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Abstract

The main purpose of this survey is to provide an introduction, algebro-topological
in nature, to Hirzebuch-type inequalities for plane curve arrangements in the com-
plex projective plane. These inequalities gain more and more interest due to their
utility in many combinatorial problems related to point or line arrangements in the
plane. We would like to present a summary of the technicalities and also some
recent applications, for instance in the context of the Weak Dirac Conjecture. We
also advertise some open problems and questions.

Mathematics Subject Classifications: 52C35, 14N20

1 Introduction

In combinatorics, there are many interesting point-line incidence problems. Probably the
most classical one is due to Sylvester [44].

Problem 1. Prove that it is not possible to arrange any finite number of real points so
that a right line through every two of them shall pass through a third, unless they all lie
in the same right line.

This problem is also related to the famous orchard problem proposed by Jackson as a
rational amusement for winter evenings [29]. Gallai [18] proved that Sylvester’s problem
has a positive answer.
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Theorem 2 (Sylvester-Gallai). Let P ⊂ R2 be a finite set of points. Then either

• all points in P are collinear, or

• there exists a line ` passing through exactly two points from P.

There are several elegant proofs of this theorem. Probably the most instructive one is
given by L. M. Kelly which can be found, for instance, in [1]. Using duality in the projec-
tive plane we can formulate Sylvester-Gallai Theorem in the language of line arrangements
and their intersection points, i.e., every line arrangement in the real projective plane con-
sisting of at least 3 lines, which is not a pencil, contains at least one double intersection
point. This can be also observed using the well-known Melchior’s inequality [33]. For an
arrangement of lines L = {`1, . . . , `d} in the projective plane we denote by tr = tr(L) the
number of r-fold points, i.e., points where exactly r-lines from the arrangement meet.

Theorem 3 (Melchior). Let L = {`1, . . . , `d} ⊂ P2
R be an arrangement of d > 3 lines.

Assume that L is not a pencil. Then

t2 > 3 +
∑
r>3

(r − 3)tr.

Melchior’s proof is based on a simple observation that every line arrangement in the
real projective plane provides a partition of the space into f regions, e edges, and v
vertices, and then we can use the identity v − e+ f = e(P2

R) = 1. In fact, using the same
method one can construct a whole series of Melchior-type inequalities, which seems to be
a folklore result (this was shown for instance in a student paper [45]).

Theorem 4 (Melchior-type inequality). Let L = {`1, . . . , `d} ⊂ P2
R be an arrangement of

d > 3 lines. Assume that L is not a pencil and k ∈ Z>1. Then

2k∑
r=2

(2k + 1− r)tr > 2k + 1 +
∑

r>2k+1

(r − (2k + 1))tr.

In particular, for k = 1 we recover Melchior’s inequality.

It was natural to ask whether Melchior’s inequality can hold if we change the under-
lying field, for instance if we consider a finite projective plane or the complex projective
plane. In both cases the answer is negative.

In the first case, consider P2
Z2

- the Fano plane. It is known that there exists a
unique configuration of 7 lines and 7 points of multiplicity 3, which obviously violates
Melchior’s inequality. Secondly, let us consider the following line arrangement in the
complex projective plane defined by the linear factors of the polynomial

Q(x, y, z) = (z3 − y3)(y3 − z3)(x3 − z3).

It can be seen thatQ defines the arrangement consisting of 9 lines and 12 triple intersection
points, so it obviously violates Melchior’s inequality. The arrangement defined by Q is
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known as the dual Hesse arrangement of lines (or Ceva’s arrangement of 9 lines, as defined
in [14]).

The above (counter)examples motivated researchers to find reasonable generalizations
of Melchior’s inequality (mostly over the complex numbers) involving the number of lines
and tr’s. It is worth mentioning that Iitaka [28] claimed to prove (erroneously) that
Melchior’s inequality holds for line arrangements in the complex projective plane, which
shows that the problem attracted the attention of people working in algebraic geometry.
The breakthrough came with Hirzebruch’s famous paper [26].

Theorem 5 (Hirzebruch’s inequality). Let L = {`1, . . . , `d} ⊂ P2
C be an arrangement of

d > 4 lines such that td = td−1 = 0, then

t2 + t3 > d+
∑
r>5

(r − 4)tr.

It might be surprising that Hirzebruch’s inequality is only a by-product of his con-
struction, the Hirzebruch-Kummer cover of the complex projective plane branched along
an arrangement of lines, which allowed him to construct new examples of algebraic sur-
faces of general type, so-called ball-quotients. We are not going into technicalities related
to ball-quotient surfaces, but for interested readers we refer to the following classical text-
book [3]. On the other hand, it turned out that Hirzebruch’s inequality is an extremely
important tool in numerous problems in combinatorial geometry, for instance, as it was
advertised in [40], Hirzebruch’s inequality can be applied in the context of Sylvester-Gallai
type theorems over the complex numbers.

Our scope in this survey is to present an accessible outline of Hirzebruch’s paper
and other strong Hirzebruch-type inequalities which allowed researches to make progress
on classical conjectures in combinatorics, like the Weak Dirac Conjecture [30, Section
6]. We hope that the survey will be useful for these combinatorialists who want to use
Hirzebruch’s ideas.

Our prerequisites are not demanding, basics on differential geometry and first lectures
on algebraic geometry.

We work over the complex numbers, and we will use the natural inclusion of R ⊂ C.

2 On Hirzebruch’s inequality for line arrangements

2.1 Basics on algebraic surfaces

Before we present a sketch of the proof of Hirzebruch’s inequality, we recall some basics
on algebraic surfaces. By an algebraic surface we mean an irreducible and reduced 2-
dimensional complex projective variety – such a surface can be embedded into PN

C for
some N ∈ Z>0. In algebraic geometry one of the most important problems is to classify
objects considering a certain fixed set of invariants. In order to provide some intuition,
we begin with one-dimensional complex varieties, i.e., smooth algebraic curves. The basic
invariant of an algebraic curve is its genus g. This can be explained topologically when
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considering a complex algebraic curve as an oriented real surface. For example, a two-
dimensional sphere is an algebraic curve of genus 0. A torus (a donut-shaped surface) is
an algebraic curve of genus 1. A very important concept in algebraic geometry is that
of divisors. A divisor on an algebraic curve C is a finite sum of points in C with integer
coefficients, i.e., an expression of the form

D =
r∑

i=1

aiPi,

where ai ∈ Z and Pi ∈ C for i ∈ {1, . . . , r}. To any function f (or more generally, a
section of a line bundle) on C, one can associate its divisor, which intuitively can be
thought of as zeroes of f minus poles of f . Whereas the existence of line bundles on
an algebraic variety X is a subtle problem, there is always its tangent bundle TX . If C
is a curve, then TC is a line bundle and the degree of a section in TC (i.e. of a vector
field on C) is 2 − 2g(C), which leads to an algebraic point of view on the notion of the
genus. For historical reasons, it is customary to study sections of the dual bundle T ∗C
which is the canonical bundle KC of C. Thus we have degKC = 2g(C) − 2. Similarly,
for an algebraic surface X one can consider its tangent bundle TX (which is a vector
bundle of rank 2) and the canonical line bundle, which is the determinantal line bundle
of its dual KX = detT ∗X . The canonical divisor, which by a slight abuse of notation
we also denote by KX , is the difference between zeros and poles of a section in the line
bundle KX . Formally, it is a sum of codimension 1 subvarieties in X (curves) with integer
coefficients. Note that this is in full analogy to divisors on curves, where we have sums
of codimension 1 subvarieties – points in this case. Curves on surfaces intersect in points,
thus one can make sense of the self-intersection of KX . This integer is denoted by K2

X and
plays the role of the number degKC for curves. However, for surfaces K2

X alone does not
provide enough information and one introduces another invariant, the topological Euler-
Poincaré characteristic e(X). In the case of curves, e(C) is equal to degKC . In the case
of surfaces, these two natural generalizations of the degree of the canonical divisor differ
and one studies the pair (K2

X , e(X)). The problem of establishing which pairs of integers
(m,n) may appear as m = K2

X and n = e(X) is known as the geography problem, and it
is not completely solved yet. If the line bundle KX (or its tensor powers K⊗mX , which we
customarily write in the additive notation as mKX) has many global sections, i.e., when

dimH0(X,mKX) ∼ c ·m2

for a positive constant c, then X is said to be of general type. The most important con-
straint on the existence of algebraic surfaces of general type is the celebrated Bogomolov-
Miyaoka-Yau inequality (see for instance [35, 46])

K2
X 6 3e(X). (1)

In fact, this inequality remains true under the milder assumption that the canonical divisor
has asymptotically some sections, i.e.,

dimH0(K,mKX) > 0 (2)
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for some m sufficiently large. We say that X satisfying (2) has non-negative Kodaira
dimension. It is natural to wonder when in (1) there is equality. It turns out that there
is an elegant topological answer to this question. Recall that a covering p : Y → X
of a topological space X is universal if Y is simply-connected. We have the following
fundamental result, see for instance [34].

Theorem 6. Let X be a smooth complex projective surface of general type. Then (1) holds
with equality if and only if the universal cover of X is the complex unit ball {(z1, z2) ∈
C2 : |z1|2 + |z2|2 < 1}, i.e., X is a ball-quotient.

The author suggests to consult [2], as a one of various possible sources, for a compre-
hensive introduction to the theory of algebraic surfaces.

2.2 Hirzebruch’s construction

Covers of algebraic surfaces play an important role in Hirzebruch’s approach. Here we
briefly outline some basic properties of such covers. For more details we refer to [25].

Definition 7. A branched covering ρ : X → Y is a finite surjective morphism between
normal varieties. Denote by G the group of automorphisms α : X → X so that ρ(α(x)) =
ρ(x) for all x ∈ X. The group G is called the group of covering automorphisms of ρ. If
G acts transitively on all fibers of our cover ρ, then the covering is called Galois. We say
that a branched covering ρ : X → Y is an abelian covering if ρ : X → Y is Galois and
additionally the group of covering automorphisms is abelian.

We also need to introduce the following notation (from Hirzebruch’s papers), namely
if L ⊂ P2

C is an arrangement of lines, then

f0 =
∑
r>2

tr, f1 =
∑
r>2

rtr.

Now we are ready to present the main result of this section. We will provide a detailed
outline of the proof emphasizing a topological part of Hirzebruch’s considerations. Our
outline is still quite technical, and might be challenging, but we are doing this to emphasize
the places where algebraic geometry methods are decisive and might be difficult to replace
by combinatorial techniques.

Theorem 8. Let L = {`1, . . . , `d} ⊂ P2
C be an arrangement of d > 6 lines such that

td = td−1 = 0. Then

t2 + t3 > d+
∑
r>5

(r − 4)tr. (3)

Proof. Here is the strategy. The key idea of Hirzebruch is to use abelian coverings of the
complex projective plane branched along line arrangements. This idea leads to interesting
algebraic surfaces for which the self-intersection of canonical divisor and the topological
Euler-Poincaré characteristic can be expressed in terms of the combinatorics of a given
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arrangement. Under the conditions that we have at least d > 6 lines and td = td−1 = 0,
we can deduce that our newly constructed surface is of non-negative Kodaira dimension.
Thus we can apply the Bogomolov-Miyaoka-Yau inequality (1).

Starting from scratch, and following ideas from [9, Section 4], let us denote by si the
defining linear forms of `i, i.e., `i = V (si), for all i ∈ {1, . . . , d}. Now we consider the
following map

f : P2
C 3 x 7→ (s1(x) : · · · : sd(x)) ∈ Pd−1

C .

Let us emphasize that f is well-defined since, by the assumption there is no point where
all lines meet, at every point at least one of the sj(x)’s is non-zero. Now we use the
Kummer covering

Kmn : Pd−1
C 3 (y1 : . . . · · · : yd) 7→ (yn1 : · · · : ynd ) ∈ Pd−1

C ,

where n > 2 is called the exponent of Kmn. One can show that this covering is of degree
nd−1 with the Galois group (Z/nZ)d−1. Obviously, it is branched along y1 · · · · · yd = 0.
Our main object of interest is the following fiber product:

Xn := P2
C ×Pd−1

C
Pd−1
C = {(x, y) ∈ P2

C × Pd−1
C : f(x) = Kmn(y)}. (4)

There exists a projective transformation on P2
C such that `1 = {x1 = 0}, `2 = {x2 = 0},

and `3 = {x3 = 0}. Then we can describe Xn even more explicitly looking at this surface
as embedded in Pd−1 (the second factor in the fibre product above). Indeed, Xn is given
by equations

Xn = {(y1 : · · · : yd) ∈ Pd−1
C : ynj = sj(y

n
1 , y

n
2 , y

n
3 ) for j ∈ {4, . . . , d}}.

In this explicit description, our surface Xn is given by (d − 3)-homogeneous equations
in Pd−1

C , which means that Xn is a complete intersection. One can show (using a local
argument) that Xn is singular over a point p of the arrangement L if and only if p is a
point of multiplicity > 3, so that, unless L has only double points, Xn is singular. We
need to pass to its desingularization (a smooth surface Yn and a generically one-to-one
morphism τ : Yn → Xn) in order to apply inequality (1). Since Yn is a smooth complex
projective surface, we can compute the following numbers (all relevant computations can
be found in [26, pp. 123-125]):

K2
Yn
/nd−3 = n2(9− 5d+ 3f1 − 4f0) + 4n(d− f1 + f0) + f1 − f0 + d+ t2,

e(Yn)/nd−3 = n2(3− 2d+ f1 − f0) + 2n(d− f1 + f0) + f1 − t2.
In the next step, quite cumbersome, one needs to check under which conditions on the
incidence distribution of L our surface has non-negative Kodaira dimension – it turns
out that it is enough to assume that d > 6, td = td−1 = 0, and n > 3. Then the
Bogomolov-Miyaoka-Yau inequality K2

Yn
6 3e(Yn) implies that the following Hirzebruch

polynomial

HL(n) =
3e(Yn)−K2

Yn

nd−3 = n2(f0 − d) + 2n(d− f1 + f0) + 2f1 + f0 − d− 4t2
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is non-negative for n > 3. Evaluating HL at n = 3 we get

t2 + t3 > d+
∑
r>5

(r − 4)tr,

which is exactly Hirzebruch’s inequality.

Remark 9. Hirzebruch’s inequality implies that every configuration of d > 6 lines with
td = td−1 = 0 contains double or triple points as the intersections.

Remark 10. It is natural to ask whether Hirzebruch’s inequality is sharp, i.e., whether
there exists a line arrangementA such that t2+t3 = d+

∑
r>5(r−4)tr. There exists exactly

one (!) arrangement of lines satisfying the above equality, namely the Hesse arrangement
of lines. This arrangement consists of d = 12 lines having t2 = 12 and t4 = 9. The proof
of this quite surprising result is not elementary (in its full generality), one needs to use
the theory of totally geodesic curves in complex compact ball-quotients [3]. In the case
when we restrict our attention to real line arrangements, we refer to [6] for an elementary
proof of the fact that there are no such arrangements.

Remark 11. In the same paper [26], Hirzebruch defines the so-called characteristic numbers
of line arrangements, namely

γ(L) = lim
n→∞

K2
Yn

e(Yn)
=

9− 5d+ 3f1 − 4f0
3− 2d+ f1 − f0

.

Somesse [43] proved that for complex line arrangements,

γ(L) 6
8

3
,

with equality if and only if L is the dual-Hesse arrangement of lines. This result, in
particular, implies that if L is an arrangement of d > 6 lines with td = td−1 = 0, then

2t2 + t3 > 3 + d+
∑
r>5

(r − 4)tr.

Observe that γ(L) = 3 implies that f0 = d, and by the Erdős-de Bruijn Theorem [10] this
condition forces L to be a near-pencil, i.e., an arrangement of d lines such that td−1 = 1
and t2 = d− 1. Note that for a near-pencil, the above inequality also holds:

2d− 2 = 2t2 + t3 > 3 + d+
∑
r>5

(r − 4)tr = 2d− 2.

Remark 12. Hirzebruch’s construction provides a whole series of inequalities depending
on n > 3. In particular, evaluating HL at n = 5 we obtain

4t2 + 3t3 + t4 > 4d+
∑
r>5

(2r − 9)tr.
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It is natural to ask whether this inequality is sharp, and it turns out that there exists
exactly one real line arrangement providing equality, the well-known A1(6) configuration
consisting of d = 6 lines and t3 = 4, t2 = 3. For a combinatorial proof of this statement
we refer to [6]. Moreover, one can show that there is exactly one line arrangement defined
over the complex numbers providing equality, the dual-Hesse arrangement of 9 lines and
12 triple points.

Remark 13. Using finer considerations on the Kodaira dimension of Yn, we can show that
if d > 6 with td = td−1 = td−2 = 0 and n > 2, then our surface Yn has non-negative
Kodaira dimension [3, Kapitel 3]. The condition HL(2) > 0 leads us to

t2 + 3t3 + t4 > d+
∑
r>5

(2r − 9)tr.

Remark 14. In the literature, we can find usually the following variant of Hirzebruch’s
inequality

t2 +
3

4
t3 > d+

∑
r>5

(2r − 9)tr (5)

provided that d > 6 and td = td−1 = td−2 = 0. In order to justify this claim, one needs to
use Miyaoka-Sakai’s improvement [27, 35, 39] of the Bogomolov-Miyaoka-Yau inequality
which says that if Yn contains either smooth rational curves (genus = 0) or smooth elliptic
curves (genus = 1), then one always has 3c2(Yn) − c21(Yn) > const > 0, and the number
const can be explicitly determined – in fact it is given in geometric terms. This leads to
the desired inequality.

Remark 15. In Extremal problems in combinatorial geometry by Erdős and Purdy [17],
Section 4.1.1 is devoted to Hirzebruch’s inequalities. Erdős asks here whether one can
provide elementary and independent proofs of Hirzebruch’s inequalities provided that we
restrict our attention to P2

R. Moreover, in Research Problems in Discrete Geometry by
Brass, Moser, and Pach [8, p. 315; Problem 7] one of the stated research problems is to
prove Hirzebruch’s inequality (5) using only elementary methods. In the light of what we
have seen so far, this seems to be extremely difficult. The main ingredient of Hirzebruch’s
construction is the Bogomolov-Miyaoka-Yau inequality which is not combinatorial in its
nature. The next section presents even stronger inequalities involving the number of lines
and intersection points that also follow from variants of the Bogomolov-Miyaoka-Yau
inequality. At this stage, at least to the author, it seems that there is no hope to find an
easy proof of (5).

Remark 16. It is easy to observe that every configuration of d ∈ {4, 5} lines with td =
td−1 = 0 also satisfies Hirzebruch’s inequality (3), therefore the formulation of Theorem 5
is in fact equivalent to that of Theorem 8.

Before we pass to (stronger) Hirzebruch-type inequalities, let us present an interesting
way to construct K3 surfaces using abelian covers branched along 6 general lines.

Definition 17. A smooth complex surface X is called a K3 surface if it is a simply-
connected compact complex manifold of dimension 2 such that the canonical divisor is
trivial. In particular, its Kodaira dimension is zero and K2

X = 0.
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Example 18. Consider L = {`1, . . . , `6} ⊂ P2
C an arrangement of 6 generic lines which

means that the only intersection points of these lines are double points. We can find a
projective transformation such that `1 = {x = 0}, `2 = {y = 0}, and `3 = {z = 0}. We
denote by `i = aix + biy + ciz with i ∈ {4, 5, 6} the equations of remaining 3 lines. Now
we can consider the Hirzebruch-Kummer cover X2 with exponent n = 2 branched along
`1, . . . , `6. We know that X2 is a smooth projective surface and it can be described as

X2 = {(z1, z2, z3, z4, z5, z6) ∈ P5
C : z2i = aiz

2
1 + biz

2
2 + ciz

2
3 , i ∈ {4, 5, 6}},

so our surface X2 is a smooth complete intersection of 3 quadrics in P5
C. This surface is

well-known in algebraic geometry, i.e., X2 is a K3 surface of degree 8. Let us conclude this
remark by the following algebraic connection between X2 and two-to-one covering of the
complex projective plane branched along `1, . . . , `6 – it turns out that X2 is the minimal
desingularization of this covering, please consult [22, p. 770] for details.

3 Stronger Hirzebruch-type inequalities for complex line ar-
rangements

Now we present (stronger) Hirzebruch-type inequalities for line arrangements in the com-
plex projective plane. These results follow from Langer’s version of the orbifold Miyaoka-
Yau inequality for normal surfaces with boundary divisors. Since Langer’s result is highly
non-trivial (it involves, for instance, the notion of orbifold Euler numbers, and other
technical considerations), we do not provide details – motivated readers can consult [31].

Let us start with the first strong Hirzebruch’s type inequality, which was first proved
by Bojanowski [7] in his Master Thesis (in Polish).

Theorem 19. Let L = {`1, . . . , `d} ⊂ P2
C be a line arrangement with d > 6 such that

tr = 0 for r > 2d
3

. Then

t2 +
3

4
t3 > d+

∑
r>5

(
r2

4
− r
)
tr. (6)

One proof of this result can be deduced from [38, Theorem 2.2] with d = 1. It also
follows from the following two inequalities for complex line arrangements due to Langer
[31, Proposition 11.3.1].

Theorem 20. Let L = {`1, . . . , `d} ⊂ P2
C be a line arrangement such that tr = 0 for

r > 2d
3

. Then ∑
r>2

r2tr >

⌈
4d2

3

⌉
,

∑
r>2

rtr >

⌈
d2

3
+ d

⌉
.
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It is natural to compare Bojanowski’s version of Hirzebruch’s inequality with others,
and we can easily observe the following chain of inequalities (under the assumption that
tr = 0 for r > 2d

3
):

t2 + t3 > t2 +
3

4
t3 > d+

∑
r>5

(
r2

4
− r
)
tr > d+

∑
r>5

(2r − 9)tr > d+
∑
r>5

(r − 4)tr.

Let us now list examples of line arrangements1 for which we obtain equality in (6) –
our list is probably far from complete.

1. Icosahedron arrangement consisting of 15 lines and t2 = 15, t3 = 10, t5 = 6.

2. Ceva’s arrangements consisting of 3n lines (n > 4), and t3 = n2, tn = 3.

3. The extended Ceva’s arrangements consisting of 3n+3 lines with n > 3, and t2 = 3n,
t3 = n2, tn+2 = 3.

4. The Hesse arrangement consisting of 12 lines and t4 = 9, t2 = 12.

5. The union of Ceva’s arrangement of 9 lines and the Hesse arrangement consisting
of d = 12 + 9 lines with t2 = 36, t4 = 9, t5 = 12.

6. Klein’s arrangement consisting of 21 lines and t3 = 28, t4 = 21.

7. Wiman’s arrangement consisting of 45 lines and t3 = 120, t4 = 45, t5 = 36.

There exists an infinite series of line arrangements such that equality in (6) holds –
for instance Ceva’s line arrangements. Moreover, note that there exists an interesting
incidence distribution C constructed in [3, p. 116]. It consists of d = 12m + 3 lines and
t2 = 12m2 + 15m + 3, t6 = 4m2 + m with m ∈ Z>3. It can be shown that this incidence
distribution cannot be realized over the real numbers (i.e., there does not exist any line
arrangement defined over the real numbers possessing the mentioned distribution). This
leads to the first open problem of this survey.

Problem 21. Is it possible to construct arrangements of d = 12m+3 lines in the complex
projective plane such that t2 = 12m2 + 15m+ 3, t6 = 4m2 +m with m ∈ Z>3?

Simple calculations reveal that the distribution C satisfies (6) with equality and if one
can show that there exists m0 ∈ Z>3 for which we can realize C over the complex numbers,
then C leads to a new example of complex and compact 2-dimensional ball-quotient (in
fact this is the main reason why this problem is really attractive).

Now we are in a good position to present (probably) the strongest known Hirzebruch-
type inequality for complex line arrangements. The inequality in question is the main
result of Bojanowski’s thesis [7, Theorem 2.3].

1If you would like to learn more about these arrangements and the geometry lurking behind them, we
refer to [3, 14] for details.
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Theorem 22. Let L ⊂ P2
C be an arrangement of d lines. Pick a natural number n ∈

[3, . . . , d) and assume that tr = 0 for r > d− n+ 2. Then

t2+
3

4
t3 > d+

s−1∑
r=5

(
r2

4
−r
)
tr +

d−n∑
r=s

((n−1)r−n2)tr +

(
(n−2)(d−n+1)−(n−1)2

)
td−n+1,

where s = min{2n, d− n}.

4 Applications

In this section, we focus on applications of Hirzebruch-type inequalities in the context of
interesting combinatorial problems in incidence point-line theory. We present only three
aspects in order to avoid repetitions. For more applications of Langer’s inequalities, and
in some sense Hirzebruch-type inequalities, we refer for instance to a recent paper by
Frank de Zeeuw [11].

4.1 The Weak Dirac Conjecture

Let us denote by P ⊂ P2
C a finite set of n mutually distinct points and let L(P) be the

set of lines determined by P , where a line that passes through at least two points from P
is said to be determined by P . We denote by lr the number of r-rich lines determined by
exactly r points from P .

As a starting point for our discussion we recall the original Dirac conjecture [13]. Note
that Dirac never conjectured this in print, although he states twice in [13] that its truth
is likely.

Conjecture 23 (Dirac). Every set P of n non-collinear points contains a point in at least
n
2

lines determined by P .

It turned out that the Dirac conjecture is false – the smallest counterexample has
n = 7 points, namely the vertices of a triangle together with the midpoints of its sides
and its centroid. However, the conjecture was resolved positively by Green and Tao in
[21] for very large n. In this view, we can formulate the actual Dirac conjecture which is,
according to our best knowledge, open.

Conjecture 24. There is a constant c such that every set P of n non-collinear points
contains a point in at least n

2
− c lines determined by P .

In 1961, P. Erdős proposed the following Weak Dirac Conjecture [15].

Conjecture 25 (WDC). Every set P of n non-collinear points in the plane (presumably
over the real numbers) contains a point which is incident to at least dn

c
e lines from L(P)

for some constant c > 0.
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The Weak Dirac Conjecture was proved independently by Beck [4] and Szemerédi-
Trotter [41], but they did not specify the actual value of c. In 2012, Payne and Wood
showed the WDC with c = 37 [36], and one of the main ingredients of their proof is
Hirzebruch’s inequality.

On the other hand, as we can read in [30, Chapter 6], it was more plausible to believe
that c = 3, and it turned out that this prediction is correct [24].

Theorem 26 (Han). The Weak Dirac Conjecture holds with c = 3.

Proof. We will follow Han’s approach [24]. First of all, note that if P is a finite set of non-
collinear points and it contains at least dn

3
e+1 points which lie on a line `, then we are done

– it is enough to consider a point p ∈ P \ ` which is incident, by definition/construction,
to at least dn

3
e + 1 lines, so we may assume that P does not contain dn

3
e + 1 collinear

points. According to the dual version of Bojanowski’s inequality, we have

l2 +
3

4
l3 > n+

∑
r>5

(
r2

4
− r
)
lr,

which can be written as

l2 +
3

4
l3 > n+

∑
r>5

(
r
2

)
2
lr −

3

4

∑
r>5

rlr.

Using the combinatorial count
(
n
2

)
=
∑

r>2

(
r
2

)
lr, we obtain

l2 +
3

4
l3 > n+

(
n
2

)
2
−

4∑
r=2

(
r
2

)
2
lr −

3

4

∑
r>5

rlr

This gives ∑
r>2

rlr >
n(n+ 3)

3
,

and we finally obtain ∑
p∈P

multp >
n(n+ 3)

3
.

Using the Pigeonhole Principle, there exists a point from P which is incident to at least
dn
3
e+ 1 lines from L(P), and it completes the proof.

It is worth mentioning that Han’s result can be also obtained using Langer’s inequality
(cf. [11, Corollary 1.2]).
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4.2 Beck’s theorem on two extremes

In this subsection, we would like to report on some progress towards better estimations
in Beck’s Theorem [4, Theorem 3.1].

Theorem 27 (Beck). There exists c1, c2 > 0 such that for every finite set P of n points
in R2, at least one of the following is true:

• there exists a line that contains c1n points from P for some positive c1;

• there are at least c2n
2 lines determined by P.

Beck in his paper gave c1 = 1
100

and c2 was unspecified, Payne and Wood in [36,
Theorem 5] provided c1 = c2 = 1

100
. Using Langer’s inequality, Frank de Zeeuw observed

[11, Theorem 2.1] that one can significantly improve estimations on c1 and c2.

Theorem 28 (de Zeeuw). Let P be a finite set of n points in R2. Then at least one of
the following is true:

• there is a line that contains more than 6+
√
3

9
n points of P;

• there are at least n2

9
lines determined by P.

Proof. First suppose that P has at most 2n/3 collinear points. By the dual version of
Langer’s inequality, ∑

r>2

rlr >
n(n+ 3)

3
.

If we add Langer’s inequality to the dual version of Melchior’s equation, then we obtain∑
r>2

(3− r)lr > 3

we obtain ∑
r>2

rlr +
∑
r>2

(3− r)lr >
n(n+ 3)

3
+ 3,

or equivalently

3 · |L(P)| = 3 ·
∑
i>2

li >
n2 + 3n+ 9

3
.

Thus |L(P)| > n2/9, which proves the second alternative.
Assume that P has more than 2n/3 collinear points. Let ¯̀ be the line that contains

more than 2n/3 points from P such that |P ∩ ¯̀| = αn and |P \ P ′| = (1 − α)n, where
P ′ ⊂ P is the set of points that is contained in ¯̀. We now lower bound |L(P )|. Count one
line for every choice of a point from P ∩ ¯̀ and a point from P \P ′, but we may overcount
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by one for every pair of points from P \ P ′ when the line through that pair hits ¯̀ in a
point from P . This leads to

|L(P)| =
∑
r>2

`r > αn · (1− α)n−
(

(1− α)n

2

)
>

(
−3

2
α2 + 2α− 1

2

)
n2.

As long as

(
− 3α2/2 + 2α − 1/2

)
> 1/9, the second alternative holds. Solving this

quadratic inequality with respect to α we see that this is the case when α 6 (6 +
√

3)/9.
Otherwise, the first alternative holds, and this completes the proof.

In the light of Beck’s theorem on two extremes, we can ask whether there exists a
reasonable lower bound on the number of lines that are determined by a few points. The
following result, which can be viewed as a corollary to Theorem 28, provides a surprising
answer in the case of lines determined by two and three points.

Corollary 29. Let P be a set of n points in R2 such that at most αn points are collinear
with α = (6 +

√
3)/9. Then

l2 + l3 >
n2

18
.

Proof. We add l2 + 2l3 to the both sides of the dual version of Melchior’s inequality
obtaining

2l2 + 2l3 > 3 + l2 + 2l3 +
∑
i>4

(i− 3)li > 3 +
∑
i>2

li.

By Theorem 28, we have

l2 + l3 >
1

2
·
∑
r>2

lr >
1

2
· n

2

9
=
n2

18
.

It is natural to ask whether n points in C2, with not too many collinear, determine a
quadratic number of lines with at most three points. Following de Zeeuw [12, Conjecture
4.5], let us formulate the following conjecture.

Conjecture 30. There exists a constant c > 0 such that, if a set P of n points in C2 has
at most cn collinear, then P determines at least cn2 lines with at most three points.

According to my best knowledge, this conjecture is still open. However, we can show
the following result involving `2, `3, `4 – it was presented by the author during the workshop
Algebraic Geometry and Combinatorics in January 2019 in Loughborough.

Proposition 31. Let P be a subset of n distinct points in C2 with at most 2n/3 collinear.
Then

l2 + l3 + l4 >
n(n+ 15)

18
≈ n2

18
.
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Proof. According to the dual version of Bojanowski’s inequality, we have

l3 +
3

4
l3 > n+

∑
r>5

(
r2 − 4r

4

)
lr.

Observe that for r > 5 one has

r2 − 4r

4
>

1

8
· r

2 − r
2

,

and using the combinatorial count(
n

2

)
= l2 + 3l3 + 6l4 +

∑
r>5

(
r

2

)
lr

we obtain

l2 +
3

4
l3 > n+

1

8

((
n

2

)
− l2 − 3l3 − 6l4

)
.

Simple manipulations give

9

8
(l2 + l3 + l4) >

9

8
l2 +

9

8
l3 +

6

8
l4 >

n(n+ 15)

16
,

so we finally obtain

l2 + l3 + l4 >
n(n+ 15)

18
.

4.3 Simplicial line arrangements

Let A = {H1, . . . , Hd} ⊂ Rn be a central arrangement of d hyperplanes. We say that A
is simplicial if every connected component of Rn \

⋃d
i=1Hi is an open simplicial cone. We

say that an arrangement A ⊂ Rn is irreducible if A cannot be expressed as a product
arrangement A1 × A2 with A1 ⊂ R`, A2 ⊂ Rm, and ` + m = n. Using a natural
projectivization we can think about rank n = 3 simplicial hyperplane arrangements as
line arrangements in P2

R. Let us recall two properties of simplicial line arrangements.

1. From Melchior’s proof [33] we see that for any line arrangement L ⊂ P2
R one has

3− t2 +
∑
r>3

(r − 3)tr +
∑
k>3

(k − 3)pk = 0,

where pk denotes the number of regions in the complement P2
R \
⋃

`∈L ` having k
sides. If L is simplicial, then pk = 0 for k > 4, and we have the following equality

t2 = 3 +
∑
r>3

(r − 3)tr.
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2. There is a folklore result providing a bound on the multiplicities of intersection
points of irreducible simplicial line arrangements, namely tr = 0 if only r > d/2
– see [20, Proposition 2.1] for a modern proof of that result. Observe that the
irreducibility assumption is crucial – a near pencil arrangement A of d lines is a
reducible simplicial arrangement with td−1 = 1. The above observation allows us
to use freely Langer’s inequalities and Bojanowski’s inequality (6) in the irreducible
case.

Now we present some very recent and interesting results from the PhD thesis of Geis [20].
We start with an observation which gives a bound on multiplicities of singular points of
a certain class of simplicial line arrangements [20, Remark 2.13 iv].

Proposition 32. Let L be a simplicial line arrangement in P2
R such that t2 > t3 and

ti = 0 for i 6∈ {2, 3, x}. Then x 6 8.

Proof. Since t2 > t3 and by Bojanowski’s inequality (19), one has the following chain of
inequalities:

7

4
t2 > t2 +

3

4
t3 > d+

x(x− 4)

4
tx = d+

x(x− 4)(t2 − 3)

4(x− 3)
,

where the last equality follows from Melchior’s inequality for simplicial line arrangements.
Assume now that x > 9, which implies that

0 6

(
x(x− 4)

4(x− 3)
− 7

4

)
t2 6

3x(x− 4)

4(x− 3)
− d.

This allows us to deduce that

d 6
3x(x− 4)

4(x− 3)
6

3x

4
6

3d

8
< d,

a contradiction.

Next, we present an application of one of Langer’s inequalities providing a quadratic
lower bound on max(t2, t3) for simplicial arrangements [20, Theorem 5.2].

Theorem 33. Let L be a simplicial line arrangement in P2
R. Then

max(t2, t3) >

⌈
d2 + 3d

27

⌉
.

In order to provide you some intuition behing this result, let us recall that Erdős and
Purdy [16] proved that if L is an arrangement of d > 25 lines in the real projective plane
such that td = 0, then

max(t2, t3) > d− 1.

Moreover, they also proved that if t2 < d− 1, then t3 > cd2 for some positive constant c.
Before we finish this section, it is worth presenting a Melchior-type inequality for

simplicial line arrangements also showed by Geis [20, Lemma 5.2 c] – the key advantage
of this result is that it provides constraints on the number of triple points.
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Proposition 34. Let L be an irreducible simplicial line arrangement in P2
R. Then

t3 > 4 +
∑
r>5

(r − 4)tr.

It is worth mentioning that the proof provided by Geis does not engage any Hirzebruch-
type inequalities.

Concluding this section, if we combine Melchior’s inequality with Bojanowski’s in-
equality for irreducible simplicial line arrangements, we obtain the following chain of
inequalities

t3 +
4

3
t4 + t5 >

4

3
(d− 3) +

1

3

∑
r>6

(
r2 − 8r + 12

)
tr >

4

3
(d− 3),

which seems to be an interesting observation. Of course this inequality is sharp.

5 Generalizations of Hirzebruch’s inequalities for plane curve
arrangements

In this section, we present some natural generalizations of Hirzebruch’s inequality for line
arrangements in the context of higher degree plane curves. We start with the following
definition.

Definition 35. Let C = {C1, . . . , Ck} be an arrangement of irreducible curves in the
complex projective plane. We say that C is a d-arrangement if the following conditions
hold:

1. all irreducible components Ci are smooth and of the same degree d > 1,

2. all intersection points are ordinary singularities (i.e., these look locally like intersec-
tions of lines),

3. there is no point where all curves meet simultaneously.

As we can observed, d-arrangements are higher degree generalizations of line arrange-
ments, for instance 2-arrangements will be called conic arrangements, even if in general
conic arrangements might have non-ordinary intersection points, for instance tacnodes.
The first result presents a Hirzebruch-type inequality for d-arrangements [37, Theorem
2.3].

Theorem 36. Let C ⊂ P2
C be a d-arrangement of k > 4 curves with d > 2. Then

(5d2 − 6d)k + t2 +
3

4
t3 >

∑
r>5

(r − 4)tr.
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It is natural to ask whether one can find an improvement of the above inequality, for
instance in order to have the so-called quadratic right-hand side. It turns out that this can
be achieved with help of Langer’s ideas around his version of the orbifold Miyaoka-Yau
inequality [38, Theorem 2.2].

Theorem 37. Let C = {C1, . . . , Ck} ⊂ P2
C be a d-arrangement of k > 3 curves with d > 2.

Then

t2 +
3

4
t3 + d2k(dk − k − 1) >

∑
r>5

(
r2

4
− r
)
tr.

It is also an interesting question whether one can extend Hirzebruch-type inequalities
in the context of arrangements admitting different degrees of irreducible curves. Probably
the first result in this spirit is devoted to conic-line arrangements in the complex projective
plane having only ordinary singularities [38, Theorem 2.1].

Theorem 38. Let LC = {`1, . . . , `l, C1, . . . , Ck} be an arrangement of l lines and k con-

ics such that tr = 0 for r > 2(l+2k)
3

, and we assume that all intersection points of the
arrangement are ordinary singularities. Then

t2 +
3

4
t3 + (4k + 2l − 4)k > l +

∑
r>5

(
r2

4
− r
)
tr.

Finally we consider an interesting topological generalization of line arrangements in
the real projective plane – pseudolines arrangements.

Definition 39. An arrangement C ⊂ P2
R of d > 3 smooth closed curves is an arrangement

of pseudolines if:

• all intersection points are transversal, i.e., locally can be described as x1x2 = 0,

• every pair of pseudolines intersect at exactly one point,

• there is no point where all curves meet.

For such arrangements, topological in nature, Shnurnikov proved the following in-
equality [42].

Theorem 40 (Shnurnikov). Let C be a pseudoline arrangement of d > 5 curves such that
td = td−1 = td−2 = td−3 = 0. Then

t2 +
3

2
t3 > 8 +

∑
r>4

(2r − 7.5)tr.

There exists exactly one combinatorial type of pseudoline arrangements for which we
obtain equality in Shnurnikov’s inequality, namely d = 7 with t4 = 2 and t2 = 9.

Let us emphasize that pseudoline arrangements can be viewed algebraically as rank 3
simple oriented matroids [5].
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6 Speculations

In this short section, we consider possible combinatorial approaches towards Hirzebruch-
type inequalities. To show any Hirzebruch-type inequality using only elementary combina-
torial methods [8, 17] is a notoriously difficult question. At this moment, unfortunately, it
seems to be out of reach. However, we can translate this problem using different languages.
One of the most promising is the language of tropical geometry, we refer to [19] for a short
introduction to the subject, or to the recent textbook [32]. Let C be an arrangement of
smooth curves in the complex projective plane, and let C denote its tropicalization. Of
course it might happen that our curves are intersecting along segments (even not bounded
segments), but instead of that we can use the notion of stable intersections in order to
avoid such situations. This idea leads to a tropical model of curve arrangements in the
complex projective plane. Now we would like to formulate some problems.

Problem 41. Is it possible to show a Hirzebruch-type inequality using the language of
tropical geometry, or its tropical variation?

Problem 42. Is it possible to find tropical analogues of the Bogomolov-Miyaoka-Yau
inequality?
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