = (r − 1)(1 + 2γ)/γ. We shall color the edges of
F in three colors - yellow, pink, and white as follows. An edge is yellow if the respective
pair in G is not ε-regular in some of the colors red, blue, or “non-edges”. An edge is pink
if the respective pair is ε-regular, but has density less than η in red. All other edges of F
are white. Note that a good set of r parts in G correspond to a white Kr in F . Thus, it

is sufficient for us to verify that F satisfies the conditions of Lemma 7. Let ε′ = (1+3γ)2

γ(1+2γ)
ε6r.

Note that since
∑

16i6r |Xi| = k,
∑

16i<j6r |Xi||Xj| > γ(1+2γ)
(1+3γ)2

(
k
2

)
. By the Regular-

ity Lemma, the total number of non-ε-regular pairs is at most ε
(
k
2

)
, that is at most

ε (1+3γ)2

γ(1+2γ)

∑
16i<j6r |Xi||Xj| = ε′6−r

∑
16i<j6r |Xi||Xj|. Thus, the condition of Lemma 7 on

yellow edges is satisfied.

Next we show that the number of pink edges of any vertex of F from part Xi to part
Xj, j < i is at most ( 1

r−1 −
ε′C3

r−1 )kj. If this fails for a vertex x`i , then we see that in G, for

any j, 1 6 j < i, the number of red edges between Y `
i and Yj is at most

|Y `
i | ·
((

1

r − 1
− ε′C3

r − 1

)
η|Yj|+

(
1− 1

r − 1
+

ε′C3

r − 1

)
|Yj|
)
.

Thus there is a vertex in Y `
i that sends at most (1− (1− η)( 1

r−1 −
ε′C3

r−1 ))|Yj| red edges
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to Yj and thus sends at least b blue edges to Yj, where

b > ((1− η)

(
1

r − 1
− ε′C3

r − 1

)
− 1.1σ)|Yj|

> ((1− η)

(
1

r − 1
− ε′C3

r − 1

)
− 1.1σ)(1 + 2γ)(r − 1)n

=
[
(1− η)(1− ε′C3))− 1.1(r − 1)σ

]
(1 + 2γ)n

>
[
1− η − ηε′C3 − ε′C3 − 1.1(r − 1)σ

]
(1 + 2γ)n

> [1− γ/2] (1 + 2γ)n

> n.

This is a contradiction since we assumed that there is no blue induced star on n edges.
The penultimate inequality holds since 1/2 > γ � η, γ � (r − 1)σ, and γ � ε′.

We now see that the conditions of Lemma 7 are satisfied, so there is a white Kr in F .
It corresponds to r parts Y i1

1 , . . . , Y
ir
r in G so that each of the

(
r
2

)
pairs formed by these

parts is ε-regular in all three colors and with red density at least η. Using property 2. of
G, we see that the “non-edges” also have positive density at least σ/2 > η. Thus, by the
embedding lemma applied to these r parts, we have an induced red copy of H in G.

3.3 Proof of Theorem 3

Lemma 8. For any integer t, t > 2, there is an integer n0 such that for any n > n0,

n+ n1− 2
t+1 ln−1 n 6 IR(Kt,t, K1,n) 6 n+ 8n1− 1

t+1 .

Proof. For the lower bound we shall take an arbitrary graph G on n+n1− 2
t+1 vertices and

show that there is an edge coloring of G in red and blue with no blue induced star on n
edges and no red Kt,t. Observe first that G contains an independent set of size n, call
it A, otherwise there is no induced K1,n in G and all edges could be colored blue. Let

B = V (G)− A, let f(n) = |B| = n1− 2
t+1/ lnn. We shall color all edges in G[B] blue and

edges between A and B in red and blue randomly and independently such that each edge
is colored red with probability p and blue with probability (1− p). Let p1 and p2 be the
probabilities of bad events - the existence of Kt,t with all edges red, and the existence of
an induced K1,n with all edges blue, respectively. Then

p1 = Prob(∃ red Kt,t)

6

(
f(n)

t

)(
n

t

)
pt

2

and

p2 = Prob(∃ induced blue K1,n)

6 Prob(∃ K1,n−f(n) with center in B and leaves in A)

6 f(n)

(
n

n− f(n)

)
(1− p)n−f(n).
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Let p be chosen such that 2f(n) lnn/n 6 p 6 1
2
(f(n)n)−1/t. From the choice of f(n)

we see that such a p exists. This gives

p1 6

(
e · f(n)

t

)t (e · n
t

)t
pt

2

6 (2(f(n)n)t
(

1

2

)t2
(f(n)n)−t

6 1/2 and

p2 6 f(n)

(
en

f(n)

)f(n)
(1− p)n−f(n)

6 f(n)

(
en

f(n)

)f(n)
e−p(n−f(n))

6 f(n)

(
en

f(n)

)f(n)
e−pn/2)

<
1

2
nf(n)e−(f(n) lnn/n)n

6
1

2
nf(n)n−f(n)

=
1

2
.

Thus p1 + p2 < 1 and there is a coloring that results in no bad events.

For the upper bound, consider G = Kf(n),n+f(n), for f(n) = 8n1− 1
t+1 = 8n

t
t+1 . Consider

an arbitrary coloring of E(G) in red and blue. Assume that there is no blue star on n
edges and assume that there are no red Kt,t’s. Let A be a part of G of size f(n) and
B the other part, let T be the number of red stars on t edges with center in A. Since
there are no blue stars on n edges, each vertex of A is incident to at least f(n) red
edges. Thus T > |A|

(
f(n)
t

)
= f(n)

(
f(n)
t

)
. On the other hand, for each subset S of B

of size t, there are at most t − 1 red stars with leaf set S, otherwise there is a red
Kt,t. Thus T 6

(|B|
t

)
t =

(
n+f(n)

t

)
t. Putting the inequalities on T together, we see that

f(n)
(
f(n)
t

)
6 t
(
n+f(n)

t

)
. This implies that f(n)

(
f(n)
t

)t
6 f(n)

(
f(n)
t

)
6 t
(
n+f(n)

t

)
6 t
(
2ne
t

)t
.

Thus f(n)t+1 < t(2e)tnt and f(n) < 8nt/(t+1), a contradiction.

Lemma 9. Let n be sufficiently large. If H ∈ {P4, 2K2}, then IR(H,K1,n) 6 n +

2n log−1/4 n.

Proof. Let ε = log−1/4 n. Let a =
√

log n, b = a2 = log n, let X be a set of size b and
Y =

(
X
b−a

)
, i.e., Y is the set of all subsets of X of size b−a. Associate a vertex set Bx with

each element x of X such that |Bx| = c, x ∈ X, and such that all sets Bx are pairwise
disjoint and disjoint from Y . We choose c such that c|X|+ |Y | = (1 + 2ε)n.
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Let G have vertex set Y ∪
⋃
x∈X Bx and edge set {x′y : x′ ∈ Bx, y ∈ Y, x ∈ y}. I.e.,

all vertices in Bx are adjacent to a set y from Y that contains x. One can see that G is
obtained by an appropriate blow-up of an incidence graph. We refer to the sets Bx as
blobs. Note that |V (G)| = c|X| + |Y | = (1 + 2ε)n. Let X ′ =

⋃
x∈X Bx. We shall argue

that G
ind−→(2K2, K1,n) and G

ind−→(P4, K1,n).

First we make a few observations about the structure of our graph. We see that

|Y | =
(

b

b− a

)
6 a2a 6 22

√
logn log(

√
logn) 6 2

√
logn log logn = o(nε).

Thus the total number of vertices in a blown-up part, i.e., in all blobs Bx, x ∈ X is
at least n + 2εn− o(nε). We see that c, the size of each blob is (n + 2εn− o(nε))/ log n.
Each vertex of Y is not adjacent to

√
log n blobs, and adjacent to all vertices of all

other blobs. Thus the degree of a vertex from Y in G is at least (log n −
√

log n)c >
(log n−

√
log n)(n+ 2εn− o(nε))/ log n > (1 + ε)n.

Consider a red/blue coloring of the edges of G. Assume there is no blue induced star
on n edges. Thus each vertex from Y sends at least εn red edges to X ′. Since each blob
has size c 6 n(1 + 2ε)/|X|, we have that each vertex of Y sends a red edge to at least
nX = ε

1+2ε
|X| blobs. The total number of red edges is at least εn|Y |, thus there is a

vertex, say x, in X ′ that is adjacent to a set Yx of at least εn|Y |/|X ′| > εn|Y |
(1+2ε)n

= ε
1+2ε
|Y |

vertices via red edges. Let nY = ε
1+2ε
|Y |.

Consider x, Yx, a set of neighbours of x adjacent to it via red edges, y1 ∈ Y , a vertex of
Y non-adjacent to x, y2 ∈ Yx, and sets X1 and X2, X1, X2 ⊆ X, such that for any v ∈ X1,
y1 sends a red edge to Bv and for any v ∈ X2, y2 sends a red edge to Bv. If there is a
“non-edge” y′u between Yx and X1 in I, we have a red induced 2K2 induced by x, y′, y1, x

′,
where x′ is a red neighbour of y1 in Bu. If there is a “non-edge” y′′u between Yx and X2 in
I, we have a red induced P4 induced by y′′, x, y2, x

′′, where x′′ is a red neighbour of y2 in Bu.

We have that |Xi| > nX = ε
1+2ε
|X|, i = 1, 2, and |Yx| > nY = ε

1+2ε
|Y |. Thus, it is

sufficient for us to check that in I there is a “non-edge” between any subset of X of size
nX and any subset of Y of size nY . Assume not, i.e., there is a subset X ′′ of X of size nX
and Y ′′ of Y of size nY so that X ′′ ∪ Y ′′ induces a complete bipartite graph in I.

We shall count the number t of subsets of size b − a containing X ′′, recalling that
|X| = b and |X ′′| = ε

1+2ε
b:

t =

(
b− |X ′′|

b− a− |X ′′|

)
=

(
b(1 + ε)/(1 + 2ε)

a

)
.

Since any set in Y ′′ is adjacent to all of X ′′, we must have that t > |Y ′′|. We have that

|Y ′′| > ε

1 + 2ε
|Y | = ε

1 + 2ε

(
b

b− a

)
.
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Thus

t > |Y ′|

=⇒
(
b(1 + ε)/(1 + 2ε)

a

)
>

ε

1 + 2ε

(
b

a

)
=⇒ b(1 + ε)

1 + 2ε

(
b(1 + ε)

1 + 2ε
− 1

)
· · ·
(
b(1 + ε)

1 + 2ε
− a+ 1

)
>

ε

1 + 2ε
b· · ·(b− a+ 1)

=⇒ b(1 + ε)

b

b(1 + ε)− 1(1 + 2ε)

b− 1
· · · b(1 + ε)− (a− 1)(1 + 2ε)

b− (a− 1)
> (1 + 2ε)a−1ε

=⇒ b

b

b− 1(1 + ε)−1(1 + 2ε)

b− 1
· · · b− (a− 1)(1 + ε)−1(1 + 2ε)

b− (a− 1)
>

(
1 + 2ε

1 + ε

)a−1
ε.

Note that the left hand side of the last inequality is less than 1. On the other hand,

since ε = 1/
√
a, the right hand side is

(
1+2ε
1+ε

)a−1
ε > (1 + ε

1+ε
(a − 1))ε > 1. This contra-

diction concludes the proof.

Proof of Theorem 3. The theorem follows from Lemmas 9 and 8.

4 Conclusions

In this note, among others, we proved that IR(H,K1,n) is asymptotically between (χ(H)−
1)n and (χ(H)− 1)2n. For any bipartite graph H, χ(H)− 1 = 1, so both our lower and
our upper bound are asymptotically tight. Since the lower bound is the same as for
the non-induced Ramsey number R(H,K1,n), for any H, and thus does not explore the
induced property, it makes us believe that the lower bound could be improved. Moreover,
the upper bound might be close to the true value for all graphs.
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[15] T. Kővári, V.T. Sós, P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3
(1954), 50–57.

[16] T. D. Parsons, Ramsey graphs and block designs, Trans. Am. Math. Soc. 209 (1975),
33–44.

[17] F. Ramsey, On a problem in formal logic, Proceedings of London Mathematical
Society, (1927), 30: 264–286.

[18] M. Schaefer and P. Shah, Induced graph Ramsey theory, Ars Combin. 66 (2003),
3–21.

[19] D. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ,
1996. xvi+512 pp.

the electronic journal of combinatorics 28(1) (2021), #P1.55 13


	Introduction
	Known results and general bounds
	`39`42`"613A``45`47`"603AIR(H, K1,n) for H complete, complete bipartite, path, star, and cycle
	General bounds on `39`42`"613A``45`47`"603AIR(H, K1,n)

	Proofs of the main results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Conclusions

