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Abstract

Given a symmetric polynomial P in 2n variables, there exists a unique symmetric
polynomial Q in n variables such that

P (x1, . . . , xn, x
−1
1 , . . . , x−1n ) = Q(x1 + x−11 , . . . , xn + x−1n ).

We denote this polynomial Q by Φn(P ) and show that Φn is an epimorphism of
algebras. We compute Φn(P ) for several families of symmetric polynomials P :
symplectic and orthogonal Schur polynomials, elementary symmetric polynomials,
complete homogeneous polynomials, and power sums. Some of these formulas were
already found by Elouafi (2014) and Lachaud (2016).

The polynomials of the form Φn(s
(2n)
λ/µ ), where s

(2n)
λ/µ is a skew Schur polynomial in

2n variables, arise naturally in the study of the minors of symmetric banded Toeplitz
matrices, when the generating symbol is a palindromic Laurent polynomial, and its
roots can be written as x1, . . . , xn, x

−1
1 , . . . , x−1n . Trench (1987) and Elouafi (2014)

found efficient formulas for the determinants of symmetric banded Toeplitz matrices.
We show that these formulas are equivalent to the result of Ciucu and Krattenthaler
(2009) about the factorization of the characters of classical groups.
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1 Introduction and main results

In this paper we study symmetric polynomials P in 2n variables evaluated at the sym-
plectic alphabet:

P (x1, . . . , xn, x
−1
1 , . . . , x−1n ). (1)

We show how to rewrite such expressions in terms of the “Dickson–Zhukovsky variables”
zj := xj + x−1j . The function t 7→ t + t−1 is widely known as the Zhukovsky transform;
some authors [15] relate it with the name of Dickson. Let us start with two examples to
illustrate the main idea of the paper.

Example 1. The complete homogeneous polynomial h2(y1, y2, y3, y4) is an element in
Sym4 and is equal to

y21 + y1y2 + y1y3 + y1y4 + y22 + y2y3 + y2y4 + y23 + y3y4 + y24.

Thus,

h2(x1, x2, x
−1
1 , x−12 ) = x21 + x1x2 + 1 + x1x

−1
2 + x22 + x−11 x2 + 1 + x−21 + x−11 x−12 + x−22

= (x1 + x−11 )2 + (x2 + x−12 )2 + (x1 + x−11 )(x2 + x−12 )− 2

= z21 + z1z2 + z22 − 2

= h2(z1, z2)− 2 h0(z1, z2).

See Theorem 1.5 for the general case hm(x1, . . . , xn, x
−1
1 , . . . , x−1n ).

Example 2. The power sum polynomial p3(y1, y2, y3, y4) is defined as

y31 + y32 + y33 + y34.

Thus,

p3(x1, x2, x
−1
1 , x−12 ) = x31 + x32 + x−31 + x−32

= (x1 + x−11 )3 + (x2 + x−12 )3 − 3
(
(x1 + x−11 ) + (x2 + x−12 )

)
= z31 + z32 − 3(z1 + z2)

= p3(z1, z2)− 3 p1(z1, z2).

See Theorem 1.6 for the general case pm(x1, . . . , xn, x
−1
1 , . . . , x−1n ).

The symplectic alphabet x1, . . . , xn, x
−1
1 , . . . , x−1n naturally arises as the list of the

roots of palindromic (i.e. self-reciprocal) polynomials, see more details in Section 3. In
particular, expressions of the form (1) appear in the following situations.

1. If A is a symplectic matrix or a special orthogonal matrix of even order, then the
characteristic polynomial of A is palindromic. If P is a symmetric polynomial in 2n
variables, then P evaluated at the eigenvalues of A is an expression of the form (1).
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2. The characters of symplectic groups or special orthogonal groups of even orders are
particular cases of (1). See more details in Section 5.

3. Given a palindromic Laurent polynomial a, consider the banded symmetric Toeplitz
matrices Tm(a) generated by a. The minors of Tm(a), expressed in terms of the roots
of a, are of the form (1). See more details in Section 8.

This paper is inspired by Elouafi’s article [11] on the determinants of banded symmetric
Toeplitz matrices. In the process of preparation of the paper, we found a paper by
Lachaud [20] which contains “our” Proposition 4.2.

We work over the field C, though some results can be extended to other fields of
characteristic 0. Let n be a fixed natural number. We denote by Symn the algebra of
symmetric polynomials in n variables.

Theorem 1.1. Let P ∈ Sym2n. Then there exists a unique Q in Symn such that

P
(
x1, . . . , xn, x

−1
1 , . . . , x−1n

)
= Q

(
x1 + x−11 , . . . , xn + x−1n

)
.

An analog (and also a corollary) of Theorem 1.1 for the odd symplectic alphabet

x1, . . . , xn, x
−1
1 , . . . , x−1n , 1,

is stated below.

Theorem 1.2. Let P ∈ Sym2n+1. Then there exists a unique Q in Symn such that

P
(
x1, . . . , xn, x

−1
1 , . . . , x−1n , 1

)
= Q

(
x1 + x−11 , . . . , xn + x−1n

)
.

Chebyshev polynomials of the first, second, third, and fourth kind, denoted by Tm, Um,
Vm,Wm, respectively, play an important role in this paper. In particular, the polynomials
2Tm(t/2) and Um(t/2) convert the Dickson–Zhukovsky variable zj := xj + x−1j into the

power sum and the complete homogeneous polynomial in xj and x−1j :

2Tm(zj/2) = xmj + x−mj = pm(xj, x
−1
j ), Um(zj/2) =

m∑
k=0

xm−2kj = hm(xj, x
−1
j ).

Section 2 lists necessary properties of Chebyshev polynomials, Section 3 considers palin-
dromic univariate polynomials and their roots, and Section 4 contains proofs of Theo-
rem 1.1 and 1.2.

In the situations of Theorems 1.1 and 1.2, we denote Q by Φn(P ) and Φodd
n (P ), re-

spectively. Clearly, the functions Φn : Sym2n → Symn and Φodd
n : Sym2n+1 → Symn,

defined by these rules, are linear and multiplicative, i.e. Φn and Φodd
n are homomorphisms

of algebras. Example 4 shows that Φn and Φodd
n are not injective.

In this paper we freely apply some well-known properties of symmetric polynomials,
see [24] or [13, Appendix A] as reference. Let P be the set of all integer partitions. Given
a partition λ, `(λ) and |λ| denote the length and the weight of λ, respectively. Let Pn
be the set of all integer partitions λ with `(λ) 6 n. We denote by Sym the algebra of
symmetric functions and use the following bases of Sym.
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Symbol Family

eλ elementary functions
hλ complete homogeneous functions
pλ power sum functions
sλ Schur functions

spλ symplectic Schur functions
oλ orthogonal Schur functions

The functions spλ and oλ are defined by Jacobi–Trudi formulas, see Section 5.

For the symmetric functions introduced above, we write the super-index (n) to indicate
their restrictions to n variables, i.e. the corresponding elements of Symn. For example,

s
(n)
λ is the Schur polynomial in n variables associated to the partition λ. Furthermore, put

ez
(n)
λ := Φn(e

(2n)
λ ), sz

(n)
λ := Φn(s

(2n)
λ ), spz

(n)
λ := Φn(sp

(2n)
λ ), oz

(n)
λ := Φn(o

(2n)
λ ),

etc. In other words, sz
(n)
λ is obtained from s

(2n)
λ by applying Theorem 1.1 and passing from

the “symplectic alphabet” x1, . . . , xn, x
−1
1 , . . . , x−1n to the “Dickson–Zhukovsky variables”

zj = xj + x−1j :

sz
(n)
λ (z1, . . . , zn) := s

(2n)
λ (x1, . . . , xn, x

−1
1 , . . . , x−1n ).

Similarly, put

sz
odd,(n)
λ := Φodd

n (s
(2n+1)
λ ), spz

odd,(n)
λ := Φodd

n (sp
(2n+1)
λ ), oz

odd,(n)
λ := Φodd

n (o
(2n+1)
λ ),

etc. For the sake of brevity, we will omit the superindex (n), when indicating the list of
variables z = (z1, . . . , zn).

The next theorem, proven in Section 5, yields convenient bialternant formulas for spzλ,
spzoddλ , ozλ, and ozoddλ , representing them as “Schur–Chebyshev quotients”. We denote
by T monic

m the monic integer version of the Chebyshev Tm polynomial, i.e. T monic
m (u) :=

2Tm(u/2) for m > 0 and T monic
0 (u) := 1. The polynomial U (1)

m is defined as
∑m

k=0 Uk.

Theorem 1.3. For every λ in Pn,

spzλ(z1, . . . , zn) =
det
[
Uλj+n−j(zk/2)

]n
j,k=1

det
[
Un−j(zk/2)

]n
j,k=1

=
det
[
Uλj+n−j(zk/2)

]n
j,k=1∏

16j<k6n(zj − zk)
, (2)

ozλ(z1, . . . , zn) =
det
[
T monic
λj+n−j(zk)

]n
j,k=1

det
[
T monic
n−j (zk/2)

]n
j,k=1

=
det
[
T monic
λj+n−j(zk)

]n
j,k=1∏

16j<k6n(zj − zk)
, (3)

spzoddλ (z1, . . . , zn) =
det
[
U (1)
λj+n−j(zk/2)

]n
j,k=1

det
[
U (1)
n−j(zk/2)

]n
j,k=1

=
det
[
U (1)
λj+n−j(zk/2)

]n
j,k=1∏

16j<k6n(zj − zk)
, (4)
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ozoddλ (z1, . . . , zn) =
det
[
Wλj+n−j(zk/2)

]n
j,k=1

det
[
Wn−j(zk/2)

]n
j,k=1

=
det
[
Wλj+n−j(zk/2)

]n
j,k=1∏

16j<k6n(zj − zk)
, (5)

(−1)|λ| ozoddλ (−z1, . . . ,−zn) =
det
[
Vλj+n−j(zk/2)

]n
j,k=1

det
[
Vn−j(zk/2)

]n
j,k=1

=
det
[
Vλj+n−j(zk/2)

]n
j,k=1∏

16j<k6n(zj − zk)
. (6)

Our main results, stated below as Theorems 1.4, 1.5, 1.6, 1.7 and proven in Section 6,
are properties of hz(n)m , ez

(n)
m , and pz

(n)
m . Formula (7) was found by Lachaud [20, Theo-

rem A.2 and proof of Lemma A.3], and formula (13) is similar to one part of Elouafi [11,
Lemma 3].

Theorem 1.4. For m in {0, . . . , 2n},

ezm(z1, . . . , zn) =

bm/2c∑
k=max{0,m−n}

(
n−m+ 2k

k

)
em−2k(z1, . . . , zn). (7)

For m in {0, . . . , n},

ezm(z1, . . . , zn) = oz(1m)(z1, . . . , zn), (8)

ezm(z1, . . . , zn) =
1∏

16j<k6n(zj − zk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T monic
n (z1) . . . T monic

n (zn)
...

. . .
...

T monic
n−m+1(z1) . . . T monic

n−m+1(zn)

T monic
n−m−1(z1) . . . T monic

n−m−1(zn)
...

. . .
...

T monic
0 (z1) . . . T monic

0 (zn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (9)

ezm(z1, . . . , zn) =

bm/2c∑
k=0

spz(1m−2k)(z1, . . . , zn), (10)

em(z1, . . . , zn) =

bm/2c∑
k=0

(−1)kτn−m+2k,k ezm−2k(z1, . . . , zn), (11)

where

τs,k :=


(s− k − 1)! s

k! (s− 2k)!
, s ∈ N, 0 6 k 6 s;

1, k = s = 0.
(12)

In the notation for partitions (in particular, in formula (8)), pq is the number p repeated
q times. For example, (32, 04) means (3, 3, 0, 0, 0, 0).
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Theorem 1.5. Let m ∈ N0. Then

hzm(z1, . . . , zn) =
n∑
j=1

Um+n−1(zj/2)∏
k∈{1,...,n}\{j}

(zj − zk)
, (13)

hzm(z1, . . . , zn) =
1∏

16j<k6n(zj − zk)

∣∣∣∣∣∣∣∣∣
Um+n−1(z1/2) . . . Um+n−1(zn/2)
Un−2(z1/2) . . . Un−2(zn/2)

...
. . .

...
U0(z1/2) . . . U0(zn/2)

∣∣∣∣∣∣∣∣∣ , (14)

hzm(z1, . . . , zn) =

bm/2c∑
k=0

(−1)k
(
n+m− k − 1

k

)
hm−2k(z1, . . . , zn), (15)

hzm(z1, . . . , zn) =
∑

α1,...,αn∈N0
α1+···+αn=m

n∏
j=1

Uαj
(zj/2) , (16)

hzm(z1, . . . , zn) = spz(m)(z1, . . . , zn), (17)

hzm(z1, . . . , zn) =

bm/2c∑
k=0

oz(m−2k)(z1, . . . , zn), (18)

hm(z1, . . . , zn) =

bm/2c∑
k=0

(m+ n− 1)! (m+ n− 2k)

k! (m+ n− k)!
hzm−2k(z1, . . . , zn). (19)

Theorem 1.6. Let m ∈ N0. Then

pzm(z1, . . . , zn) =
n∑
j=1

2Tm(zj/2), (20)

pzm(z1, . . . , zn) =


m

bm/2c∑
j=0

(−1)j

m− j

(
m− j
j

)
pm−2j(z1, . . . , zn), m ∈ N;

2 p0(z1, . . . , zn), m = 0,

(21)

pm(z1, . . . , zn) =

bm/2c∑
k=0

αm,k pzm−2k(z1, . . . , zn), (22)

where the coefficients αm,k are defined by

αm,k :=


(
m

k

)
, if k < m

2
;

1

2

(
m

m/2

)
, if k = m

2
.

(23)

Notice that the coefficients in (7), (11), (15), and (19) depend on n. For example,

hz2(z1, . . . , zn) = h2(z1, . . . , zn)− n.
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Therefore, hz
(n)
2 is well-defined only as an element of Symn, i.e., there is no function in

Sym that could be denoted by hz2. In contrast to this, the coefficients in (21) and (22)

do not depend on n, but in these formulas p
(n)
0 := n and pz

(n)
0 := 2n.

Remark 1. We can avoid p
(n)
0 and pz

(n)
0 , i.e. replace them by the explicit constants n

and 2n, respectively. Then in some formulas, one needs to separate the corresponding
summands and to multiply them by the conditional factor [m is even]. So, some formulas

are nicer-looking with p
(n)
0 and pz

(n)
0 .

Theorem 1.7. Each of the sets {ez
(n)
m }nm=1, {hz(n)m }nm=1, {pz

(n)
m }nm=1 is an algebraically

independent generating subset of the unital algebra Symn, and the homomorphism Φn is
surjective.

As a consequence of Theorems 1.1 and 1.7, the algebra Symn is isomorphic to the
algebra of the expressions of the form P (x1, . . . , xn, x

−1
1 , . . . , x−1n ), where P ∈ Sym2n, via

the isomorphism Q 7→ Q(x+x−1). This fact is close to some ideas from [20, Appendix A].

Theorem 1.8. Each of the families (sz
(n)
λ )λ∈Pn, (spz

(n)
λ )λ∈Pn, (oz

(n)
λ )λ∈Pn, (sz

odd,(n)
λ )λ∈Pn,

(spz
odd,(n)
λ )λ∈Pn, (oz

odd,(n)
λ )λ∈Pn is a basis of the vector space Symn.

Next we state analogs of the Cauchy and dual Cauchy identities.

Theorem 1.9 (Cauchy identities). For z = (z1, . . . , zn) and y = (y1, . . . , ym),

∑
λ∈P

szλ(z) sλ(y) =
n∏
j=1

m∏
k=1

1

1− zjyk + y2k
, (24)

∑
λ∈P

szλ(z) sλ′(y) =
n∏
j=1

m∏
k=1

(
1 + zjyk + y2k

)
, (25)

∑
λ∈P

szλ(z) szλ′(y) =
n∏
j=1

m∏
k=1

(zj + yk)
2, (26)

∑
λ∈P

szoddλ (z) sλ(y) =

(
n∏
j=1

m∏
k=1

1

1− zjyk + y2k

) (
m∏
k=1

1

1− yk

)
, (27)

∑
λ∈P

szoddλ (z) sλ′(y) =

(
n∏
j=1

m∏
k=1

(1 + zjyk + y2k)

)(
m∏
k=1

(1 + yk)

)
, (28)

∑
λ∈P

szoddλ (z) szoddλ′ (y) = 2

(
n∏
j=1

m∏
k=1

(zj + yk)
2

)(
n∏
j=1

(2 + zj)

)(
m∏
k=1

(2 + yk)

)
. (29)

There are also analogs of Cauchy identities with spzλ(z) or ozλ(z) instead of szλ(z);
we omit them for the sake of brevity.

Section 7 contains proofs of Theorems 1.8 and 1.9, and some other simple facts about
sz

(n)
λ . A natural problem is to find a bialternant formula for sz

(n)
λ , similar to the formulas
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from Theorem 1.3. In Proposition 7.5 we prove that there is no bialternant formula for
sz(2,1)(z1, z2), with denominator z1 − z2. In Example 8 we give a bialternant formula for
sz(2,1)(z1, z2) with a more complicated denominator.

In Section 8 we show that there is a surjective (but non-injective) correspondence

between minors of banded symmetric Toeplitz matrices and polynomials sz
(n)
λ/µ, obtained

by applying Φn to skew Schur polynomials. In particular, the banded symmetric Toeplitz
determinants correspond to sz

(n)
(mn), and the factorization of s(mn)(x1, . . . , xn, x

−1
1 , . . . , x−1n )

proven in 2009 by Ciucu and Krattenthaler [9] is equivalent to the formulas for banded
symmetric Toeplitz determinants, found independently by Trench [31] in 1987 and by
Elouafi [11] in 2014. Elouafi’s formula has been used in investigations about the eigenval-
ues of symmetric Toeplitz matrices [3].

All formulas from Theorems 1.3, 1.4, 1.5, 1.6, and 1.9 are thoroughly tested in Sage-
math [29] for small values of parameters. We share the corresponding Sagemath code at
the page http://www.egormaximenko.com/programs/tests_palindromic.html.

2 Necessary facts about Chebyshev polynomials

Most of the material in this section can be found in [25]. Four families of Chebyshev
polynomials can be defined by the same recurrent formula

Tm(u) = 2u Tm−1(u)− Tm−2(u), Um(u) = 2uUm−1(u)− Um−2(u), . . . ,

with the initial conditions T0(u) = U0(u) = V0(u) =W0(u) = 1,

T1(u) = u, U1(u) = 2u, V1(u) = 2u− 1, W1(u) = 2u+ 1.

The Chebyshev polynomials have the following important properties:

2Tm
(

1

2
(t+ t−1)

)
= tm + t−m, (30)

Um
(

1

2
(t+ t−1)

)
=
tm+1 − t−m−1

t− t−1
, (31)

Vm
(

1

2
(t2 + t−2)

)
=
t2m+1 + t−2m−1

t+ t−1
, (32)

Wm

(
1

2
(t2 + t−2)

)
=
t2m+1 − t−2m−1

t− t−1
. (33)

The generating functions of the sequences (2Tm(u/2))∞m=0 and (Um(u/2))∞m=0 are given by

2− tu
1− tu+ t2

=
∞∑
m=0

2Tm(u/2)tm, (34)

1

1− tu+ t2
=

∞∑
m=0

Um(u/2)tm. (35)
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Using (34) and (35), it is easy to derive explicit formulas for Tm and Um:

2Tm(u/2) = m

bm/2c∑
k=0

(−1)k

m− k

(
m− k
k

)
um−2k (m ∈ N), (36)

Um(u/2) =

bm/2c∑
k=0

(−1)k
(
m− k
k

)
um−2k (m ∈ N0). (37)

With the notation τm,k defined by (12), we rewrite (36) in the form

bm/2c∑
k=0

(−1)kτm,ku
m−2k = T monic

m (u) =

{
2Tm(u/2), m ∈ N;

T0(u/2), m = 0.
(38)

The monomials um (m ∈ N0) can be written as linear combinations of Tm−2k(u/2) or
Um−2k(u/2):

um =

bm/2c∑
k=0

αm,k2Tm−2k(u/2), (39)

um =

bm/2c∑
k=0

Cm−k,kUm−2k(u/2), (40)

where αm,k is defined by (23), and Cm,k are the elements of Catalan’s triangle:

Cm,k :=
(m+ k)! (m− k + 1)

k! (m+ 1)!
.

The forthcoming “duplication formulas” follow easily from (30)–(33) and can be found in
[25, Section 1.2.4].

Proposition 2.1. For every m in N0,

T2m(t/2) = Tm((t2 − 2)/2), (41)

U2m+1(t/2) = tUm((t2 − 2)/2), (42)

2T2m+1(t/2) = tVm((t2 − 2)/2), (43)

U2m(t/2) =Wm((t2 − 2)/2). (44)

The polynomials Vm and Wm are related by

Vm(−t) = (−1)mWm(t). (45)

We denote by U (1)
m the polynomial

∑m
k=0 Uk and by σm,j the coefficient of tj in U (1)

m (t/2):

U (1)
m (t/2) =

m∑
k=0

Uk(t/2) =
m∑
j=0

σm,jt
j. (46)
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It follows from (37) that

σm,k =

b(m+k)/2c∑
j=k

(−1)j−k
(
j

k

)
=

b(m−k)/2c∑
j=0

(−1)j
(
k + j

j

)
. (47)

The coefficients σm,k form the sequence A128494 in the Online Encyclopedia of Integer
Sequences [27]. It is easy to prove by induction that

U (1)
m (t/2) =

Vm+1(t/2)− 1

t− 2
. (48)

3 Palindromic univariate polynomials and their roots

A univariate polynomial f(t) =
∑m

k=0 akt
k, with am 6= 0, is called palindromic if ak = am−k

for all k in {0, . . . ,m}. This condition is equivalent to the identity f(t) = tmf(1/t). In this
section we review some known facts about palindromic polynomials of even degrees, then
make a couple of remarks about palindromic polynomials of odd degrees. For m = 2n,
the main observation is that f(t) can be written as tng(t + t−1), where g is a certain
polynomial. This idea appears, for example, in Dickson [10, Chapter VIII], but without
explicit formula for g. The explicit formula for g, i.e. Proposition 3.2 below, was dis-
covered independently by various authors. See, for example, Elouafi [11, formula (2.2)],
Lachaud [20, Remark A.4].

Remark 2. Wikipedia (“Reciprocal polynomial”) mentions that the formula f(t) =
tng(t+t−1) was published by Durand in “Solutions numériques des équations algrébriques
I” (1961), but we are unable to find that text. So, unfortunately, we cannot say who was
first to discover the explicit formula for g in terms of Tm.

Proposition 3.1. Let x1, . . . , xn ∈ C. For each j in {1, . . . , n}, put zj = xj+x−1j . Define
univariate polynomials f and g by

f(t) :=
n∏
j=1

(
(t− xj)(t− x−1j )

)
, g(u) :=

n∏
j=1

(u− zj).

Then
f(t) = tng

(
t+ t−1

)
, (49)

and the polynomial f is palindromic.

Proof. Formula (49) follows directly from the definition of f and g:

tng(t+ t−1) = tn
n∏
j=1

(
t+ t−1 − xj − x−1j

)
=

n∏
j=1

(
(t− xj)(t− x−1j )

)
= f(t).

The expression g(t+ t−1), being a linear combination of expressions of the form (t+ t−1)k,
is a palindromic Laurent polynomial of the form c0 +

∑n
k=1 ck(t

k + t−k). Now (49) implies
that f is a palindromic polynomial.
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The next propositions are, in a certain sense, inverse to Proposition 3.1. Now we
define g through the coefficients of f and make conclusions about the roots of f and g.

Proposition 3.2. Let f be a palindromic univariate polynomial with complex coefficients:

f(t) =
2n∑
k=0

akt
k,

where a2n−k = ak for every k in {0, . . . , n}. Define a univariate polynomial g by

g(u) :=
n∑
j=0

an−jT monic
j (u) = an +

n∑
j=1

2an−jTj(u/2).

Then
f(t) = tng

(
t+ t−1

)
. (50)

Proof. For every k in {0, . . . , n − 1}, write akt
k + a2n−kt

2n−k as akt
n(tn−k + tk−n), then

apply (30).

Proposition 3.3. Let f and g be as in Proposition 3.2, a0 6= 0, and z1, . . . , zn be the
roots of the polynomial g:

g(u) = a0

n∏
j=1

(u− zj).

For each j, denote by xj a complex number satisfying xj + x−1j = zj. Then the numbers

x1, . . . , xn, x
−1
1 , . . . , x−1n

are the roots of the polynomial f , i.e.

f(t) = a0

n∏
j=1

(
(t− xj)

(
t− x−1j

))
.

Proof. Follows directly from (50) and the definitions of zj and xj:

f(t) = tng
(
t+ t−1

)
= a0t

n

n∏
j=1

(
t+ t−1 − xj − x−1j

)
= a0

n∏
j=1

(
(t− xj)

(
t− x−1j

))
.

Here is a simple result about palindromic polynomials of odd degrees.

Proposition 3.4. Let f be a palindromic polynomial of degree 2n+ 1. Then there exists
a unique palindromic polynomial g of degree 2n such that f(t) = (t+ 1)g(t). The zeros of
f can be written as

x1, . . . , xn, x
−1
1 , . . . , x−1n ,−1.

If P ∈ Sym2n+1 and P is homogeneous of degree d, then

P (x, x−1,−1) = (−1)dP (−x,−x−1, 1).

In this situation, it is possible to work over the alphabet x, x−1, 1, instead of x, x−1,−1.
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4 Construction of the morphisms Φn and Φodd
n

In what follows, we denote by x, x−1, and z the lists of variables x1, . . . , xn, x−11 , . . . , x−1n ,
and z1, . . . , zn, respectively, where zj = xj + x−1j .

The next proposition also appears in [19, eq. (4.4)].

Proposition 4.1. For each m in {0, . . . , 2n},

e2n−m(x, x−1) = em(x, x−1). (51)

Proof. We know that the polynomial f from Proposition 3.1 is palindromic. This fact
and Vieta’s formula yield (51).

The next formula was recently published by Lachaud [20, Lemma A.3]. We found it
independently, but with exactly the same proof. Therefore here we only give an idea of
the proof.

Proposition 4.2. For every m in {0, . . . , 2n},

em(x, x−1) =

bm/2c∑
k=max{m−n,0}

(
n+ 2k −m

k

)
em−2k(z). (52)

Proof. From Propositions 3.1, 4.1 and Vieta’s formulas for the coefficients of the polyno-
mials f and g,

2n∑
m=0

(−1)m em(x, x−1)tm =
n∑
j=0

(−1)n−j en−j(z)tn(t+ t−1)j. (53)

Expanding (t+t−1)j by the binomial theorem and matching the coefficient of tm yields (52).

For every j in {1, . . . , n}, let Ωj(z) be defined as follows:

Ωj(z) :=
∏

k∈{1,...,n}\{j}

(zj − zk).

Denote by Van(z) the Vandermonde polynomial in the variables z1, . . . , zn:

Van(z) := det
[
zn−jk

]n
j,k=1

=
n∏
j=1

Ω1(zj, . . . , zn) =
∏

16j<k6n

(zj − zk). (54)

Recall that

hm(y1, . . . , yp) =

p∑
j=1

ym+p−1
j

Ωj(y1, . . . , yp)
. (55)
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Lemma 4.3. Let 0 6 s < n− 1. Then

n∑
j=1

zsj
Ωj(z)

= 0. (56)

Proof. It is easy to see that the left-hand side of (56) equals det(A(z))/Van(z), where
A(z) is the matrix with the entries

Aj,k(z) :=

{
zsk, j = 1

zn−jk , 2 6 j 6 n.

Since the first row of A(z) coincides with the (n− s)th, det(A(z)) = 0.

Proposition 4.4. We have the identity

hm(x, x−1) =

bm/2c∑
k=0

(−1)k
(
n+m− k − 1

k

)
hm−2k(z1, . . . , zn). (57)

Proof. Apply (55) with the variables x, x−1:

hm(x, x−1) =
n∑
j=1

x2n+m−1j

Ωj(x, x−1)
+

n∑
j=1

x−2n−m+1
j

Ωn+j(x, x−1)
. (58)

Since

(xj − xk)(xj − x−1k ) = xj(zj − zk), (x−1j − xk)(x−1j − x−1k ) = x−1j (zj − zk),

the denominators in (58) can be written as

Ωj(x, x
−1) = (xj − x−1j )xn−1j Ωj(z), Ωn+j(x, x

−1) = −(xj − x−1j )x−n+1
j Ωj(z).

Applying (31) we arrive at

hm(x, x−1) =
n∑
j=1

Um+n−1(zj/2)

Ωj(z)
. (59)

From this and (37),

hm(x, x−1) =
n∑
j=1

Un+m−1(zj/2)

Ωj(z)
=

b(n+m−1)/2c∑
k=0

(−1)k
(
n+m− k − 1

k

) n∑
j=1

zm+n−1−2k
j

Ωj(z)
.

If k > bm/2c, then m + n − 1 − 2k < n − 1, and the inner sum is zero by Lemma 4.3.
So, the range of k in the outer sum can be restricted to {0, . . . , bm/2c}. Applying (55)
yields (15).
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Proposition 4.5. For every m in N0,

pm(x, x−1) =


m

bm/2c∑
j=0

(−1)j

m− j

(
m− j
j

)
pm−2j(z1, . . . , zn), m ∈ N;

2 p0(z1, . . . , zn), m = 0.

(60)

Proof. The result is trivial for m = 0. Suppose m ∈ N. By (30),

pm(x, x−1) =
n∑
k=1

(xmk + x−mk ) =
n∑
k=1

2Tm
(
(xk + x−1k )/2

)
,

i.e.

pm(x, x−1) =
n∑
k=1

2Tm (zk/2) . (61)

Furthermore, applying (36),

pm(x, x−1) = m
n∑
k=1

bm/2c∑
j=0

(−1)j

m− j

(
m− j
j

)
zm−2jk = m

bm/2c∑
j=0

(−1)j

m− j

(
m− j
j

) n∑
k=1

zm−2jk

= m

bm/2c∑
j=0

(−1)j

m− j

(
m− j
j

)
pm−2j(z).

Proof of Theorem 1.1. Since the set {em}2nm=1 generates the unital algebra Sym2n, the
existence in Theorem 1.1 follows from Proposition 4.2. Similarly, the existence also follows
from Proposition 4.4 and from Proposition 4.5.

For the uniqueness, suppose that Q1, Q2 ∈ Symn such that

Q1

(
x1 + x−11 , . . . , xn + x−1n

)
= Q2

(
x1 + x−11 , . . . , xn + x−1n

)
.

Consider the difference Q3 = Q1 − Q2. The assumptions on Q1 and Q2 imply that
Q3 ∈ Symn and the expression

Q3

(
x1 + x−11 , . . . , xn + x−1n

)
(62)

is zero. If Q3 is a non-zero polynomial and czα1
1 · · · zαn

n is one of the leading terms of Q3,
then it is easy to see that the expression (62) contains the summand cxα1

1 · · · xαn
n . This

contradiction shows that Q3 has to be the zero polynomial.

Proof of Theorem 1.2. In order to prove the existence, define R ∈ Sym2n by

R(y1, . . . , y2n) := P (y1, . . . , y2n, 1).

Applying Theorem 1.1 to R we get Q in Symn which has the desired property:

Q(x1 + x−11 , . . . , xn + x−1n ) = R(x1, . . . , xn, x
−1
1 , . . . , x−1n )

= P (x1, . . . , xn, x
−1
1 , . . . , x−1n , 1).

The uniqueness also reduces to the uniqueness in Theorem 1.1.
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Remark 4.6. The two-valued inverse Dickson–Zhukovsky transform, i.e. the pair of the
solutions of the equation t+ t−1 = u, is given by t = (u±

√
u2 − 4)/2. So, Φn acts by the

following explicit rule:

(Φn(P ))(z1, . . . , zn) = P

(
z1 +

√
z21 − 4

2
, . . . ,

zn +
√
z2n − 4

2
,

z1 −
√
z21 − 4

2
, . . . ,

zn −
√
z2n − 4

2

)
, (63)

and Theorem 1.1 ensures that the right-hand side of (63) is a symmetric polynomial in
z1, . . . , zn.

Example 3. Let n = 2 and

P (x1, x2, x3, x4) = x21 + x22 + x23 + x24 + 5x1x2 + 5x1x3 + 5x1x4 + 5x2x3 + 5x2x4 + 5x3x4.

Then

P (x1, x2, x
−1
1 , x−12 ) =

(
x1 + x−11

)2
+
(
x2 + x−12

)2
+ 5

(
x1 + x−11

) (
x2 + x−12

)
+ 6,

i.e.
Φ2(P )(z1, z2) = z21 + z22 + 5z1z2 + 6.

In this example Φ2(P ) is not homogeneous, though P is homogeneous.

Example 4. For a general n, put

P1(x1, . . . , x2n) = e2n(x1, . . . , x2n) =
2n∏
j=1

xj, P2(x1, . . . , x2n) = 1,

P3(x1, . . . , x2n+1) = e2n+1(x1, . . . , x2n+1) =
2n+1∏
j=1

xj, P4(x1, . . . , x2n+1) = 1.

Then P1(x, x
−1) = P2(x, x

−1) = 1 and P3(x, x
−1, 1) = P4(x, x

−1, 1) = 1, i.e.

Φn(P1) = Φn(P2), Φodd
n (P3) = Φodd

n (P4).

This example shows that Φn and Φodd
n are not injective.

5 Symplectic and orthogonal Schur polynomials
and Schur–Chebyshev quotients

In this section we recall various equivalent formulas for symplectic and orthogonal Schur
polynomials and relate them with Schur–Chebyshev quotients.
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The symplectic and orthogonal Schur functions spλ and oλ appear naturally in rep-
resentation theory in relation with the symplectic and orthogonal groups. See [13, Sec-
tion 24 and Appendix A] for most of the following formulas for spλ and oλ. An additional
information can be found in [18].

For every λ in P , the symplectic Schur function spλ and the orthogonal Schur function
oλ are elements of Sym defined by the following analogs of Jacobi–Trudi identities:

spλ :=
1

2
det
[
hλj−j+k + hλj−j−k+2

]`(λ)
j,k=1

, (64)

oλ := det
[
hλj−j+k− hλj−j−k

]`(λ)
j,k=1

. (65)

They also satisfy the following analogs of dual Jacobi–Trudi identities:

spλ = det
[
eλ′j−j+k− eλ′j−j−k

]λ1
j,k=1

, (66)

oλ =
1

2
det
[
eλ′−j+k + eλ′−j−k+2

]λ1
j,k=1

. (67)

Example 5. By using the first Jacobi–Trudi type formulas (64) and (65), we have

sp(2,2,1) = h1 + h(2,1)− h(3,2) + h(4,1)− h(1,1,1) + h(2,2,1)− h(3,1,1), (68)

o(2,2,1) = h3− h(2,1)− h(3,2) + h(4,1) + h(2,2,1)− h(3,1,1) . (69)

The functions spλ and oλ are traditionally evaluated at the even symplectic alphabet

(x, x−1) = (x1, . . . , xn, x
−1
1 , . . . , x−1n ).

Since Φn is a morphism of algebras, (64)–(67) imply the following analogs of Jacobi–Trudi
identities for spzλ and ozλ:

spzλ(z) =
1

2
det
[
hzλj−j+k(z) + hzλj−j−k+2(z)

]`(λ)
j,k=1

, (70)

spzλ(z) = det
[
ezλ′j−j+k(z)− ezλ′j−j−k(z)

]λ1
j,k=1

, (71)

ozλ(z) = det
[
hzλj−j+k(z)− hzλj−j−k(z)

]`(λ)
j,k=1

, (72)

ozλ(z) =
1

2
det
[
ezλ′j−j+k(z) + ezλ′j−j−k+2(z)

]λ1
j,k=1

. (73)

There are bialternant formulas for spλ(x, x
−1) and oλ(x, x

−1):

spλ(x, x
−1) =

det
[
x
λj+n−j+1
k − x−(λj+n−j+1)

k

]n
j,k=1

det
[
xn−j+1
k − x−(n−j+1)

k

]n
j,k=1

, (74)

oλ(x, x
−1) =

det
[
ζλj+n−j(xk)

]n
j,k=1

det
[
ζn−j(xk)

]n
j,k=1

, (75)
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where ζm(u) := um + u−m if m > 0 and ζ0(u) := 1.
Characters of the odd orthogonal groups are related with the functions oλ evaluated

at the odd symplectic alphabet

(x, x−1, 1) = (x1, . . . , xn, x
−1
1 , . . . , x−1n , 1).

It is known that

oλ(t
2
1, . . . , t

2
n, t
−2
1 , . . . , t−2n , 1) =

det
[
t
2λj+2n−2j+1
k − t−(2λj+2n−2j+1)

k

]n
j,k=1

det
[
t2n−2j+1
k − t−(2n−2j+1)

k

]n
j,k=1

. (76)

Okada [28] proved the following bialternant formula for spλ evaluated at the generalized
odd symplectic alphabet: if λ ∈ Pn+1, then

spλ(t
2
1, . . . , t

2
n, t
−2
1 , . . . , t−2n , tn+1) =

detAλ(t1, . . . , tn, 1)

detA∅(t1, . . . , tn, 1)
, (77)

where (Aλ(t1, . . . , tn, tn+1))j,k is defined as{
(t

2λj+2n−2j+4
k − t−(2λj+2n−2j+4)

k )− t−1n+1(t
2λj+2n−2j+2
k − t−(2λj+2n−2j+2)

k ) if 1 6 k 6 n,

t
2λj+2n−2j+2
n+1 if k = n+ 1.

The bialternant formulas (74), (75), (76), and (77) are natural to rewrite in terms of the
Chebyshev polynomials, as certain “Schur–Chebyshev quotients”.

Proposition 5.1. We have that

det
[
T monic
n−j (zk)

]n
j,k=1

= det
[
Un−j(zk/2)

]n
j,k=1

= det
[
Vn−j(zk/2)

]n
j,k=1

= det
[
Wn−j(zk/2)

]n
j,k=1

= det
[
U (1)
n−j(zk/2)

]n
j,k=1

= Van(z).

Proof. We sketch how to prove the formula for det
[
Un−j(zk/2)

]n
j,k=1

; the other four deter-

minants can be computed in a similar way. We apply the same ideas used to compute the
classical Vandermonde determinant Van(z). One way is to use elementary transformations
of the determinants and to obtain the following recursive formula:

det [Un−j(zk/2)]nj,k=1 = Ω1(z1, . . . , zn) det [Un−j(zk+1/2)]n−1j,k=1 .

Another way is to notice that the determinant of
[
Un−j(zk/2)

]n
j,k=1

vanishes when any two

of the variables z1, . . . , zn coincide, therefore it must be a multiple of Van(z), i.e. there
exists a polynomial C(z) such that

det [Un−j(zk/2)]nj,k=1 = C(z) Van(z).

Comparing the coefficient of the term zn−11 zn−22 · · · z0n yields C(z) = 1.
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Proposition 5.2. Let zk = xk + x−1k for every k in {1, . . . , n}. Then

spλ(x, x
−1) =

det
[
Uλj+n−j(zk/2)

]n
j,k=1

det
[
Un−j(zk/2)

]n
j,k=1

=
det
[
Uλj+n−j(zk/2)

]n
j,k=1

Van(z)
, (78)

oλ(x, x
−1) =

det
[
T monic
λj+n−j(zk)

]n
j,k=1

det
[
T monic
n−j (zk)

]n
j,k=1

=
det
[
T monic
λj+n−j(zk)

]n
j,k=1

Van(z)
, (79)

spλ(x, x
−1, 1) =

det
[
U (1)
λj+n−j(zk/2)

]n
j,k=1

det
[
U (1)
n−j(zk/2)

]n
j,k=1

=
det
[
U (1)
λj+n−j(zk/2)

]n
j,k=1

Van(z)
, (80)

oλ(x, x
−1, 1) =

det
[
Wλj+n−j(zk/2)

]n
j,k=1

det
[
Wn−j(zk/2)

]n
j,k=1

=
det
[
Wλj+n−j(zk/2)

]n
j,k=1

Van(z)
, (81)

oλ(x, x
−1,−1) = (−1)|λ| oλ(−x,−x−1, 1)

=
det
[
Vλj+n−j(zk/2)

]n
j,k=1

det
[
Vn−j(zk/2)

]n
j,k=1

=
det
[
Vλj+n−j(zk/2)

]n
j,k=1

Van(z)
. (82)

Proof. Let us prove the first equality in (78). Use the bialternant formula (74) and the
property (31) of the polynomials U :

spλ(x, x
−1) =

∏n
k=1(xk − x

−1
k ) det

[
Uλj+n−j(zk/2)

]n
j,k=1∏n

k=1(xk − x
−1
k ) det

[
Un−j(zk/2)

]n
j,k=1

=
det
[
Uλj+n−j(zk/2)

]n
j,k=1

det
[
Un−j(zk/2)

]n
j,k=1

.

The second equality in (78) follows from the first one transforming the denominator
by Proposition 5.1. In a similar way, (79) follows from (75) and (30), and (81) follows
from (76) and (33). Finally, (82) is a consequence of (81) and (45).

Let us prove (80) using Okada’s formula (77) with λn+1 = 0, xk = t2k (1 6 k 6 n) and
tn+1 = 1. For 1 6 k 6 n,

Aλ(t1, . . . , tn, 1)j,k = (x
λj+n−j+2
k − x−(λj+n−j+2)

k )− (x
λj+n−j+1
k − x−(λj+n−j+1)

k )

= (xk − x−1k )(Uλj+n−j+1(zj/2)− Uλj+n−j(zj/2)

= (xk − x−1k )Vλj+n−j+1(zj/2).

In particular, if 1 6 k 6 n, then the entry (n+ 1, k) is (xk−x−1k )V0(zj/2). After factoring
xk − x−1k from the kth column (1 6 k 6 n),

detAλ(t1, . . . , tn, 1) =

(
n∏
k=1

(xk − x−1k )

)∣∣∣∣∣
[
Vλj+n+1−j(zk/2)

]n
j,k=1

[
1
]n
j=1[

1, . . . , 1
]

1

∣∣∣∣∣ .
Now from each column 1, . . . , n we subtract the column n+ 1, then we expand the deter-
minant by the last row and use the formula (48).

detAλ(t1, . . . , tn, 1) =

(
n∏
k=1

(xk − x−1k )

)
det
[
Vλj+n+1−j(zk/2)− 1

]n
j,k=1
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=

(
n∏
k=1

(xk − x−1k )

)(
n∏
k=1

(zk − 2)

)
det
[
U (1)
λj+n−j(zk/2)

]n
j,k=1

.

Thus,

spzλ(x, x
−1, 1) =

detAλ(t1, . . . , tn, 1)

detA∅(t1, . . . , tn, 1)
=

det
[
U (1)
λj+n−j(zk/2)

]n
j,k=1

det
[
U (1)
n−j(zk/2)

]n
j,k=1

.

Taking into account Proposition 5.1, we obtain the second equality in (80).

Example 6. For n = 2 and λ = (3, 1), formula (74) yields

sp(3,1)(x1, x2, x
−1
1 , x−12 ) =

∣∣∣∣ x51 − x−51 x52 − x−52

x21 − x−21 x22 − x−22

∣∣∣∣∣∣∣∣ x21 − x−21 x22 − x−22

x1 − x−11 x2 − x−12

∣∣∣∣ .
Now we factorize x1 − x−11 in the first column of the determinants and x2 − x−12 in the
second one, and notice that

x5k − x−5k
xk − x−1k

= x4k + x2k + x0k + x−2k + x−4k = (xk + x−1k )4 − 3(xk + x−1k )2 + 1.

Thus,

sp(3,1)(x1, x2, x
−1
1 , x−12 ) =

∣∣∣∣ z41 − 3z21 + 1 z42 − 3z22 + 1
z1 z2

∣∣∣∣∣∣∣∣ z1 z2
1 1

∣∣∣∣ =

∣∣∣∣ U4(z1/2) U4(z2/2)
U1(z1/2) U1(z2/2)

∣∣∣∣
z1 − z2

,

which is a particular case of (78).

Example 7. For n = 2 and λ = (3, 1), formula (75) yields

o(3,1)(x1, x2, x
−1
1 , x−12 ) =

∣∣∣∣ x41 + x−41 x42 + x−42

x11 + x−12 x12 + x−12

∣∣∣∣∣∣∣∣ x1 + x−11 x2 + x−12

1 1

∣∣∣∣ .
Notice that

x4k + x−4k = (xk + x−1k )4 − 4(xk + x−1k )2 + 2, x2k + x−2k = (xk + x−1k )2 − 2.

Hence,

o(3,1)(x1, x2, x
−1
1 , x−12 ) =

∣∣∣∣ z41 − 4z21 + 2 z42 − 4z22 + 2
z1 z2

∣∣∣∣∣∣∣∣ z1 z2
1 1

∣∣∣∣ =

∣∣∣∣ T monic
4 (z1) T monic

4 (z2)
T monic
1 (z1) T monic

1 (z2)

∣∣∣∣
z1 − z2

,

which is a particular case of (79).
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Theorem 1.3 follows from Proposition 5.2 and the definitions of Φn and Φodd
n . Du-

plication formulas for the Chebyshev polynomials lead to another equivalent form of the
bialternant formulas from Proposition 5.2.

Proposition 5.3. For every λ in Pn,

spzλ(u
2
1 − 2, . . . , u2n − 2) =

det
[
U2λj+2n−2j+1(uk/2)

]n
j,k=1

det
[
U2n−2j+1(uk/2)

]n
j,k=1

, (83)

ozλ(u
2
1 − 2, . . . , u2n − 2) =

det
[
T monic
2λj+2n−2j(uk)

]n
j,k=1

det
[
T monic
2n−2j (uk)

]n
j,k=1

, (84)

ozoddλ (u21 − 2, . . . , u2n − 2) =
det
[
U2λj+2n(uk/2)

]n
j,k=1

det
[
U2n−2j(uk/2)

]n
j,k=1

, (85)

(−1)|λ| ozoddλ (−u21 + 2, . . . ,−u2n + 2) =
det
[
T2λj+2n−2j+1(uk/2)

]n
j,k=1

det
[
T2n−2j+1(uk/2)

]n
j,k=1

. (86)

Proof. Apply (2) and (42):

spzλ(u
2
1 − 2, . . . , u2n − 2) =

det
[
uk U2λj+2n−2j+1(uk/2)

]n
j,k=1

det
[
uk U2n−2j+1(uk/2)

]n
j,k=1

=
(
∏n

k=1 uk) det
[
U2λj+2n−2j+1(uk/2)

]n
j,k=1

(
∏n

k=1 uk) det
[
U2n−2j+1(uk/2)

]n
j,k=1

.

After canceling
∏n

k=1 uk we obtain (83). Similarly, formula (84) follows from (3) and (41),
(85) follows from (5) and (44), and (86) follows from (6) and (43).

6 Properties of ez, hz, and pz

Denote by H̃(z)(t) the generating series of the sequence (hzk(z))∞k=0 and by Ẽ(z)(t) the
generating series of the sequence (ezk(z))∞k=0:

H̃(z)(t) :=
∞∑
k=0

hzk(z)tk, Ẽ(z)(t) :=
∞∑
k=0

ezk(z)tk =
2n∑
k=0

ezk(z)tk.

Proposition 6.1. The generating series are given by

Ẽ(z)(t) =
n∏
j=1

(1 + zjt+ t2), (87)

H̃(z)(t) =
n∏
j=1

1

1− zjt+ t2
. (88)
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Proof. Given a list of variables a = (a1, . . . , ap), E(a)(t) stands for the generating series of
the sequence (ek(a))∞k=0 and H(a)(t) for the generating series of the sequence (hk(a))∞k=0:

E(a)(t) =
∞∑
k=0

ek(a)tk =

p∑
k=0

ek(a)tk =

p∏
j=1

(1 + ajt), H(a)(t) =
∞∑
k=0

hk(a)tk.

Using the substitutions zj = xj + x−1j we obtain

Ẽ(z)(t) =
∞∑
k=0

ezk(z)tk =
∞∑
k=0

ek(x, x
−1)tk = E(x, x−1)(t)

=
n∏
j=1

(
(1 + xjt)(1 + x−1j t)

)
=

n∏
j=1

(1 + zjt+ t2).

Since the series H(x, x−1)(t) is the reciprocal of E(x, x−1)(−t), the series H̃(z)(t) is the

reciprocal of Ẽ(z)(t).

Formulas for ez

Now we rewrite Proposition 4.1 using the notation ez.

Proposition 6.2. For each m in {0, . . . , 2n},

ez2n−m(z) = ezm(z). (89)

Next we prove Theorem 1.4. Formula (7) follows from Proposition 4.2, and (8) follows
from (73) with λ = (1m).

Proof of (11). Let f and g be as in Propositions 3.1, 3.2. By (38),

g(t+ t−1) = (−1)n en(x, x−1) +
n∑
j=1

(−1)n−j en−j(x, x
−1)2Tj

(
t+ t−1

2

)

=
n∑
j=0

bj/2c∑
k=0

(−1)n−j en−j(x, x
−1)(−1)kτj,k(t+ t−1)j−2k

=

bn/2c∑
k=0

n∑
j=2k

(−1)n−j+kτj,k en−j(x, x
−1)(t+ t−1)j−2k

=

bn/2c∑
k=0

n∑
m=2k

(−1)m−kτn−m+2k,k ezm−2k(z)(t+ t−1)n−m

=
n∑

m=0

(−1)m

bm/2c∑
k=0

(−1)kτn−m+2k,k ezm−2k(z)

 (t+ t−1)n−m.
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On the other hand, by Vieta’s formula,

g(t+ t−1) =
n∑

m=0

(−1)m em(z)(t+ t−1)n−m.

Matching the coefficients of the powers of (t+ t−1) we obtain (11).

Proof of (10). If λ = (1q), then λ′ = (q), and (71) takes the form

spz(1q)(z) = ezq(z)− ezq−2(z). (90)

In particular, spz(1)(z) = ez1(z) and spz(0)(z) = ez0(z). Now we write ezm(z) as a tele-
scopic sum and apply (90):

ezm(z) =

bm/2c−1∑
k=0

(ezm−2k(z)− ezm−2k−2(z)) + ezm−2bm/2c(z) =

bm/2c∑
k=0

spz(1m−2k)(z).

In the proposition below we abbreviate (z1, . . . , zn, zn+1) as (z, zn+1).

Proposition 6.3. For every m in N0,

ezm+2(z, zn+1) = ezm+2(z) + zn+1 ezm+1(z) + ezm(z), (91)

ezm+1(z, zn+1)− ezm+1(z, zn+2) = (zn+1 − zn+2) ezm(z). (92)

Proof. By (87),

Ẽ(z, zn+1)(t) = (1 + zn+1t+ t2)Ẽ(z)(t), (93)

Ẽ(z, zn+1)(t)− Ẽ(z, zn+2)(t) = (zn+1 − zn+2)tẼ(z)(t). (94)

Matching the coefficient of tm in (93) yields (91), and matching the coefficient of tm in
(94) yields (92).

Formulas for hz

In this subsection we prove Theorem 1.5 and some simple relations between the expressions
hz with different lists of arguments (Proposition 6.6). Notice that (13) is another form
of (59), and (15) is another form of (57).

Lemma 6.4. Let s ∈ N0. Then

det


Un+s−1(z1/2) . . . Un+s−1(zn/2)
Un−2(z1/2) . . . Un−2(zn/2)

. . . . . . . . .
U0(z1/2) . . . U0(zn/2)


Van(z)

=
n∑
j=1

Us(zj/2)

Ωj(z)
. (95)
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Proof. Expand the determinant in the numerator along the first row and simplify the
cofactors using Proposition 5.1.

Lemma 6.5. Let 0 6 s < n− 1. Then

n∑
j=1

Us(zj/2)

Ωj(z)
= 0. (96)

Proof. Represent the left-hand side of (96) by (95). Since 0 6 s < n− 1, the first row of
the determinant coincides with one of the other rows, and the determinant is zero.

Proof of (16). Use (88) and (35):

∞∑
m=0

hzm(z)tm = H̃(z)(t) =
n∏
j=1

1

1− zjt+ t2
=

n∏
j=1

∞∑
q=0

Uq(zj/2)tq.

Equating the coefficients of tm we arrive at (16).

Proof of (17). Follows from (64) and (70) with λ = (m). The equivalence of (13) and (17)
also follows from (2) and Lemma 6.4.

Proof of (18). Identity (72) for λ = (s) yields

oz(s)(z) = hzs(z)− hzs−2(z),

i.e. hzs(z) = oz(s)(z) + hzs−2(z). By induction over m, we obtain (18).

Proof of (19). By (55) and (40),

hm(z) =

b(m+n−1)/2c∑
k=0

Cm+n−1−k,k

(
n∑
j=1

Um+n−1−2k(zj/2)

Ωj(z)

)
.

Lemma 6.5 allows us to restrict the upper limit in the sum over k; after that we apply (13):

hm(z) =

bm/2c∑
k=0

Cm+n−1−k,k

(
n∑
j=1

Um+n−1−2k(zj/2)

Ωj(z)

)
=

bm/2c∑
k=0

Cm+n−1−k,k hzm−2k(z).

Formula (98) below is inspired by [22, Lemma 1]. We abbreviate (z1, . . . , zn, zn+1) as
(z, zn+1).

Proposition 6.6. For every m in N0,

hzm+2(z, zn+1) = hzm+2(z) + zn+1 hzm+1(z, zn+1)− hzm(z, zn+1), (97)

hzm+1(z, zn+1)− hzm+1(z, zn+2) = (zn+1 − zn+2) hzm(z, zn+1, zn+2). (98)
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Proof. We start with a simple expression:

Ẽ(z, zn+1)(−t) = (1− zn+1t+ t2)Ẽ(z)(−t).

Divide by the product Ẽ(z, zn+1)(−t)Ẽ(z)(−t):

H̃(z)(t) = (1− zn+1t+ t2)H̃(z, zn+1)(t).

By equating the coefficients of tm+2 in both sides,

hzm+2(z) = hzm+2(z, zn+1)− zn+1 hzm+1(z, zn+1) + hzm(z, zn+1).

The obtained formula is equivalent to (97). Now consider the difference

Ẽ(z, zn+2)(−t)− Ẽ(z, zn+1)(−t) = (zn+1 − zn+2)tẼ(z)(−t).

Divide over the product Ẽ(z, zn+1)(−t)Ẽ(z, zn+2)(−t):

H̃(z, zn+1)(t)− H̃(z, zn+2)(t) =
(zn+1 − zn+2)tH̃(z)(t)

(1− zn+1t+ t2)(1− zn+2t+ t2)
,

i.e.
H̃(z, zn+1)(t)− H̃(z, zn+2)(t) = (zn+1 − zn+2)tH̃(z, zn+1, zn+2)(t).

Equating the coefficients of tm+1 we get (98).

Formulas for pz

In this subsection we prove Theorem 1.6. Formula (21) is another form of (60), and (20)
is another form of (61).

Proof of (22). Use (39) and change the order of the sums:

pm(z) =
n∑
j=1

zmj =
n∑
j=1

bm/2c∑
k=0

αm,k2Tm−2k (zj/2) =

bm/2c∑
k=0

αm,k

n∑
j=1

(
xm−2kj + x

−(m−2k)
j

)

=

bm/2c∑
k=0

αm,k pm−2k(x, x
−1) =

bm/2c∑
k=0

αm,k pzm−2k(z).

Recall that the involution ω : Sym→ Sym can be defined by

ω(pm) = (−1)m pm (m > 1). (99)

In order to define ωn : Symn → Symn, we use the monomial embedding Symn → Sym. In
other words, given f in Symn, we expand f in the monomial basis and then apply ω.
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Proposition 6.7. We have that

ωn(pzm)(z) =

(−1)m−1 pzm(z), m is odd,

(−1)m−1 pzm(z) + 1
2
(−1)m/2

(
m
m/2

)
pz0(z), m is even.

(100)

Proof. Apply (21) and (99). For odd m,

ωn(pzm)(z) =

bm/2c∑
k=0

αm,k(−1)m−2k−1(−1)k pm−2k(z) = (−1)m−1 pzm(z).

For even m,

pzm(z) =

m
2
−1∑

k=0

αm,k(−1)k pm−2k(z) + αm,m/2(−1)m/2 p0(z).

Thus,

ωn(pzm)(z) =

m
2
−1∑

k=0

αm,k(−1)m−1(−1)k pm−2k(z) + αm,m/2(−1)m/2 p0(z)

= (−1)m−1
m/2∑
k=0

αm,k(−1)m−1(−1)k pm−2k(z) + 2αm,m/2(−1)m/2 p0(z).

The last expression yields the second case of (100).

Unfortunately, in general ωn does not convert hz
(n)
λ into ez

(n)
λ , even with the restriction

`(λ) 6 n.

Algebraically independent generating subsets

Here we consider Symn as a complex algebra with identity. Given a subset S of Symn, we
denote by 〈S〉 the subalgebra (with identity) generated by S. It is known [17, Theorem 5.9
and Proposition 5.10] that if A is a finitely generated commutative associative algebra
with identity, S ⊆ A, and 〈S〉 = A, then its (Krull) dimension is

dim(A) = sup{#T : T ⊆ S, T is finite and algebraically independent}. (101)

It is well known that {em}nm=1 is an algebraically independent generating subset of Symn.
As a consequence, dim(Symn) = n. So, if S is a generating subset of Symn consisting of n
elements, then S is algebraically independent. Moreover, in this situation, S is a minimal
by size (and minimal by inclusion) generating subset of Symn.

Proof of Theorem 1.7. Since {em}nm=1 is a generating subset of Symn, the relation

E(z)(−t) H(z)(t) = 1

implies that {hm}nm=1 is also a generating subset of Symn. Newton’s identity yields a
similar conclusion for {pm}nm=1. Now Theorem 1.7 follows from the identities (7), (11),
(15), (19), (21), and (22), combined with the reasoning before this proof.
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Formulas for ezodd, hzodd, and pzodd

With the generating series for the sequences (em)∞m=0 and (hm)∞m=0 it is easy to obtain the
following recurrence relations:

em+1(y1, . . . , yp, yp+1) = em+1(y1, . . . , yp) + yp+1 em(y1, . . . , yp), (102)

hm+1(y1, . . . , yp, yp+1) = hm+1(y1, . . . , yp) + yp+1 hm(y1, . . . , yp, yp+1). (103)

The definition of pm immediately yields

pm(y1, . . . , yp, yp+1) = pm(y1, . . . , yp) + ymp+1. (104)

Apply these formulas to the odd symplectic alphabet x, x−1, 1, then use the morphisms
Φn and Φodd

n :

ezoddm+1(z) = ezm+1(z) + ezm(z), (105)

hzoddm+1(z) = hzm+1(z) + hzoddm (z), (106)

pzoddm (z) = pzm(z) + 1. (107)

These identities and Theorems 1.4, 1.5, 1.6 yield the following formulas for ezoddm (z),
hzoddm (z), and pzoddm (z).

Proposition 6.8. For every m in {0, . . . , 2n+ 1},

ezoddm (z) =
m∑

k=max{0,2m−2n−1}

(
n−m+ k

bk/2c

)
em−k(z). (108)

Proposition 6.9. For every m in N0,

hzoddm (z) =
m∑
k=0

hzk(z), (109)

hzoddm (z) =
m∑
k=0

spz(k)(z), (110)

hzoddm (z) =
n∑
j=1

U (1)
m+n−1(zj/2)

Ωj(z)
, (111)

hzoddm (z) =
m∑
k=0

σm+n−1,k+n−1 hk(z), (112)

where σm,k is defined by (47).

Proposition 6.10. We have

pzoddm (z) =


1 +m

bm/2c∑
j=0

(−1)j

m− j

(
m− j
j

)
pm−2j(z1, . . . , zn), m ∈ N;

1 + 2 p0(z1, . . . , zn), m = 0.

(113)
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7 Schur polynomials in symplectic variables

We denote by sλ/µ the skew Schur function associated to a skew partition λ/µ. It is given
by the following Jacobi–Trudi formulas:

sλ/µ := det
[
hλj−µk−j+k

]`(λ)
j,k=1

, sλ/µ = det
[
eλ′j−µ′k−j+k

]λ1
j,k=1

.

Put sz
(n)
λ/µ

:= Φn(s
(2n)
λ/µ ). Since Φn is a homomorphism of algebras, the polynomials sz

(n)
λ/µ

inherit some properties of the classical Schur polynomials. In particular, sz
(n)
λ/µ can be

computed by the following analogs of the Jacobi–Trudi formulas:

szλ/µ(z) = det
[
hzλj−µk−j+k(z)

]`(λ)
j,k=1

, (114)

szλ/µ(z) = det
[
ezλ′j−µ′k−j+k(z)

]λ1
j,k=1

. (115)

Furthermore,

szλ(z) szµ(z) =
∑
ν

LRν
λ,µ szν(z),

where LRν
λ,µ are the usual Littlewood–Richardson coefficients for the Schur functions.

In this section we prove Theorems 1.8 and 1.9, and state a few other properties of the
polynomials sz

(n)
λ .

Proposition 7.1. Let λ ∈ P and `(λ) > 2n. Then szλ(z1, . . . , zn) = 0.

Proof. Since `(λ) > 2n, the Jacobi–Trudi formula easily implies that

sλ(y1, . . . , y2n) = 0.

Now szλ(z1, . . . , zn) = 0 by definition of the morphism Φn.

The following “symmetry property” of sz is equivalent to [19, Lemma 1] and follows
from the dual Jacobi–Trudi identity (115) and Proposition 6.2.

Proposition 7.2. For 1 6 k 6 n

sz(λ1,...,λn+k)(z1, . . . , zn) = szµ(z1, . . . , zn),

where µ = (λn−k1 , λ1 − λn+k, λ1 − λn+k−1, . . . , λ1 − λ2).

To prove Theorem 1.8, we need an elementary lemma from linear algebra that can be
proved by induction.

Lemma 7.3. Let V be a vector space, (bλ)λ∈J be a basis of V , and the index set J be the
union of the sequence (Jw)∞w=0 of finite sets Jw, such that Jw ⊆ Jw+1 for every w in N0.
Put J−1 := ∅. Denote by Vw the subspace generated by bλ with λ in Jw. Suppose that
(aλ)λ∈J is a family of vectors in V such that for every w in N0 and every λ in Jw \ Jw−1,

aλ − bλ ∈ Vw−1.

Then (aλ)λ∈J is a basis of V .
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Proof of Theorem 1.8. For every w in N0, put Jw := {λ ∈ Pn : |λ| 6 w} and denote by

Vw the subspace generated by {s(n)λ : λ ∈ Jw}. It is well known that the family (s
(n)
λ )λ∈Pn

is a basis of the vector space Symn, and Vw consists of all symmetric polynomials in n
variables of degree 6 w.

Given a partition λ in Pn, write szλ(z) in the form (114) and expand hzλj−j+k(z) into
a linear combination of hm(z) with m 6 λj − j + k, using (15). Thereby it can be shown
that

szλ(z) = sλ(z) +R(z),

where R is a symmetric polynomial of degree strictly less than |λ| and with integer co-

efficients. So, the conditions of Lemma 7.3 are fulfilled, and (sz
(n)
λ )λ∈Pn is a basis of the

vector space Symn.
For the other families from Theorem 1.8, the proofs are similar. For the families

(spz
(n)
λ )λ∈Pn , (oz

(n)
λ )λ∈Pn , the bialternant identities can be used instead of the Jacobi–

Trudi formulas.

Proof of Theorem 1.9. All formulas in Theorem 1.9 follow easily from the classical Cauchy
and dual Cauchy identities. Let us verify only (24). Representing zj as xj + x−1j ,∑

λ∈P

szλ(z) sλ(y) =
∑
λ∈P

sλ(x, x
−1) sλ(y)

=
n∏
j=1

m∏
k=1

1

(1− xjyk)(1− x−1j yk)
=

n∏
j=1

m∏
k=1

1

1− zjyk + y2k
.

Remark 7.4. The sum in the left-hand side of (24) can be reduced to the partitions λ
with `(λ) 6 min{2n,m}, and the sum in the left-hand side of (27) can be reduced to the
partitions λ with `(λ) 6 min{2n+ 1,m}. These sums can be treated in the formal sense.
They are absolutely converging for small values of zj and yk. The sums in the left-hand
sides of (25), (26), (28), and (29) are finite. For example, the sum in the left-hand side
of (25) can be reduced to the partitions λ satisfying `(λ) 6 2n and λ1 6 m.

There are simple bialternant formulas for sz
(n)
(m) and sz

(n)
(1m), see (9) and (14). The next

proposition shows that there is no similar formula for sz
(n)
λ with general λ.

Proposition 7.5. There do not exist univariate polynomials f and g such that

sz(2,1)(z1, z2) =

∣∣∣∣ f(z1) f(z2)
g(z1) g(z2)

∣∣∣∣
Van(z1, z2)

. (116)

Proof. Using (114) we obtain

sz(2,1)(z1, z2) = z21z2 + z1z
2
2 + z1 + z2. (117)
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Suppose that f and g are univariate polynomials satisfying (116), and

f(t) =

p∑
j=0

fjt
j, g(t) =

q∑
j=0

gjt
j,

with fp 6= 0, gq 6= 0. If p = q, then an elementary operation with the rows of the
determinant in the numerator allows to pass to the case q = p − 1. So, without loss of
generality, we consider the case p > q. Then the leading terms of the numerator of (116)
are fpgpz

p
1z

q
2 and −fpgpzq1z

p
2 , and it is easy to conclude that p = 3, q = 1. Since fpgp = 1,

we may consider the case fp = 1 and gp = 1. An elementary computation yields∣∣∣∣ f(z1) f(z2)
g(z1) g(z2)

∣∣∣∣
z1 − z2

= z21z2 + z1z
2
2 + g0(z

2
1 + z22) + (g0 + f2)z1z2 + g0f2(z1 + z2) + g0f1 − f0.

From this and (117), g0 = 0 and simultaneously g0f2 = 1, which is impossible.

However, there is a bialternant formula for sz(2,1)(z1, z2) with a more complicated
denominator.

Example 8. It can be verified directly that

sz(2,1)(z1, z2) =

∣∣∣∣ z41 + 1 z42 + 1
z21 z22

∣∣∣∣∣∣∣∣ z21 + 1 z22 + 1
z1 z2

∣∣∣∣ . (118)

Remark 7.6. A natural problem for future work is to generalize Example 8, i.e. for every
n in N and λ in Pn find univariate polynomials f1, . . . , fn, g1, . . . , gn, with coefficients
depending on λ and n, such that

szλ(z1, . . . , zn) =
det
[
fj(zk)

]n
j,k=1

det
[
gj(zk)

]n
j,k=1

.

Remark 3. Unfortunately, we are unable to solve this problem at the moment. We tried
to solve this problem for sz(3,1)(z1, z2). A simple reasoning for the leading terms shows
that the degrees of f1, f2, g1, g2 should be of the form s+ 4, s+ 1, s+ 1, s. We have proved
that there is no solution for s = 0 nor for s = 1 (the proof is uninteresting and involves
many terms).

Littlewood [23, Appendix] expanded sλ into linear combinations of spµ or oµ:

sλ =
∑
µ∈P

 ∑
ν∈P
ν′ even

LRλ
ν,µ

 spµ, sλ =
∑
µ∈P

∑
ν∈P
ν even

LRλ
ν,µ

 oµ . (119)
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Here the restrictions “ν even” or “ν ′ even” mean that all parts of ν or ν ′, respectively,
are even. Evaluating both sides of the identities (119) at the symplectic list of variables

and applying the homomorphism Φn, yields expansions of sz
(n)
λ into linear combinations of

spz
(n)
µ or oz

(n)
µ , with coefficients not depending on n. Krattenthaler [19] studied particular

cases of (119) for partitions λ of “nearly rectangular form”. In that cases the coefficients
are always 0 or 1.

8 Connection to the determinants and minors
of banded symmetric Toeplitz matrices

Recall that Toeplitz matrices are of the form Tn(a) = [aj−k]
n
j,k=1, where aj are some entries.

Various equivalents formulas for banded Toeplitz determinants were found by Baxter and
Schmidt [4], and Trench [30]. Bump and Diaconis [8], Lascoux [21], and other authors
noticed relations between Toeplitz minors and skew Schur polynomials. It was shown
explicitly in [1, 26] that every minor of the m ×m Toeplitz matrix Tm(a) generated by
a Laurent polynomial a, can be written as a certain skew Schur polynomial evaluated at
the roots of a. Garćıa-Garćıa and Tierz [14] studied the asymptotic behavior of Toeplitz
minors (as the order of the matrix tends to infinity, while the indices of the struck-out
rows and columns are fixed) using their connection to symmetric polynomials.

Many applications and investigations involve Hermitian Toeplitz matrices [16, 6, 7,
5]. In particular, an important object of study are symmetric banded Toeplitz matrices
generated by palindromic Laurent polynomials

a(t) =
n∑

k=−n

akt
k = a0 +

n∑
k=1

ak(t
k + t−k), (120)

where an 6= 0 and ak = a−k for all k. For |k| > n, we put ak = 0.
In this section we consider minors and determinants of Toeplitz matrices Tn(a) gener-

ated by such polynomials.
By Proposition 3.2, there exists a polynomial g of degree n such that a(t) = g(t+1/t),

and we denote by z1, . . . , zn the zeros of g:

g(u) = an +
n∑
k=1

an−k2Tk(u/2) = an

n∏
j=1

(u− zj). (121)

First, we notice that all minors of symmetric Toeplitz matrices can be expressed through
szλ/µ with a certain skew partition λ/µ. We write idd for (1, . . . , d) and rev(α1, . . . , αd)
for (αd, . . . , α1).

Proposition 8.1. Let a be a palindromic Laurent polynomial of the form (120), and
z1, . . . , zn are the zeros of the polynomial g defined by (121). Furthermore, let m ∈ N,
r 6 m, ρ1, . . . , ρr ∈ {1, . . . ,m}, σ1, . . . , σr ∈ {1, . . . ,m}, such that ρ1 < · · · < ρr and
σ1 < · · · < σr. Then

detTm(a)ρ,σ = (−1)rn+|ρ|+|σ|arn sz(rn,rev(ξ−idd))/(rev(η−idd))(z1, . . . , zn) (122)
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detTm(a)ρ,σ = (−1)rn+|ρ|+|σ|arn sz(rn,rd+idd−η)/(rd+idd−ξ)(z1, . . . , zn), (123)

where d = m − r, {ξ1, . . . , ξd} = {1, . . . ,m} \ {ρ1, . . . , ρr}, {η1, . . . , ηd} = {1, . . . ,m} \
{σ1, . . . , σr}, ξ1 < · · · < ξd, η1 < · · · < ηd.

Proof. According to [26], for a general Laurent polynomial of the form

a(t) =

p∑
k=−q

akt
k = apt

−q
p+q∏
j=1

(t− xj),

the minor detTm(a)ρ,σ can be expressed as the following skew Schur polynomial in the
variables x1, . . . , xp+q:

detTm(a)ρ,σ = (−1)nr+|ρ|+|σ|arp s(rn,rev(ξ−idd))/(rev(η−idd))(x1, . . . , xp+q) (124)

= (−1)nr+|σ|+|ρ|arp s(rn,rd+idd−η)/(rd+idd−ξ)(x1, . . . , xp+q). (125)

In the palindromic case (120), we use notation sz and obtain the desired formula.

In the three corollaries below, let a and z1, . . . , zn be as in Proposition 8.1, and m ∈ N.

Corollary 8.2. We have that

detTm(a) = (−1)nmamn sz(mn)(z).

Corollary 8.3. Let p, q ∈ {1, . . . ,m}. Then the (p, q)th entry of the adjugate matrix of
Tm(a) is

(adj(Tm(a)))p,q = (−1)n(m−1)am−1n sz((m−1)n,q−1)/(p−1)(z).

Corollary 8.4. Suppose that detTm(a) = 0. Then the vector v = [vq]
m
q=1 with components

vq = sz((m−1)n−1,m−q)(z)

belongs to the nullspace of Tm(a).

Remark 8.5. Since the Toeplitz matrices are persymmetric, it is easy to select two
different submatrices of a large Toeplitz matrix such that their determinants coincide.
So, for fixed n and m, with m large enough, the correspondence (ρ, σ) 7→ sz

(n)
λ/µ, defined

in Proposition 8.1, is not injective.

Furthermore, we will show that every polynomial of the form szλ/µ(z) can be written
as a minor of a banded symmetric Toeplitz matrix. Notice that the skew partition λ/µ
in (122) has a special form: the initial entries of λ coincide. The main idea is canceling
them out with the initial entries of µ.
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Proposition 8.6. Let λ, µ ∈ Pn, µ 6 λ, let a be the palindromic Laurent polynomial
given by

a(t) =
n∏
j=1

(t− zj + t−1),

and let m ∈ N with m > n + `(λ). Then there exist r 6 m, ρ1, . . . , ρr ∈ {1, . . . ,m},
σ1, . . . , σr ∈ {1, . . . ,m}, such that ρ1 < · · · < ρr, σ1 < · · · < σr, and

detTm(a)ρ,σ = (−1)rn+|ρ|+|σ| szλ/µ(z1, . . . , zn). (126)

Proof. Put q := `(λ), d := n+ q, r := m− d,

ξ := (idn, n
q + idq + rev(λ)), η := (idq + rev(µ), (m− n− q)n + idn), (127)

i.e.

ξ1 := 1, . . . , ξn := n, ξn+1 := n+ 1 + λq, . . . , ξn+q = n+ q + λ1,

η1 := 1 + µq, . . . , ηq := q + µ1, ηq+1 := m− n− q + 1, . . . , ηq+n := m− q.

Moreover, define ρ1, . . . , ρr to be the elements of {1, . . . ,m} \ {ξ1, . . . , ξd}, enumerated
in the ascending order, and σ1, . . . , σr to be the elements of {1, . . . ,m} \ {η1, . . . , ηd}
enumerated in the ascending order. Then

(rn, rev(ξ − idd))/(rev(η − idd)) = ((m− n− q)n, λ, 0n)/((m− n− q)n, µ),

and by Proposition 8.1 we obtain (126).

Corollary 8.2 relates banded symmetric Toeplitz determinants with Schur polynomials
corresponding to rectangular partitions and evaluated at the symplectic alphabet. Effi-
cient formulas for these polynomials were independently found in [31, 19, 11]. As before,
write x, x−1, and z instead of x1, . . . , xn, x−11 , . . . , x−1n , and z1, . . . , zn, respectively.

Proposition 8.7. We have

s(mn)(x, x
−1) =

{
sp((p−1)n)(x, x

−1) o(pn)(x, x
−1), m = 2p− 1,

o(pn)(x, x
−1, 1) o(pn)(x, x

−1,−1), m = 2p,
(128)

i.e.

sz(mn)(z) =

{
spz((p−1)n)(z) oz(pn)(z), m = 2p− 1,

(−1)pn ozodd(pn)(z) ozodd(pn)(−z), m = 2p.
(129)

Equivalently,

sz(mn)(u
2
1 − 2, . . . , u2n − 2) =

det
[
2Tm+2j−1(uk/2)

]n
j,k=1

det
[
Um+2j−2(uk/2)

]n
j,k=1

det
[
2T2j−1(uk/2)

]n
j,k=1

det
[
U2j−2(uk/2)

]n
j,k=1

. (130)
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The equivalence between (129) and (130) follows from Proposition 5.3.
Comparing to (128) or (129), formula (130) has a “defect” that it uses auxiliary

variables u1, . . . , un, related with z1, . . . , zn by zj = u2j − 2. On the other hand, this
defect is not important after applying trigonometric or hyperbolic changes of variables
(say, uj = cos(θj/2) and zj = cos(θj)), and formula (130) can be more convenient in some
applications because it joins two cases appearing in (128) and (129).

Ciucu and Krattenthaler [9] proved (128). Trench and Elouafi did not use the lan-
guage of symmetric polynomials. Trench [31] worked with symmetric Toeplitz matrices
generated by rational functions. For the case of symmetric Toeplitz matrices, his re-
sult is equivalent to (130), after trigonometric changes of variables. Elouafi [11] worked
with banded symmetric Toeplitz determinants; his result is equivalent to (129), with the
right-hand side written in the bialternant form, see Theorem 1.3.

Recently Ayyer and Behrend [2, formulas (18) and (19)] generalized (128) to partitions
of the symmetric form

(2λ1, λ1 + λ2, . . . , λ1 + λn, λ1 − λn, . . . , λ1 − λ2, λ1 − λ1)

or
(2λ1 + 1, λ1 + λ2 + 1, . . . , λ1 + λn + 1, λ1 − λn, . . . , λ1 − λ2, λ1 − λ1).

Notice that the proof in [2] uses exactly the same ideas as the proof in [31]: in both
cases one starts with the bialternant formula for s(mn)(x, x

−1), then applies elementary
transformations of determinants, and reduces them to block-triangular form.

For readers’ convenience, we explain below the idea of the proof given by Elouafi, but
in the language of symmetric polynomials.

Proof of (129) following [11]. Start with the Jacobi–Trudi formula for sz(mn)(z):

sz(mn)(z) = det
[
hzm−j+k(z)

]n
j,k=1

. (131)

Using (17) and Lemma 6.5, it is possible to derive the following expansions of hz:

hz2p+1−j+k(z) =
n∑
s=1

2Tn+p+1−j(zs/2)Up+k−1(zs/2)

Ωs(z)
, (132)

hz2p−j+k(z) =
n∑
s=1

Wn+p−j(zs/2)Vp+k−1(zs/2)

Ωs(z)
. (133)

Applying (132) in the case m = 2p + 1 or (133) in the case m = 2p, one can write the
determinant in the right-hand side of (131) as a product of determinants.
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[5] Bogoya, J.M.; Böttcher, A.; Grudsky, S.M.; Maximenko, E.A. (2015): Maximum
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