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Abstract

Given a permutation τ defined on a set of combinatorial objects S, together
with some statistic f : S → R, we say that the triple 〈S, τ, f〉 exhibits homomesy if
f has the same average along all orbits of τ in S. This phenomenon was observed
by Panyushev (2007) and later studied, named and extended by Propp and Roby
(2013). Propp and Roby studied homomesy in the set of order ideals in the product
of two chains, with two well known permutations, rowmotion and promotion, the
statistic being the size of the order ideal. In this paper we extend their results
to generalized rowmotion and promotion, together with a wider class of statistics
in the product of two chains. Moreover, we derive similar results in other simply
described posets. We believe that the framework we set up here can be fruitful in
demonstrating homomesy results in order ideals of broader classes of posets.

Mathematics Subject Classifications: 05E18, 06A11

1 Introduction

Consider a poset P , and let J(P) be the set containing all of the order ideals in P .
Various bijections can be defined mapping J(P) to itself. Among these mappings, the
rowmotion (Definition 1) operation has been studied widely by combinatorialists [6, 17,
5], and under various names (Brouwer-Schrijver map [3], the Fon-der-Flaass map [15],
the reverse map [10], and Panyushev complementation [1]). Another mapping called
promotion (Definition 2.6) has been defined in analogy to rowmotion. Propp and Roby
[14] were interested in studying the orbits these bijections introduce on J(P) and the
statistics that are preserved along these orbits. They introduced a concept they called
homomesy (Definition 2.8) which is defined on a triple consisting of a set S, a bijection
on S, and a statistic on S, that is, a function from S to R. They studied homomesy of
promotion and rowmotion on J(P), where P is a product of two chains.

After Propp and Roby’s paper, homomesy has received a lot of attention, and a number
of mathematicians have been intrigued by it [18, 5, 8, 9, 2, 7, 16, 12, 13]. While seeming
ubiquitous, homomesy is often surprisingly non-trivial to prove.
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Striker and Williams [17] generalized the definition of rowmotion and promotion (see
Definitions 2.5 and 2.7) and proved interesting qualities of their orbit structures on the
so called rc-posets.

In Section 2, we will provide the formal definition of all the above concepts, along with
the statements of our main results. Our proofs are based on an orbit preserving bijection
between the order ideals of a poset and sequences of natural numbers. In Section 3, we
will present this bijection, and finally the proofs will appear in Section 4.

Our Contribution

Following the work of Propp and Roby [14] and Striker and Williams [17], we study
rowmotion, promotion and their generalizations on J(P) where P is one of the following
three posets: the product of two chains, the upper triangle of this product, or the right
side triangle. We introduce a new bijection on the above sets called comotion (Definition
2.9). The main ingredient of the function comotion is a map on order ideals known as the
toggle map (Definition 2.1). In Theorems 2.3, 2.4, and 2.5 we characterize a wide class
of functions from J(P) to the real numbers which exhibit homomesy along the orbits of
comotion.

Our results generalize Propp and Roby’s results [14] in three ways: (1) Comotion
captures rowmotion and promotion and our results reproduce results of Propp and Roby
[14], and generalize them. (2) Our results are not restricted to the order ideals in the
product of two chains but also the upper triangle of the product, and the right side
triangle. (3) We introduce a set of functions such that any linear combination of them
will constitute a homomesic static in our setting, and we observe that the functions studied
by Propp and Roby can be constituted using linear combinations of these functions.

At the end of this introduction, we would like to mention that the operation “winching”
(Definition 3.1 ) and the Theorems 3.1, 3.2, 3.3 are presented here to aid in understanding
comotion on order ideals. In addition, since they are neat examples of homomesy, they
may be of independent interest.

2 Previous Work, Definitions and Statements of Results

Definition 1. Given a poset P on the elements of set S, and an order ideal I ∈ J(P), the
rowmotion of I, denoted Φ(I), is defined to be the order ideal generated by the minimal
elements in S−I.

Another interesting operation mapping J(P) to itself, first defined by Cameron and
Fon-der-Flaass [4], is the toggle map. Toggling is defined as follows:

Definition 2.1 ([4]). Given poset P on the elements of set S, an order ideal I ∈ J(P),
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and an element x ∈ S, the toggle map σx : J(P)→ J(P) is defined by:

σx(I) =


I ∪ {x}, if x /∈ I and I ∪ {x} ∈ J(P).

I − {x}, if x ∈ I and I − {x} ∈ J(P).

I, otherwise.

(1)

Cameron and Fon-der-Flaass [4] also noted that each toggle is an involution and gave
a criterion for when toggles commute.

Proposition 2.1 ([4]). For all x ∈ S and I ∈ J(P), σ2
x(I) = I. If x, y ∈ S, and x does

not cover y, and y does not cover x, we have σx ◦ σy(I) = σy ◦ σx(I).

A linear extension (x1, . . . , xn) of P is an indexing of the elements of P satisfying
xi <P xj implies i < j. Cameron and Fon-der-Flaass [4] observed that the rowmotion
operation coincides with a series of compositions of the toggle map as follows:

Proposition 2.2 ([4]). Given an arbitrary I ∈ J(P) and linear extension (x1, . . . , xn) of
P, we have Φ(I) = σx1 ◦ σx2 ◦ σx3 ◦ · · · ◦ σxn(I).

Let Qa,b = [a] × [b], where [n] = {1, 2, . . . , n}. We present each element of Qa,b by a
pair (i, j), i ∈ [a], j ∈ [b] and we say (i1, j1) 6 (i2, j2) if and only if i1 6 i2 and j1 6 j2. In
this paper, we are interested in bijections on J(Qa,b), as well as J(Ua) and J(La) where
Ua and La are subsets of Qa,a and defined as:

Definition 2.2. The upper triangle lattice Ua and the right side triangle lattice La are
two sublattices of Qa,a defined respectively as, Ua = {(i, j) | i, j ∈ [a], i > a+1−j} and
La = {(i, j) | i, j ∈ [a], i > j}.

See Figure 1 for examples of upper triangle and right side triangle lattices.

We use the following notation throughout: Let P be one of Qa,b, Ua or La. By saying
(i, j) ∈ P we are referring to the element in [a]× [b] with coordinates i and j. By saying
x = (i1, j1) 6P y = (i2, j2) we mean x is less than or equal to y in P , and we may drop
the subscript if no confusion would be introduced.

We call Qa,b the square lattice or the product of two chains, Ua the upper lattice and
La the left lattice. Among combinatorists Ua is also known as the root poset of type Aa,
and La as the minuscule poset of type Ba or Da+1 (See [15]).

We employ the following terminology:

Definition 2.3. Let P be one of Qa,b, Ua or La. For any arbitrary I ∈ J(P),

• We call the set of all points (i, j) ∈ P with constant i+j a rank; Rc(I) = {(i, j) ∈
I | i+j = c}.

• We call the set of all points (i, j) ∈ P with constant i−j a file; Fc(I) = {(i, j) ∈
I | i−j = c}.
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Figure 1: Examples for Definition 2.2 and 2.3: (1) Q5,4 and R4(Q5,4), (2) U4 and F−1(U4),
(3) L4 and C3(L4).

• We call the sets of all points (i, j) ∈ P with constant i a column; Cc(I) = {(i, j) ∈
I | i = c}.

When P is clear from the context, we write Rc = Rc(P), Fc = Fc(P) and Cc = Cc(P).

See Figure 1 for examples of rank, file and column in different lattices.

We can now define toggling for the above sets.

Definition 2.4. Consider I ∈ J(P). Take an arbitrary c, and let S be one of Rc or
Fc. Picking an arbitrary indexing of the elements of S, x1 . . . xm we define σS(I) =
σx1 ◦ σx2 ◦ · · · ◦ σxm(I). For S = Cc, we assume x1 < x2 < · · · < xm and define σS(I) =
σx1 ◦ σx2 . . . σxm(I).

Note that in the above definition, no two elements xi, xj of S constitute a covering
pair, thus by Proposition 2.1 σS is well defined.

Striker and Williams studied the class of so-called rc-posets, whose elements are par-
titioned into ranks and files1. Here, we are interested in Qa,b, Ua or La which are all
rc-posets. The following definitions are from [17], restricted to the product posets of
interest to us. Again, by saying P we mean one of Qa,b, Ua or La:

Definition 2.5 ([17]). Consider a poset P . Let ν be a permutation of {2, . . . , a+b}. We
define Φν to be σRν(a+b−1)

◦ σRν(a+b−2)
◦ · · · ◦ σRν(1) .

Note that by Proposition 2.2, we have Φν = Φ for ν = (a+b, a+b−1, . . . , 2). Now let
ν be an arbitrary permutation of {2, . . . , a+b}. Then, Φν is a permutation on J(P) and
partitions it into orbits. Striker and Williams showed that the orbit structure2 of Φν does
not depend on the choice of ν [17].

We now present another bijection on J(P ) which has been studied in [17, 14]:

Definition 2.6. The mapping promotion is a permutation ∂ : J(P) → J(P), defined
on I ∈ J(P) as: ∂(I) = σFa−1 ◦ σFa−2 ◦ · · · ◦ σF0 ◦ · · · ◦ σF1−b(I).

1Striker and Williams use the terminology “row” for what we call “rank” and “column” for what we
call “file”.

2The orbit structure of a bijection f on a set S is the multiset of the sizes of the orbits that bijection
f constructs on the set S.
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As with rowmotion, Striker and Williams [17] define a generalized version of promotion.

Definition 2.7 ([17]). Let ν be a permutation of {−b+1, . . . , a−1}. For I ∈ J(P), we
define ∂ν(I) to be σFν(a+b−1)

◦ σFν(a+b−2)
◦ · · · ◦ σFν(1)(I).

Note that by Definition 2.6, for ν = (−b+1, . . . , a−1) we have ∂ν = ∂.

Like with rowmotion, for any permutation ν on files of any rc-poset P , ∂ν will partition
J(P) into orbits. Again, Striker and Williams [17] showed that regardless of which ν we
choose, J(P) will be partitioned into the same orbit structure by ∂ν . Moreover, the orbit
structures of ∂ν and Φω are the same for any two permutations ν and ω:

Theorem 2.1 ([17]). Consider any rc-poset P, for any permutation ν on {2, . . . , a+b}
and ω on {−b+1 . . . a−1}, there is an equivariant bijection between J(P) under Φν and
J(P) under ∂ω.

Note that the above theorem holds in particular for Qa,b which is a rc-poset.

In 2013, Propp and Roby introduced a phenomenon called homomesy [14]. Propp
and Roby discussed some instances of homomesy by studying the actions of promotion and
rowmotion on the set J(Qa,b). After Propp and Roby’s paper, homomesy has attracted
the attention of many combinatorialists [5, 8, 9, 2, 7], and it is defined as follows:

Definition 2.8 ([14]). Consider a set S of combinatorial objects. Let τ : S → S be a
permutation that partitions S into orbits, and f : S → R a statistic of the elements of S.
We call the triple 〈S, τ, f〉 homomesic (or we say it exhibits homomesy) if and only
if there is a constant c such that for any τ -orbit O ⊂ S we have

1

|O|
∑
x∈O

f(x) = c.

Equivalently, we can say f is homomesic, c-mesic or it exhibits homomesy in τ -orbits
of S.

The following is easily shown from the definition of homomesy.

Proposition 2.3. Suppose we have a set S, a permutation τ : S → S and functions
f1, . . . , fn : S → R. If the triples 〈S, τ, fi〉 are homomesic, then for a function f which is
a linear combination of the fis, 〈S, τ, fi〉 is homomesic.

The following theorem is a result of Propp and Roby [14]:

Theorem 2.2 ([14]). Consider f : J(Qa,b) → R defined as follows: for all I ∈ Qa,b,
f(I) = |I|. Let ∂,Φ : J(Qa,b)→ J(Qa,b) be the rowmotion and promotion operation. The
triples 〈J(Qa,b), ∂, f〉 and 〈J(Qa,b),Φ, f〉 exhibit homomesy.

We now present definition of comotion, which generalizes rowmotion and promotion.
Later in this paper, we generalize Theorems 2.2 and 2.1 for comotion.
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Definition 2.9. For any permutation ν of [a], we define the action comotion, Tν :
J(P)→ J(P), for any I ∈ J(P) as follows:

Tν(I) = σCν(a) ◦ σCν(a−1)
◦ · · · ◦ σCν(1)(I).

Remark 2. Note that by applying Proposition 2.1 inductively on the posets Qa,b, Ua
and La, the action of promotion coincides with T(a,a−1,...1) and rowmotion coincides with
T(1,2,...a).

We are now ready to state the main theorems of this paper, which are Theorems 2.3,
2.4, 2.5. We leave the proof of these theorems to Sections 3 and 4. Before stating the
main results we need to define the following functions which constitute building blocks of
the functions for which we observe and prove homomesy:

Definition 2.10. Let Ci be a column in Qa,b, La or Ua. For 1 6 i 6 a and 1 6 j 6 b, we
define gi,j, si,j, di,j, and sj and κj for I ∈ J(P) as follows:

• For any 1 6 i 6 a and 1 6 j 6 b,

gi,j =

{
1, if |Ci(I)| = j

0, otherwise.
(2)

• For any 1 6 i 6 a and 1 6 j 6 b,

si,j =

{
1 if |Ci(I)|+ i = j

0 otherwise.
(3)

• For any 1 6 i 6 a and 1 6 j 6 b,

di,j = gi,j − ga+1−i,b−j. (4)

• For any 1 6 j 6 b,

sj =
a∑
i=1

si,j. (5)

• For any 1 6 j 6 b,

κj =
a∑
i=1

gi,j. (6)

In Theorems 2.3, 2.4, and 2.5 and Corollaries 2.1, 2.2, and 2.3, let a be an arbitrary
natural number and ν a permutation on [a], and Tν as in Definition 2.9:

Theorem 2.3 (Homomesy in J(Qa,b)). 1. The orbit structure of Tν on J(Qa,b) is in-
dependent of choice of ν.
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2. For any 1 6 i 6 a and 1 6 j 6 b, the following triples are homomesic.

(a) 〈Tν , J(Qa,b), di,j〉
(b) 〈Tν , J(Qa,b), sj〉.

Theorem 2.3 introduces a new family of permutations having the same orbit structure
as Φ and ∂; hence, it generalizes Theorem 2.1. By Remark 2 any linear combination of
the above functions is also homomesic, thus, Theorem 2.3 also generalizes Theorem 2.2 by
introducing a wide class of permutations and statistics whose triples with J(Qa,b) exhibit
homomesy.

The proof of Theorem 2.3 is involved; we skip it in this section and will present it
later in the paper. We will provide a roadmap to the proof after stating the following two
theorems about homomesy in J(Ua) and J(La).

Theorem 2.4 (Homomesy in J(Ua)). For each i ∈ [2a] let [i, 2a] = {i, i + 1, . . . , 2a}
and f : [2a] → R be a function having the same average in all [i, 2a] where i is odd. Let
g : J(Ua) → R be defined for any I in J(Ua) as: g(I) =

∑a
i=1 f(|Ci(I)| + 2i + 1). Then,

the triple 〈J(Ua), Tν , g〉 exhibits homomesy.

Theorem 2.5 (Homomesy in J(La)). 1. The orbit structure of Tν on J(La) is
independent of choice of ν.

2. For any 1 6 j 6 a, the triple 〈J(La), Tν , κj〉 exhibits homomesy.

The proofs of Theorem 2.3, 2.4, and 2.5 are postponed to the next sections. The heart
of these proofs is the correspondence between comotion and a function which we define in
Section 3 called winching (See Definition 3.1). We define three variations of winching on
sequences of increasing numbers which correspond to comotion in J(Q), J(U), and J(L).

A detailed presentation of these correspondences, together with formal definitions is
given in Section 3. After introducing these definitions, we show that there is a natural
equivariant bijection between the set of order ideals under comotion and the set of increas-
ing sequences under winching. These correspondences simplify our theorems, and in fact
in Section 3 we have Theorems 3.1, 3.2, and 3.3 which are in the context of winching and
equivalent to Theorems 2.3, 2.4, and 2.5 of this section. Finally, in Section 4, by proving
the theorems of Section 3 we complete the proofs of all the theorems in this paper.

We continue this section by employing the above theorems to find homomesy of some
well known functions in the orbit structure produced by comotion in J(Qa,b), J(Ua), and
J(La). For example one important function also studied by [14] is size of an order ideal,
i.e. sz(I) = |I|. Here is a list of functions we consider:

1. Size. Let sz be the size of an order ideal, i.e. sz : J(P)→ R; sz(I) = |I|.
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2. Central antisymmetry. Let x ∈ [a] × [b]. The antipodal point of x (or its
antipode) is y, if x = (i, j) and y = (a− i+ 1, b− j + 1). We denote the antipodal
point of x by A(x). For I ∈ J(P) and x ∈ [a] × [b], we define the characteristic
function II(x) : [a]× [b]→ {0, 1} as follows:

II(x) =

{
1 if x ∈ I
0 otherwise.

(7)

For any arbitrary x ∈ [a]× [b], let CAx : J(Qa,b)→ {0, 1,−1} be given by CAx(I) =
II(x)− (1−II(A(x)). We call CAx the central antisymmetry function with respect
to x. The central antisymmetry function characterises the presence of one and only
one of x and its antipode in an order ideal.

3. Rank-alternating cardinality. Consider an arbitrary I ∈ J(P). We denote
the rank-alternating cardinality of I by RAC(I) and we define it as RAC(I) =∑

(i,j)∈I(−1)i+j.

For any choice of ν, the following homomesy results are concluded from Theorems
2.3, 2.4, and 2.5, and the fact that any linear combination of homomesic functions is
homomesic (Remark 2):

Corollary 2.1. Let P be Qa,b or La. The triple 〈J(P), Tν , sz〉 is homomesic.

Proof. For P = Qa,b, sz =
∑a

i=1 i si − a(a + 1)/2. For P = La, sz =
∑a

i=1 i si. In both
cases sz is a linear combination of si. So, using Theorems 2.3 and 2.5 we will have the
result.

Corollary 2.2. The triple 〈J(Qa,b, Tν , CA)〉 exhibits homomesy.

Proof. Consider arbitrary I ∈ Qa,b and x = (x1, x2) ∈ [a] × [b]. Then II(x) = 1 if and
only if (x1, x2) ∈ I which is equivalent to |Cx1(I)| > x2. Thus,

II(x) =
b∑

j=x2

gx1,j. (8)

Similarly, 1−II(A(x)) = 1 implies (a−x1 + 1, b−x2 + 1) /∈ I meaning |Ca−x1+1(I)| <
b− x2 + 1 or equivalently |Ca−x1+1(I)| 6 b− x2. Therefore we have:

1− II(A(x)) =

b−x2∑
j=0

ga−x1+1,j =
b∑

j=x2

ga−x1+1,b−j. (9)

By Equations 8 and 9, we have CAx(I) =
∑b

j=x2
gx1,j − ga−x1+1,b−j. Employing Theo-

rem 2.3 we deduce that CAx is 0−mesic for any arbitrary x ∈ [a]× [b].

Corollary 2.3. Let P be one of Qa,b or Ua. The triple 〈J(P), Tν ,RAC〉 is homomesic.
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Proof. We will first consider the case when I ∈ J(Qa,b). In this case we have:

2 RAC(I) =
∑

x=(i,j)∈P(−1)i+jII(x) =
∑

x=(i,j)(−1)i+jII(x) +
∑

x=(i,j)(−1)i+jII(x)

=
∑

x=(i,j)∈X (−1)i+jII(x) + (−1)2a−(i+j)+2II(A(x))

=
∑

x=(i,j)∈X (−1)i+jCAx(I) + 1.

(10)
In the case where I ∈ J(Ua) we have:

RAC(I) = (−1)a+1
∑

i;|Ci|is odd

1.

We define the function f : N → {0, 1} as follows: f(x) = 1 if and only if x odd, and
f(x) = 0 otherwise. For any odd i, the average of f in [i, 2a] is equal to 1/2. Therefore,
the corollary is concluded from Theorem 2.4.

3 Comotion, winching and their correspondence

In the previous section, we defined the action of comotion on the set of order ideals of a
poset. In this section, we define winching and show a correspondence between winching
on increasing sequences and comotion on J(Qa,b). Then, we define winching with lower
bounds and winching with zeros. The former corresponds to comotion on J(Ua) and the
later corresponds to comotion on J(La).

Definition 3.1. Let Sk,m be the set of all k-tuples x = (x1, . . . , xk) satisfying 0 < x1 <
x2 < · · · < xk < m+1. We define the map Wi : Sk,m → Sk,m, called winching on index
i, by Wi(x) = y = (y1, y2, . . . , yk), where yj = xj for i 6= j, and

yi =

{
xi + 1, if xi + 1 < xi+1.

xi−1 + 1, otherwise.
(11)

We assume that always x0 = 0 and xk+1 = m+1.

For arbitrary ν = (ν1, ν2, . . . , νk) a permutation of [k] we define Wν to be the function
Wνk ◦Wνk−1

◦ · · · ◦Wν1 .

Example 3.1. Let ν = (2, 3, 1, 4) and x ∈ S4,7 be x = (2, 3, 5, 7). Then, Wν(x) =
W4◦W1◦W3◦W2(2, 3, 5, 7) = W4◦W1◦W3(2, 4, 5, 7) = W4◦W1(3, 4, 6, 7) = W4(1, 4, 6, 7) =
(1, 4, 6, 7).

We now show that winching is equivalent to toggling by columns on J(Qa,b).

Lemma 3.1. Let α : J(Qa,b) → Sa,a+b be defined as follows: α(I) = (α1, . . . αa), and
for any 1 6 j 6 a, we have αj(I) = |Ca+1−j(I)| + j. For any I ∈ J(Qa,b), α(σCj(I)) =
Wj(α(I)).
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Proof. Consider I ∈ J(Qa,b). For any j1 < j2, since |Cj1(I)| > |Cj2(I)|, α(I) is an
increasing sequence.

Let Cj be {v1, v2, . . . vb}, where vi = (j, i), and assume |Cj(I)| = l. We have, n > l+1,
σvn(I) = I, and for n = l+1, σvn(I) = I ∪ {vn} if and only if |Cj−1| > l+1. Also, for
n < l, σvn(I) = I − {vn} if and only if |Cj+1(I)| 6 n−1. For boundary cases, we assume
|C0| = b and |Cb| = 0. Letting K = σCj(I) we have,

Cj(K) =

{
Cj(I) ∪ {vl+1}, if |Cj−1(I)| > l+1.

Cj(I)− {vl, vl−1, . . . , vp+1}(p = |Cj+1(I)|), otherwise.

Equivalently,

|Cj(K)|+ a+1−j =

{
l+1 + a+1−j, if |Cj−1(I)|+ a−j+2 > l+1 + a−j+2.

|Cj+1(I)|+ a+1−j, otherwise.

(12)
Thus we have,

αa+1−j(σCj(I)) =

{
αa−j+1(I)+1, if αa−j+2(I) > αa−j+1(I) + 1.

αa−j(I) + 1, otherwise.

= Wa+1−j(α(I)).

(13)

Thus, α(σCj(I)) = Wj(α(I)).

Example 3.2. Figure 2 illustrates an application of Lemma 3.1 to an order ideal in
J(Q4,5). Note that as Lemma 3.1 suggests we have: I2 = σC3(I1) and I3 = σC4(I2).
Equivalently we have: W3(α(I1)) = α(I2) and W4(α(I2)) = α(I3).

ssss s s
(a) α(I1) = (1, 2, 4, 5, 9)

toggling on−−−−−−→
column 3

J(Q4,5)
α−−−−−→ S5,9

toggling

y
ywinching

J(Q4,5)
α−−−−−→ S5,9

ssss s
(b) α(I2) = (1, 2, 3, 5, 9)

toggling on−−−−−−→
column 4

ssss ss
(c) α(I3) = (1, 2, 3, 6, 9)

Figure 2: The correspondence between toggling columns and winching an index
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In what follows we define two variations of winching: winching with lower bounds and
winching with zeors. Then, we define two equivariant bijections from J(Ua) and J(La) to
sequences of numbers. Finally, we show in Lemmas 3.2 and 3.3 that these bijections map
toggling to winching with lower bounds in J(Ua) and to winching with zeros in J(La) (see
Figure 3).

J(Ua)
β−−−−−→ S ′a,2a

toggling

y
ywinching with

lower bounds

J(Ua)
β−−−−−→ S ′a,2a

J(La)
γ−−−−−→ Sa

toggling

y
ywinching with zeros

J(La)
γ−−−−−→ Sa

Figure 3: Equivariant bijections of Lemma 3.2 and Lemma 3.3.

The following variation of winching is called winching with lower bounds, and we
show in Lemma 3.2 that it corresponds to comotion on J(Ua).

Definition 3.2. Consider the sequence of lower bounds l = (l1, . . . , lk), 0 < l1 < · · · <
lk < m+1 and S ′k,m = {(x1, x2, . . . xk) ∈ Sk,m | xi > li}, where Sk,m is the set defined in

Definition 3.1. For any index i ∈ [k]and w ∈ S ′k,m, we define the map W l
i : S ′k,m → S ′k,m

called winching with lower bounds l on index i by

W l
i(w) = max{Wi(w), li}.

For any arbitrary permutation ν on [a], I ∈ J(Ua), and x ∈ Sa,2a, let the lower bounds be
l = (1, 3, . . . , 2a−1). We define W l

ν(x) = W l
ν(a) ◦W l

ν(a−1) ◦ · · · ◦W l
ν(1)(x).

Lemma 3.2. Let β : J(Ua) → S ′a,2a be defined as follows: β(I) = (β1, . . . , βa) and for
any 1 6 j 6 a, βj(I) = |Ca+1−j(I)| + 2j−1. For any I ∈ J(Ua) we have, β(σCj(I)) =
W l

j(β(I)), where l = (1, 3, 5, . . . , 2a− 1).

Proof. Considering the order ideal I ∈ J(Qa), I ′ = I ∪ (Qa,a − Ua), we will have, β(I) =
α(I ′). Hence, β is an increasing sequence. Since σCj(I) = σCj(I

′)− (Qa,a − Ua) we have,

βj(σCa+j−1
(I)) = |σCa+j−1

(I)|+ 2j − 1 = |σCa+j−1
(I ′)− (Qa,a − Ua)|+ 2j − 1

= max{|σCa+j−1
(I ′)| − j + 1, 0}+ 2j−1 = max{|σCa+j−1

(I ′)|+ j, 2j−1}

= max{(Wj(α(I ′)))j, 2j − 1} = max{(Wj(β(I)))j, 2j − 1}.
(14)

Thus, taking l = (1, 3, 5, . . . , 2a− 1), we conclude that β(σCj(I)) = W l
j(β(I)).
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The following variation of winching is called winching with zeros, and we show in
Lemma 3.3 that it corresponds to comotion on J(La).

Definition 3.3. Let Sn be the set of all increasing sequences x = (x1, . . . , xn) of numbers
in [n]+ = {0, 1, . . . , n} such that for any 1 6 i 6 n − 1, xi < xi+1 or xi = xi+1 = 0. We
define the map WZi : Sn → Sn, called winching with zeros on index i to be

WZi(x) =


xi+1 if xi+1 < min{xi+1, n+1}
xi−1+1 if 1 < i and 0 < xi−1
0 otherwise.

Lemma 3.3. Let γ : J(La) → Sa be defined as follows: γ(I) = (γ1, γ2, . . . , γa) and for
any 1 6 j 6 a, γj(I) = |Ca+1−j(I)|. For any I ∈ J(La) we have γ(σCj(I)) = WZj(γ(I)).

Proof. Consider arbitrary I ∈ J(La). For any j1 < j2, we have |Cj1(I)| > |Cj2(I)|. Thus,
γ is an increasing sequence. Let Cj = {vj, vj+1, . . . va} where for j 6 i 6 a, vi = (j, i).
Assume |Cj(I)| = l, which means Cj(I) = {vj, vj+1, . . . vj+l−1}. For n > j + l, σvn(I) = I.
We have three cases: if n = j+l, we will have σvn(I) = I∪{vn} if and only (j−1, j+l) ∈ I,
that is, |Cj−1(I)| > l + 1. If Cj+1(I) = 0, σCj(I) = I − Cj(I). And if σCj(I) > 0, then
σCj(I) = I − {vk+1, . . . , vj+l−1}, where k = |Cj+1(I)|. Letting σCj(I) = K, we have:

Cj(K) =


Cj(I) ∪ {vj+l}, if |Cj−1(I)| > l+1

∅ if |Cj−1(I)| 6 l+1 & |Cj+1(I)| = 0

Cj(I)− {vk+1, vk+2, . . . , vj+l−1}, otherwise.

, where k = |Cj+1(I)| > 0

which implies,

|Cj(K)| =


l + 1, if |Cj−1(I)| > l+1

0 if |Cj−1(I)| 6 l + 1 & |Cj+1(I)| = 0

k + 1, where k = |Cj+1(I)| > 0 otherwise.

and thus,

γj(K) =


γj(I) + 1, if γj+1(I) > l+1

0 if γj+1(I) 6 l + 1 & γj−1(I) = 0

γj−1 + 1, otherwise,

We thus conclude γa+1−j(σCj(I)) = WZ a+1−j(γ(I)).

Since comotion is a sequential composition of toggles applied to different columns, for
any choice of ν we have the following corollaries:

Corollary 3.1. The bijection α introduced in Lemma 3.1 satisfies the following property:
α(Tν(I)) = Wν(α(I)).
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Corollary 3.2. The bijection β introduced in Lemma 3.2 satisfies the following property:
β(Tν(I)) = W l

ν(β(I)).

Corollary 3.3. The bijection γ introduced in Lemma 3.3 satisfies the following property:
γ(Tν(I)) = WZν(γ(I)).

We now proceed to the theorems of this section, which discuss the occurrence of
homomesy in the winching setting and are in correspondence with Theorems 2.3, 2.4 and
2.5 stated in the previous section.

We consider the following functions:

Definition 3.4. • Let gi,j : Sk,m → R, 1 6 i 6 k and 1 6 j 6 m be defined as follows:

gi,j(x) =

{
1, if xi = j

0, otherwise.
(15)

• For an arbitrary 1 6 j 6 m, let fj : Sk,m → R be defined by:

fj(x) =

{
1, if j ∈ x
0, otherwise.

(16)

In Theorems 3.1, 3.2 and 3.3 ν is an arbitrary permutation on [k] or [n]. The proofs
of these theorems will be presented in Section 4:

Theorem 3.1 (Homomesy for winching). 1. Wm
ν (x) = x for all x ∈ Sk,m.

2. We observe homomesy in the following triples:

(a) For each 1 6 i, j 6 k, the function di,j = gi,j − gk+1−i,m+1−j is zero-mesic.

(b) For any 1 6 j 6 m, the triple 〈Sk,m,Wν , fj〉 is homomesic and the average of
fj along Wν orbits is k/m.

We will prove the above Theorem in Section 4.1.

Remark 3. The orbit structure that winching produces on the set Sk,m is the same as the
orbit structure for rotation acting on the set of 2-colored necklaces with k white beads
and m − k black beads, and hence independent of choice of ν. (The orbit structure of
necklaces is a classical problem in combinatorics, and it is known as Pólya’s Theorem
[11].)

Proof of Theorem 2.3. Given the bijection in Corollary 2.1, Theorem 2.3 is concluded
from Theorem 3.1.
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Row 1 (x1) x11 . . . x1k
Row 2 (x2) x21 . . . x2k
Row 3 (x3) x31 . . . x3k
. . . . . . . . . . . .
. . . . . . . . . . . .
Row n (xn) xn1 . . . xnk

Figure 4: A tuple board.

Theorem 3.2 (Homomesy for winching with lower bounds). Consider W ν : S ′k,n → S ′k,n
with lower bounds (l1, l2, . . . , lk). Let [i, k+n] = i, i+ 1 . . . k+n for an arbitrary i 6 k+n,
and assume f : [k+n] → R is a function that has the same average in all [li, k + n]. Let
g : S ′k,n → R be defined as, g(x) =

∑k
i=1 f(xi). Then, the triple 〈S ′k,n,W ν , g〉 exhibits

homomesy.

We will prove the above Theorem in Section 4.2.

Proof of Theorem 2.4. Given the bijection in Corollary 2.2, Theorem 2.4 is concluded
from Theorem 3.2.

Theorem 3.3 (Homomesy for winching with zeros). 1. WZ2n
ν (x) = x for all x ∈ Sn.

2. The triple 〈Sn,WZν , fj〉 (defined in Definition 3.4) is homomesic. Furthermore, the
average of fj along WZν-orbits is 1

2
.

We will prove the above theorem in Section 4.3.

Proof of Theorem 2.5. Given the bijection in Corollary 2.3, Theorem 2.5 is concluded
from Theorem 3.3.

4 Proofs

In this section we will prove Theorems 3.1, 3.2, and 3.3. The concepts of a tuple board
and a snake (Definitions 4.1 and 4.2) play a key role in understanding the orbit structure
and homomesy in winching.

For fixed k and an arbitrary permutation on [k], namely ν = (ν1, ν2, . . . , νk), let Fν be
one of Wν , W ν or WZ ν . Let S = Sk if Fν = WZ ν and S = Sk,m otherwise. We define a
tuple board as follows:

Definition 4.1. Let x ∈ S. A tuple board of x is an n × k matrix whose rows are
x,Fν(x),F2

ν (x), . . . (See Figure 4). Precisely, TB(x) = transpose([x1, x2, . . . , xn]), where
TB(i, ·) = xi = (xi1, . . . , x

i
k), x

i = F i−1ν (x), and Fνn+1(x) = x.
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Remark 4. Note that since F is a permutation, there is always an n satisfying Fνn+1(x) =
x. In fact, a tuple board contains an orbit of winching, thus it is convenient to think of
it as a cylinder. When referring to row numbers in a tuple board they are understood
modulo n.

Notice that any cell in a tuple board contains a number from the set {0, 1, 2, . . . ,m}.
In any tuple board we partition the cells having non-zero elements to maximal sequences
of adjacent cells of consecutive numbers. We call any of such partitions a snake. More
precisely:

Definition 4.2. For an arbitrary x ∈ S, let TB = TB(x) and T = {TB(i, j) | 1 6
i 6 n, 1 6 j 6 k}. We define a snake s = (sh, sh+1, . . . , st) as follows: s is a maximal
sequence such that each si is a cell in the tuple board having number 1 6 i 6 n in it, and
for any i, si =M(si−1), where M is defined as follows:

M(T (i, j)) =



T (i+1, j) if T (i+1, j) = T (i, j) + 1.

T (i, j+1) if T (i, j+1) = T (i, j) + 1, T (i+1, j) 6= T (i, j) + 1

and ν(j) < ν(j + 1).

T (i+1, j+1) if T (i+1, j+1) = T (i, j) + 1, T (i+1, j) 6= T (i, j) + 1

and ν(j) > ν(j + 1).

(17)

Definition 4.3. For a tuple board T , we define the function snake map, denoted S,
from the set of all snakes in T to Nk as follows: any snake s = (sh, sh+1, . . . , st) is mapped
to S(s) = (c1, c2, . . . , ck), where cj = |{i | T (i, j) ∈ s}|. Moreover, in s we call h the
head of s, and t its tail, denoting them respectively by H(s) and T (s). The length of
s is equal to T (s)−H(s) + 1. Two snakes are called consecutive if the submatrix in T
between their heads intersects no other snake. For two arbitrary snakes s and s′ in T , we
say s > s′ if the row number of H(s) in the tuple board is less than the row number of
H(s′).

Depending on the choice of Fv, tuple boards will be filled with snakes differently.
The proofs of Theorems 3.1, 3.2 and 3.3 are based on understanding the configuration of
snakes in tuple boards. Figure 5 illustrates this by presenting three examples of snake
configurations corresponding to winching, winching with lower bounds and winching with
zeros. We formalize these observations in proofs of Theorems 3.1, 3.2 and 3.3 presented
in the following subsections.

4.1 Proof of Theorem 3.1

In this subsection, we prove Theorem 3.1. There are two main observations about the
placement of snakes in a tuple board corresponding to winching which construct our proof:
In any winching tuple board (1) each snake has length k, its head is 1 and its tail is k,
(2) the snake maps evolve through the left shift operator (Definition 4.4). We prove
items (1) and (2) in Lemmas 4.1 and 4.2.
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. . . . . . . . . . . . . . .
1 2 ? ? ?
? 3 ? ? ?
? 4 5 ? ?
? ? 6 ? ?
? ? 7 ? ?
? ? ? 8 9
? ? ? ? 10
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
? 4 ? ? ?
? ? 5 ? ?
? ? 6 ? ?
? ? 7 ? ?
? ? 8 9 10
? ? ? ? ?
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
0 1 ? ? ?
? ? 2 ? ?
? ? 3 4 5
? ? ? ? ?
? ? ? ? ?
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

A tuple board of Wν , A tuple board of Wν with A tuple board of W Zν ,
x ∈ S5,10, ν = (1, 2, 4, 3, 5). lower bounds (2, 4, 6, 7, 8), x ∈ S5, ν = (1, 3, 2, 4, 5).
The snake map is x ∈ S5,10, ν = (1, 3, 2, 4, 5). The snake map is
(1, 3, 3, 1, 2). The snake map is (0, 1, 2, 1, 1).

(0, 1, 4, 1, 1)

Figure 5: Configurations of snake maps for different versions of winching.

In the rest of this subsection T = TB(x) is a tuple board corresponding to winching
and x ∈ Sk,m.

Lemma 4.1. Let s be a snake in T . Then H(s) = 1 and T (s) = k, thus the length of s
is k. Furthermore, for any two snakes s and s′ in T either all k cells they occupy in T
are the same or they share no common cell in T .

Proof. Consider x and a snake s in the tuple board T = TB(x) = [x1, . . . , xn]. Assume
H(s) = h 6= 1 and that sH(s) is in row i and column j. We have Wν(x

i−1) = xi. Let y be
equal to Wν(1)◦Wν(2)◦· · ·◦Wν(j−1)(x

i−1). By the definition of winching, if xi−1j 6= h−1 we
will have xij = yj−1 + 1. If ν(j− 1) < ν(j) we have yj−1 = xij−1 = h− 1. If ν(j− 1) > ν(j)

we have yj−1 = xi−1j−1 = h − 1. This is in contradiction since a snake is defined as a
maximal sequence of cells in the T related by M. Similarly we can show that T (s) 6= k
is in contradiction with maximality of s.

To see that two different snakes are either the same or have no intersection, assume
we have s = (s1, s2, . . . sk) and s′ = (s1, s2, . . . , sk). First assume sH(s) = s′H(s′) let l > 1

be the minimum index such that sl 6= s′l. Consider the pair i, j such that T (i, j) = l,
T (i+ 1, j) = l + 1 and also either T (i, j + 1) = l + 1 or T (i+ 1, j + 1) = l + 1. However,
in this case by Definition 4.2 we have sl = sl = T (i+ 1, j) which is a contradiction. Now
assume sH(s) = T (1, r), s′H(s′) = T (1, r′) and without loss of generality assume that r > r′

and ν = (1, 2, . . . k). Let l > 1 be the minimum index such that sl = s′l = T (i, j). But
this is contradiction because l = j + 1 + (i − r) and l = j + 1 + (i − r′) which is only
possible if r = r′.

Definition 4.4. Let H : [m][k] → [m][k] be defined as follows: For x = (x1, . . . , xk), let
H(x) = y = (y1, . . . , yk) where for any 1 6 i < k, yi = xi+1 and yk = x1. We call H the
left shift operator.
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In the next lemma we show that two consecutive snakes maps are related by the left
shift operator. This is essential to the proof of Theorem 3.1.

Lemma 4.2. Consider an arbitrary tuple board T , and let s < s′ be two consecutive
snakes in it. Assume c = S(s) and c′ = S(s′) are the two corresponding snake maps. We
have c = H(c′).

Proof. Take c = (c1, c2, . . . ck) and c′ = (c′1, c
′
2, . . . c

′
k). We first show that for any 2 6 j 6

k, cj−1 = c′j. Then having that both s and s′ have length k we also conclude ck = c′1. For
any arbitrary 2 6 j 6 k, using induction we show that if f = min{i | T (i, j − 1) ∈ s},
l = max{i | T (i, j−1) ∈ s}, and f ′ = min{i | T (i, j) ∈ s′}, l′ = max{i | T (i, j) ∈ s′}, then
f = f ′ + 1 and l = l′ + 1. For j = 2 this is clear by the fact s and s′ have no intersection.

By the induction hypothesis assume that we have c1 = c′2, c2 = c′3, . . . , cj−1 = c′j.
We want to prove that cj = c′j+1. Let q and q′ be, respectively, the length of s truncated
within columns 1 through j and the length of s′ truncated within columns 1 through j−1.
From the inductive hypothesis, we conclude q = q′+ c1 > q′. Thus if cj > c′j+1 then either
length of s′ is less than length of s which is a contradiction or s and s′ intersect which is
also a contradiction. If cj < c′j+1 then there is a gap between s and s′ but this is also a
contradiction. Thus, we have cj = c′j+1 (see Figure 6).

Corollary 4.1. There are exacly k snakes covering a tuple board.

Proof. Since the left shift operator satisfies Hk(c) = c, the placements of the ith snake
and the (i + k)th snake will be the same. Thus, the rows in the tuple board will be
repeated after the kth snake appears in the tuple board.

Proof of Theorem 3.1, Part 1. Consider an n × k tuple board T such that T = TB(x)
and x ∈ Sk,m. Let’s assume that n > m (if n < m, append enough copies of T to it
until n > m). Let s1 be the snake that covers T (1, 1) and s2 > s3 > s4 > · · · > sk

be the rest of consecutive snakes covering T . Letting S(s1) = c = (c1, c2, . . . , ck), by
Lemma 4.2 we have S(si) = H i−1(c). The numbers in the first column of T will be:
x1, x1 + 1, . . . , x1+c1−1, 1, 2, . . . c2, 1, 2, . . . , c3, . . . . Since

∑k
i=1 ci = m, the (m + 1)st

number in the first column will be x1. Similarly, for each column i, the (m+1)st element
will be xi. Thus, Wm+1(x) = x.

Lemma 4.3. Let T be an m × k tuple board. Consider the column r: Tr = {T (i, r)}.
For any 1 6 r 6 k, there exists a one-to-one function F : Tr → Tk+1−r, satisfying
F(x) = m+1−x.

Proof. For any r, we construct a mapping from {∪rt=1Tt} to {∪kt=k−r+1Tt}. Consider a
number x in Tr. Let it be the lth element in Tr, covered by a snake having snake map p =
(c1, c2, . . . , cr, . . . , ck). Consider the snake with snake map p′ = (cr+1, . . . , c1, c2, . . . , cr).
Let y be the

∑r−1
i=1 (ci+l)th element from the end in this snake. Then y = m+1 −(∑r−1

i=1 ci
)

+l = m+1−x. Since
(∑r−1

i=1 ci
)

+l 6
∑r

i=1 ci, y will be lying in one of the
columns k, . . . , k−r+1.
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. . .
x1: 1 . . .
x2: 2 . . .

2 3 4 6
1 2 5 7
1 3 6 7

xc1 : c1 c1+1 . . . 2 4 5 6
xc1+1: 1 c1+2 . . . 3 4 5 7

1 2 6 7
1 3 4 5

xc1+c2−2: c2 − 1 c1 + c2
xc1+c2−1: c2 c2+1
xc1+c2 : 1 c2+2 . . .

Figure 6: Snakes in a tuple board of winching: the left hand side picture shows placement
of two consecutive snakes in general form, the right hand side picture shows an example
of a tuple board being covered by 4 consecutive snakes.

Having the above mapping, we know there is also a one-to-one mapping in {∪rt=1Tt} →
{∪kt=k−r+1Tt} and also in {∪r−1t=1Tt} → {∪kt=k−rTt}. Hence, there exists F : Tr → Tk+1−r
satisfying F(x) = m+1−x.

Proof of Theorem 3.1, Part 2. Considering any m×k tuple board T , Corollary 4.1 shows
that T is totally covered by k snakes. Therefore, each element 1 6 i 6 m appears k
times in the tuple board and therefore the average of fi as defined in Definition 3.4 is
independent of the orbit and equal to k/m.

Fix an arbitrary number j and column i. Lemma 4.3 shows that the number of
occurrences of number j in column i is equal to the number of occurrences of m−j+1 in
column k − i + 1 of T . Thus,

∑m−1
α=0 gi,jW

α(x) =
∑m−1

α=0 gk−i+1,m−j+1(W
α(x)). In other

words, for all 1 6 i 6 k, 1 6 j 6 m, gi,j − gk−i+1,m−j+1 is zero-mesic in W -orbits of
Sk,m.

4.2 Proof of Theorem 3.2

In this subsection we prove Theorem 3.2. Remember the definitions of tuple board, snake,
snake map and the correspondence to the action of winching with lower bounds.
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Recall Lemma 4.1, and that if s is a snake in a tuple board of winching then H(s) = 1
and T (s) = m. In the following lemma we will show that if s is a W l

ν-snake with lower
bounds l = (l1, l2, . . . , lk), then H(s) is equal to some li and T (s) = m (see Figure 5).

Lemma 4.4. For an arbitrary x ∈ Sk,m, consider a tuple cylinder T (x) corresponding to
application of the action of W l

ν with lower bounds l = (l1, l2, . . . , lk). For any snake s in
this tuple board we have H(s) ∈ l, and T (s) = m.

Proof. Consider a snake s in T . IfH(s) is in column i andH(s) > li then s is not maximal.
If T (s) 6 m, then s is not maximal either. Thus we have H(s) ∈ l, and T (s) = m.

Proof of Theorem 3.2. Any tuple cylinder corresponding to W l
ν can be partitioned into

snakes. Any snake starts with some li ∈ l and ends in m. Thus, if f is a function having
the same average on all the numbers contained in any snake, it has the same average over
all the elements in the tuple cylinders. Therefore, we will have the result.

4.3 Proof of Theorem 3.3

In this section, we will prove Theorem 3.3. Consider x ∈ Sn and the action of WZ ν for
some arbitrary permutation ν of [n], and consider T = TB(x). In what follows, we will
prove Lemmas 4.5, 4.6, 4.7 which correspondingly show: In any tuple board of winching
with zeros (1) any snake has length n, (2) the snake maps evolve through a bijection
called “crawling” (Definition 4.6), and in tuple board of winching with zeros there is one
and only one row between heads of any two consecutive snakes. Finally, (3) crawling has
orbit size n.

The proof of the following lemma is similar to the proof of Lemma 4.1, thus, we omit
it.

Lemma 4.5. Let s be a snake in a tuple board of winching with zeros. We have H(s) = 1
and T (s) = n.

We now need to characterize the snake maps in winching with zeros. We first present
the definition of crawl (Definition 4.6) and then we present Lemma 4.6.

Definition 4.5. LetMn be the set of all sequences (c1, c2, . . . , cn) having an initial segment
of all zeros and a nonzero segment ckc , ckc+1, . . . , cn summing to n, that is,

∑n
i=1 ci = n,

and there is a kc such that ci = 0 if and only if i < kc.

Definition 4.6. We define the action crawl C : Mn → Mn such that for any c ∈ Mn,
C(c) = c′ where for 1 6 i 6 n−1,

c′i =

{
max{0, ci+1−1} If c1, . . . , ci 6 1,
ci+1 otherwise.

, and c′n = n−
∑n−1

i=1 c
′
i.
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0 0 1 4 snake maps: (0,0,2,2)
0 0 2 3
0 1 2 4 (0,1,2,1)
0 0 3 4
0 1 2 3 (0,1,1,2)
0 0 0 4
0 0 1 2 (0,0,1,3)
0 0 0 3

Figure 7: Snakes in a tuple board of winching with zeros: heads are located in alternating
rows. The snake maps evolve through “crawling”.

We now show that crawling actually captures the evolution of snakes in a tuple board
T corresponding to winching with zeros:

Lemma 4.6. Consider two consecutive snakes s > s′ in T . If H(s) is in row i of T then
H(s′) is located in row i+ 2. Furthermore, let c = (c1, . . . , cn) be the snake map of s and
c′ = (c′1, . . . , c

′
n) be the snake map of s′. We have c′ = C(c).

Proof. Consider a snake s whose head is at row i in T and assume that in its snake map,
the initial segment c1, c2, . . . , ck0 is all zeros, and this segment is followed by ck0+1, . . . , ck1
all ones. These two segments are then followed by ck1+1, . . . all greater than 1. This
means that xi = (x1, x2, . . . , xn) and x1, x2, . . . , xk0 = 0, for i 6 k1 − k0 xi+k0 = i, and
xk1+1 > k1−k0 + 1. Thus applying winching with zeros to xi, we take x′ = xi+1. Thus we
have xi+1 = (x′1, x

′
2, . . . , x

′
n) satisfying x′i = 0 for any i < k1 and x′k1 = xk1 + 1. Applying

winching once again, and letting xi+2 = x′′, we have xi+2 = (x′′1, x
′′
2, . . . , x

′′
n) satisfying

x′′i = 0 for any i < k1 − 1 and x′′k1−1 = 1. Thus, H(s′) will be in row i + 2 and in c′ we
will have: c′0, c

′
1, . . . , c

′
k1−1 = 0.

Note that in the action of crawling the initial segment which is all zeros and ones is
mapped to a sequence of all zeros and the rest of the elements in the sequence evolve
through the left shift operator. We have so far proved that the initial segment is mapped
to all zeros. In remains to prove that c′k1 = ck1+1 − 1 and for any i > k1, c

′
i = ci+1.

Similar to proof of Lemma 4.2 we can conclude c′k1 = ck1+1 − 1 because the tuple
board is covered by the snakes of length n, and that there is one row between H(s) and
H(s′). Since after this point there is no gap between the snakes we have: for any i > k1,
c′i = ci+1. To complete the proof, note that cn and c′n should always be such that the

entire snake map sums to n, thus we have: c′n = n−
∑n−1

i=1 c
′
i (see Figure 7).

The next lemma which is Lemma 4.7 completes the characterization of WZ−snakes.
In particular it shows that the orbit size of crawl is n. The proof of this lemma is involved,
and we prove it through a series of definitions and lemmas. (Definition 4.7, Lemma 4.8,
Definition 4.8, Lemma 4.3 and Lemma 4.10.)

Here, after stating Lemma 4.7 we use it to prove Theorem 3.3. Then we finish this
section by proving Lemma 4.7.
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Lemma 4.7. For any c ∈Mn we have, Cn(c) = c.

Proof of Theorem 3.3 Part 1. From Lemma 4.6 we know that head of snakes are located
in alternating rows. By Lemma 4.7 we know that each snake gets back to itself after n
crawls. Thus, in a tuple board of winching with zeros the 1st and 2nth rows are identical,
i.e. WZ2n(x) = x.

Proof of Theorem 3.3 Part 2. Consider a tuple board of winching with zeros. In the pre-
vious part of this theorem we proved that this board is a 2n × n board. In Lemma 4.6
we showed that head of snakes appear alternatively in rows. Thus, the number of snakes
is n, and we conclude that half of the tuple board is filled with zeros. In addition, since
there are n snakes in any tuple board and in any snake j appears once and only once,
each nonzero number will appear n times in the tuple board, that is, the average of fj = 1

2

for each j.

We now proceed to prove Lemma 4.7. To this end, we introduce two bijections in
Definitions 4.7 and 4.8. In Lemma 4.3 we show that the bijection F (Definition 4.7)
preserves the orbit structure of winching with zeros.

Definition 4.7. Consider the set Mn from Definition 4.5. We define the map F : Mn →
{0, 1}2n as follows: For all c ∈Mn, F(c) = b = (b1, . . . , b2n) where bi is defined as follows:
If there is a k such that c1+ . . .+ck = i, then bi = 1 and bi−n+1 = 0. Otherwise, bi = 0
and bi−n+1 = 1.

Lemma 4.8. F is one-to-one.

Proof. Assume F(x) = F(y) = w, and let j be the smallest index where wj = 1. We have
x1 = y1 = j. The next nonzero index will determine that x2 = y2 and likewise, we can
verify that all entries of x and y are equal.

Definition 4.8. Let Bn ⊂ {0, 1}2n be the set of all b ∈ {0, 1}2n such that for all 1 6 i 6 n,
bi + bn+i = 1. We define the action of rotation R : B → B on this set as follows: Partition
b into maximal blocks of 1k0, remove the leftmost block, and put it on the right, ignore
partitioning divisions.

Example 4.1. Let b = (110010001101). The partitioning of b will be (110.0.10.0.0.110.1).
After swapping the position of last block from (110.0.10.0.0.110.1) to (0.10.0.0.110.1.110),
we get R(b) = (0.10.0.0.110.1.110). Note that the block partitioning often changes after
each application of rotation.

Lemma 4.9. For any c ∈Mn, we have F(C(c)) = R(F(c)).

Proof. Consider an arbitrary c = (c1, . . . , cn) ∈Mn. Let’s say we have c1 = · · · = ck−1 = 0,
and ck is the leftmost nonzero element in c. Consider the set A = {a1 = ck, a2 =
ck+ck+1, . . . , an−k =

∑n
i=k ci}. Let C (c) = c′ and b = (b1, . . . , bn), the binary word

representing A. In other words for all a, a ∈ A if and only if ba = 1.
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Similarly, let A′ = {ck′ , ck′+ck′+1, . . . ,
∑n

i=k′ c
′
i}, k′ being the leftmost nonzero element

in c′ and b′ the binary presentation of A′.

According to definition of crawl we know that if we have ck = · · · = cl−1=1, we will
have c′k−1, . . . , c

′
l−2 = 0 and c′l−1 = cl−1, where l is the leftmost element greater than 1.

This means that if have a1 = 1, a2 = 2, a3 = 3, . . . al−1 = l, they should be removed from
A to make A′. In other words, any set of consecutive elements starting from a 1 will
be removed in A′. Moreover, cl will be decremented which means a1 and the rest of the
elements in A will be decreased by l except the last one which should always be an n.
Now, let’s see how b will change accordingly. We remove consecutive elements starting
with a 1 from A which means we remove the preceding 1s from b until we hit a zero. All
the other elements will be decreased by l which means they should be shifted left by l
positions. This is equivalent to removing the first block from b. Now, we need to add
b′n−l+1, . . . , b

′
n−1 = 0. And b′n = 1 because c′n should be increased by l to make the length

of the snake equal to n. This whole process is removing the leftmost block and adding its
negation to the right, which is equivalent to a rotation of a block in F(c).

Lemma 4.10. For all x ∈ Bn, Rn(x) = x.

Proof. Consider any arbitrary x. Any block in x has a single zero. Moreover, the number
of zeros in x is n. Therefore, after n rotations x will get back to its initial state.

Proof of Lemma 4.7. From Lemmas 4.10 and 4.9 and the fact that F is a one-to-one
function we conclude that for all c ∈Mn, C

n(c) = n.
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