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Abstract

We consider misere Nim as a normal-play game obtained from Nim by removing
the terminal position. While explicit formulas are known for the Sprague-Grundy
functions of Nim and Welter’s game, no explicit formula is known for that of misere
Nim. All three of these games can be considered as position restrictions of Nim.
What are the differences between them? We point out that Nim and Welter’s game
are saturated, but misere Nim is not. Moreover, we present explicit formulas for the
Sprague-Grundy functions of saturations of misere Nim, which are obtained from
miseére Nim by adjoining some moves.

Mathematics Subject Classifications: 91A46

1 Introduction

The loser in Nim is the winner in misere Nim. Nim is a two-player game played with
heaps of coins. Two players alternately choose a heap and take at least one coin from
it. The player who takes the last coin wins in Nim and loses in misére Nim. In general,
the player who moves last wins in the normal-play convention and loses in the misere-
play convention, which has been extensively studied by using misere Sprague-Grundy
functions, genera, and misére quotients (see, for example, [4,5,8,12,13]). In this paper,
we will consider misere Nim as a normal-play game obtained from Nim by removing the
terminal position (see Section 1.2).

Impartial games including Nim and misére Nim can be analyzed using their (normal)
Sprague-Grundy functions [7,15]. Sprague-Grundy functions are defined recursively, and
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computing them often leads to a combinatorial explosion. However, explicit formulas
are known for the Sprague-Grundy functions of some games such as Nim [7, 15] and
Welter’s game [16], which is a position restriction of Nim. Though misere Nim is also
a position restriction of Nim, no explicit formula is currently available for its Sprague-
Grundy function.!

What are the differences between Nim, Welter’s game, and misere Nim? One of the
differences is that Nim and Welter’s game are 2-saturated?, but misére Nim is not. The
purpose of this paper is to present an explicit formula for the Sprague-Grundy functions
of 2-saturations of misere Nim, which are obtained from misere Nim by adjoining some
moves. More generally, for a mixed-radix number system [, we give an explicit formula
for the Sprague-Grundy functions of g-saturations of misere Nim.

1.1 Mixed-radix number systems

We introduce some notation for mixed-radix number systems.

Let N be the set of nonnegative integers. Throughout this paper, 8 denotes a sequence
(BL)Leny € NN with B, > 2 for every L € N. Define B = 3y - 81 - -+ 1. For example, if
B=1(2,3,2,...), then 3° =1, 8! =2, and % = 6.

Let n € N. We denote by n’g the Lth digit in the mixed base (8 expansion of n,
that is, if ni , is the integer quotient® of n divided by 8%, then n} = ni ; mod 3, where

ng ;, mod B is the remainder of ng ; divided by 1. By definition,

n:anﬁL and nje{0,1,...,8,—1}.

LeN

For example, if 3, = b for every L € N, then n[z is the Lth digit in the ordinary base b
expansion of n, so it is convenient to write § = b. For a negative integer n, we define ng
similarly; then

n[z—l—(—n—l)ﬁzﬁL—l.

For example, (—1)% = B, — 1. We drop the superscript 5 when no confusion can arise.
For n € Z, define

min{LGN:nL;&O}(:max{LGN:BLdividesn}) if n#0,

00 if n=0.

ordg(n) = {

For example, if 8 = (3,2,5,4,...), then ordg(54) = ordg(4 - 8 + 33) = 2.

!By contrast, an explicit formula is known for the misére Sprague-Grundy function of Nim. See
Remark 5.

2The concept of saturations was first introduced in [9] to connect Welter’s game with representations
of symmetric groups.

SngL is the unique integer satisfying n — niLﬁL €{0,1,...,55 -1}
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1.2 Subtraction games

We define subtraction games, their miseére versions, and Sprague-Grundy functions.
Fix a positive integer k and let Q denote {0,1,...,k—1}. Let P C N* and € C
N\ {(0,...,0) }. Define I'(P, %) to be the digraph with vertex set P and edge set

{((X,)Y)eP*: X -Y e€¥}.

We call I'(P, %) a subtraction game or a take-away game. The vertex set P is called the
position set of T'(P,€).

Remark 1. We can consider T'(P, %) as a two-player game as follows. Before the game
begins, we pick an initial position X, € P. The first player subtracts some Cy € € from
X so that Xg — Cy € P. Let X1 = Xy — Cp. Similarly, the second player subtracts some
Ch € € from X; so that X; — C; € P. In this way, the two players alternately subtract
some C' € € from the current position. The player who subtracts last wins.

Example 2 (Nim). Let
¢y ={CeN :wt(C)=1},

where wt(C') is the Hamming weight of C, that is, the number of nonzero components of
C. The subtraction game I'(N*, %) is called Nim. For example, in Nim, the first player
will win if we start from (1,0); indeed, he can subtract (1,0) € %} from (1,0), but the
second player cannot subtract any C' € €} from (0,0).

We next define the misere version of a subtraction game. Let X be a position in a
subtraction game I'(P,¥). If X —C € P for some C' € €, then X — C'is called an option
of X (in I'(P,¥¢)). If X has no options, then X is called a terminal position. Let P’ be
the set of non-terminal positions in I'(P, %’). The subtraction game I'(P’, €) is called the
misére version of I'(P,€) [11].

Example 3 (misere Nim). Let Pyis = Py = NF\ {(0,...,0) }. Then Py is the set
of non-terminal positions of Nim, so the misere version of Nim is F(PMiS,‘K[l]). We call
L' (Puiis, €1j) misére Nim.* In misére Nim, the first player will lose if we start from (1,0)
because this position is terminal.

We now define Sprague-Grundy functions. See, for example, [1,2,5,14] for details. Let
I' =T1(P,¢) and X € P. The Sprague-Grundy value sg(X) of X is defined to be the
minimum nonnegative integer n such that n is not equal to the Sprague-Grundy value of
any option of X, that is,

sg(X) = sgp(X) = mex {sgp(Y) : Y is an option of X },

4Misere Nim is usually defined to be Nim in misére play, so the definition of misére Nim used in this
paper is slightly different from the standard one. However, for X € N¥\ {(0,...,0)}, the outcomes of
X in the two of these misére Nim are the same. In other words, when the initial position is X, the first
player can win in one of the two misére Nim if and only if he can win in the other misére Nim.
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where mex S =min{n € N:n ¢ S'}. Note that if X is a terminal position, then sg(X) =
mex () = 0. The nonnegative integer-valued function sg : P 3 X — sg(X) € N is called
the Sprague-Grundy function of the subtraction game I'. For a position X, the following
two statements are equivalent:

(1) se(X) = 0.
(2) The second player can win when the initial position is X.

Example 4. Let £ = 2. We calculate the Sprague-Grundy values of some positions
in misere Nim (see Table 1 in Example 7). Let G be the Sprague-Grundy function of
miseére Nim, that is, G(X) = ng(PMisfgm)(X) for X € Pyps. Since (0,1) and (1,0) are
terminal positions, it follows that G((0,1)) = G((1,0)) = 0. Hence G((0,2)) = G((1,1)) =
G((2,0)) = mex{0} = 1. This implies that G((1,2)) = G((2,1)) = mex{0,1} = 2, so
G((2,2)) =mex{1,2} = 0. We can verify that the second player can win when (2,2) is
the initial position.

Remark 5. The Sprague-Grundy function G of misere Nim is different from the misere
Sprague-Grundy function G~ of Nim defined in [5]. The domain of G is N¥\ {(0,...,0) }
and that of G~ is N*¥. Here, for X € N¥, we can compute G~ (X) as follows:
1 if X =(0,...,0),
G () = e (O
mex {G~(Y) : Y is an option of X }  otherwise.
The value G~ (X) is generally not equal to G(X). For example, G7((0,2)) = 2 # 1 =
G((0,2)). However, G~ (X) = 0 if and only if G(X) = 0.

1.3 [B-Saturations

We define [-saturations of subtraction games.
Elements in N* will be denoted by upper-case letters, and components of them by
lower-case letters with superscripts. For example, C = (%, ..., ¥ 1) € N¥. Define

‘56:‘56”“:{CENk\{(O,...,O)}:ordB (Zcz> :mordg(C)},

i€
where '
mordg(C') = min{ordg(c') : i € Q}.
For example, (2,2,6) € €% and (2,2,4) € €* because
ordy(2+246) =1 =mordy((2,2,6)) and ordy(2+2+4)=3>1=mords((2,2,4)).
A subtraction game T'(P, %) is said to be [-saturated if its Sprague-Grundy function

is equal to that of ['(P,67). If I'(P,%) is B-saturated, then we also say that it is a
B-saturation of I'(P, ).

®As we have mentioned, G~ (X) can be written down explicitly. If max X > 2, then G~ (X) = 02(X),
where 02(X) is the Nim sum of the components of X. If max X < 2, then G~ (X) =1 — 02(X).
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Example 6 (Nim and Welter’s game). Let
Pwe = { X € N*: 2" £ 29 whenever i # j }.

The subtraction game F(Pwﬂ,%m) is called Welter’s game. It is known that Nim and
Welter’s game are 2-saturated [3,6,9,16], that is, for P € { N* Py }, the Sprague-Grundy
function of I'(P, 6y)) is equal to that of I'(P,4?). Moreover, I'(N¥, €) is 2-saturated if
and only if ¢j) € € C €7 [3].

Example 7. Let £ = 2. We compare the Sprague-Grundy function of misere Nim
L' (Putis, €pny) with that of I'(Pyrs, €) (see Table 1). We first consider the position (2,2) €
Puis (= N2\ {(0,0) }). The Sprague-Grundy value of (2,2) equals 0 in I'(Pys, €711); how-
ever, it equals 3 in T'(Pygs, €2). Indeed, since (2,2) — (0,1) = (2,1) € €2, it follows that
(0,1) is an option of (2,2) in T'(Pys, €%). Hence sgpep,,. #2)((2,2)) = mex{0,1,2} =3
(see Table 1). Thus misere Nim is not 2-saturated when & = 2. We next compute the
Sprague-Grundy value of (2,3) in I'(Pygs, €2). Since (2,3) — (0,1) = (2,2) € €? and
(2,3) — (1,0) = (1,3) € €2, (2,3) has no options with Sprague-Grundy value 0, and
hence its Sprague-Grundy value is 0.

Table 1: Sprague-Grundy values in I'(Pyps, 6711) and I'(Pus, 672).

01 2 3 4 5 6 7 8 o123 4 5 6 7 8
0 0123 4 5 6 7 0 012 3 4 5 6 7
1170 12 3 4 5 6 7 8 110 1.2 3 4 5 6 7 8
211 2 0 4 5 3 7 8 6 2123 0 5 6 7 4 9
3123 401 6 85 9 3123 01 6 7 4 5 10
413 4 5 1 0 2 9 10 11 413 4 5 6 7 0 1 2 11
514 5 3 6 2 0 1 9 10 54 5 6 7 0 1 2 3 12
6|5 6 78 9 1 0 2 3 6/5 6 74 1 2 3 0 13
716 7 8 5 10 9 2 0 1 716 7 4 5 2 3 0 1 14
817 8 6 9 11 10 3 1 O 8|7 8 9 10 11 12 13 14 15

1.4 A formula for g-saturations of misére Nim
We present an explicit formula for the Sprague-Grundy functions of [-saturations of
misere Nim.
Let [BL] denote {0,1,...,5, — 1} equipped with the following two operations: for
a, be [[5[/]]7
a®b=(a+b mod S, and a©b=(a—>b)mod/fy.

In other words, [5.] is the additive group of integers modulo 3. For example, in [5],
2@4=1and 204 = 3. For n € N, we will think of n} as an element of [3]. Let Zj4
denote [Tren[Ar] equipped with the following two operations: for n,m € Zg,

ne&m=[n,®mrlren and nSm=|n,OmpLen,

ot
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where n = [np]reny and m = [my]ren. For n € Zg, define

min{LeN:n,#0} if n#]0,0,..],

ordg(n) = {OO if n=10,0,...].

Consider the map ® : Z 3 n +— [0} en € Zg. For n € Z, we identify ®(n) with n. Let N3
denote ®(N). For n € N3, it is convenient to write n = [ng,ny,...,nr—1] when n-y = 0.
For example, if 3 = 10, then 24 = [4,2,0,...] = [4,2] € Ny,.

For X € N¥, define

AX)=c""X)=2"® - @2 (e Np). (1.1)
Let 0% (X) = (07(X)), (= the Lth digit of 0 (X)) for L € N.

Example 8 (B-saturations of Nim [10]). Let X be a position in a S-saturation of Nim.
Then
sg(X) = o”(X).

For example, if 8= (3,2,5,...) and X = (16,27) = ([1,1,2],]0,1,4]) € N2, then
sg(X)=0’(X)=[1®0,1®1,204] =[1,0,1] =7

Example 9 (b-saturations of Welter’s game [9]). Let X be a position in a b-saturation
of Welter’s game, where b is an integer greater than 1. Then

sg(X) =a’(X) e P (bordb(xi—xj)ﬂ _ 1) ‘

i<j
For example, if b=3 and X = (1,4) € N, then sg(X)=1®4® (32 —1) = 1.
We now give an explicit formula for the Sprague-Grundy functions of S-saturations of
misére Nim. For X € Py (SN, /if), define
¢’ (X) = o’ (X) @ (grerds0tt — 1), (1.2)

Theorem 10. The Sprague-Grundy function of a B-saturation of misere Nim is equal to
&8, that is,
sg(X) = ¢7(X)

for every position X in a [-saturation of misere Nim.

Before giving an example of Theorem 10, we introduce some notation. For n € Nj
and L € N, let noy, = [no,ny,...,nr_1] € N, that is, n.;, = n mod 8*. For X € N}, let

Xop=(2%,,0L, ..., 2% e N} When X = X, it is convenient to write X as follows:
0 0 0
Lo Ly Lr-1
X = :
k=1 k-1 -1
To 11 T
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Note that if mordg(X) = N, then

0 0
’I.N DY xL 1
x=10 : .
k-1 k—1
:L‘N DY xL—l

Example 11. Let us consider Example 7 again. Let

01
01

Then mordy(X) = 1 and mordy(Y') = 0, so
PX)=c*(X)o (2" -1)=3 and *(Y)=*(Y)a (2" -1)=0.

0 1

X:(2,2):[ -

€N and Y =(2,3)= [ ] € N3

1.5 The weight of ¢%*

We give the minimum of the weight of € such that I'(Pygs, €) is a S-saturation of misere
Nim.

Let P C N*. For a nonnegative integer-valued function ¢ : P — N, let A(¢)) be the
set of € C N¥\ {(0,...,0)} such that the Sprague-Grundy function of I'(P, %) equals
1. Note that if €,2 € A(¢Y)) and € C & C 2, then & € A(¢). By definition, T'(P, %)
is f-saturated if and only if € € A(¥?), where ¢# is the Sprague-Grundy function of
L(P,€P). If A(yp) # 0, then define

wh(¥) = _min wt(%),

where wt(%) = max { wt(C') : C € ¢ } and max () = 0. For example, if 1% is the Sprague-
Grundy function of a 2-saturation of Nim or that of a 2-saturation of Welter’s game,
then

wh(?) = 1
since €y € A(¥?). In other words, Nim and Welter’s game themselves are 2-saturated.
However, as we have seen in Example 7, if k = 2, then %) & A(¢*?), so wt(¢*?) = 2. In
fact, if £ > 2, then

wt(¢*F) = 2.

Let B be the supremum of { f; : L > 1} in NU{ oo }. In general, we will prove that

wt(p?*) = max{min {ﬂL — (L), k—=6(L)[By < 2/{:}} L e N} (1.3)

k if B>k or [=>2k,
= (k-1 if B<k and k< fy <2k,
max{fy—1,B} if B<k and [y <k,

where §(L) = [L = 0] and [ ] is the Iverson bracket notation, that is, [P] = 1 if a statement
P holds, and [P] = 0 otherwise. In particular, if 3 = b for some b € N, then

wt(¢"F) = min { b,k }.
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2 Proofs

When no confusion can arise, we write ¢ and ¢ instead of ¢” and ¢”, respectively.

2.1 Preliminaries

Let € € N\ {(0,...,0) }. The Sprague-Grundy function of T'(Pyss, €) equals ¢ if and
only if € satisfies the following two conditions:

(SG1) If X € Puis, then X has no option Y with ¢(Y) = ¢(X) in I'(Pys, €), that is,
O(X — C) # ¢(X) for every C' € € with X — C € Pyps.

(SG2) If X € Pyis and 0 < m < ¢(X), then X has an option Y with ¢(Y) = m in
[(Puis, €), that is, ¢(X — C) = m for some C' € € with X — C € Pyys.

To prove Theorem 10 and (1.3), it therefore suffices to show the following three asser-
tions:

(A1) %7 satisfies (SG1).

(A2) {C e Nj:wt(C) < w} does not satisfy (SG2), where w is the right-hand side of
(1.3).

(A3) Cf[fu} satisfies (SG2), where %[fu] ={C €’ : wt(0) <w}.

2.2 Proof of (A1)

Let X € Pyis, C € €9 with X — C € Py, and Y = X — C. Let N = mordg(X), M =
mordg(Y'), and H = mordg(C). We show that ¢y (Y) # ¢u(X), where ¢opu(X) =
(6(X))g. Since (B¥* — 1), = 6[L < N] for L € N, it follows that

o(X) =0r(X)S [L < NJ and oY) =o0,(Y)S[L < M]. (2.1)
We first show that
[H < N]=[H < M]. (2.2)

Since C.y = (0,...,0), we see that Yoy = (X — C)cy = X_.py. Suppose that H > N.
Then Yoy = X<y # (0,...,0), where Yoy = Yoyi1. Hence M = N, so (2.2) holds. If
H < N,then Y.y =X_5g=(0,...,0), so H< M. Therefore (2.2) holds.
We next show that
ou(X) #oy(Y). (2.3)

Since C.g = (0,...,0), it follows that 3% = z% © ¢ for i € Q. Hence

Recall that H = mordg(C) = ordg(3; ¢*) since C € €°. This implies that (3, c')y =
op(C) # 0. Thus (2.3) holds.
Combining (2.1)-(2.3), we see that ¢ (X) # ¢ (Y). Therefore ¢ satisfies (SG1). O
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2.3 Proof of (A2)

A position Y € Py is called a descendant of a position X € Py if X —Y € Nﬁk

If £ =1, then w =1, so (A2) is obvious. Suppose that k£ > 2. It suffices to show that
there exist X € Pys and m with 0 < m < ¢(X) satisfying the following condition: if Y’
is a descendant of X with ¢(Y) = m, then wt(X —Y) > w. By (1.3),

w = min {5N _S(N), k= 5(N)[Bo < 2k]} for some N € N.

Note that w > 1. We divide the proof into two cases.

Case 1 (N > 0 or By < 2k). We see that w = min{ Sy, k } — §(N). Let

X = (ﬁNw'wﬁNaOa"'?O) GPII\C/HS'
—_—

w+3(N)

Since w + 0(N) < By and mordg(X) = N, it follows that

HX)=o(X)® (N =1)=1[0,...,0,1 - @1] o {1 1
w+d(N

B wpN — ift N >0,

| w if N=0.
In particular, ¢(X) > 0. Let Y be a descendant of X with ¢(Y) = 0. To prove that
wt(X —Y) = w, we show that 3, y% = (V). Since ¢o(Y) = 0, we see that mordg(Y') = 0.
Hence ¢on(Y) =on(Y) S [N < 0] = on(Y) ©(N). Since ¢pn(Y) =0,

on(Y) = 5(N). (2.4)

We also see that >,y < 3, 2% = w + §(N) < Sy because YV is a descendant of X with
Y # X. Hence 3,y = on(Y) = §(N). Therefore wt(X —Y) =

Case 2 (N =0and By > 2k). Since k > 2, we see that 5y > 4andw = min{ fy — 1,k } =
k. Let

X=(2,...,2) € P..
Then ¢(X) = ¢o(X) = 2k —1 > 0. Let Y be a descendant of X with ¢(Y) = 0. Then
(V) = 00(Y)51 =0. Since 3, i < 3, 2 = 2k < By, it follows that 3=, y§ = 0o(Y) = 1.
This implies that y* € {0,1} for i € Q. Hence wt(X —Y) =k = w. O

Example 12. Let § = (6,2,2,...), k = 3, and X = (2,2,2). Then ¢(X) =5. If Y
is a descendant of X with ¢(Y) = 0, then Y € {(0,0,1),(0,1,0),(1,0,0) }, and hence
wt(X —Y) = 3. Note that if § = (5,2,2,...), then ¢((2,2,2)) = 0.
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2.4 Proof of (A3)

To prove (A3), we present two lemmas.
For X € Py, the next lemma allows us to express 20 with z!,... ¥ and ¢(X).

Lemma 13. Let X € Pyis and m € N. Fori € Q, let

MO = mordg ((m o (=1),2°% ... 2" 2t ,a:k_l)) ,

y(z) :m@<ﬂM(i)+1_1)@x0@,..@xi—1@xi+l@...@xk—I’

and
YO = (20 2y @ g R,

Then mordg(Y W) = M. In particular, p(Y V) = m.

Proof. Tt suffices to prove the lemma when i = 0. Let M = M© and Y = Y. We show
that mordgz(Y) = M. For L < M,

yp =m0 (B =) 0 00!
=mp6(61)=(mo (1)), =0.

This implies that mordg(Y) > M. By the definition of M, we see that (m © (—=1))y # 0
or 2}, # 0 for some j > 1. If the latter holds, then mords(Y) = M. Suppose that
(m © (=1))a # 0 and 2, = 0 for every j > 1. Then ¢, = my © (BM* — 1)y © 2}, ©
coaht=(mo (=1)u #0, so mords(Y) = M. Therefore

m=y'er e oo M -1)=0"(Y)e (g 1) =4(Y). O

Example 14. Let § =3, X = (3,4), and m = 2. Note that m& (—1) =[0,1,1,...] and
ords(m & (—1)) = 1. Since

M© = mord ((m o (—1),4)) =0 and MY = mords ((m o (—1), 3)) =1,
it follows that
YO =mo@B' -1)o4=8 and YV =mo (3*-1)63=0.
By Lemma 13, ¢((y?, 2')) = ¢((z°, yV)) = m = 2. Indeed,
((8,4) =8@4@ (3" —1)=2 and ¢((3,0) =300 (32 -1)=2.

The following trivial lemma will be used to construct appropriate options. For X € N Bk
and L € N, let z, = (29,2%,..., 25" € [B.]*. For example, if 3 = 3 and X =
([1,0,2],[2,1]), then zo = (1,2) and x; = (0,1).

Lemma 15. Let X € N¥, m € N3, and R € N. Choose j € Q so that 2y > x¥ for
every i € Q. If mg < 3, 2%, then there exists u € [Br]" satisfying the following three
conditions:
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(1) Pu' =mp, where u = (u°,...,u*").
1€Q

(2) 0< ahy —u < ahy—ul for everyi € Q.

(8) Y(oh—u') < fr— L.

i€Q

Before proving Lemma 15, let us give an example. Let 5 = (7,2,...), X = (4,4, 3),
R=j=0,and m =6. Then my =6 < 11 =3, z{. Since (P, ) Smoy=466=5 < 11,
we can obtain u satisfying (1)—(3) by subtracting a vector (¢°,¢',¢?*) with > ¢’ = 5 from
xg. For example, let t = (4,1,0); then zq — t = (0, 3,3), and it satisfies (1)—(3).

Proof. By rearranging z°,...,z*"! if necessary, we may assume that j = 0. Let d =
(B; 2'3) ©mp. Since mp < 3, ', it follows that d < 3, 2y —mp < 3, 2%, Fori € Q, let

i—1
ti:min{x%,d—Zth}.
h=0

Then Y, t* = d. It follows that zp — (t°,...,t* 1) satisfies (1)—(3). O

We now prove (A3). Let n = ¢(X) and m € N with 0 < m < n. We show that
d(X — C) =m for some C € Cg[’fu} with X — C' € Puis. Let N = mordg(X) and

R=max{LeN:my#n.}.
We divide the proof into two cases.

Case 1 (N > R). By rearranging 2°, ... 27! if necessary, we may assume that 2%, # 0.
For i > 1, let y* = 2%, Let

M = mordﬁ«m S (_1)7y17 cee 7yk71))7

yo:m@(ﬂMﬂ—l)@yl@---@yk_l,

and Y = (4%, y,...,9*!). By Lemma 13, ¢(Y) = m and mordg(Y) = M. It remains
to prove that y” < z. We show that y}, = 2% — 1 and 9%y, = 2%y,,. Since mp <
ng < Br — 1, we see that (m & (—1))g = mr® 1 # 0. Hence M < R < N. Since
mordg(Y) = M,

my=yx Dy @ By TONK M=y} day - dakt. (2.5)
Moreover, since N > R,
my=ny=2X By ® - ' O[NK N =X @z @ - @2 ol (2.6)

By (2.5) and (2.6), y% = 2% © 1. Since z% # 0, it follows that ¢ = 2% &1 = 2% — 1.
Similarly, for L > N + 1,

Worle o 'olL<M=my=n,=2@zl®---dab 1 o[L N
Since [L < M] = [L < N| = 0, we see that y? = z). Therefore ¢’ < z° and X — Y =
(:EO—yO,O,...,O)GCK[i}.
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Case 2 (N < R). By rearranging 2°,..., 2% if necessary, we may assume that z% >
rh > >kt Let M = mordg((m o (—1),2',...,2F1)). Since mp < ng < fBr — 1, it
follows that M < R.

Claim. There exists u € [Sg]* satisfying the following four conditions:

(C1) Pu’ =mpa@ [R < M], where u = (u°,...,ub1).
1€Q

(C2) 0 <zl —u' < 2% —uf for every i € Q.
(C3) u’ < 2% unless N < R= M.
(C4) wt(zg —u) < w.

Assuming the claim for the moment, we construct Y with ¢(Y) = mand X -Y € (K[fu}
For i > 1, let

yi = [xé, S 7%%717 Uia x%+1>x3%+27 )= a’ — (x;z - Ui)ﬁR (< xz) (2.7)

Then
mordg((m © (=1),y", ...,y 1) =M (2.8)

Indeed, if M < R, then (2.8) is obvious. If M = R, then (mo(—1))y = (me(—1))r # 0,
so (2.8) holds. Let
Y=mo B -1ey ooy (2.9)

and Y = (y% ', ...,4" ). It follows from (2.8) and Lemma 13 that ¢(Y) = m and
mordg(Y) = M.
Let C' = X — Y. We next show that C € CK[Z], that is,

(a) C e NG\{(0,...,0)},
(b) wt(C) < w, and
(c) ordg(3> ¢') = mordg(C).

(a) Since ¢(Y) = m # n = ¢(X), it follows that C' # (0,...,0). By (2.7), we see that
y* < 2t for i > 1. To prove that y° < 2%, we show that ngH = ngH and 3% = u’. By
(2.9), for L > R(> M, N),

yp=mi®[L< Moy o0y ' =n 0a OOyt =ap O[L < N =ai.
We also see that

by (C1). Hence if u® < 2%, then 3° < 2°. Suppose that u® = 2%. Then M = R by (C3).
Since M = mordz(Y),

0_ 0 .0 0 _ 0 0 0 0
Yy =10,...,0,u, Ty 1 Tapgar -] = (0,00, 0,20, Tayg, Thppes -] S 2.
~—— ~——

M M
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(b) If v’ # 2%, then wt(C) = wt(xr — u), and hence wt(C') < w by (C4). Suppose
that u® = a:R By (C2), u = g, so wt(C) =1 <

(c) For i > 1, we know that ¢’ = x% — 3 (x —u')BR. Hence if ords(c®) < R, then

mordg(C) = ordg(c”) = ordg | Y ']
i€
Suppose that ords(c?) > R. Then R < mordg(C) < ordg(Y ¢?), so we need only show
that ords(X ¢') = R, that is, ‘
P i #0. (2.10)

ieQ
We first show that M = N. Since Y_rp = X_.r and M, N < R, it follows that if M < R
or N <R, then M =N.If M > Rand N > R, then M = R = N. We now show (2.10).
Since y% = a% © ¢, we see that

1€ 1€Q 1€Q

=nrOS (@ c%) .
i€

Since mp # ng, it follows that (2.10) holds, so ordg(3¢’) = R = mordg(C). Therefore
Ceey,

It remains to prove the claim. We first show that 2z # (0,...,0). If R = N, then the
assertion is obvious. If R > N, then [R < N| = 0, so mr < np = @, x%, which implies
that xx # (0,...,0).

We next show that

mr=@Pyr O [R< M| =Pay o (@c%) S[R<N]

ng+[R <D (2.11)

1€Q

Since ng B[R < N|] =@, 2% < X 2%, if ng+[R < N] = ng®[R < NJ, then (2.11) holds.
Suppose that ngp + [R < N]| #nr @ [R < N|. Then [R< N]=1and ng & [R < N| =0.
Hence @, 2% = 0. Since zg # (0, ...,0), it follows that ¥ x% > 8r = ng + [R < N].

We now construct u satisfying (C1)-(C4). Since [R < M|,[R< N] € {0,1} and
mpg < ng, we see that

mr®[R< M) =mp+[R<M]<ngp+[R<N] <D ah

i€Q
By Lemma 15, there exists u € [3g]" satisfying (C1), (C2), and
wt(zg —u) <min{fr—1,k}.

We divide the proof into two cases.
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Case i (R > 0). Since min{ 8 — 1,k } < w, we see that u satisfies (C4). If u # x,
then u° < 2%, so u also satisfies (C3). Suppose that u = rz. Then

mr @ [R =Pu =Pl =nre [R<N]. (2.12)
1€Q) S

It follows that [R < M| # [R < N] since mg < ng. Suppose that [R < M] = 1 and
[R<N]=0. Then R< M and R > N,so N < R= M since M < R. Hence u satisfies
(C3). Suppose that [R < M| =0 and [R < N] = 1. By (2.12),

mR:@x%:nR@1<n3.
i€Q

This implies that @; 2%, = 0, and hence that >, 2% > Bg since xr # (0,...,0). We can
now find (@, ..., @*1) satisfying 3, @* = 3°; 2% — Br and (C1)—(C3) in the same way as
in the proof of Lemma 15. Let @ = (@°,..., 4" ). Since R > 0,

wt(xg — ) < min{ fg, k} <w
so @ also satisfies (C4).

Case ii (R = 0). We see that zy # u because
Pari=ng®0< N =no®1
i€Q

and

Pu' =med[0< M) =moa 1.

i€Q
Thus u satisfies (C3). Since wt(xg —u) < min{ Sy — 1,k }, we see that (C4) holds when
min{ Gy — 1,k — [Bo < 2k] } = o — 1 or k. Suppose that

Then k < By <2k and k —1 < w. We show that there exists @ satlsfylng (C1)—(C4). If
=0, then "' =0, so u 1tself satisfies (C1)-(C4). Suppose that x5! > 1. We show
that
)4+ Fah E>me@loal Tt (2.13)
)

+
If 25! =1, then ng = (@, z)) © 1 =2 @ - - - © 22, and hence
4l et =ng>my=mp @10 2k!
If 2§71 > 2, then, since 2 > 2} > --- > 2571 > 2 and 2k > 3,

Q4 a2k P2k 1) > By —1>me@ 1o k!

Thus (2.13) holds. By Lemma 15, there exists (@°,...,@"2) such that @i ® --- & @
mo® 1S xk ™ and 0 < 2} — @' < 2 — @° Thus (@°,...,a" 2 25~ ") satisfies (Cl) (C4
This completes the proof.

D\_/
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