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Abstract
We consider misère Nim as a normal-play game obtained from Nim by removing

the terminal position. While explicit formulas are known for the Sprague-Grundy
functions of Nim and Welter’s game, no explicit formula is known for that of misère
Nim. All three of these games can be considered as position restrictions of Nim.
What are the differences between them? We point out that Nim and Welter’s game
are saturated, but misère Nim is not. Moreover, we present explicit formulas for the
Sprague-Grundy functions of saturations of misère Nim, which are obtained from
misère Nim by adjoining some moves.
Mathematics Subject Classifications: 91A46

1 Introduction

The loser in Nim is the winner in misère Nim. Nim is a two-player game played with
heaps of coins. Two players alternately choose a heap and take at least one coin from
it. The player who takes the last coin wins in Nim and loses in misère Nim. In general,
the player who moves last wins in the normal-play convention and loses in the misère-
play convention, which has been extensively studied by using misère Sprague-Grundy
functions, genera, and misère quotients (see, for example, [4, 5, 8, 12, 13]). In this paper,
we will consider misère Nim as a normal-play game obtained from Nim by removing the
terminal position (see Section 1.2).

Impartial games including Nim and misère Nim can be analyzed using their (normal)
Sprague-Grundy functions [7,15]. Sprague-Grundy functions are defined recursively, and
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computing them often leads to a combinatorial explosion. However, explicit formulas
are known for the Sprague-Grundy functions of some games such as Nim [7, 15] and
Welter’s game [16], which is a position restriction of Nim. Though misère Nim is also
a position restriction of Nim, no explicit formula is currently available for its Sprague-
Grundy function.1

What are the differences between Nim, Welter’s game, and misère Nim? One of the
differences is that Nim and Welter’s game are 2-saturated2, but misère Nim is not. The
purpose of this paper is to present an explicit formula for the Sprague-Grundy functions
of 2-saturations of misère Nim, which are obtained from misère Nim by adjoining some
moves. More generally, for a mixed-radix number system β, we give an explicit formula
for the Sprague-Grundy functions of β-saturations of misère Nim.

1.1 Mixed-radix number systems

We introduce some notation for mixed-radix number systems.
Let N be the set of nonnegative integers. Throughout this paper, β denotes a sequence

(βL)L∈N ∈ NN with βL > 2 for every L ∈ N. Define βL = β0 · β1 · · · βL−1. For example, if
β = (2, 3, 2, . . .), then β0 = 1, β1 = 2, and β2 = 6.

Let n ∈ N. We denote by nβL the Lth digit in the mixed base β expansion of n,
that is, if nβ>L is the integer quotient3 of n divided by βL, then nβL = nβ>L mod βL, where
nβ>L mod βL is the remainder of nβ>L divided by βL. By definition,

n =
∑
L∈N

nβLβ
L and nβL ∈ { 0, 1, . . . , βL − 1 } .

For example, if βL = b for every L ∈ N, then nβL is the Lth digit in the ordinary base b
expansion of n, so it is convenient to write β = b. For a negative integer n, we define nβL
similarly; then

nβL + (−n− 1)βL = βL − 1.

For example, (−1)βL = βL − 1. We drop the superscript β when no confusion can arise.
For n ∈ Z, define

ordβ(n) =

min { L ∈ N : nL 6= 0 } ( = max
{
L ∈ N : βL divides n

}
) if n 6= 0,

∞ if n = 0.

For example, if β = (3, 2, 5, 4, . . .), then ordβ(54) = ordβ(4 · β2 + β3) = 2.
1By contrast, an explicit formula is known for the misère Sprague-Grundy function of Nim. See

Remark 5.
2The concept of saturations was first introduced in [9] to connect Welter’s game with representations

of symmetric groups.
3nβ>L is the unique integer satisfying n− nβ>LβL ∈ { 0, 1, . . . , βL − 1 }.
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1.2 Subtraction games

We define subtraction games, their misère versions, and Sprague-Grundy functions.
Fix a positive integer k and let Ω denote { 0, 1, . . . , k − 1 }. Let P ⊆ Nk and C ⊆

Nk \ { (0, . . . , 0) }. Define Γ(P ,C ) to be the digraph with vertex set P and edge set

{ (X, Y ) ∈ P2 : X − Y ∈ C } .

We call Γ(P ,C ) a subtraction game or a take-away game. The vertex set P is called the
position set of Γ(P ,C ).
Remark 1. We can consider Γ(P ,C ) as a two-player game as follows. Before the game
begins, we pick an initial position X0 ∈ P . The first player subtracts some C0 ∈ C from
X0 so that X0 −C0 ∈ P . Let X1 = X0 −C0. Similarly, the second player subtracts some
C1 ∈ C from X1 so that X1 − C1 ∈ P . In this way, the two players alternately subtract
some C ∈ C from the current position. The player who subtracts last wins.

Example 2 (Nim). Let
C[1] = {C ∈ Nk : wt(C) = 1 } ,

where wt(C) is the Hamming weight of C, that is, the number of nonzero components of
C. The subtraction game Γ(Nk,C[1]) is called Nim. For example, in Nim, the first player
will win if we start from (1, 0); indeed, he can subtract (1, 0) ∈ C[1] from (1, 0), but the
second player cannot subtract any C ∈ C[1] from (0, 0).

We next define the misère version of a subtraction game. Let X be a position in a
subtraction game Γ(P ,C ). If X−C ∈ P for some C ∈ C , then X−C is called an option
of X (in Γ(P ,C )). If X has no options, then X is called a terminal position. Let P ′ be
the set of non-terminal positions in Γ(P ,C ). The subtraction game Γ(P ′,C ) is called the
misère version of Γ(P ,C ) [11].

Example 3 (misère Nim). Let PMis = PkMis = Nk \ { (0, . . . , 0) }. Then PMis is the set
of non-terminal positions of Nim, so the misère version of Nim is Γ(PMis,C[1]). We call
Γ(PMis,C[1]) misère Nim.4 In misère Nim, the first player will lose if we start from (1, 0)
because this position is terminal.

We now define Sprague-Grundy functions. See, for example, [1,2,5,14] for details. Let
Γ = Γ(P ,C ) and X ∈ P . The Sprague-Grundy value sg(X) of X is defined to be the
minimum nonnegative integer n such that n is not equal to the Sprague-Grundy value of
any option of X, that is,

sg(X) = sgΓ(X) = mex { sgΓ(Y ) : Y is an option of X } ,
4Misère Nim is usually defined to be Nim in misère play, so the definition of misère Nim used in this

paper is slightly different from the standard one. However, for X ∈ Nk \ { (0, . . . , 0) }, the outcomes of
X in the two of these misère Nim are the same. In other words, when the initial position is X, the first
player can win in one of the two misère Nim if and only if he can win in the other misère Nim.
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where mex S = min {n ∈ N : n 6∈ S }. Note that if X is a terminal position, then sg(X) =
mex ∅ = 0. The nonnegative integer-valued function sg : P 3 X 7→ sg(X) ∈ N is called
the Sprague-Grundy function of the subtraction game Γ. For a position X, the following
two statements are equivalent:

(1) sg(X) = 0.

(2) The second player can win when the initial position is X.

Example 4. Let k = 2. We calculate the Sprague-Grundy values of some positions
in misère Nim (see Table 1 in Example 7). Let G be the Sprague-Grundy function of
misère Nim, that is, G(X) = sgΓ(PMis,C[1])(X) for X ∈ PMis. Since (0, 1) and (1, 0) are
terminal positions, it follows that G((0, 1)) = G((1, 0)) = 0. Hence G((0, 2)) = G((1, 1)) =
G((2, 0)) = mex { 0 } = 1. This implies that G((1, 2)) = G((2, 1)) = mex { 0, 1 } = 2, so
G((2, 2)) = mex { 1, 2 } = 0. We can verify that the second player can win when (2, 2) is
the initial position.

Remark 5. The Sprague-Grundy function G of misère Nim is different from the misère
Sprague-Grundy function G− of Nim defined in [5]. The domain of G is Nk \ { (0, . . . , 0) }
and that of G− is Nk. Here, for X ∈ Nk, we can compute G−(X) as follows:

G−(X) =

1 if X = (0, . . . , 0),
mex { G−(Y ) : Y is an option of X } otherwise.

The value G−(X) is generally not equal to G(X). For example, G−((0, 2)) = 2 6= 1 =
G((0, 2)). However, G−(X) = 0 if and only if G(X) = 0.5

1.3 β-Saturations

We define β-saturations of subtraction games.
Elements in Nk will be denoted by upper-case letters, and components of them by

lower-case letters with superscripts. For example, C = (c0, . . . , ck−1) ∈ Nk. Define

C β = C β,k =

 C ∈ Nk \ { (0, . . . , 0) } : ordβ

∑
i∈Ω

ci

 = mordβ(C)

 ,
where

mordβ(C) = min { ordβ(ci) : i ∈ Ω } .
For example, (2, 2, 6) ∈ C 2 and (2, 2, 4) 6∈ C 2 because

ord2(2 + 2 + 6) = 1 = mord2((2, 2, 6)) and ord2(2 + 2 + 4) = 3 > 1 = mord2((2, 2, 4)).

A subtraction game Γ(P ,C ) is said to be β-saturated if its Sprague-Grundy function
is equal to that of Γ(P ,C β). If Γ(P ,C ) is β-saturated, then we also say that it is a
β-saturation of Γ(P ,C[1]).

5As we have mentioned, G−(X) can be written down explicitly. If maxX > 2, then G−(X) = σ2(X),
where σ2(X) is the Nim sum of the components of X. If maxX < 2, then G−(X) = 1− σ2(X).
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Example 6 (Nim and Welter’s game). Let

PWel = {X ∈ Nk : xi 6= xj whenever i 6= j } .

The subtraction game Γ(PWel,C[1]) is called Welter’s game. It is known that Nim and
Welter’s game are 2-saturated [3,6,9,16], that is, for P ∈ {Nk,PWel }, the Sprague-Grundy
function of Γ(P ,C[1]) is equal to that of Γ(P ,C 2). Moreover, Γ(Nk,C ) is 2-saturated if
and only if C[1] ⊆ C ⊆ C 2 [3].

Example 7. Let k = 2. We compare the Sprague-Grundy function of misère Nim
Γ(PMis,C[1]) with that of Γ(PMis,C 2) (see Table 1). We first consider the position (2, 2) ∈
PMis (= N2 \{ (0, 0) }). The Sprague-Grundy value of (2, 2) equals 0 in Γ(PMis,C[1]); how-
ever, it equals 3 in Γ(PMis,C 2). Indeed, since (2, 2)− (0, 1) = (2, 1) ∈ C 2, it follows that
(0, 1) is an option of (2, 2) in Γ(PMis,C 2). Hence sgΓ(PMis,C 2)((2, 2)) = mex { 0, 1, 2 } = 3
(see Table 1). Thus misère Nim is not 2-saturated when k = 2. We next compute the
Sprague-Grundy value of (2, 3) in Γ(PMis,C 2). Since (2, 3) − (0, 1) = (2, 2) 6∈ C 2 and
(2, 3) − (1, 0) = (1, 3) 6∈ C 2, (2, 3) has no options with Sprague-Grundy value 0, and
hence its Sprague-Grundy value is 0.

Table 1: Sprague-Grundy values in Γ(PMis,C[1]) and Γ(PMis,C 2).

0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7
1 0 1 2 3 4 5 6 7 8
2 1 2 0 4 5 3 7 8 6
3 2 3 4 0 1 6 8 5 9
4 3 4 5 1 0 2 9 10 11
5 4 5 3 6 2 0 1 9 10
6 5 6 7 8 9 1 0 2 3
7 6 7 8 5 10 9 2 0 1
8 7 8 6 9 11 10 3 1 0

0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7
1 0 1 2 3 4 5 6 7 8
2 1 2 3 0 5 6 7 4 9
3 2 3 0 1 6 7 4 5 10
4 3 4 5 6 7 0 1 2 11
5 4 5 6 7 0 1 2 3 12
6 5 6 7 4 1 2 3 0 13
7 6 7 4 5 2 3 0 1 14
8 7 8 9 10 11 12 13 14 15

1.4 A formula for β-saturations of misère Nim

We present an explicit formula for the Sprague-Grundy functions of β-saturations of
misère Nim.

Let JβLK denote { 0, 1, . . . , βL − 1 } equipped with the following two operations: for
a, b ∈ JβLK,

a⊕ b = (a+ b) mod βL and a	 b = (a− b) mod βL.

In other words, JβLK is the additive group of integers modulo βL. For example, in J5K,
2 ⊕ 4 = 1 and 2 	 4 = 3. For n ∈ N, we will think of nβL as an element of JβLK. Let Zβ
denote ∏L∈NJβLK equipped with the following two operations: for n,m ∈ Zβ,

n⊕m = [nL ⊕mL]L∈N and n	m = [nL 	mL]L∈N,
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where n = [nL]L∈N and m = [mL]L∈N. For n ∈ Zβ, define

ordβ(n) =

min { L ∈ N : nL 6= 0 } if n 6= [0, 0, . . .],
∞ if n = [0, 0, . . .].

Consider the map Φ : Z 3 n 7→ [nβL]L∈N ∈ Zβ. For n ∈ Z, we identify Φ(n) with n. Let Nβ
denote Φ(N). For n ∈ Nβ, it is convenient to write n = [n0, n1, . . . , nL−1] when n>L = 0.
For example, if β = 10, then 24 = [4, 2, 0, . . .] = [4, 2] ∈ N10.

For X ∈ N k
β , define

σβ(X) = σβ,k(X) = x0 ⊕ · · · ⊕ xk−1 ( ∈ Nβ). (1.1)

Let σβL(X) = (σβ(X))L (= the Lth digit of σβ(X)) for L ∈ N.

Example 8 (β-saturations of Nim [10]). Let X be a position in a β-saturation of Nim.
Then

sg(X) = σβ(X).
For example, if β = (3, 2, 5, . . .) and X = (16, 27) = ([1, 1, 2], [0, 1, 4]) ∈ N 2

β , then

sg(X) = σβ(X) = [1⊕ 0, 1⊕ 1, 2⊕ 4] = [1, 0, 1] = 7.

Example 9 (b-saturations of Welter’s game [9]). Let X be a position in a b-saturation
of Welter’s game, where b is an integer greater than 1. Then

sg(X) = σb(X)⊕
⊕
i<j

(
bordb(xi−xj)+1 − 1

)
.

For example, if b = 3 and X = (1, 4) ∈ N 2
3 , then sg(X) = 1⊕ 4⊕ (32 − 1) = 1.

We now give an explicit formula for the Sprague-Grundy functions of β-saturations of
misère Nim. For X ∈ PMis (⊆ N k

β ), define

φβ(X) = σβ(X)⊕
(
βmordβ(X)+1 − 1

)
. (1.2)

Theorem 10. The Sprague-Grundy function of a β-saturation of misère Nim is equal to
φβ, that is,

sg(X) = φβ(X)
for every position X in a β-saturation of misère Nim.

Before giving an example of Theorem 10, we introduce some notation. For n ∈ Nβ
and L ∈ N, let n<L = [n0, n1, . . . , nL−1] ∈ Nβ, that is, n<L = n mod βL. For X ∈ N k

β , let
X<L = (x0

<L, x
1
<L . . . , x

k−1
<L ) ∈ N k

β . When X = X<L, it is convenient to write X as follows:

X =


x0

0 x0
1 · · · x0

L−1
... ... . . . ...

xk−1
0 xk−1

1 · · · xk−1
L−1

 .
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Note that if mordβ(X) = N , then

X =


x0
N · · · x0

L−1

0 ... · · · ...
xk−1
N · · · xk−1

L−1

 .
Example 11. Let us consider Example 7 again. Let

X = (2, 2) =
[
0 1
0 1

]
∈ N 2

2 and Y = (2, 3) =
[
0 1
1 1

]
∈ N 2

2 .

Then mord2(X) = 1 and mord2(Y ) = 0, so

φ2(X) = σ2(X)⊕ (21+1 − 1) = 3 and φ2(Y ) = σ2(Y )⊕ (20+1 − 1) = 0.

1.5 The weight of φβ,k

We give the minimum of the weight of C such that Γ(PMis,C ) is a β-saturation of misère
Nim.

Let P ⊆ Nk. For a nonnegative integer-valued function ψ : P → N, let ∆(ψ) be the
set of C ⊆ Nk \ { (0, . . . , 0) } such that the Sprague-Grundy function of Γ(P ,C ) equals
ψ. Note that if C ,D ∈ ∆(ψ) and C ⊆ E ⊆ D , then E ∈ ∆(ψ). By definition, Γ(P ,C )
is β-saturated if and only if C ∈ ∆(ψβ), where ψβ is the Sprague-Grundy function of
Γ(P ,C β). If ∆(ψ) 6= ∅, then define

wt(ψ) = min
C∈∆(ψ)

wt(C ),

where wt(C ) = max {wt(C) : C ∈ C } and max ∅ = 0. For example, if ψ2 is the Sprague-
Grundy function of a 2-saturation of Nim or that of a 2-saturation of Welter’s game,
then

wt(ψ2) = 1
since C[1] ∈ ∆(ψ2). In other words, Nim and Welter’s game themselves are 2-saturated.
However, as we have seen in Example 7, if k = 2, then C[1] 6∈ ∆(φ2,2), so wt(φ2,2) = 2. In
fact, if k > 2, then

wt(φ2,k) = 2.
Let B be the supremum of { βL : L > 1 } in N ∪ {∞}. In general, we will prove that

wt(φβ,k) = max
{

min
{
βL − δ(L), k − δ(L)[β0 < 2k]

}
: L ∈ N

}
(1.3)

=


k if B > k or β0 > 2k,
k − 1 if B < k and k 6 β0 < 2k,
max { β0 − 1, B } if B < k and β0 < k,

where δ(L) = [L = 0] and [ ] is the Iverson bracket notation, that is, [P ] = 1 if a statement
P holds, and [P ] = 0 otherwise. In particular, if β = b for some b ∈ N, then

wt(φb,k) = min { b, k } .
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2 Proofs

When no confusion can arise, we write σ and φ instead of σβ and φβ, respectively.

2.1 Preliminaries

Let C ⊆ N k
β \ { (0, . . . , 0) }. The Sprague-Grundy function of Γ(PMis,C ) equals φ if and

only if C satisfies the following two conditions:

(SG1) If X ∈ PMis, then X has no option Y with φ(Y ) = φ(X) in Γ(PMis,C ), that is,
φ(X − C) 6= φ(X) for every C ∈ C with X − C ∈ PMis.

(SG2) If X ∈ PMis and 0 6 m < φ(X), then X has an option Y with φ(Y ) = m in
Γ(PMis,C ), that is, φ(X − C) = m for some C ∈ C with X − C ∈ PMis.

To prove Theorem 10 and (1.3), it therefore suffices to show the following three asser-
tions:

(A1) C β satisfies (SG1).

(A2) {C ∈ N k
β : wt(C) < w } does not satisfy (SG2), where w is the right-hand side of

(1.3).

(A3) C β
[w] satisfies (SG2), where C β

[w] = {C ∈ C β : wt(C) 6 w }.

2.2 Proof of (A1)

Let X ∈ PMis, C ∈ C β with X − C ∈ PMis, and Y = X − C. Let N = mordβ(X),M =
mordβ(Y ), and H = mordβ(C). We show that φH(Y ) 6= φH(X), where φH(X) =
(φ(X))H . Since (βN+1 − 1)L = 	[L 6 N ] for L ∈ N, it follows that

φL(X) = σL(X)	 [L 6 N ] and φL(Y ) = σL(Y )	 [L 6M ]. (2.1)

We first show that
[H 6 N ] = [H 6M ]. (2.2)

Since C<H = (0, . . . , 0), we see that Y<H = (X − C)<H = X<H . Suppose that H > N .
Then Y6N = X6N 6= (0, . . . , 0), where Y6N = Y<N+1. Hence M = N , so (2.2) holds. If
H 6 N , then Y<H = X<H = (0, . . . , 0), so H 6M . Therefore (2.2) holds.

We next show that
σH(X) 6= σH(Y ). (2.3)

Since C<H = (0, . . . , 0), it follows that yiH = xiH 	 ciH for i ∈ Ω. Hence

σH(Y ) = σH(X)	 σH(C).

Recall that H = mordβ(C) = ordβ(∑i c
i) since C ∈ C β. This implies that (∑i c

i)H =
σH(C) 6= 0. Thus (2.3) holds.

Combining (2.1)–(2.3), we see that φH(X) 6= φH(Y ). Therefore C β satisfies (SG1).
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2.3 Proof of (A2)

A position Y ∈ PMis is called a descendant of a position X ∈ PMis if X − Y ∈ N k
β .

If k = 1, then w = 1, so (A2) is obvious. Suppose that k > 2. It suffices to show that
there exist X ∈ PMis and m with 0 6 m < φ(X) satisfying the following condition: if Y
is a descendant of X with φ(Y ) = m, then wt(X − Y ) > w. By (1.3),

w = min
{
βN − δ(N), k − δ(N)[β0 < 2k]

}
for some N ∈ N.

Note that w > 1. We divide the proof into two cases.

Case 1 (N > 0 or β0 < 2k). We see that w = min { βN , k } − δ(N). Let

X = (βN , . . . , βN︸ ︷︷ ︸
w+δ(N)

, 0, . . . , 0) ∈ PkMis.

Since w + δ(N) 6 βN and mordβ(X) = N , it follows that

φ(X) = σ(X)⊕ (βN+1 − 1) = [
N︷ ︸︸ ︷

0, . . . , 0, 1⊕ · · · ⊕ 1︸ ︷︷ ︸
w+δ(N)

]	 [
N︷ ︸︸ ︷

1, . . . , 1, 1]

=

wβN − 1 if N > 0,
w if N = 0.

In particular, φ(X) > 0. Let Y be a descendant of X with φ(Y ) = 0. To prove that
wt(X−Y ) = w, we show that ∑i y

i
N = δ(N). Since φ0(Y ) = 0, we see that mordβ(Y ) = 0.

Hence φN(Y ) = σN(Y )	 [N 6 0] = σN(Y )	 δ(N). Since φN(Y ) = 0,

σN(Y ) = δ(N). (2.4)

We also see that ∑i y
i
N <

∑
i x

i
N = w + δ(N) 6 βN because Y is a descendant of X with

Y 6= X. Hence ∑i y
i
N = σN(Y ) = δ(N). Therefore wt(X − Y ) = w.

Case 2 (N = 0 and β0 > 2k). Since k > 2, we see that β0 > 4 and w = min { β0 − 1, k } =
k. Let

X = (2, . . . , 2) ∈ PkMis.

Then φ(X) = φ0(X) = 2k − 1 > 0. Let Y be a descendant of X with φ(Y ) = 0. Then
φ0(Y ) = σ0(Y )	1 = 0. Since ∑i y

i
0 <

∑
i x

i
0 = 2k 6 β0, it follows that ∑i y

i
0 = σ0(Y ) = 1.

This implies that yi ∈ { 0, 1 } for i ∈ Ω. Hence wt(X − Y ) = k = w.

Example 12. Let β = (6, 2, 2, . . .), k = 3, and X = (2, 2, 2). Then φ(X) = 5. If Y
is a descendant of X with φ(Y ) = 0, then Y ∈ { (0, 0, 1), (0, 1, 0), (1, 0, 0) }, and hence
wt(X − Y ) = 3. Note that if β = (5, 2, 2, . . .), then φ((2, 2, 2)) = 0.
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2.4 Proof of (A3)

To prove (A3), we present two lemmas.
For X ∈ PMis, the next lemma allows us to express x0 with x1, . . . , xk−1, and φ(X).

Lemma 13. Let X ∈ PMis and m ∈ Nβ. For i ∈ Ω, let

M (i) = mordβ
(
(m	 (−1), x0, . . . , xi−1, xi+1, . . . , xk−1)

)
,

y(i) = m	 (βM(i)+1 − 1)	 x0 	 · · · 	 xi−1 	 xi+1 	 · · · 	 xk−1,

and
Y (i) = (x0, . . . , xi−1, y(i), xi+1, . . . , xk−1).

Then mordβ(Y (i)) = M (i). In particular, φ(Y (i)) = m.

Proof. It suffices to prove the lemma when i = 0. Let M = M (0) and Y = Y (0). We show
that mordβ(Y ) = M . For L < M ,

y0
L = mL 	 (βM+1 − 1)L 	 x1

L 	 · · · 	 xk−1
L

= mL 	 (	1) = (m	 (−1))L = 0.

This implies that mordβ(Y ) >M . By the definition of M , we see that (m	 (−1))M 6= 0
or xjM 6= 0 for some j > 1. If the latter holds, then mordβ(Y ) = M . Suppose that
(m 	 (−1))M 6= 0 and xjM = 0 for every j > 1. Then y0

M = mM 	 (βM+1 − 1)M 	 x1
M 	

· · · 	 xk−1
M = (m	 (−1))M 6= 0, so mordβ(Y ) = M . Therefore

m = y0 ⊕ x1 ⊕ · · · ⊕ xk−1 ⊕ (βM+1 − 1) = σβ(Y )⊕ (βmordβ(Y )+1 − 1) = φ(Y ).

Example 14. Let β = 3, X = (3, 4), and m = 2. Note that m	 (−1) = [0, 1, 1, . . .] and
ord3(m	 (−1)) = 1. Since

M (0) = mord3
(
(m	 (−1), 4)

)
= 0 and M (1) = mord3

(
(m	 (−1), 3)

)
= 1,

it follows that

y(0) = m	 (31 − 1)	 4 = 8 and y(1) = m	 (32 − 1)	 3 = 0.

By Lemma 13, φ((y(0), x1)) = φ((x0, y(1))) = m = 2. Indeed,

φ((8, 4)) = 8⊕ 4⊕ (31 − 1) = 2 and φ((3, 0)) = 3⊕ 0⊕ (32 − 1) = 2.

The following trivial lemma will be used to construct appropriate options. For X ∈ N k
β

and L ∈ N, let xL = (x0
L, x

1
L, . . . , x

k−1
L ) ∈ JβLKk. For example, if β = 3 and X =

([1, 0, 2], [2, 1]), then x0 = (1, 2) and x1 = (0, 1).

Lemma 15. Let X ∈ N k
β , m ∈ Nβ, and R ∈ N. Choose j ∈ Ω so that xjR > xiR for

every i ∈ Ω. If mR 6
∑
i x

i
R, then there exists u ∈ JβRKk satisfying the following three

conditions:
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(1)
⊕
i∈Ω

ui = mR, where u = (u0, . . . , uk−1).

(2) 0 6 xiR − ui 6 xjR − uj for every i ∈ Ω.

(3)
∑
i∈Ω

(xiR − ui) 6 βR − 1.

Before proving Lemma 15, let us give an example. Let β = (7, 2, . . .), X = (4, 4, 3),
R = j = 0, and m = 6. Then m0 = 6 < 11 = ∑

i x
i
0. Since (⊕i x

i
0)	m0 = 4	6 = 5 < 11,

we can obtain u satisfying (1)–(3) by subtracting a vector (t0, t1, t2) with ∑
ti = 5 from

x0. For example, let t = (4, 1, 0); then x0 − t = (0, 3, 3), and it satisfies (1)–(3).

Proof. By rearranging x0, . . . , xk−1 if necessary, we may assume that j = 0. Let d =
(⊕i x

i
R)	mR. Since mR 6

∑
i x

i
R, it follows that d 6

∑
i x

i
R−mR 6

∑
i x

i
R. For i ∈ Ω, let

ti = min
{
xiR, d−

i−1∑
h=0

th
}
.

Then ∑i t
i = d. It follows that xR − (t0, . . . , tk−1) satisfies (1)–(3).

We now prove (A3). Let n = φ(X) and m ∈ Nβ with 0 6 m < n. We show that
φ(X − C) = m for some C ∈ C β

[w] with X − C ∈ PMis. Let N = mordβ(X) and

R = max {L ∈ N : mL 6= nL } .

We divide the proof into two cases.
Case 1 (N > R). By rearranging x0, . . . , xk−1 if necessary, we may assume that x0

N 6= 0.
For i > 1, let yi = xi. Let

M = mordβ((m	 (−1), y1, . . . , yk−1)),

y0 = m	 (βM+1 − 1)	 y1 	 · · · 	 yk−1,

and Y = (y0, y1, . . . , yk−1). By Lemma 13, φ(Y ) = m and mordβ(Y ) = M . It remains
to prove that y0 < x0. We show that y0

N = x0
N − 1 and y0

>N+1 = x0
>N+1. Since mR <

nR 6 βR − 1, we see that (m 	 (−1))R = mR ⊕ 1 6= 0. Hence M 6 R < N . Since
mordβ(Y ) = M ,

mN = y0
N ⊕ y1

N ⊕ · · · ⊕ yk−1
N 	 [N 6M ] = y0

N ⊕ x1
N ⊕ · · · ⊕ xk−1

N . (2.5)

Moreover, since N > R,

mN = nN = x0
N ⊕ x1

N ⊕ · · · ⊕ xk−1
N 	 [N 6 N ] = x0

N ⊕ x1
N ⊕ · · · ⊕ xk−1

N 	 1. (2.6)

By (2.5) and (2.6), y0
N = x0

N 	 1. Since x0
N 6= 0, it follows that y0

N = x0
N 	 1 = x0

N − 1.
Similarly, for L > N + 1,

y0
L ⊕ x1

L ⊕ · · · ⊕ xk−1
L 	 [L 6M ] = mL = nL = x0

L ⊕ x1
L ⊕ · · · ⊕ xk−1

L 	 [L 6 N ].

Since [L 6M ] = [L 6 N ] = 0, we see that y0
L = x0

L. Therefore y0 < x0 and X − Y =
(x0 − y0, 0, . . . , 0) ∈ C β

[w].

the electronic journal of combinatorics 28(1) (2021), #P1.58 11



Case 2 (N 6 R). By rearranging x0, . . . , xk−1 if necessary, we may assume that x0
R >

x1
R > · · · > xk−1

R . Let M = mordβ((m	 (−1), x1, . . . , xk−1)). Since mR < nR 6 βR − 1, it
follows that M 6 R.

Claim. There exists u ∈ JβRKk satisfying the following four conditions:

(C1)
⊕
i∈Ω

ui = mR ⊕ [R 6M ], where u = (u0, . . . , uk−1).

(C2) 0 6 xiR − ui 6 x0
R − u0 for every i ∈ Ω.

(C3) u0 < x0
R unless N < R = M .

(C4) wt(xR − u) 6 w.

Assuming the claim for the moment, we construct Y with φ(Y ) = m and X−Y ∈ C β
[w].

For i > 1, let

yi = [xi0, . . . , xiR−1, u
i, xiR+1, x

i
R+2, . . .] = xi − (xiR − ui)βR ( 6 xi). (2.7)

Then
mordβ((m	 (−1), y1, . . . , yk−1)) = M. (2.8)

Indeed, if M < R, then (2.8) is obvious. If M = R, then (m	(−1))M = (m	(−1))R 6= 0,
so (2.8) holds. Let

y0 = m	 (βM+1 − 1)	 y1 	 · · · 	 yk−1 (2.9)
and Y = (y0, y1, . . . , yk−1). It follows from (2.8) and Lemma 13 that φ(Y ) = m and
mordβ(Y ) = M .

Let C = X − Y . We next show that C ∈ C β
[w], that is,

(a) C ∈ N k
β \ { (0, . . . , 0) },

(b) wt(C) 6 w, and

(c) ordβ(∑ ci) = mordβ(C).

(a) Since φ(Y ) = m 6= n = φ(X), it follows that C 6= (0, . . . , 0). By (2.7), we see that
yi 6 xi for i > 1. To prove that y0 6 x0, we show that y0

>R+1 = x0
>R+1 and y0

R = u0. By
(2.9), for L > R(>M,N),

y0
L = mL ⊕ [L 6M ]	 y1

L 	 · · · 	 yk−1
L = nL 	 x1

L 	 · · · 	 xk−1
L = x0

L 	 [L 6 N ] = x0
L.

We also see that

y0
R = mR ⊕ [R 6M ]	 y1

R 	 · · · 	 yk−1
R = mR ⊕ [R 6M ]	 u1 	 · · · 	 uk−1 = u0

by (C1). Hence if u0 < x0
R, then y0 < x0. Suppose that u0 = x0

R. Then M = R by (C3).
Since M = mordβ(Y ),

y0 = [0, . . . , 0︸ ︷︷ ︸
M

, u0, x0
M+1, x

0
M+2, . . .] = [0, . . . , 0︸ ︷︷ ︸

M

, x0
M , x

0
M+1, x

0
M+2, . . .] 6 x0.
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(b) If u0 6= x0
R, then wt(C) = wt(xR − u), and hence wt(C) 6 w by (C4). Suppose

that u0 = x0
R. By (C2), u = xR, so wt(C) = 1 6 w.

(c) For i > 1, we know that ci = xi − yi = (xiR − ui)βR. Hence if ordβ(c0) < R, then

mordβ(C) = ordβ(c0) = ordβ

∑
i∈Ω

ci

 .
Suppose that ordβ(c0) > R. Then R 6 mordβ(C) 6 ordβ(∑ ci), so we need only show
that ordβ(∑ ci) = R, that is, ⊕

i∈Ω
ciR 6= 0. (2.10)

We first show that M = N . Since Y<R = X<R and M,N 6 R, it follows that if M < R
or N < R, then M = N . If M > R and N > R, then M = R = N . We now show (2.10).
Since yiR = xiR 	 ciR, we see that

mR =
⊕
i∈Ω

yiR 	 [R 6M ] =
⊕
i∈Ω

xiR 	

⊕
i∈Ω

ciR

	 [R 6 N ]

= nR 	

⊕
i∈Ω

ciR

 .
Since mR 6= nR, it follows that (2.10) holds, so ordβ(∑ ci) = R = mordβ(C). Therefore
C ∈ C β

[w].
It remains to prove the claim. We first show that xR 6= (0, . . . , 0). If R = N , then the

assertion is obvious. If R > N , then [R 6 N ] = 0, so mR < nR = ⊕
i x

i
R, which implies

that xR 6= (0, . . . , 0).
We next show that

nR + [R 6 N ] 6
∑
i∈Ω

xiR. (2.11)

Since nR⊕ [R 6 N ] = ⊕
i x

i
R 6

∑
i x

i
R, if nR+[R 6 N ] = nR⊕ [R 6 N ], then (2.11) holds.

Suppose that nR + [R 6 N ] 6= nR ⊕ [R 6 N ]. Then [R 6 N ] = 1 and nR ⊕ [R 6 N ] = 0.
Hence ⊕i x

i
R = 0. Since xR 6= (0, . . . , 0), it follows that ∑xiR > βR = nR + [R 6 N ].

We now construct u satisfying (C1)–(C4). Since [R 6M ], [R 6 N ] ∈ { 0, 1 } and
mR < nR, we see that

mR ⊕ [R 6M ] = mR + [R 6M ] 6 nR + [R 6 N ] 6
∑
i∈Ω

xiR.

By Lemma 15, there exists u ∈ JβRKk satisfying (C1), (C2), and

wt(xR − u) 6 min { βR − 1, k } .

We divide the proof into two cases.
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Case i (R > 0). Since min { βR − 1, k } 6 w, we see that u satisfies (C4). If u 6= xR,
then u0 < x0

R, so u also satisfies (C3). Suppose that u = xR. Then

mR ⊕ [R 6M ] =
⊕
i∈Ω

ui =
⊕
i∈Ω

xiR = nR ⊕ [R 6 N ]. (2.12)

It follows that [R 6M ] 6= [R 6 N ] since mR < nR. Suppose that [R 6M ] = 1 and
[R 6 N ] = 0. Then R 6 M and R > N , so N < R = M since M 6 R. Hence u satisfies
(C3). Suppose that [R 6M ] = 0 and [R 6 N ] = 1. By (2.12),

mR =
⊕
i∈Ω

xiR = nR ⊕ 1 < nR.

This implies that ⊕i x
i
R = 0, and hence that ∑i x

i
R > βR since xR 6= (0, . . . , 0). We can

now find (ũ0, . . . , ũk−1) satisfying ∑i ũ
i = ∑

i x
i
R − βR and (C1)–(C3) in the same way as

in the proof of Lemma 15. Let ũ = (ũ0, . . . , ũk−1). Since R > 0,

wt(xR − ũ) 6 min { βR, k } 6 w,

so ũ also satisfies (C4).

Case ii (R = 0). We see that x0 6= u because⊕
i∈Ω

xi0 = n0 ⊕ [0 6 N ] = n0 ⊕ 1

and ⊕
i∈Ω

ui = m0 ⊕ [0 6M ] = m0 ⊕ 1.

Thus u satisfies (C3). Since wt(x0 − u) 6 min { β0 − 1, k }, we see that (C4) holds when
min { β0 − 1, k − [β0 < 2k] } = β0 − 1 or k. Suppose that

min { β0 − 1, k − [β0 < 2k] } = k − 1 < β0 − 1.

Then k < β0 < 2k and k − 1 6 w. We show that there exists ũ satisfying (C1)–(C4). If
xk−1

0 = 0, then uk−1 = 0, so u itself satisfies (C1)–(C4). Suppose that xk−1
0 > 1. We show

that
x0

0 + · · ·+ xk−2
0 > m0 ⊕ 1	 xk−1

0 . (2.13)
If xk−1

0 = 1, then n0 = (⊕i x
i
0)	 1 = x0

0 ⊕ · · · ⊕ xk−2
0 , and hence

x0
0 + · · ·+ xk−2

0 > x0
0 ⊕ · · · ⊕ xk−2

0 = n0 > m0 = m0 ⊕ 1	 xk−1
0 .

If xk−1
0 > 2, then, since x0

0 > x1
0 > · · · > xk−1

0 > 2 and 2k > β0,

x0
0 + · · ·+ xk−2

0 > 2(k − 1) > β0 − 1 > m0 ⊕ 1	 xk−1
0 .

Thus (2.13) holds. By Lemma 15, there exists (ũ0, . . . , ũk−2) such that ũ0 ⊕ · · · ⊕ ũk−2 =
m0 ⊕ 1 	 xk−1

0 and 0 6 xi0 − ũi 6 x0
0 − ũ0. Thus (ũ0, . . . , ũk−2, xk−1

0 ) satisfies (C1)–(C4).
This completes the proof.
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[15] R. P. Sprague. Über mathematische Kampfspiele. Tohoku Math. J., 41:438–444,

1935.
[16] C. P. Welter. The theory of a class of games on a sequence of squares, in terms of

the advancing operation in a special group. Indag. Math., 57:194–200, 1954.

the electronic journal of combinatorics 28(1) (2021), #P1.58 15

https://arxiv.org/abs/1801.00616

	Introduction
	Mixed-radix number systems
	Subtraction games
	beta-Saturations
	A formula for beta-saturations of misère Nim
	The weight of phi(beta, k)

	Proofs
	Preliminaries
	Proof of (A1)
	Proof of (A2)
	Proof of (A3)


