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Abstract

The Mullineux involution is a relevant map that appears in the study of the
modular representations of the symmetric group and the alternating group. The
fixed points of this map are certain partitions of particular interest. It is known
that the cardinality of the set of these self-Mullineux partitions is equal to the
cardinality of a distinguished subset of self-conjugate partitions. In this work, we
give an explicit bijection between the two families of partitions in terms of the
Mullineux symbol.

Mathematics Subject Classifications: 05E10, 20C30, 20C20

1 Introduction

Let n be a non negative integer. It is well known that the isomorphism classes of complex
irreducible representations of the symmetric group Sn can be indexed by the set of parti-
tions of n. Let λ be a partition of n > 2 (written λ ` n) and Sλ the associated irreducible
CSn-module. Tensoring Sλ with the sign representation ε of Sn results in the irreducible
representation Sλ

′
of Sn, where λ′ is the conjugate partiton of λ ([JK81, 2.1.8]). This

procedure allows to understand, by Clifford theory, all complex irreducible representations
of the alternating group An. Indeed, let λ be a partition of n > 2,

• If λ 6= λ′ then Sλ ↓An' Sλ
′ ↓An is irreducible.

• If λ = λ′ then Sλ ↓An splits into two irreducible, non-isomorphic CAn-modules Sλ+
and Sλ−

Sλ ↓An' Sλ+ ⊕ Sλ−,

and
{Sλ ↓An| λ ` n and λ 6= λ′} t {Sλ+, Sλ− | λ ` n and λ = λ′}
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is a complete set of non-isomorphic irreducible CAn-modules, considering only one parti-
tion λ for each couple {λ, λ′} with λ 6= λ′ ([JK81, 2.5.7]).

A natural question is then what happens when we change the characteristic of the
field. Let p be an odd prime and F an algebraically closed field of characteristic p. It
is well known that the number of isomorphism classes of irreducible representations of
the symmetric group Sn over F , is equal to the number of conjugacy classes of p-regular
elements of Sn ([Isa06, 15.11]), which in turn is in bijection with the p-regular partitions
of n ([JK81, 6.1.2]). Also in this setting, understanding the tensor product with the sign
representation allows to obtain a classification of irreducible FAn-modules. However, the
conjugate of a p-regular partition is not necessarily p-regular, so tensoring with the sign
representation in this case does not amount to conjugating the corresponding p-regular
partition.

In [Mul79a], G. Mullineux defined a bijection m on the set of p-regular partitions of
n, which is an involution, and conjectured that for a p-regular partition λ with associated
irreducible FSn-module Dλ we have

Dλ ⊗ ε = Dm(λ).

Later, in [Kle96], A. Kleshchev described a different algorithm to compute m(λ) and
in [FK97], B. Ford and A. Kleshchev proved Mullineux conjecture to be true. Mullineux
conjecture was also proven to be true in [BO98] by C. Bessenrodt and J.B. Olsson by
using yet another description of the Mullineux bijection m. Other properties of this map
have been studied for example in [Mul79b], [BO94], [BOX99]. Hence, tensoring with
the sign representation in the modular case amounts to applying m on partitions, which
makes the Mullineux map a p-analogue of conjugation of partitions. This way we have a
classification of irreducible representations of An in characteristic p as follows. Let λ be
a p-regular partition of n > 2,

• If λ 6= m(λ) then Dλ ↓An' Dm(λ) ↓An is irreducible.

• If λ = m(λ) then Dλ ↓An splits into two irreducible, non-isomorphic FAn-modules
Dλ

+ and Dλ
−

Dλ ↓An ' Dλ
+ ⊕Dλ

−,

and

{Dλ ↓An| λ ` n, λ is p-regular and λ 6= m(λ)}
t {Dλ

+, D
λ
− | λ ` n, λ is p-regular and λ = m(λ)} (1)

is a complete set of non-isomorphic irreducible FAn-modules, considering only one
partition λ for each couple {λ,m(λ)} with λ 6= m(λ) ([For97, 2.1]). Following such an
indexing of irreducible modular representations of An, it is natural to inquire about the
set of p-regular partitions such that λ = m(λ). The definition of the Mullineux map m
is quite complicated combinatorially, as are the different descriptions mentioned above,
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even if they are explicit. Therefore describing its fixed points is not easy. So that, in
characteristic p, it is not straightforward to obtain a reasonably simple indexing set for
the irreducible FAn-modules.

In fact, the number of fixed points of the Mullineux map, or self-Mullineux partitions,
is equal to the number of partitions of n with different odd parts, none of them divisible by
p ([AO91, Proposition 2]). This number is, in turn, equal to the number of self-conjugate
partitions with diagonal hook-length not divisible by p ([JK81, 2.5.11]). We refer to the
latter as BG-partitions (see Definition 8 for details). There is an elementary algebraic
argument to see this (Appendix A). Thus, it is natural to ask for an explicit bijection
between the self-Mullineux partitions and the BG-partitions.

The Mullineux map can be defined in terms of a symbol called the Mullineux symbol,
defined on p-regular partitions. In this work we introduce a new symbol, defined on self-
conjugate partitions. From such a symbol, associated to a BG-partition, we describe how
to reconstruct a BG-partition and a self-Mullineux partition, and this algorithm provides
our bijection.

A further motivation for finding an explicit bijection can also be given in the context of
the representation theory of the symmetric group and of the alternating group. In [BG10],
O. Brunat and J.-B. Gramain have shown the existence of a p-basic set for the symmetric
group, which, by restriction, gives a p-basic set for the alternating group. However, this
set, which provides a natural indexing set for the modular irreducible representations is
not explicit and it would be ideal to give a complete description of it. One thing we know
about such a set is that it always contains the set of BG-partitions. Hence, it is convenient
to have a better understanding of them. More generally, this work can be seen as a first
step to give a new natural way to label the modular irreducible representations of the
symmetric group, for which tensoring with the sign representation is easier to describe
combinatorially. We hope to come back to this problem later.

A bijection between the set of self-Mullineux partitions of n and partitions of n with
different odd parts, none of them divisible by p can alternatively be derived from a bi-
jection between two more general sets defined by C. Bessenrodt in [Bes91]. However, the
two approaches are quite different because our bijection is defined directly between the
sets of our interest. Moreover, we obtain a different bijection (see Remark 24).

The paper is organized as follows. In Section 2 we recall some definitions about
partitions and the definition of the Mullineux map. Section 3 contains the main result of
this paper; we define a symbol on self-conjugate partitions and we show how through this
symbol we obtain the mentioned explicit bijection. Finally, in Section 4 we prove that the
inverse procedure of reconstructing a unique BG-partition from a self-Mullineux partition
is well defined, which confirms that this is a one to one correspondence without the need
of knowing beforehand that there exists a bijection between both sets of partition.

2 Preliminaries: the Mullineux map

In this section we recall some general definitions about partitions and the definition of
the Mullineux map, as defined by G. Mullineux in [Mul79a]. We follow closely definitions
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in [FK97].
A partition λ is a sequence λ = (λ1, λ2, . . . , λk, . . .) of non-negative integers such that

λ1 > λ2 > · · · > λk > · · · , containing only finitely many non-zero terms. Let n ∈ N
be such that |λ| =

∑
λi = n. We say that λ is a partition of n, which we write λ ` n.

Let Par(n) denote the set of partitions of n. We call |λ| the size of λ. The integers
λi are called the parts of the partition λ. If there is a part that repeats k times, say
λi = λi+1 = · · · = λi+k, we denote λ as (. . . , λki , ..). The number of non-zero parts is the
length of λ and is denoted l(λ). The Young diagram of a partition λ is the set

[λ] = {(i, j) ∈ N× N | i > 1 and 1 6 j 6 λi},

whose elements are called nodes. We represent the diagram as an array of boxes in the
plane with the convention that i increases downwards and j increases from left to right. A
partition is often identified with its Young diagram. The Young diagram of λ = (5, 22, 1)
is

[λ] =

The conjugate (or transpose) partition of λ = (λ1, . . . , λk) is the partition λ′ of n defined
as λ′j = #{i | λi 6 j}, which amounts to transposing the Young diagram [λ] with respect
to its main diagonal which consists of the nodes of the form (i, i) with 1 6 i 6 k(λ). If
λ = (5, 22, 1), as above, then λ′ = (4, 3, 13) and its Young diagram is

[λ′] =

If λ = λ′ we say that λ is self-conjugate. For a positive integer p, λ is said to be p-regular
if it does not contain p parts λi 6= 0 which are equal. The partition λ = (5, 22, 1) above is
not 2-regular but it is 3-regular. We denote by Regp(n) the set of p-regular partitions of
n.

Let (i, j) be a node of a partition λ. We define the (i, j)-th hook of λ, or the (i, j)λ-th
hook, as the set of nodes in [λ] to the right or below the node (i, j), that is, the nodes
(k, l) such that k = i and j 6 l 6 λi, or l = j and i 6 k 6 λ′j. The hook-length of λ at
(i, j) ∈ [λ], denoted here hλij is the number of nodes in the (i, j)λ-th hook, that is

hλij = λi + λ′j − i− j + 1.

We omit λ from the notation when there is no ambiguity. A partition which is equal to
its (1, 1)-th hook is called a hook.
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Example 1. Let λ = (7, 3, 2, 1). The (1, 2)-th hook of λ is represented by shaded boxes
in the following diagram

and its length is h1,2 = 8.

For any positive integer m, a m-hook (respectively (m)-hook) is a hook of length m
(respectively divisible by m). We denote k(λ) = max{i | λi > i}. We call a node (i, i),
for 1 6 i 6 k(λ), a diagonal node and the set of diagonal nodes is the diagonal of λ. A
(i, i)-th hook is referred to as a diagonal hook.

The rim of λ is the set of nodes (i, j) ∈ [λ] such that (i + 1, j + 1) /∈ [λ], in other
words, it is the south-east border of the Young diagram [λ]. For example, the rim of
λ = (9, 6, 3, 1) is represented in the following diagram by shaded boxes

Let us label the nodes of the rim with positive integers from the top right to the
bottom left, as shown in the following figure

4 3 2 1
7 6 5

10 9 8
11

Let p be an odd prime. The first p-segment of the rim consists of the nodes corre-
sponding to integers less or equal than p. If the last node (i, j) of the first p-segment
is in the last row of [λ], then [λ] only has one p-segment. If not, let l be the smallest
label on row i + 1. The second p-segment of the rim consists of the nodes labelled by
l 6 m 6 l + p− 1. Repeating this procedure we will eventually reach the bottom row of
the diagram and it is clear that all p-segments have p nodes, except possibly the last one.
The p-rim of λ is defined as the union of all the p-segments.

Example 2. The following two diagrams illustrate the p-rim of λ = (9, 6, 3, 1) for p = 3
and p = 5.

p = 3 p = 5
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We denote aλ the number of nodes in the p-rim of λ. Define diagrams λ(0), λ(1), . . . , λ(l)

as follows. Put λ(0) = λ and for i > 1 put

λ(i) = λ(i−1) \ {p-rim of λ(i−1)},

where we choose l maximal with respect to λ(l) 6= ∅; so λ(l+1) = ∅. We call the p-rim of
λ(i) the i-th p-rim of λ. Let ai = aλ(i) be the number of nodes of the i-th p-rim of λ and
ri the number of rows of λ(i), that is, ri = l(λ(i)). The Mullineux symbol of λ (introduced
in [BO94]) is

Gp(λ) =

(
a0 a1 · · · al
r0 r1 · · · rl

)
. (2)

Example 3. Let p = 5 and λ = (9, 6, 3, 1). In the following diagram we represent the
i-th p-rim of λ with label i on its nodes

2 2 2 2 1 0 0 0 0
2 1 1 1 1 0
0 0 0
0

G5(λ) =

(
9 5 5
4 2 2

)
.

The following proposition is a reformulation ([AO91, §5]) of a result proved in [Mul79a,
3.6].

Proposition 4. Let p be an odd prime and λ a p-regular partition of a non-negative
integer n. Set

εi =

{
0 if p | ai,
1 if p - ai.

The entries of Gp(λ) satisfy

1. εi 6 ri − ri+1 < p+ εi for 0 6 i < l,

2. 1 6 rl < p+ εl,

3. ri − ri+1 + εi+1 6 ai − ai+1 < p+ ri − ri+1 + εi+1 for 0 6 i < l,

4. rl 6 al < p+ rl,

5.
∑l

i=0 ai = n.

Moreover, if a0, . . . , al, r0, . . . , rl are positive integers such that these inequalities are sat-
isfied then there exists exactly one p-regular partition λ of n such that

Gp(λ) =

(
a0 a1 · · · al
r0 r1 · · · rl

)
.
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Remark 5. It is easy to recover the p-regular partition λ from its Mullineux symbol Gp(λ);
start with the hook λ(l) of size al and length rl, and for i = l− 1, l− 2, . . . , 0, add the i-th
p-rim (consisting of ai nodes) to λ(i+1) from the bottom to the top, starting by placing a
node on the first free placement in row ri. Then, adding nodes either on top (whenever it
is possible) or to the right of the last added node until having added the last node of the
p-segment and add the following p-segment starting on the first free placement of the row
on top of the last added node. This procedure finishes at the first row. This algorithm is
more precisely described in [FK97, §1].

Let λ be a p-regular partition of n, with Mullineux symbol (2) and let εi be as in
Proposition 4. Define si = ai + εi − ri. In [Mul79a, 4.1] it is shown that the array(

a0 a1 · · · al
s0 s1 · · · sl

)
,

corresponds to the Mullineux symbol of a p-regular partition. We are now able to define
the Mullineux map m.

Definition 6. With the above notations, m(λ) is defined as the unique p-regular partition
such that

Gp(m(λ)) =

(
a0 a1 · · · al
s0 s1 · · · sl

)
.

Because of Proposition 4, m(λ) is well defined, and from the definition we can see that
m is an involution.

Remark 7. If p > n, then Regp(n) = Par(n) and irreducible FSn-modules are therefore
indexed by all partitions of n. In this case, the Mullineux map coincides with conjugation:
m(λ) = λ′.

3 From BG-partitions to self-Mullineux partitions

Let p be an odd prime. Let us define the set of BG-partitions.

Definition 8. We call BG-partition any self-conjugate partition with no diagonal (p)-
hooks, that is, any partition λ such that p - hλii for every 1 6 i 6 k(λ) with (i, i) ∈ [λ]. We
denote BGp the set of BG-partitions and BGn

p the set of BG-partitions of a non-negative
integer n.

As said in the introduction, the aim of this work is to give an explicit bijection between
BG-partitions and self-Mullineux partitions. In this section we describe such bijection: we
define the BG-symbol associated to a BG-partition, which is a two-row array of positive
integers. We prove that BG-symbols of BG-partitions are Mullineux symbols of self-
Mullineux partitions and that this association is injective, resulting in a bijection.
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3.1 BG-symbol

We introduce a symbol, defined in general for self-conjugate partitions. This symbol is in
some way inspired by the Mullineux symbol. In a similar way as the Mullineux symbol,
which is defined by counting nodes on the p-rims of a sequence of partitions, the BG-
symbol is defined by counting elements in a set of nodes called the p-rim* which is a
symmetric analogue of the p-rim.

Let λ be a self-conjugate partition and denote by Rimp(λ) ⊆ [λ] the set of nodes in
the p-rim of [λ]. Set

Uλ = {(i, j) ∈ Rimp(λ) | i 6 j},

that is, Uλ consists of the nodes of the p-rim which are above (or on) the diagonal of [λ].
We denote r∗λ := #Uλ. Set

Lλ = {(j, i) | (i, j) ∈ Uλ}.

The set Lλ consists of the nodes in Uλ reflected across the diagonal of λ. Notice that
Lλ ⊆ [λ], since λ = λ′, so that (i, j) ∈ [λ] if and only if (j, i) ∈ [λ].

Definition 9. Let λ be a self-conjugate partition. The p-rim* of λ is the set Rim∗p(λ) =
Uλ ∪ Lλ. We denote a∗λ the number of nodes in the p-rim* of λ, that is, a∗λ = # Rim∗p(λ).
Define ε∗λ as ε∗λ = a∗λ mod 2. It is the parity of the number of nodes on the p-rim* of λ.

Example 10. The following two diagrams illustrate the p-rim* of λ = (6, 2, 14) in shaded
boxes, for p = 3 and p = 5.

p = 3 p = 5

Remark 11. For a self-conjugate partition λ, from the definition of p-rim* we have

ε∗λ = 0 ⇔ a∗λ is even.
⇔ Rim∗p(λ) has no diagonal nodes.

This way, the number of nodes in Uλ, that is, the number of nodes of the p-rim* of λ
over (or on) the diagonal is

r∗λ =

{
a∗λ
2

if a∗λ is even,
a∗λ+1

2
otherwise,

thus

r∗λ =
a∗λ + ε∗λ

2
.
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Let λ be a self-conjugate partition. We define diagrams λ(0)∗, λ(1)∗, . . . , λ(l)∗ in an
analogue way as for the Mullineux symbol, by considering the p-rim* instead of the p-
rim. Put λ(0)∗ = λ and for i > 1 put

λ(i)∗ = λ(i−1)∗ \ {p-rim* of λ(i−1)∗},

where we chose l maximal with respect to λ(l)∗ 6= ∅; so λ(l+1)∗ = ∅. We call the p-rim* of
λ(i)∗ the i-th p-rim* of λ.

Remark 12. Notice that the p-rim* is only defined for self-conjugate partitions, but we
claim that the diagrams λ(i)∗ are well defined, given the fact that Rim∗p(λ) is symmetric
in the sense that (u, v) ∈ Rim∗p(λ) if and only if (v, u) ∈ Rim∗p(λ). Therefore, removing

these nodes from [λ] to obtain λ(1)∗ results again in a self-conjugate partition and then so
it is for every λ(i)∗. In other words, if λ(i)∗ is self-conjugate, then λ(i+1)∗ is self-conjugate.

Example 13. Let p = 3 and λ = (6, 52, 32, 1). Then

[λ] = λ(0)∗ = λ(1)∗ = λ(2)∗ = λ(3)∗ =

where shaded boxes represent the i-th p-rim* of λ.

For the partition λ(i)∗, obtained by succesively removing nodes on the p-rim*, starting
with λ = λ(0)∗, we denote a∗

λ(i)∗
as a∗i . Similarly r∗

λ(i)∗
= r∗i and ε∗

λ(i)∗
= ε∗i . All these values

associated to self-conjugate partitions may seem technical, and they are better understood
by means of the Young diagram, see the following example.

Example 14. Let p = 3, λ = (42, 22), and µ = (3, 2, 1)

λ = µ =

We have a∗λ = 6, ε∗λ = 0, and r∗λ = 3. For µ, we have a∗µ = 5, ε∗µ = 1, and r∗µ = 3.

Definition 15. Let λ be a self-conjugate partition. The BG-symbol of λ is

bgp(λ) :=

(
a∗0 a∗1 · · · a∗l
r∗0 r∗1 · · · r∗l

)
. (3)

The length of the BG-symbol is l.
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Example 16. If p = 3, the BG-symbol of the partition λ = (6, 52, 32, 1) is

bg3(λ) =

(
11 6 5 1
6 3 3 1

)
.

In this diagram, each i-th 3-rim* is shown in a different shade.

The following lemmas will allow us to prove that two different self-conjugate partitions
correspond to different BG-symbols. Lemma 18 is an analogue of [Mul79a, 2.1]. Its proof is
quite technical and the arguments are easier to understand with an example, see Example
19.

Lemma 17. Let λ be a self-conjugate partition. If a∗λ is an even number, then p | a∗λ.

Proof. From the definition (or see Remark 11), a∗λ is even if and only if Uλ ∩ Lλ = ∅.
Then the p-rim* of λ does not contain diagonal nodes. From the definition of Rim∗p(λ),
this means that the set Uλ only contains p-segments of length p. And then the same is
true for Lλ. Therefore

p | # (Uλ ∪ Lλ) = a∗λ.

The converse is not true in general, for example, if p = 3 and λ = (5, 3, 2, 1, 1), we
have that a∗λ = 9.

Lemma 18. Let λ̃ be a self-conjugate partition, ε ∈ {0, 1} and m, a residue modulo p,
such that m = 0 if ε = 0. Then, there exists a unique self-conjugate partition λ such that

(i) a∗λ ≡ ε (mod 2);

(ii) r∗λ − ε∗λ ≡ m (mod p) and

(iii) λ(1)∗ = λ̃.

Moreover, if λ̃ ∈ BGp, and p - 2m+ 1 when ε = 1, then λ ∈ BGp.

Proof. Given ε ∈ {0, 1} and m, a residue modulo p, let us see that there is a unique way
to add nodes to λ̃ to obtain a self-conjugate partition λ such that the added nodes are
the p-rim* of λ.

Let us study how nodes (i, j) over the diagonal (i 6 j) must be added. This will
determine all nodes that must be added (if (i, j) is added to λ̃, then (j, i) is added as
well).

First, the last row i over the diagonal that will contain new nodes (i, j) is uniquely
fixed by λ̃ and ε. Indeed, let d = k(λ̃). If ε = 0, then i = d and (d, λ̃d + 1) must be added
to λ̃. If ε = 1, then i = d+ 1 and (d+ 1, d+ 1) must be added to λ̃.
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Now, let (i, j) be the first node that we add (with i fixed as before by λ̃ and ε) and
j ∈ {λ̃d + 1, d + 1} depending on λ̃ and ε. Starting from this node, it is clear that there
is a unique way to add nodes such that (i), (ii), and (iii) hold: If the position (i + 1, j)
just above (i, j) is empty in λ̃, we add a node in that position, otherwise we add a node
in (i, j + 1). We repeat this procedure for adding nodes until we have added m nodes
(including (i, j) if ε = 0, not including (i, j) if ε = 1). If the last added node is in row
1 we stop here. If it is added in row k > 1, we add a node in row k − 1 in position
(k − 1, λ̃k−1 + 1) and we restart the procedure to keep adding nodes until having added
p nodes. We iterate this procedure, of adding groups of p nodes, until reaching the first
row. This way we added nodes over the diagonal. Finally for each node (a, b) added, we
add its reflection through the diagonal (b, a). And we obtain a self-conjugate partition λ.

It remains to verify that λ(1)∗ = λ̃. If ε = 1, it is straightforward that λ(1)∗ = λ̃.
Since when removing the nodes of the p-rim* of λ over the diagonal we eventually reach a
diagonal node, and then just remove the reflection of the removed nodes. It is clear that
in this case we obtain λ̃. If ε = 0, the condition m = 0 says that a p-segment of λ will
eventually reach the row d and this p-segment has exactly p nodes, so that there is no
ambiguity when removing p-segments and λ(1)∗ = λ̃.

For the last part of the theorem, suppose that λ̃ ∈ BGp, and let us see that λ obtained

as above is also in BGp. In other words, we are assuming that λ̃ does not contain any
diagonal (p)-hooks and we want to show that the same is true for λ.

Suppose that λ has a diagonal (p)-hook, say the (i, i)λ-th hook, that is hλii = pk for
some integer k > 0. For a partition µ, we set the convention hµij = 0 if (i, j) /∈ [µ].

Since λ̃ ∈ BGp, then the (i, i)λ-th hook is different from the (i, i)λ̃-th hook since if they

were equal, λ̃ would have a (p)-hook, which is not possible. Therefore (i, λ̃i + 1) ∈ [λ].
Since this node is not in [λ̃], by definition, it is on the p-rim* of λ, in particular, it belongs
to a p-segment of Rim∗p(λ) above the diagonal. Consider the two cases: this p-segment
starts at row i, or this p-segment starts before row i, that is, this p-segment starts at a
row j for 1 6 j < i.

• If the p-segment containing node (i, λ̃i+1) starts at row i, let (i, j) be the first node
of this p-segment and (a, b) its last node (i 6 a). Then a 6 b because this segment
is above the diagonal.

Let N be the number of nodes on this p-segment. Then we have:

N = a− i+ j − b+ 1,
hλii = 1 + 2(j − i),
hλ̃aa = 1 + 2(b− a− 1),

where the last identity holds if b > a (since this implies that (a, b − 1) ∈ λ̃). Then
we have

hλii =

{
2N − 1 if a = b,

2N + hλ̃aa if a < b.
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If a = b, this p-segment is the last segment in Uλ and ε∗λ = 1. So that N = m + 1
and we get hλii = 2m+ 1. This contradicts p - 2m+ 1. If a < b, then the last node of

this p-segment, (a, b) is not a diagonal node so that N = p and we get hλii = 2p+hλ̃aa,

which implies p | hλ̃aa, a contradiction.

• If the p-segment containing node (i, λ̃i + 1) starts at a row j with j < i, then it
contains nodes on row i − 1, in particular (i − 1, λ̃i−1 + 1). The next node on this
p-segment is the node just below: (i, λ̃i−1 + 1). Then λi = λ̃i−1 + 1. Let us see

that hλ̃(i−1,i−1) = hλii. Since these are diagonal hooks contained in self-conjugate
partitions, their lengths are calculated as follows

hλ̃(i−1,i−1) = 2(λ̃i−1 − (i− 1)) + 1

= 2λ̃i−1 − 2i+ 3,

and

hλ(i,i) = 2(λi − i) + 1

= 2((λ̃i−1 + 1)− i) + 1

= 2λ̃i−1 − 2i+ 3.

Since p | hλ(i,i), then p | hλ̃(i−1,i−1), a contradiction.

In conclusion, λ does not have any diagonal (p)-hooks, that is, λ ∈ BGp.

Example 19. Let p = 3. We use the notations of Lemma 18. Consider the self-conjugate
partition λ̃ = (6, 4, 22, 12).

[λ̃] =

- Let ε = 0, then m = 0. Let us see that there is only one self-conjugate partition λ
satisfying: a∗λ is even, r∗λ − ε∗λ = #Uλ − ε∗λ ≡ 0 (mod 3) and λ(1)∗ = λ̃. We add to
[λ̃] the nodes of Rim∗3(λ) = Uλ ∪ Lλ.
In this case, since a∗λ ≡ 0 (mod 2), then Uλ does not contain diagonal nodes. That is,
Uλ consists only on nodes strictly over the diagonal, so that the last row containing
nodes from Uλ is row 2, since k(λ̃) = 2.

Since m = 0, then every 3-segment of Uλ has 3 nodes. The bottom 3-segment of Uλ
is shown in shaded nodes in the following diagram
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Since we have not reached the top of [λ̃], there is at least another 3-segment, which
starts at the following upper row :

Now, λ is self-conjugate, then for each upper node (i, j) that we added, we add the
node (j, i) (or also because (i, j) ∈ Uλ if and only if (j, i) ∈ L)

[λ] =

So that λ = (9, 7, 25, 12) is the only possibility for λ self-conjugate such that a∗λ is
even, r∗λ − ε∗λ = #Uλ ≡ 0 (mod 3) and λ(1)∗ = λ̃.

- Let ε = 1, and m = 2. Let us see that there is only one possible partition λ
satisfying: a∗λ is odd, r∗λ − ε∗λ = #Uλ − ε∗λ ≡ 2 (mod 3) and λ(1)∗ = λ̃. We add to
[λ̃] the nodes of Rim∗3(λ) = Uλ ∪ Lλ.
In this case, a∗λ ≡ 1 (mod 2), then there is a diagonal node in Uλ:

We add now the rest of the nodes in Uλ. Here r∗λ−ε∗λ = #(Uλ\{(3, 3)}) ≡ 2 (mod 3).
That means that the rest of the nodes in Uλ contain one 3-segment of 2 nodes, we
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add this 3-segment

and the rest are 3-segments of 3 nodes:

and finally, for making λ self-conjugate:

And we see that λ = (9, 7, 5, 32, 22, 12) is the only possibility for having a∗λ odd,
r∗λ − ε∗λ = #Uλ − 1 ≡ 2 (mod 3), and λ(1)∗ = λ̃.

Proposition 20. Let p be an odd prime. Two different self-conjugate partitions have
different BG-symbols. In other words, the BG-symbol gives rise to an injective map from
self-conjugate partitions to the set of two-row positive integer symbols.

Proof. We proceed by induction on l, the length of the BG-symbol. Let l = 0. Let λ be
a self-conjugate partition with BG-symbol

bgp(λ) =

(
a∗0
r∗0

)
.

Notice that having a BG-symbol of length 0 means that λ = λ(0)∗ = λ(l)∗ is a hook and
its size is a∗0, that is, there are positive integers u, v such that λ = (u, 1v) and u+v = a∗0.
But λ is self-conjugate, then u− 1 = v, so that a∗0 = 2u− 1, and ε∗0 = 1. Then

r∗0 =
a∗0 + ε∗0

2
= u.
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Therefore λ = (r∗0, 1
r∗0−1). This way, λ is determined from its BG-symbol and, from this

reasoning, we see that any self-conjugate partition with BG-symbol bgp(λ) is completely
determined by it and is then equal to λ.

Now, fix l > 0 ∈ N, let λ be a self-conjugate partition with BG-symbol

bgp(λ) =

(
a∗0 a∗1 · · · a∗l
r∗0 r∗1 · · · r∗l

)
,

and let µ be a self-conjugate partition such that bgp(µ) = bgp(λ).

Then, by definition, the BG-symbol of λ(1)∗ (and also of µ(1)∗) is the BG-symbol of λ
after removing its first column

bgp(λ
(1)∗) = bgp(µ

(1)∗) =

(
a∗1 · · · a∗l
r∗1 · · · r∗l

)
.

By induction, there exists a unique self-conjugate partition τ̃ such that

bgp(τ̃) =

(
a∗1 · · · a∗l
r∗1 · · · r∗l

)
.

Then τ̃ = λ(1)∗ = µ(1)∗. Let us see, from Lemma 18, that λ = µ.
Let ε = a∗0 mod 2, and m = r∗0 − ε∗0 mod p. By Lemma 17, if ε = 0 then m = 0.

Therefore, by Lemma 18 there exists a unique self-conjugate partition τ such that

(i) a∗τ ≡ ε (mod 2);

(ii) r∗τ − ε∗τ ≡ m (mod p) and

(iii) τ (1)∗ = τ̃ .

But partitions λ and µ are self-conjugate and they satisfy (i) and (ii) since a∗0 = a∗λ = a∗µ.

Moreover λ(1)∗ = µ(1)∗ = τ̃ , then by the uniqueness of τ we have that τ = λ = µ.

As it turns out, the BG-symbol of a BG-partition is a Mullineux symbol of some self-
Mullineux partition. Denote by Mp the set of Mullineux symbols of the self-Mullineux
partitions Mp.

Proposition 21. Let p be an odd prime and λ a BG-partition. The BG-symbol of λ,
bgp(λ) is the Mullineux symbol of some self-Mullineux partition. That is

bgp(BGp) ⊆Mp.

We postpone the proof of this proposition to Section 3.2, since some technical lemmas
are necessary for this proof.

Recall, from Proposition 4 and Remark 5, that to a Mullineux symbol corresponds a
unique p-regular partition. So that the Mullineux symbol determines a bijection between
p-regular partitions and their Mullineux symbols. In particular, to a symbol in Mp

corresponds a unique self-Mullineux partition in Mp. As a corollary from Proposition 20,
Proposition 21 and from the fact that the sets BGn

p and Mn
p have the same number of

elements, we obtain the following result.
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Theorem 22. We have that
bgp(BGp) =Mp,

and the BG-symbol provides an explicit bijection between BG-partitions and self-Mullineux
partitions. This bijection is given by associating to a BG-partition λ its BG-symbol bgp(λ),
which corresponds to a unique self-Mullineux partition. This bijection restricts to bijec-
tions between BGn

p and Mn
p for every n ∈ N.

Remark 23. If we consider the Mullineux symbol Gp as a bijection from the set of p-
regular partitions into its image in the set of two-row arrays of integers, then the bijection
in Theorem 22, from BGp to Mp is given precisely by G−1p ◦ bgp.

Remark 24. In [AO91], G. Andrews and J. Olsson prove a general partition identity,
which depends on some integer parameters. A special case of this identity is the fact that
the number of self-Mullineux partitions of a non-negative integer n equals the number
of partitions of n with different odd parts, none of them divisible by p, which is in turn
equal to the number of BG-partitions.

Now, in [Bes91], C. Bessenrodt shows a combinatorial proof of the Andrews–Olsson
identity, which provides, by choosing the right parameters, an explicit bijection between
BGn

p and Mn
p . The bijection from Theorem 22 is obtained in a more direct way and it is

different from Bessenrodt’s bijection. In particular, for p = 5 and n = 20, the partition
(7, 6, 3, 22) ∈M20

5 is mapped to partition (9, 3, 2, 16) ∈ BG20
5 under Bessenrodt’s bijection,

and it is mapped to (7, 5, 23, 12) ∈ BG20
5 under bijection from Theorem 22.

3.2 Proof of the main result

In this subsection we prove Proposition 21. For this proof we need some technical lemmas.

Lemma 25. Let p be an odd prime and λ = (λ1, λ2, . . . , λr) a partition in BGp. Let
k = k(λ) as defined in Section 2. Then the partition µ = (λ1, λ2, . . . , λk) is p-regular.

Example 26. Let p = 3 and λ = (7, 4, 3, 2, 13). This partition is self-conjugate and
does not have diagonal (3)-hooks, that is, λ ∈ BG3. Here k = 3, so that l(µ) = 3, and
indeed, the partition µ = (7, 4, 3) is 3-regular. The following diagram illustrates both the
partitions λ and µ (in shaded boxes).

Proof of the lemma. Suppose that µ is not p-regular. So that there exists 1 6 i 6 k such
that

λi = λi+1 = · · · = λi+p−1.
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Since i+ p− 1 6 k, then λi+p−1 > i+ p− 1. Then (i+ p− 1, i+ p− 1) ∈ [µ] ⊆ [λ]. Let a
be the length of the (i+ p− 1, i+ p− 1)-th hook of λ, that is a = hλ(i+p−1,i+p−1).

Then, the length of the (i + p − 2, i + p − 2)-th hook of λ, is h(i+p−2,i+p−2) = a + 2,
since λi+p−1 = λi+p−2 and λ is self-conjugate. And h(i+p−3,i+p−3) = a + 4. In general
h(i+p−1−j,i+p−1−j) = a+ 2j for j = 0, . . . , p− 1. That is, the lengths of these hooks are:

a, a+ 2, a+ 4, . . . , a+ 2j, . . . , a+ 2(p− 1).

But since p 6= 2, this list, modulo p, forms a complete collection of residues. Then, there
exists j ∈ {0, . . . , p− 1} such that p | a+ 2j = h(i+p−1−j,i+p−1−j), and this contradicts the
fact that λ ∈ BGp.

In the set of BG-partitions, the implication in Lemma 17 becomes an equivalence:

Lemma 27. Let λ ∈ BGp. Then a∗λ is even if and only if p | a∗λ.

Proof. As already noted, the fact that a∗λ implies p | a∗λ is proved in Lemma 17.
Suppose that p | a∗λ. If a∗λ is odd, then Rim∗p(λ) contains a diagonal node. Then Uλ

is formed by p-segments of length p and one last p-segment of length possibly less than
p, which, in this case contains the diagonal node. Let us name B the set of nodes in this
last p-segment, and let A be the set

A = B ∪ {(j, i) ∈ [λ] | (i, j) ∈ B} ⊆ Rim∗p(λ).

The set A is formed by a symmetrical segment along the rim of [λ]. See Figure 1a.

j

i a

A

(a) Segment A.

i j

i a

A

(b) The (i, i)λ-th hook illustrated
in darker shaded boxes.

Figure 1

The set Rim∗p(λ) is formed by the disjoint union of A and some p-segments. Therefore,
since p | a∗λ, we have that |A| = p.
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Now, let a = (i, j) be the first node of the segment B, that is i = min{r | (r, s) ∈ B} and
j = max{s | (r, s) ∈ B}. We have that the (i, i)-th hook contains exactly |A| = p nodes.
See Figure 1b.

This means that λ has a diagonal (p)-hook, which is a contradiction because λ ∈
BGp.

We obtain the following corollary from Remark 11 and Lemma 27.

Corollary 28. Let λ ∈ BGp. The following statements are equivalent

1. ε∗λ = 0.

2. a∗λ is an even integer.

3. Rim∗p(λ) has no diagonal nodes.

4. p | a∗λ.

Consider a partition λ ∈ Mp, that is, a fixed point of the Mullineux map. This is a
condition that depends only on the columns of the Mullineux symbol of λ. Therefore, the
partition λ(1) obtained by removing the p-rim of λ is also a fixed point of the Mullineux
map, since its Mullineux symbol is obtained by removing the first column of the Mullineux
symbol of λ. The following lemma is an analogue property for partitions in BGp.

Lemma 29. If λ ∈ BGp then λ(1)∗ ∈ BGp. In other words, if λ is a BG-partition, then,
removing its p-rim* results in a BG-partition.

Proof. Recall (Remark 12) that if λ is self-conjugate, then so it is for λ(1)∗. In particular,
if λ ∈ BGp, then λ(1)∗ is self-conjugate. It remains to prove that λ(1)∗ does not have any
diagonal (p)-hooks.

For simplicity of notations let µ = λ(1)∗. Suppose that µ has a diagonal (p)-hook, say
the (i, i)µ-th hook, with hµi,i = pk for some k ∈ N.

We claim that the node (i, µi + 1) is in the p-rim* of λ. Indeed, (i, µi + 1) ∈ [λ]
since if (i, µi + 1) /∈ [λ], then µi = λi and hλi,i = hµi,i = pk so that λ has a diagonal
(p)-hook, which contradicts the fact that λ ∈ BGp. Now, since (i, µi + 1) ∈ [λ] \ [µ], then
(i, µi + 1) ∈ Rim∗p(λ). See Figure 2a.

There are now two possible cases: either (i, µi + 1) is the last node of a p-segment
of Uλ (the nodes on the p-rim* of λ over the diagonal), or it is not the last node of the
p-segment to which it belongs. Let us examine these two cases.

Suppose (i, µi + 1) is the last node of a p-segment of Uλ, and this p-segment starts on
a node (a, b). See Figure 2b.

Then, the (a, a)λ-th hook has length equal to the length of the (i, i)µ-th hook plus
twice the length of the p-segment of Rim∗p(λ) containing the node (i, µi + 1), that is

hλa,a = p+ hµi,i + p = p+ pk + p = p(k + 2),

so that λ contains diagonal (p)-hook, which is impossible.
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µi + 1
i ↓

i

(a) Shaded boxes are in Rim∗p(λ).

µi + 1
a i ↓ b

a

i

(b) Shaded boxes are p-segments in Rim∗p(λ).

Figure 2

Suppose now that (i, µi + 1) is not the last node of a p-segment of Uλ. First, notice
that the node (i+ 1, µi+ 2) /∈ [λ]. This is true because (i, µi+ 1) is in the p-rim* of λ. We
claim that (i + 1, µi + 1) ∈ Rim∗p(λ) ⊆ [λ]. In Figure 3, node (i + 1, µi + 2) is illustrated
as a cross (meaning it is not in [λ]) and node (i+ 1, µi + 1) as a shaded box (as are their
opposites with respect to the diagonal). Indeed, (i + 1, µi + 1) ∈ Rim∗p(λ) because, since
(i, µi+1) is not the last node of a p-segment, then the next node of its p-segment is either
to the left or down. But the node to the left of (i, µi + 1), that is, (i, µi) is not in the
p-rim* of λ since it is in µ, so that the next node of this p-segment is (i+ 1, µi + 1), which
is then in Rim∗p(λ).

The fact that (i + 1, µi + 1) ∈ Rim∗p(λ) ⊆ [λ] and (i + 1, µi + 2) /∈ [λ] implies that
λi+1 = µi + 1 and therefore the (i+ 1, i+ 1)λ-th hook has length

hλ(i+1,i+1) = hµ(i,i) = pk,

that is, λ has a diagonal (p)-hook, a contradiction.
We conclude that µ does not have any diagonal (p)-hooks and then, µ = λ(1)∗ ∈

BGp.

Proof of Proposition 21. Let us first state which properties characterize elements inMp.
That is, if λ ∈Mn

p which conditions characterize its Mullineux symbol

Gp(λ) =

(
a0 a1 · · · al
r0 r1 · · · rl

)
.
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µi + 1
i ↓

i
i+ 1 ×

×

Figure 3

Let εi be as in Proposition 4 and si = ai + εi − ri. The partition λ is a fixed point of the
Mullineux map if and only if ri = si, that is

ai = 2 ri − εi.

We also know that λ is the only p-regular partition whose Mullineux symbol satisfies prop-
erties (1)–(5) from Proposition 4. This way, the properties that characterize Mullineux
symbols of partitions in Mp are equivalent to the following properties

1. εi 6 ri − ri+1 < p+ εi for 0 6 i < l,

2. 1 6 rl < p+ εl,

3.
∑l

i=0 ai = n, and

4. ai = 2ri − εi.

On the other hand, from the definition of ε∗i and Corollary 28, we have that

ε∗i =

{
0 if p | a∗i
1 if p - a∗i

Let λ ∈ BGn
p . Let us see that its BG-symbol

bgp(λ) =

(
a∗0 a∗1 · · · a∗l
r∗0 r∗1 · · · r∗l

)
is in Mp by verifying properties (1)–(4) for a∗i , ε

∗
i and r∗i :

From the definition of the sequence a∗0, . . . , a
∗
l , it is clear that (3) holds. We have

that (4) is satisfied from Remark 11. Let us first show that (2) holds. Since λ(l)∗ is
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not the empty partition, r∗l > 1. On the other hand, the partition λ(l)∗ is a hook and
it is self-conjugate; more precisely λ(l)∗ = (r∗l , 1

a∗l−r
∗
l ). Then a∗l = |λ(l)∗| is odd, so that

ε∗l = a∗l mod 2 = 1. Suppose that r∗l > p+ε∗l = p+1. This means that the first p-segment
over the diagonal of λ(l)∗ consists of p nodes. But then, there are more nodes remaining
in the first row of [λ(l)∗] that are not in the p-rim*, but this contradicts the maximality
of l.

It remains to prove (1). A key element for this task is Lemma 25, which roughly says
that truncating a BG-partition to some particular row results in a p-regular partition. The
idea is to use the fact that this truncated partition, being p-regular, satisfies properties
from Proposition 4, which uses numbers from the Mullineux symbol, and these will give
us information about r∗i and ε∗i , which are numbers appearing in the BG-symbol.

Let us see that λ satisfies

ε∗i 6 r∗i − r∗i+1 < p+ ε∗i for 0 6 i < l.

It suffices to prove this for i = 0 and then, the property follows recursively by Lemma
29.
To simplify notation, set:

values associated to λ values associated to λ(1)∗

a := a∗0 a′ := a∗1
r := r∗0 r′ := r∗1
ε := ε∗0 ε′ := ε∗1

Let us prove that
ε 6 r − r′ < p+ ε.

We study the four possible cases for the values of ε and ε′, namely

ε ε′

(i) 0 0
(ii) 0 1
(ii) 1 0
(iv) 1 1

In each case we will consider some diagram

[λ] := {(i, j) ∈ [λ] | i 6 k(λ) and j > k(λ)− x+ 1},

for a certain 1 6 x 6 k(λ) (which will be chosen depending on the case). That is, [λ] is
obtained from [λ] by removing rows below row k(λ) and columns up to column k(λ)− x.
In an abuse of notation we will call λ the partition with Young diagram obtained by
shifting the diagram [λ] to the left by k(λ) − x columns. This will allow us to identify
nodes of λ and nodes of λ (for example (i, λi), and not (i, λi − k(λ) + x), will be the last
node on row i of λ for 1 6 i 6 k(λ)).
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In each case we denote a the number of nodes in Rimp(λ), r the length of λ and

ε =

{
0 if p | a,
1 if p - a.

And for λ(1), similar notation with primes: a′ the number of nodes in Rimp(λ
(1)), r′ the

length of λ(1) and

ε′ =

{
0 if p | a′,
1 if p - a′.

Let us now consider each of the four cases.

(i) In this case, the fact that both ε and ε′ are zero means that neither λ nor λ(1)∗

contain diagonal nodes on their p-rims*. For example as in the partition (6, 5, 23, 1)
with p = 3. In Figure 4a we represent the 3-rims* of (6, 5, 23, 1) and (6, 5, 23, 1)(1)∗

in different shades.

(a) Rim∗3((6, 5, 2
3, 1)) and

Rim∗3((6, 5, 2
3, 1)(1)∗).

(b) Partition (6, 5, 23, 1) in
thicker lines.

Figure 4

Let x = 1 in this case. Figure 4b illustrates (6, 5, 23, 1). Lemma 25 ensures that λ
is p-regular, then, from Proposition 4, we have

r − r′ + ε′ 6 a− a′ < p+ r − r′ + ε′. (4)

Notice that the nodes in Rim∗p(λ) over the diagonal of λ are exactly the nodes
of Rimp(λ), that is, Uλ = Rimp(λ). Hence #Uλ = # Rimp(λ). That is r = a.

Similarly, Uλ(1)∗ = Rimp(λ
(1)), since ε′ = 0, meaning that node (k(λ)−1, k(λ)−1) /∈

Rim∗p(λ
(1)∗) so that this node is not in Rimp(λ

1), either. Hence r′ = a′.

We claim that Rimp(λ) and Rimp(λ
(1)) end at the same row; row k(λ). This is

not obvious since it could be possible that the p-rim of a partition µ, which always
contains nodes in the last row of µ, row l(µ), contains every node in this last row,
and then µ(1) does not have any nodes in row l(µ). But in our setting, this is not
the case. Indeed, by definition, every node of a partition is in some i-th p-rim of the
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partition. In particular, the diagonal node (k(λ), k(λ)) is in the j-th p-rim of λ for
some j > 1 since Rimp(λ) and Rimp(λ

(1)) do not contain diagonal nodes. On the
other hand the p-rim of any partition contains nodes in the last row of the partition
and since k(λ) is the last row of both λ and λ(j), then it is also the last row of λ(1).
So that both λ and λ(1) contain nodes in row k(λ).

Now, the fact that Rimp(λ) and Rimp(λ
(1)) end at the same row means that l(λ) =

k(λ) = l(λ(1)), that is r − r′ = 0.

On the other hand, in this case, we have that ε′ = 0, which means that p | a′. But
since a′ = 2r′ − ε′, then p | r′ = a′ (p 6= 2), which means that ε′ = 0.

The fact that r− r′ = 0, together with the fact that a = r, a′ = r′ and ε = 0, make
Equation 4 become

0 6 r − r′ < p+ 0.

So that ε 6 r − r′ < p+ ε, as we wanted to show, since in this case ε = 0.

(ii) Suppose that ε = 0 and ε′ = 1. For example as in the partition (7, 5, 23, 12) with
p = 3. In Figure 5a we represent the 3-rims* of (7, 5, 23, 12) and (7, 5, 23, 12)(1)∗ in
different shades.

(a) Rim∗3((7, 5, 2
3, 12)) and

Rim∗3((7, 5, 2
3, 12)(1)∗).

(b) Partition (7, 5, 23, 12) in
thicker lines.

Figure 5

As in the previous case, let x = 1. We illustrate (7, 5, 23, 12) by thicker lines in
Figure 5b.

Let us see that also in this case we have that r − r′ = 0. As before, the nodes
in Rim∗p(λ) over the diagonal of λ, or Uλ, are exactly the nodes of Rimp(λ). And

we also have that Uλ(1)∗ = Rimp(λ
(1)). So that r = a and r′ = a′. On the other

hand, since in this case (k(λ), k(λ)) ∈ Rim∗p(λ
(1)∗), then (k(λ), k(λ)) ∈ Rimp(λ

(1)).

Furthermore, the fact that Rim∗p(λ
(1)∗) has a node on row k(λ), implies that λ(1) has

a node on row k(λ), and then so it is for λ. Therefore l(λ) = k(λ) = l(λ(1)), then
r − r′ = 0.
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Now, consider the two possible cases for ε′. If ε′ = 0, we obtain, as in the previous
case

0 6 r − r′ < p+ 0,

which is what we wanted to show. If ε′ = 1, Equation 4 becomes

1 6 r − r′ < p+ 1,

In particular 0 6 r − r′ 6 p. But actually, r − r′ < p. Indeed, if r − r′ = p, since
p | a = 2r, then p | r and therefore p | r′ = a′, which contradicts the fact that ε′ = 1.
In conclusion 0 6 r − r′ < p, which ends this case.

(iii) Suppose that ε = 1 and ε′ = 0. For example as in the partition (6, 52, 32, 1) with
p = 3. In Figure 6a we represent the 3-rims* of (6, 52, 32, 1) and (6, 52, 32, 1)(1)∗ in
different shades.

(a) Rim∗3((6, 5
2, 32, 1)) and

Rim∗3((6, 5
2, 32, 1)(1)∗).

(b) Partition (6, 52, 32, 1) in
thicker lines.

Figure 6

As before, let x = 1. We illustrate (6, 52, 32, 1) by thicker lines in Figure 6b. Let us
see that in this case r − r′ = 1.

As in the preceding cases, the nodes in Rim∗p(λ) over the diagonal of λ are exactly
the nodes of Rimp(λ). This fact implies that a = r, and since ε′ = 0, by the
same argument that in case (i), we have that a′ = r′. Now, since ε = 1, the
last diagonal node of λ, that is, the node (k(λ), k(λ)) is in Rim∗p(λ). In particular
(k(λ), k(λ)) ∈ Rimp(λ), and since it is the first node of the last row of λ, that
means that all nodes on this last row are in the p-rim of λ. So that this last row
k(λ) = r of λ does not have any nodes from Rim∗p(λ

(1)∗) (or Rimp(λ
(1))). We claim

that row k(λ) − 1 in λ contains at least one node in Rim∗p(λ
(1)∗) (or Rimp(λ

(1))).

Indeed, node (k(λ) − 1, k(λ) − 1) is in Rim∗p(λ
(j)∗) for a j > 1, since it is not in

Rim∗p(λ
(1)∗) (because ε′ = 0). If we suppose that row k(λ)−1 does not have node in

Rim∗p(λ
(1)∗), we are supposing that to the left of node (k(λ)− 1, k(λ)− 1) there are

only nodes from Rim∗p(λ). If this is the case, the last node in row k(λ)− 1 in λ(1)∗ is

(k(λ)−1, k(λ)−1), that is: λ
(1)∗
k(λ)−1 = k(λ)−1. But the last node on every row (over
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or on the diagonal) belongs to the p-rim*. In this case, node (k(λ) − 1, k(λ) − 1)
belongs to the p-rim* of λ(1)∗, a contradiction since λ(1)∗ does not have any diagonal
nodes on its p-rim*. In conclusion, row k(λ)− 1 in λ contains at least one node in
Rim∗p(λ

(1)∗), in particular, row k(λ) − 1 in λ contains at least one node in λ(1), so

that l(λ(1)) = k(λ). Therefore r − r′ = k(λ)− l(λ(1)) = 1.

On the other hand, since we have that ε′ = 0, by the same argument as in case (i),
we have that ε′ = 0.

Puting all together in Equation 4, we obtain

1 6 r − r′ < p+ 1.

That is, ε 6 r − r′ < p+ ε.

(iv) Suppose finally that ε = ε′ = 1. An example is given by partition (7, 4, 3, 2, 13) for
p = 3. In Figure 7a we represent the 3-rims* of (7, 4, 3, 2, 13) and (7, 4, 3, 2, 13)(1)∗

in different shades.

Let x = 2. Lemma 25 still assures that λ is p-regular. And from the way that it is
defined, λ contains both diagonal nodes in Rim∗p(λ) and Rim∗p(λ

(1)∗). We illustrate
(7, 4, 3, 2, 13) by thicker lines in Figure 7b.

(a) Rim∗3((7, 4, 3, 2, 1
3)) and

Rim∗3((7, 4, 3, 2, 1
3)(1)∗).

(b) Partition (7, 4, 3, 2, 13) in
thicker lines.

Figure 7

Notice that in this case it is not necessarily true that a = r and a′ = r′. Since λ
contains the node (k(λ), k(λ)−1) which is under the diagonal of λ, where the p-rim*
does not behave as the p-rim. For the partition (7, 4, 3, 2, 13), this node is the node
(3, 2), which in this case is in the p-rim* of (7, 4, 3, 2, 13). But it could be the case
that the node (k(λ), k(λ) − 1) is not in the p-rim* of λ but in the p-rim* of λ(1)∗.
This depends on the divisibility of r by p.

Recall that r = #Uλ is the number of nodes in the p-rim* of λ that are above (or
on) the diagonal of λ. Let us consider the two cases: p | r and p - r.
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• Suppose that p | r. As in λ = (7, 4, 3, 2, 13) with p = 3, see Figure 7a. In this
case every p-segment of the p-rim* of λ contains exactly p nodes. In particular
the segment which contains the node (k(λ), k(λ)). And since this node is the
last (and p-th) node of this p-segment, then the node to its left (k(λ), k(λ)−1)
is not in the p-rim of λ. And we have a = r and r − r′ = 0. Moreover, the
node (k(λ), k(λ) − 1) is then in the p-rim of λ(1). So that a′ = r′ + 1 (the r′

nodes of Rim∗p(λ
(1)∗) above the diagonal, together with node (k(λ), k(λ) − 1),

form Rimp(λ
(1))). Therefore we have a = r, a′ = r′ + 1 and r − r′ = 0. Puting

this together in Equation 4 we get

ε′ 6 r − (r′ + 1) < p+ ε′,

or
ε′ + 1 6 r − r′ < p+ ε′ + 1.

But ε′ + 1 > 1 = ε. Therefore we have

1 6 r − r′ < p+ ε′ + 1.

Let us see that r− r′ < p+ 1 = p+ ε. There are two possibilities for ε′. Either
ε′ = 0, in which case r− r′ < p+ 1, or ε′ = 1. If ε′ = 1, we have r− r′ < p+ 2,
so that r − r′ 6 p+ 1. But in fact r − r′ < p+ 1, since if r − r′ = p+ 1, then
r − (r′ + 1) = p. But in this case p | r, therefore, p | r′ + 1 = a′, and this
contradicts the fact that ε′ = 1.

• Suppose that p - r. As in λ = (6, 2, 14) with p = 3, see Figure 8a. In this case,
the p-segment of Rim∗p(λ) which contains the node (k(λ), k(λ)) has less than
p nodes. This implies that the node to the left of this diagonal node, namely
(k(λ), k(λ)− 1), is on the p-rim of λ. Then a = r + 1 (the r nodes of Rim∗p(λ)
above the diagonal, together with node (k(λ), k(λ) − 1), form Rimp(λ)), and
we also have that r − r′ = 1 and a′ = r′. Equation 4 gives

1 + ε′ 6 (r + 1)− r′ < p+ 1 + ε′,

or
ε′ 6 r − r′ < p+ ε′.

But p + ε′ 6 p + 1 = p + ε. Then ε′ 6 r − r′ < p + ε. Let us show that
r − r′ > 1 = ε. There are two possibilities for ε′. Either ε′ = 1, in which case
r − r′ > 1 = ε or ε′ = 0. If ε′ = 0, then r − r′ > 0. But actually r − r′ > 1,
since if r − r′ = 0, from the fact that p | a′ = r′ we would have that p | r, a
contradiction.
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(a) Rim∗3((6, 2, 1
4)) and

Rim∗3((6, 2, 1
4)(1)∗).

(b) Partition (6, 2, 14) in
thicker lines.

Figure 8

4 From self-Mullineux partitions to BG-partitions

From Theorem 22, we know that the notion of BG-symbol induces an algorithm for the cor-
respondence between BG-partitions and self-Mullineux partition, since it defines an injec-
tive mapping between sets of the same cardinality. Then we know that to each Mullineux
symbol of a self-Mullineux partition, corresponds a unique BG-partition. Moreover, from
the definition of the BG-symbol, and Lemma 18, we know how to find the BG-partition
associated to such a Mullineux symbol under this correspondence. In this section we
prove that this inverse algorithm is well defined, that is, we prove that applying it to a
Mullineux symbol of a self-Mullineux partition results in a BG-partition. This confirms
Theorem 22 in a combinatorial way without using the fact that #BGn

p = #Mn
p .

Proposition 30. Let p be an odd prime and λ a self-Mullineux partition. The Mullineux
symbol of λ, Gp(λ) is the BG-symbol of some BG-partition. That is

Mp ⊆ bgp(BGp).

Proof. We give a combinatorial proof of this fact, although it follows also directly from
Proposition 20 and Proposition 21.

We proceed by induction on l, the length of the Mullineux symbol.

Let l = 0 and S =

(
al
rl

)
∈ Mp, that is, S = Gp(λ) for some λ ∈ Mp. Let εl = 0 if

p | al and εl = 1 otherwise. Since S has exactly one column, then λ = λ(l) is a hook, that
is λ is of the form λ = (x, 1y), with x 6 p. On the other hand, since λ is fixed by the
Mullineux map, we know that

al = 2rl − εl.

We claim that εl = 1. If εl = 0, that is, if p | al, then the p-segments that form
Rimp(λ) = [λ] are all of length exactly p. We know that λ is a p-regular hook, this means
that λ is formed by exactly one p-segment. If there was more than one p-segment, then
al > p (so that al = 2kp for some k > 1) it follows that y > p, and then λ would not be
p-regular. Thus al = p = 2rl. But this is not possible since p is odd. Then εl = 1 and
al = 2rl − 1.
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The partition µ = (rl, 1
rl−1) is self-conjugate, and is a hook of length 2rl − 1 = al.

Since p - al, then µ ∈ BGp. Its BG-symbol is

bgp(µ) =

(
2rl − 1
rl

)
=

(
al
rl

)
= S.

In fact µ = λ.
Consider now l > 0. Let

S =

(
a0 a1 · · · al
r0 r1 · · · rl

)
be a symbol in Mp corresponding to a partition λ in Mp. Consider the array

S̃ =

(
a1 · · · al
r1 · · · rl

)
.

By definition, S̃ is the Mullineux symbol of the partition λ(1), obtained from λ by removing
the nodes on the p-rim. We know that λ(1) is fixed by the Mullineux map, given that this
only depends on the columns of the symbol. Then λ(1) ∈Mp, and S̃ ∈Mp. By induction,
there exists a partition µ̃ ∈ BGp such that

bgp(µ̃) = S̃.

We will apply Lemma 18. Let ε0 = 0 if p | a0, or ε0 = 1 otherwise. Let m =
(r0 − ε0) mod p.

Suppose that ε0 = 0 and let us see that in this case m = 0. Since ε0 = 0, then p | a0.
But a0 = 2r0 − ε0 = 2r0, since λ is a fixed point of the Mullineux map. Now, since p is
odd, then p | r0 so that m = (r0 − ε0) mod p = r0 mod p = 0.

If ε0 = 1, we have that p - a0. Therefore p - 2m+1 since 2m+1 ≡ 2(r0−ε0)+1 (mod p)
and 2(r0 − ε0) + 1 = 2r0 − ε0 = a0.

Lemma 18 implies that there exists a unique self-conjugate partition µ ∈ BGp such
that

(i) a∗µ ≡ ε0 (mod 2);

(ii) r∗µ − ε∗µ ≡ m (mod p) and

(iii) µ(1)∗ = µ̃.

The condition µ(1)∗ = µ̃ implies that

bgp(µ) =

a∗µ bgp(µ̃)
r∗µ

 =

a∗µ S̃
r∗µ

 =

(
a∗µ a1 · · · al
r∗µ r1 · · · rl

)
.

Let us see that in fact bgp(µ) = S, that is, a∗µ = a0 and r∗µ = r0. Indeed, from (i), a∗µ
is even if and only if ε0 = 0, if and only if p | aλ. But a∗µ is even if and only if p | a∗µ, by
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Corollary 28. This sequence of equivalences says that ε0 = ε∗µ. Then, by (ii) we have that
r∗µ ≡ r0 (mod p).

Since S ∈Mp, then, from Proposition 4, we have, in particular

ε0 6 r0 − r1 < p+ ε0. (5)

On the other hand, since µ ∈ BGp, then bgp(µ) ∈ Mp, by Proposition 21, so that, in
particular we have

ε∗µ 6 r∗µ − r1 < p+ ε∗µ. (6)

Substracting Equation 5 from Equation 6, we get

−p < r∗µ − r0 < p,

but since p | r∗µ − r0 we can conclude that r∗µ − r0 = 0, so that r∗µ = r0. Therefore
a∗µ = 2r∗µ − ε∗µ = 2r0 − ε0 = a0, and

bgp(µ) =

(
a0 a1 · · · al
r0 r1 · · · rl

)
= S.

A Appendix

Let n ∈ N and p an odd prime. Consider the two following sets of partitions of n

BGn
p = {λ | λ ` n; λ = λ′ and λ has no diagonal (p)-hooks}, and

Mn
p = {λ | λ ∈ Regp(n) and m(λ) = λ},

where m is the Mullineux map.

Example 31. Let n = 18 and p = 3. There are, in total, 385 partitions of 18. The
partitions λ of 18 such that λ = λ′ are

(5, 43, 1), (6, 5, 23, 1), (7, 4, 22, 13), (8, 3, 2, 15), (9, 2, 17)

Among them, those with no diagonal (3)-hooks are

BG18
3 = {(6, 5, 23, 1), (7, 4, 22, 13), (9, 2, 17)}

There are 135 3-regular partitions of 18. Those which are fixpoints of the Mullineux map
are

M18
3 = {(7, 5, 22, 12), (9, 42, 1), (10, 42)}

In general the sets Mn
p of partitions of n fixed by the Mullineux map and BGn

p of
BG-partitions of n, have the same number of elements. Indeed, it is easy to see that the
number of self-Mullineux partitions is equal to the number of p-regular conjugacy classes of
the symetric group Sn, contained in An, which split into two different conjugacy classes of
An. Here, a p-regular conjugacy class means that the order of its elements is not divisible
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by p. This follows by [AO91, Proposition 2]. Now, the number of p-regular splitting
conjugacy classes of Sn contained in An is equal to the number of self-conjugate partitions
with diagonal hook-lengths not divisible by p. This is straightforward by [JK81, 1.2.10]
and the standard bijection between partitions in odd distinct parts and self-conjugate
partitions (explained in detail later in this appendix).

This appendix contains an alternative proof of the fact that #Mn
p = #BGn

p .

Remark 32. The generating function for the cardinality of BGn
p is∏

i>0
p - 2i+1

(1 + t2i+1).

For proving the mentioned identity, we need make some remarks about the intersection
of conjugacy classes in Sn with An and about Brauer characters of An.

Splitting of conjugacy classes of Sn. Let C be a conjugacy class of Sn of even
permutations. That is C ⊆ An. Then one of the two following possibilities holds:

• C is a conjugacy class in An, or

• C splits into two conjugacy classes in An.

In the second possibility, say C = C1 tC2, these two conjugacy classes have the same
size. Moreover, conjugating such classes by any element of Sn \An permutes them, that
is, if σ ∈ Sn \An, then σC1σ

−1 = C2 and σC2σ
−1 = C1. Furthermore, the conjugacy class

C splits if and only if the cycle type of elements in C consists of different odd integers
([JK81, 1.2.10]). We call a conjugacy class p-regular when the order of its elements is not
divisible by p.

The set of p-regular conjugacy classes of Sn contained in An is then formed by two
types of conjugacy classes:

A tB,

where A is set of p-regular conjugacy classes of Sn of even permutations which are also
conjugacy classes in An and B is the set conjugacy classes of Sn which split into two
conjugacy classes in An. Hence, the set of p-regular conjugacy classes of An is

A tB,

where B consists of conjugacy classes coming for restriction of those conjugacy classes in
B. These conjugacy classes in B come by pairs, in the sense that if σ ∈ Sn \ An and
C ∈ B, then σCσ−1 ∈ B and C = C ∪ σCσ−1 is a conjugacy class of Sn in B. Hence, a
basis for the space of C-valued functions defined on p-regular elements of An and constant
on conjugacy classes is

{1C | C ∈ A} t {1C | C ∈ B},

or
{1C | C ∈ A} t {1C ,1σCσ−1 | C ∪ σCσ−1 = C ∈ B}.
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We claim that the set BGn
p is in bijection with the set of p-regular conjugacy classes of Sn,

contained in An which split in two different conjugacy classes of An. Notice that the set of
conjugacy classes of Sn with cycle type consisting of different odd integers is in bijection
with self-conjugate partitions of size n. Indeed, a conjugacy class whose cycle type consists
of different odd integers is associated to a unique partition λ = (λ1, . . . , λr) of n with
λ1, . . . , λr different odd integers (the lengths of the cycles in the cycle decomposition,
in decreasing order). Consider the self-conjugate partition µ defined by the lengths of
its diagonal hooks as follows: hµ11 = λ1, h

µ
22 = λ2, . . . , h

µ
rr = λr. The condition of λi’s

being different, and then strictly decreasing, ensures that µ is a well defined partition.
Conversely, any self-conjugate partition of n corresponds to a unique finite sequence of
different odd integers; the lengths of its hooks ([JK81, 2.5.11]).

Conjugacy classes of Sn with cycle type consisting of different odd integers are in
particular contained in An. If we consider those conjugacy classes with the additional
condition of being p-regular, which form in fact the set B, they are therefore in bijection
with self-conjugate partitions such that p does not divide the length of any diagonal hook,
that is, the set BGn

p . Hence B is in bijection with BGn
p .

Brauer characters of An. LetD be an irreducible FAn-module. ToD we can associate
a function χD which is called the (irreducible) Brauer character of An afforded by D. This
function χD is a complexed-valued function defined on the set of p-regular elements of
An and it is constant on conjugacy classes. Furthermore, isomorphic FAn-modules are
associated to equal Brauer characters. See [Isa06, §15] for the precise definition of Brauer
character and for further information.

In particular [Isa06, Theorem 15.10] says that the set of irreducible Brauer characters
of An form a basis of the space of C-valued functions defined on p-regular elements of
An and constant on conjugacy classes. This implies that there are as many irreducible
Brauer characters of An as p-regular conjugacy classes of An, and by [Isa06, Corollary
15.11], this is also the number of isomorphism classes of FAn-modules. Therefore to each
element µ of the set

{λ | λ ` n, λ p-regular and λ 6= m(λ)} t {λ+, λ− | λ ` n, λ p-regular and λ = m(λ)},

which parametrizes irreducible FAn-modules (see 1 in the introduction), we can as-
sociate an irreducible Brauer character χ[µ]. That way, a basis of the space of C-valued
functions defined on p-regular elements of An and constant on conjugacy classes is

{χ[λ] | λ ∈ Regp(n) and λ 6= m(λ)} t {χ[λ+], χ[λ−] | λ ∈ Regp(n) and λ = m(λ)},

considering only one partition λ for each couple {λ,m(λ)} with λ 6= m(λ).

Proposition 33. The sets Mn
p and BGn

p have the same number of elements.

Proof. To prove this, we will give two bases of a same space of functions, and the equality
of the cardinality of these bases will give the result.

Denote by E the space of C-valued functions defined on p-regular elements of An and
constant on conjugacy classes

E = {f : {p-regular elements of An} −→ C | f is a class function of An} .
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Define an action of Sn on E by conjugation as follows: for σ ∈ Sn and f ∈ E, fσ is
the class function

fσ(τ) := f(στσ−1).

For σ ∈ Sn \ An, let Eσ be the set of class functions fixed by conjugation by σ:

Eσ = {f ∈ E | fσ = f}.

This is a subspace of E. From the above discussion about splitting of conjugacy classes
and how conjugation permutes some conjugacy classes, a basis for Eσ is

{1C | C ∈ A} t {1C + 1σCσ−1 | C ∪ σCσ−1 = C ∈ B}.
We claim that a basis for Eσ is

{χ[λ] | λ ∈ Regp(n) and λ 6= m(λ)} t {χ[λ+] + χ[λ−] | λ ∈ Regp(n) and λ = m(λ)}.

Indeed, this comes from the fact that, as with usual characters of representations in
characteristic zero, conjugation of the character of a representation is the character of
conjugation of the representation, here with Brauer characters. And also from the fact
that conjugation by σ permutes the modules associated to λ+ and λ− above.

Now, we have two bases for E and two bases for Eσ. On one hand, from the charac-
teristic function basis, the dimension of E is

#A+ #B = #A+ 2(#B),

and from the Brauer character basis, the dimension of E is

#{{λ,m(λ)} | λ ∈ Regp(n) and λ 6= m(λ)} + #{λ+, λ− | λ ∈ Regp(n) and λ = m(λ)}.

That is
#D + 2(#Mn

p ),

where D = {λ,m(λ)} | λ ∈ Regp(n) and λ 6= m(λ)}. Hence,

#A+ 2(#B) = #D + 2(#Mn
p ).

Counting the elements on the two bases for Eσ, we obtain that the dimension of Eσ is

#A+ #B = #D + #Mn
p .

These two identities imply that #B = #Mn
p . Since B is in bijection with BGn

p we obtain
the result.
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their precious advice, helpful discussions and careful reading. The author would also like
to thank an anonymous referee for useful suggestions.

the electronic journal of combinatorics 28(1) (2021), #P1.57 32



References

[AO91] George E. Andrews and Jørn B. Olsson. Partition identities with an application
to group representation theory. J. Reine Angew. Math., 413:198–212, 1991.

[Bes91] Christine Bessenrodt. A combinatorial proof of a refinement of the Andrews-
Olsson partition identity. European J. Combin., 12(4):271–276, 1991.

[BG10] Olivier Brunat and Jean-Baptiste Gramain. A basic set for the alternating
group. J. Reine Angew. Math., 641:177–202, 2010.

[BO94] Christine Bessenrodt and Jørn B. Olsson. On Mullineux symbols. J. Combin.
Theory Ser. A, 68(2):340–360, 1994.

[BO98] Christine Bessenrodt and Jørn B. Olsson. On residue symbols and the Mullineux
conjecture. J. Algebraic Combin., 7(3):227–251, 1998.

[BOX99] Christine Bessenrodt, Jørn B. Olsson, and Maozhi Xu. On properties of the
Mullineux map with an application to Schur modules. Math. Proc. Cambridge
Philos. Soc., 126(3):443–459, 1999.

[FK97] Ben Ford and Alexander S. Kleshchev. A proof of the Mullineux conjecture.
Math. Z., 226(2):267–308, 1997.

[For97] Ben Ford. Irreducible representations of the alternating group in odd charac-
teristic. Proc. Amer. Math. Soc., 125(2):375–380, 1997.

[Isa06] I. Martin Isaacs. Character theory of finite groups. AMS Chelsea Publishing,
Providence, RI, 2006. Corrected reprint of the 1976 original [Academic Press,
New York; MR0460423].

[JK81] Gordon James and Adalbert Kerber. The representation theory of the symmet-
ric group. Encyclopedia of Mathematics and its Applications, 16, 1981.

[Kle96] Alexander S. Kleshchev. Branching rules for modular representations of sym-
metric groups. III. Some corollaries and a problem of Mullineux. J. London
Math. Soc. (2), 54(1):25–38, 1996.

[Mul79a] Glen Mullineux. Bijections of p-regular partitions and p-modular irreducibles
of the symmetric groups. J. London Math. Soc. (2), 20(1):60–66, 1979.

[Mul79b] Glen Mullineux. On the p-cores of p-regular diagrams. J. London Math. Soc.
(2), 20(2):222–226, 1979.

the electronic journal of combinatorics 28(1) (2021), #P1.57 33


	Introduction
	Preliminaries: the Mullineux map
	From BG-partitions to self-Mullineux partitions
	BG-symbol
	Proof of the main result

	From self-Mullineux partitions to BG-partitions
	Appendix

