
Vertex colouring edge weightings: A logarithmic

upper bound on weight-choosability

Kasper Szabo Lyngsie
Department of Mathematics

Technical University of Denmark
Denmark

kasperszabo@hotmail.com

Liang Zhong∗

Center for Discrete Mathematics
Fuzhou University

China

liangzh42@gmail.com

Submitted: Mar 9, 2017; Accepted: May 4, 2020; Published: Apr 23, 2021

c©The authors. Released under the CC BY license (International 4.0).

Abstract

A graph G is said to be (k,m)-choosable if for any assignment of k-element lists
Lv ⊂ R to the vertices v ∈ V (G) and any assignment of m-element lists Le ⊂ R
to the edges e ∈ E(G) there exists a total weighting w : V (G) ∪ E(G) → R of
G such that w(v) ∈ Lv for any vertex v ∈ V (G) and w(e) ∈ Le for any edge
e ∈ E(G) and furthermore, such that for any pair of adjacent vertices u, v, we have
w(u)+

∑
e∈E(u)w(e) 6= w(v)+

∑
e∈E(v)w(e), where E(u) and E(v) denote the edges

incident to u and v respectively. In this paper we give an algorithmic proof showing
that any graph G without isolated edges is (1, 2dlog2(∆(G))e+ 1)-choosable, where
∆(G) denotes the maximum degree in G.

Mathematics Subject Classifications: 05C07, 05C15

1 Introduction

A graph is said to be k-choosable if for any assignment of k-element lists Le ⊂ R to the
edges e ∈ E(G) there exists a weighting w : E(G)→ R of G such that w(e) ∈ Le for any
edge e ∈ E(G) and furthermore, such that for any pair of adjacent vertices u, v, we have∑

e∈E(u)w(e) 6=
∑

e∈E(v)w(e), where E(u) and E(v) denote the edges incident to u and

v respectively. This concept of weight-choosability was introduced in [1] by Bartnicki,
Grytczuk and Niwczyk. The motivation for this concept was that it generalises the well-
known 1-2-3 Conjecture formulated in [4], which states that the edges of any graph with
no isolated edges can be labelled with the numbers 1, 2 and 3 so that any two adjacent
vertices have different sums of incident edge-labels. In particular, if a graph is 3-chooseable

∗Supported by The China Scholarship Council

the electronic journal of combinatorics 28(2) (2021), #P2.11 https://doi.org/10.37236/6878

https://doi.org/10.37236/6878

it satisfies the 1-2-3 Conjecture. Bartnicki et al. [1] proved that trees and complete graphs
(which are not K2) are 3-choosable and conjectured that any graph without an isolated
edge is 3-choosable. A more general concept of weight-choosability where there are also
weights on the vertices was introduced in [10] by Wong and Zhu and is defined as follows:
a graph G is said to be (k,m)-choosable if for any assignment of k-element lists Lv ⊂ R to
the vertices v ∈ V (G) and any assignment ofm-element lists Le ⊂ R to the edges e ∈ E(G)
there exists a total weighting w : V (G)∪E(G)→ R ofG such that w(v) ∈ Lv for any vertex
v ∈ V (G) and w(e) ∈ Le for any edge e ∈ E(G) and furthermore, such that for any pair of
adjacent vertices u, v, we have w(u) +

∑
e∈E(u)w(e) 6= w(v) +

∑
e∈E(v)w(e). In particular,

any graph which is (1, k)-chooseable is also k-chooseable. This concept introduced by
Wong and Zhu also generalizes the so-called 1-2 Conjecture formulated in [6] which states
that for any graph G there exists a total weighting w : V (G) ∪ E(G)→ {1, 2} such that
for any pair of adjacent vertices u, v, we have w(u)+

∑
e∈E(u)w(e) 6= w(v)+

∑
e∈E(v)w(e).

Wong and Zhu [10] proved that any graph is (2, 3)-choosable. As mentioned above,
the case of (k,m)-chooseability where k = 1 is particularly interesting since it directly
relates to the 1-2-3 Conjecture. However, there is still no constant c known for which
any graph without an isolated edge is (1, c)-choosable and the known results in this area
mostly concern the maximum degree instead: Seamone showed in [7] that any graph G
without an isolated edge is (1, 2∆(G) + 1)-choosable and other linear bounds have also
been proven in [3], [5] and [8]. The best result so far is the result by Ding et al. [2]
mentioned by Wong and Zhu in [9] which says that any graph G without an isolated
edge is (1,∆(G) + 1)-choosable. The present paper shows that any graph G without an
isolated edge is (1, 2dlog2(∆(G))e + 1)-choosable, replacing the linear term of ∆(G) by
a logarithmic term. This is implied by a slightly stronger statement which is proved in
the next section. The proof describes a linear time algorithm for finding appropriate edge
weights.

2 (1, φ)-choosablity

Let G be a graph, let k be a natural number and let φ : E(G) → N be a mapping. A
(k, φ)-list assignment to G is an assignment of lists Le ⊂ R, e ∈ E(G) to the edges of
G such that the size of any list Le is φ(e), together with an assignment of k-element
lists Lv ⊂ R, v ∈ V (G) to the vertices. We say that G is (k, φ)-choosable if for any
(k, φ)-list assignment to G there exists a total weighting w : E(G)∪V (G)→ R of G such
that for any edge e = uv we have that w(u) +

∑
e∈E(u)w(e) 6= w(v) +

∑
e∈E(v)w(e) and

that w(v) ∈ Lv for any vertex v ∈ V (G) and w(e) ∈ Le for any edge e ∈ E(G). Given
a total weighting w : E(G) ∪ V (G) → R of a graph G and a vertex u in G the term
w(u) +

∑
e∈E(u)w(e) is also called the colour of u induced by w and is denoted by Cw(u).

If for two adjacent vertices u, v we have Cw(u) = Cw(v), then we call this pair of vertices
a conflict.
In the following we prove that any graph without isolated edges is (1, φ)-choosable when
φ : E(G) → N is defined by φ(e) = dlog2(d(u))e + dlog2(d(v))e + 1 for e = uv ∈ E(G).
The proof describes an algorithm for finding appropriate edge weights and greedily assigns

the electronic journal of combinatorics 28(2) (2021), #P2.11 2

as small edge-weights as possible. This is done stepwise where in each step we choose a
special vertex v and assign the smallest possible weights to all edges incident to v while
increasing the weight on an edge in E(u) \ E(v) for each neighbour u of v in order to
avoid the potential conflicts between u and its neighbours. This greedy approach is the
main idea of the algorithm, but some additional procedures are needed in order to ensure
that we end up with no conflicts.

Theorem 1. Any graph G without an isolated edge is (1, φ)-choosable when φ : E(G)→ N
is defined by φ(uv) = dlog2(d(u))e+ dlog2(d(v))e+ 1 for uv ∈ E(G).

Proof. Let G be a graph with n vertices and without any isolated edges. Let e1, . . . , em
denote the edges of G. For any vertex v let sv denote the prescribed weight (making
up the list of size 1) on v and for j = 1, . . . ,m let Lj = {tj,1, . . . , tj,φ(ej)} be a list
associated with ej and assume that the ordering is such that tj,1 < . . . < tj,φ(ej). We
will, through a number of steps, recursively construct a sequence of total weight functions
wi : V (G)∪E(G)→ R for i = 0, . . . , k+ 1 6 n+ 1 where each wi+1 will be a modification
of wi and where wk+1 will be our final total weight function. All the total weight functions
will agree with the lists assigned to the edges, that is, wi(ej) ∈ Lj and wi(v) = sv for all
i = 0, . . . , k + 1 and j = 1, . . . ,m and all vertices v ∈ V (G). A “step” in the algorithm
is when we move from considering wi to considering wi+1, so the algorithm will consist of
k+ 1 steps and in each step we define a set of edges whose weights will never be changed
again. This defines a sequence of edge sets ∅ = E0 ⊂ E1 ⊂ · · · ⊂ Ek+1 = E(G). For each
edge ej = uv we define three values fu(ej) ∈ [0, dlog2(d(u))e], fv(ej) ∈ [0, dlog2(d(v))e] and
f(ej) = fu(ej) +fv(ej) + 1. These values might be modified through the k+ 1 steps of the
algorithm so for each edge ej we let fu,i(ej), fv,i(ej) and fi(ej) = fu,i(ej)+fv,i(ej)+1 denote
the values within and after the i’th step. If nothing else is explicitly stated it will always
be the case that fu,i(ej) = fu,i−1(ej), fv,i(ej) = fv,i−1(ej) and fi(ej) = fu,i(ej)+fv,i(ej)+1.

We will also define a sequence of subsets of V (G) × E(G): ∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tk
during the first k steps of the algorithm. Each element (v′, uv) of Tk will represent a
triangle v′uv in the graph where the only possible conflicts are between v′ and u or v′ and
v. These potential conflicts will be the only possible conflicts after the first k steps of the
algorithm and they will be disposed of in the last part of the algorithm.
In the algorithm we will in each of the first k steps choose at most four vertices and extend
a vertex set Vi, which is initialized as V0 = ∅, by adding those vertices. This will define a
sequence of vertex sets ∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vk.

The algorithm consists of two parts: Procedure 1 followed by Procedure 2 described
below. The first part, Procedure 1, is a greedy way to assign the edge-weights and
allows us to keep track of potential conflicts. These conflicts will then be disposed of in
Procedure 2.

the electronic journal of combinatorics 28(2) (2021), #P2.11 3

Procedure 1 Greedy weight-choosing

1: Define i = 1, E0 = ∅, V0 = ∅, T0 = ∅, fu,0(ej) = fv,0(ej) = 0 and w0(ej) = tj,f0(ej) for
all j = 1, . . . ,m and w0(v) = sv for all vertices v ∈ V (G).

2: while Ei 6= E(G) do
3: Choose a vertex vi in the set V (G) − Vi−1 minimizing Cwi−1

(vi) and subject to
that, incident to the fewest number of edges in E(G)− Ei−1.

4: if G−(Ei−1∪E(vi)) contains no isolated edge uv where Cwi−1
(u) = Cwi−1

(v) then
5: Define Vi = Vi−1 ∪ {vi} and Ei = Ei−1 ∪ E(vi) and Ti = Ti−1.
6: for each edge viv in E(vi)− Ei−1 do
7: if E(v)− Ei 6= ∅ then
8: Choose an edge e = vw in E(v)− Ei minimizing fv,i−1(e) and define
9: fv,i(e) = fv,i−1(e) + 1.

10: for any edge ej ∈ E(G) do
11: Define wi(ej) = tj,fi(ej).

12: if G−(Ei−1∪E(vi)) contains an isolated edge uv where Cwi−1
(u) = Cwi−1

(v) then
13: if u is adjacent to vi and v is not adjacent to vi as in Figure 1 then
14: Define Vi = Vi−1 ∪ {v} and Ei = Ei−1 ∪ E(v) and Ti = Ti−1.
15: Define fu,i(viu) = fu,i−1(viu) + 1.
16: for any edge ej ∈ E(G) do
17: Define wi(ej) = tj,fi(ej).

18: if Cwi
(vi) = Cwi

(u) and uvi is an isolated edge in G− Ei then
19: Define fu,i(uv) = fu,i−1(uv) + 1.

20: if both u and v are adjacent to vi then
21: if vi is not incident to an isolated edge viv

′ in G − (Ei−1 ∪ {uv, viu, viv})
then

22: Vi = Vi−1 ∪ {u, v}, Ei = Ei−1 ∪ {uv, viu, viv}, Ti = Ti−1 ∪ {(vi, uv)}.
23: Define fu,i(viu) = fu,i−1(viu) + 1.
24: for any edge ej ∈ E(G) do
25: Define wi(ej) = tj,fi(ej).

26: if vi is incident to an isolated edge viv
′ in G− (Ei−1 ∪ {uv, viu, viv}) then

27: Vi = Vi−1 ∪ {u, v, vi, v′}, Ei = Ei−1 ∪ {uv, viu, viv, viv′},
28: Ti = Ti−1 ∪ {(vi, uv)}.
29: Define fu,i(viu) = fu,i−1(viu) + 1.
30: if now Cwi

(vi) = Cwi
(v′) then

31: Redefine fu,i(viu) = fu,i−1(viu) + 2.

32: for any edge ej ∈ E(G) do
33: Define wi(ej) = tj,fi(ej).

34: Replace i with i+ 1.

the electronic journal of combinatorics 28(2) (2021), #P2.11 4

vi

u v

vi

u v

+1 +1

+1

Figure 1: An illustration of the situation in line 13 in Procedure 1 (left) and of the
situation in line 28 (right). Dashed edges indicate edges in Ei−1.

u v

v
0

+1 or +2

Figure 2: An illustration of Procedure 2.

When Procedure 1 terminates we have a well-defined weight function wk : E(G)→ R and
a set Tk ⊂ V (G) × E(G) representing some triangles in G. Let (u1, e1), . . . , (u|Tk|, e|Tk|)
denote the elements of Tk enumerated in the order they appear in Procedure 1. Note
that when we repair conflicts in Procedure 2 below, we consider the triangles in Tk in
reverse order starting with (u|Tk|, e|Tk|). When Procedure 2 terminates we have a weight
function wk+1 and it remains to show that for any pair of adjacent vertices u, v we have
Cwk+1

(u) 6= Cwk+1
(v) and that fk+1(e) 6 φ(e) holds for any edge e ∈ E(G).

the electronic journal of combinatorics 28(2) (2021), #P2.11 5

Procedure 2 Finalisation (Defining wk+1 repairing conflicts in triangles in Tk, see Fig-
ure 2).

1: for i = |Tk| . . . 1 do
2: Define (v′, uv) = (ui, ei).
3: if one of u, v, say, v has the same colour as v′ then
4: Define fv,k+1(uv) = fv,k(uv) + 1.

5: if now u has the same colour as v′ then
6: Define fv,k+1(uv) = fv,k(uv) + 2.

7: for any edge ej ∈ E(G) do
8: Define wk+1(ej) = tj,fk+1(ej).

First we prove that for any edge uv we have Cwk+1
(u) 6= Cwk+1

(v). To do this we look at
three different cases:

1. (v′, uv) /∈ Tk for all v′ ∈ V (G) and (u, e′) /∈ Tk and (v, e′) /∈ Tk for all
e′ ∈ E(u) ∪ E(v).

2. (v′, uv) ∈ Tk for some v′ ∈ V (G).

3. (u, e′) ∈ Tk or (v, e′) ∈ Tk for some e′ ∈ E(u) ∪ E(v).

Case 1:
We look at two separate subcases.

Subcase 1.1: For some i 6 k the edge uv is isolated in G− Ei.
Let i 6 k be the smallest index such that uv is an isolated edge in G− Ei. In a later

loop of Procedure 1 one of u, v, say u, is chosen as the vertex with minimum potential.
That is, for some smallest i′ > i we have u = vi′ , v /∈ Vi′ and u /∈ Vi′−1. Since uv is an
isolated edge in G−Ei and hence also in G−Ei′−1 it follows from lines 4-11 in Procedure 1
that in the i′’th loop of Procedure 1 no edge-weights changed and Ei′ = Ei′−1∪{uv}. Also
the weight of uv does not change during Procedure 2. Thus, Cwi

(u) = Cwk
(u) = Cwk+1

(u)
and Cwi

(v) = Cwk
(v) = Cwk+1

(v), so it suffices to show that Cwi
(u) 6= Cwi

(v). If the
if-statement in line 4 of Procedure 1 was satisfied in the i’th loop Cwi

(u) 6= Cwi
(v) follows

immediately, so we can assume that the if-statement in line 12 was satisfied in the i’th
loop of Procedure 1. Furthermore, if the if-statement in line 20 was satisfied, then it
follows from the lines 20-33, that any isolated edge in G − Ei is also an isolated edge in
G−Ei−1 and this contradicts the choice of i. Thus, we can assume that the if-statement
in line 13 was satisfied in the i’th loop of Procedure 1. Now it follows from lines 13-19 in
Procedure 1 that Cwi

(u) 6= Cwi
(v).

the electronic journal of combinatorics 28(2) (2021), #P2.11 6

Subcase 1.2: For all i 6 k the edge uv is not isolated in G− Ei.
Let i 6 k be the smallest index such that uv ∈ Ei. Without loss of generality we can

assume that v /∈ Vi−1, v ∈ Vi and u /∈ Vi−1. If also u ∈ Vi, then since (v′, uv) /∈ Tk for all
v′ ∈ V (G), it follows from Procedure 1 that the if-statements in lines 12, 20 and 26 were
satisfied in the i’th loop of Procedure 1 and that uv is a pendant edge in a component
of G− Ei−1 which is isomorphic to a triangle with a pendant edge added. In this case it
follows from lines 26-33 in Procedure 1 that Cwi

(u) 6= Cwi
(v) and since E(u)∪E(v) ⊂ Ei

this implies that Cwk
(u) 6= Cwk

(v). Furthermore, since (v′, uv) /∈ Tk for all v′ ∈ V (G) and
(u, e′) /∈ Tk and (v, e′) /∈ Tk for all e′ ∈ E(u)∪E(v), the weight of u or v does not change
in Procedure 2 and hence Cwk+1

(u) 6= Cwk+1
(v). Thus we can assume u /∈ Vi and since

(v′, uv) /∈ Tk for all v′ ∈ V (G) and (u, e′) /∈ Tk and (v, e′) /∈ Tk for all e′ ∈ E(u) ∪ E(v)
we can assume that either the if-statement in line 4 or both the if-statements in lines 12
and 13 in Procedure 1 were satisfied in the i’th loop of Procedure 1. If the if-statement
in line 4 was satisfied then Cwi

(v) < Cwi
(u) follows from lines 4-11 in Procedure 1 since

uv is not an isolated edge in G − Ei−1. Also if the if-statements in lines 12 and 13 were
satisfied Cwi

(v) < Cwi
(u) follows from lines 12-17 in Procedure 1. Thus we have that

Cwi
(v) < Cwi

(u). More over in both cases, Cwk+1
(v) = Cwi

(v) and (x, yv) /∈ Tk for all
x, y ∈ V (G), and hence Cwk+1

(v) = Cwi
(v) < Cwi

(u) 6 Cwk+1
(u).

Case 2: Let i be the smallest index such that (v′, uv) ∈ Ti for some v′ ∈ V (G). Since
we put (v′, uv) into Ti we have Cwi−1

(u) = Cwi−1
(v). By lines 20-33 in Procedure 1, we

increased the value of Cwi−1
(u) to make sure that Cwi

(u) 6= Cwi
(v) and never changed

these two values before Procedure 2. Also, it follows from the lines 2-6 in Procedure 2 that
we can only change the value of wk(uv), but not wk(uv

′) or wk(vv
′) in the finalisation.

Thus we have that

Cwk+1
(u) = Cwi

(u)− wi(uv) + wk+1(uv) 6= Cwi
(v)− wi(uv) + wk+1(uv) = Cwk+1

(v).

Case 3: Assume that (u, e′) ∈ Tk and e′ = vv′. At some point in Procedure 2 the triangle
(u, e′) is considered. Note that there might exist a vertex u′ and an edge e′′ incident to
u such that (u′, e′′) ∈ Tk. If this is the case then that triangle (u′, e′′) appeared later
than (u, e′) in Procedure 1 and is therefore considered earlier than (u, e′) in Procedure 2
(see Figure 3). This implies that at the time Procedure 2 reaches (u, e′) and throughout
the rest of Procedure 2 the colour of u does not change. By lines 2-6 in Procedure 2 we
change the value of wk(e

′) ensuring Cwk+1
(u) 6= Cwk+1

(v) as well as Cwk+1
(u) 6= Cwk+1

(v′).
So Cwk+1

(u) 6= Cwk+1
(v).

It remains to show that fk+1(e) 6 φ(e) = dlog2(d(u))e + dlog2(d(v))e + 1 holds for any
edge e = uv in G. This time we also look at the three different cases mentioned above:

Case 1: Let ` be the smallest index such that uv ∈ E`. We may without loss of generality
assume v /∈ V`−1, v ∈ V` and u /∈ V`−1. We start by looking at how large fu,`−1(e) can
possibly be. This is the number of times fu,i(e) (for i = 0, . . . , `− 1) has increased during
Procedure 1 before the step where uv was added to E`. Suppose we increase fu,i−1(e)

the electronic journal of combinatorics 28(2) (2021), #P2.11 7

u

v

v′

e′

e′′u′

Figure 3: An illustration of how two triangles (u′, e′′) and (u, e′) in Tk can appear in G.
In this case (u′, e′′) will be considered before (u, e′) in Procedure 2.

in the steps i = i1, i2, . . . , ifu,`−1(e). Since we are interested in an upper bound for fu,i(e)
we may assume that in any step j′ where Procedure 1 chose a vertex in N(u) as vj′ and
e minimized fu,j′−1(x) for x ∈ E(u) − Ej′ , the edge e was chosen (even if there where
multiple minimizers) in line 8 in Procedure 1. Note that this implies that in each of the
steps ij for j ∈ {1, . . . , fu,`−1(e)} the term fu,ij−1(x) is constant for x ∈ E(u)− Eij .
In step i1 a vertex in N(u) was picked as vi1 and put into Vi1 and fu,i1−1(e) was increased
by 1. Note that by the above we can assume that Vi1 ∩ N(u) = {vi1}. In step i2
another vertex in N(u) was picked as vi2 and fu,i2−1(e) was increased because fu,i2−1(x)

was constant for x ∈ E(u) − Ei2 . Since fu,i2−1(e) = 1 it follows that at least
⌊
d(u)
2

⌋
of the edges incident to u were in Ei2−1, see Figure 4. Similarly, for step i3 we have

|(E(u)− Ei2) ∩ Ei3−1| >
⌊
|E(u)−Ei2

|−1
2

⌋
. Hence

|E(u) ∩ Ei3−1| = |E(u) ∩ Ei2 |+ |(E(u)− Ei2) ∩ Ei3−1|

> |E(u) ∩ Ei2|+
⌊
|E(u)− Ei2| − 1

2

⌋
= |E(u) ∩ Ei2−1|+ 1 +

⌊
|E(u)− Ei2−1| − 2

2

⌋
= |E(u) ∩ Ei2−1|+

⌊
|E(u)− Ei2−1|

2

⌋
Note this is a non-decreasing function of |E(u) ∩ Ei2−1|, we have

|E(u) ∩ Ei3−1| = |E(u) ∩ Ei2−1|+
⌊
|E(u)− Ei2−1|

2

⌋
>

⌊
d(u)

2

⌋
+

⌊
d(u)
2

2

⌋

=
2∑
r=1

⌊
d(u)

2r

⌋
.

the electronic journal of combinatorics 28(2) (2021), #P2.11 8

We continue counting in this way and we get the following for all j = 1, . . . , fu,`−1(e):

|E(u) ∩ Eij−1| >
j−1∑
r=1

⌊
d(u)

2r

⌋
and

⌊
d(u)

2j−1

⌋
> 0.

Furthermore, note that for all j ∈ {1, . . . , fu,`−1(e)} we have |E(u) ∩ Eij−1| < d(u) − 1
since uv /∈ Eij−1 and uw /∈ Eij−1 for some w ∈ N(u) \ {v} (where w ∈ N(u) is the vertex
we choose to put into Vij in step ij). Thus we have

fu,`−1(e)−1∑
r=1

⌊
d(u)

2r

⌋
< d(u)− 1,

which together with
⌊

d(u)

2
fu,`−1(e)−1

⌋
> 0 implies fu,`−1(e) 6 dlog2(d(u))e. We can repeat the

above analysis for fu,`−1(e) and get fv,`−1(e) 6 dlog2(d(v))e. If none of fu,`−1(e), fv,`−1(e)
increases in step ` of Procedure 1 we now get

fk+1(e) = f`−1(e) = fu,`−1(e) + fv,`−1(e) + 1 6 dlog2(d(u))e+ dlog2(d(v))e+ 1 = φ(e).

Thus, we may assume that one of fu,`−1(e), fv,`−1(e), say fu,`−1(e) increases in step ` of
Procedure 1. Since (u, e′) /∈ Tk and (v, e′) /∈ Tk for all e′ ∈ E(u) ∪ E(v) it must be that
the if-statement in lines 12, 13 and 18 were satisfied in the `’th loop of Procedure 1 and
u is a vertex of degree 2 in G − E`−1 and v is a vertex of degree 1 in G − E`−1. In this
case we have |E(u) ∩ Eij−1| < d(u)− 2 for all j ∈ {1, . . . , fu,`−1(e)} and so we get:

fu,`−1(e)−1∑
r=1

⌊
d(u)

2r

⌋
< d(u)− 2,

which together with
⌊

d(u)

2
fu,`−1(e)−1

⌋
> 0 implies fu,`−1(e) 6 dlog2(d(u))e − 1. Hence

fk+1(e) = f`(e) = fu,`(e) + fv,`(e) + 1

= fu,`−1(e) + 1 + fv,`−1(e) + 1

6 dlog2(d(u))e − 1 + 1 + dlog2(d(v))e+ 1

= φ(e)

Case 2: Let i be the smallest index such that (v′, uv) ∈ Ti for some v′ ∈ V (G). As in
Case 1, since |E(u)− Ei−1| = 2 we have fu,i−1(e) 6 dlog2(d(u))e − 1. Similarly

fv,k(e) = fv,i−1(e) 6 dlog2(d(v))e − 1,

thus fk(e) 6 dlog2(d(u))e+ dlog2(d(v))e − 2 + 1. Within Procedure 2, we increase fk(uv)
at most twice, so fk+1(e) 6 dlog2(d(u))e+ dlog2(d(v))e+ 1 6 φ(e).

Case 3: In this case without loss of generality we may assume there is a vertex v′ and
an edge e′ = vv′ such that (u, e′) ∈ Tk. Let i be the index in Procedure 1 where we put v

the electronic journal of combinatorics 28(2) (2021), #P2.11 9

u v1

1

00

0

0
0

u v1

1

00

1

0
0

u v2

1

00

1

0
0

u v2

1

00

2

0
0

u v3

1

00

2

0
0

step j1 step j2 step j3

step j4 step j5

Figure 4: An illustration of how edge weights can increase during Procedure 1. The five
graphs illustrate the same vertices in five different steps j1, . . . , j5 in the algorithm. A
number on an edge e indicates how many times fu(e) has been increased and the red
colour indicates vertices belonging to Vj1 , . . . , Vj5 . The five shown steps illustrate how
the neighbours of u are, one by one, added into Vj1 , . . . , Vj5 in such a way that fu(uv) is
increased as many times as possible. This can be thought of as a worst case scenario for
fu(uv).

and v′ together into Vi. At this step in Procedure 1 it follows from the same arguments
as in Case 1 that fu,i−1(e) 6 dlog2(d(u))e−1 as well as fv,i−1(e) 6 dlog2(d(v))e−1, which
means fi−1(e) 6 dlog2(d(u))e + dlog2(d(v))e − 2 + 1. Furthermore, in step i we increase
fi−1(e) at most twice and never change its value afterwards, thus fk+1(e) 6 φ(e).

Acknowledgements

The authors would like to thank John Gimbel and referees for careful reading of the
manuscript.

References

[1] T. Bartnicki, J. Grytczuk, S. Niwczyk. Weight Choosability of Graphs, Journal of
Graph Theory. 60 (3) (2009), 242-256.

[2] L. Ding, A. Duh, G. Wang, T. Wong, J. Wu, X. Yu, X. Zhu. Graphs are (1,∆ + 1)-
choosable, manuscript, (2015).

the electronic journal of combinatorics 28(2) (2021), #P2.11 10

[3] J. Fu, G. Wang, J. Wu, J. Xu. A note on edge weight choosability of graphs, Discrete
Mathematics Algorithms and Applications 6 (1) (2014) 1450010.

[4] M. Karoński, T. Luczak, A. Thomason. Edge weights and vertex colours, Journal
of Combinatorial Theory Series B. 91 (2004), 151-157.

[5] H. Pan, D. Yang. On total weight choosability of graphs. Journal of Combinatorial
Optimization 25 (2013) 766-783.

[6] J. Przyby lo, M. Woźniak. On a 1,2 conjecture, Discrete Mathematics and Theoretical
Computer Science. 12 (1) (2010), 101-108.

[7] B. Seamone. Bounding the monomial index and (1,l)-weight choosability of a graph,
Discrete Mathematics and Theoretical Computer Science. 16 (3) (2014), 173-188.

[8] G. Wang, G. Yan. An Improved Upper Bound on Edge Weight Choosability of
Graphs, Graphs and Combinatorics 31 (5) (2014), 1789–1793.

[9] T. Wong, X. Zhu. Total weight choosability of d-degenerate graphs,
arXiv:1510.00809.

[10] T. Wong, X. Zhu. Every graph is (2,3)-choosable, Combinatorica 36 (1) (2016),
121-127.

the electronic journal of combinatorics 28(2) (2021), #P2.11 11

https://arxiv.org/abs/1510.00809

	Introduction
	–choosablity

