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Abstract

A maximum sequence S of vertices in a graph G, so that every vertex in S has
a neighbor which is independent, or is itself independent, from all previous vertices
in S, is called a Grundy dominating sequence. The Grundy domination number,
γgr(G), is the length of S. We show that for any forest F , γgr(F ) = |V (T )| − |P|
where P is a minimum partition of the non-isolate vertices of F into caterpillars in
which if two caterpillars of P have an edge between them in F , then such an edge
must be incident to a non-leaf vertex in at least one of the caterpillars. We use this
result to show the strong product conjecture of B. Brešar, Cs. Bujtás, T. Gologranc,
S. Klavžar, G. Košmrlj, B. Patkós, Zs. Tuza, and M. Vizer, Dominating sequences
in grid-like and toroidal graphs, Electron. J. Combin. 23(4): P4.34 (2016), for
all forests. Namely, we show that for any forest G and graph H, γgr(G � H) =
γgr(G)γgr(H). We also show that every connected graph G has a spanning tree T
so that γgr(G) 6 γgr(T ) and that every non-complete connected graph contains a
Grundy dominating set S so that the induced subgraph of S contains no isolated
vertices.

Mathematics Subject Classifications: 05C69, 05C76
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1 Introduction

For any graph G, a sequence of vertices S = (v1, . . . , vk) is called a legal sequence if
for every i ∈ [k], N [vi] −

⋃i−1
j=1N [vj] 6= ∅. A longest legal sequence is called a Grundy

dominating sequence of G and the size of such a sequence is called the Grundy domination
number and is denoted by γgr(G).

Grundy domination was introduced in [6] several years ago, inspired by the much
studied game domination number and the domination game. Since then, a multitude of
papers have been published on aspects of this function and its variants, e.g. [7, 2, 3, 1].

A principal direction of inquiry in the original paper [6] was to understand γgr(T ) for
any tree T . To describe the results of that paper, call ES(T ) the end support vertices of
T which are support vertices (non-leaves adjacent to a leaf) each of which are adjacent to
at most one non-leaf vertex of T . For a lower bound, the authors produced an algorithm
to find a legal sequence of T of length at least |V (T )| − |ES(T )| + 1. To find an upper
bound, the authors defined an equivalence relation between end support vertices with
equivalence classes T̃ . They then proved that the Grundy domination number does not
exceed |V (T )| − |ES(T )|+ |T̃ |. To summarize, the authors showed that for any tree T ,

|V (T )| − |ES(T )|+ 1 6 γgr(T ) 6 |V (T )| − |ES(T )|+ |T̃ |. (1)

Another collection of natural questions for domination functions concern their behavior
on graph products, inspired by the famous Vizing’s conjecture [8], which states that for
any graphs G and H, if � is the Cartesian product of graphs,

γ(G�H) > γ(G)γ(H). (2)

In [2], the authors investigated relations between the Grundy domination number of
various graph products as they related to the Grundy domination numbers of the factor
graphs. An outstanding conjecture concerned the strong product of graphs �. For any
graphs G and H, the strong product G�H is the graph on the vertices in (g, h) for every
g ∈ V (G) and h ∈ V (H). Any pair of vertices (g1, h1) and (g2, h2) are adjacent if either

1. g1 = g2 and h1 is adjacent to h2 in H, or

2. g1 is adjacent to g2 in G and h1 = h2, or

3. g1 is adjacent to g2 in G and h1 is adjacent to h2 in H.

The authors easily showed that for any graphs G and H,

γgr(G�H) > γgr(G)γgr(H) (3)

and posed

Conjecture 1. For any graphs G and H,

γgr(G�H) = γgr(G)γgr(H).
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Among other results, the authors showed this conjecture holds if G is a caterpillar tree
and H is any graph.

In this paper, we find an exact formula for the Grundy domination number of forests.
In Section 3, we show that for any forest F , γgr(F ) = |V (F )|− |P| where P is a minimum
partition of the non-isolate vertices of F into caterpillars in which if two caterpillars of
P have an edge between them in F , then such an edge must be incident to a non-leaf
vertex in at least one of the caterpillars. In Section 4 we use our result for forests to show
Conjecture 1 true when G is a forest. In section 5 we show that every connected graph
G has a spanning tree with Grundy domination number at least as large as γgr(G). We
also show that every non-complete connected graph contains a Grundy dominating set S
so that the induced subgraph of S contains no isolated vertices.

2 More definitions and known results

We follow established notation from [2] which can also be found in other papers on the
subject. For any legal sequence S = (v1, . . . , vk) we call the set of vertices composed of the

vertices from the sequence a legal set and write Ŝ = {v1, . . . , vk}. For any i ∈ [k], we say
that vi footprints the vertices N [vi]−

⋃i−1
j=1N [vj] and that the vertices of N [vi]−

⋃i−1
j=1N [vj]

are footprinted by vi or the footprint of vi. Also, we say that vi is the footprinter of
N [vi]−

⋃i−1
j=1N [vj].

For notational convenience, when producing a legal sequence for a graph G, we identify
labels on vertices of G with the indices of the legal sequence. That is, a label on a vertex
will indicate the sequential position of that vertex.

Let G and H be arbitrary graphs. For any h ∈ V (H), define the G-fiber of G � H
with respect to h as the induced subgraph on {(g, h) ∈ G�H : g ∈ V (G)} and denote it
by Gh. Similarly, for any g ∈ V (G), define the H-fiber of G�H with respect to g as the
induced subgraph on {(g, h) ∈ G�H : h ∈ V (H)} and denote it by Hg.

A tree C is called a caterpillar if for a maximum path P of C, every vertex is of
distance at most 1 from P . A consequence of inequalities (1) from [6], is that if a tree C
is a caterpillar, then γgr(C) = |V (G)| − 1.

A vertex is called simplicial if its neighbors form a clique. The following result was
shown in [2] but we state the proof here for completeness.

Proposition 2. [2] For any graphs G and H, if v is a simplicial vertex of G, then

γgr(G�H) 6 γgr(H) + γgr((G− v)�H)

Proof. Among all Grundy dominating sequences of G � H, let D be one that has the
maximum number of vertices from Hv. Let D1 be the subsequence of D consisting of
the vertices in D̂ ∩ Hv and D2 = D − D1. Notice that by projecting D̂1 onto H we
obtain vertices that form a legal sequence of H, taken in the same order as D1. Call this
projected sequence pH(D1). To see this, assume that a vertex (v, y) ∈ D̂1 footprints a
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vertex (v′, y′) ∈ G � H and notice that in H, y must footprint y′ with respect to the

sequence pH(D1). Thus, |D̂1| 6 γgr(H).
Notice that if u is a neighbor of v in G and for some h1 in H, (u, h1) footprints (v, h2)

for some h2 in H, then since v is simplicial, (u, h1) may be replaced by (v, h1) in D
to produce a legal sequence with more vertices from Hv than D. This contradicts the
maximum choice of D. Hence, no vertex of D̂2 footprints a vertex in Hv. This means
that D2 is a legal sequence of (G− v)�H. Thus, we have the desired inequality

γgr(G�H) = |D̂1|+ |D̂2| 6 γgr(H) + γgr((G− v)�H).

A vertex u is called a twin vetex if there exists another vertex v so that N [u] = N [v].
The next three results were shown in [5].

Theorem 3. [5] If G is a graph and e ∈ E(G), then

γgr(G)− 1 6 γgr(G− e) 6 γgr(G) + 1.

Moreover, there exist graphs G such that all values of γgr(G− e) between γgr(G)− 1 and
γgr(G) + 1 are realized for different edges e ∈ E(G).

Theorem 4. [5] If G is a graph and v ∈ V (G), then

γgr(G)− 2 6 γgr(G− v) 6 γgr(G).

Moreover, there exist graphs G such that all values of γgr(G− v) between γgr(G)− 2 and
γgr(G) are realized for different vertices v ∈ V (G).

Proposition 5. [5] Let G be a graph and u ∈ V (G).

1. If u is a simplicial vertex, then γgr(G− u) > γgr(G)− 1.

2. If u is a twin vertex, then γgr(G− u) = γgr(G).

3 Grundy domination of forests

Let C be a caterpillar with more than one vertex. Choose a path P = {v1, . . . , vk} of
maximum length with leaves v1, vk and the rest of the vertices of P non-leaf vertices. For
i ∈ {2, . . . , k− 1}, let Li indicate the set of leaf neighbors of vi. We now define a labeling
on C which we will show produces a legal sequence of C.

Algorithm 1 (Caterpillar Labeling). Starting with v2, label the vertices in L2 by consec-
utive integers starting from 1. If k = 2, then stop. Otherwise, label v2 by the next
consecutive integer. Continue labeling L3 by the next consecutive integers. If k = 3,
then stop. Otherwise, label v3 by the next consecutive integer. Repeat these steps for all
non-leaf vertices in order along P , ending at vk−1 but in the last step label all but one
vertex of Lk−1 and then label vk−1.
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Proposition 6. For any caterpillar C, the Caterpillar Labeling produces a length |C| − 1
legal sequence of C.

Proof. Notice that every leaf vertex chosen in the Caterpillar Labeling footprints itself.
For i ∈ {2, . . . , k−2}, vi footprints vi+1. Finally, vk−1 footprints the unlabeled leaf in Lk−1.

For any forest F , a minimum caterpillar partition of F , P , is a partition of the non-
isolate vertices of F into sets C1, . . . , C` so that

1. For any i, the induced subgraph on Ci is a caterpillar.

2. If for some i and j, there is an edge between a vertex of Ci and Cj in T , then that
edge must be adjacent to a non-leaf vertex of the induced subgraph on Ci or Cj.

3. P is chosen to have the minimum number of caterpillars.

We may refer to a minimum caterpillar partition of a forest F as P(F ). For any
minimum caterpillar partition P of a forest F we call the edges of F between caterpillars
of P , branch edges and the endpoints of branch edges, branch vertices. We say that
a caterpillar C ∈ P is a leaf caterpillar if it contains only one branch vertex. Two
caterpillars in P are neighbors if there is a branch edge between them.

We now introduce the useful concept of the structure produced by contracting cater-
pillars in a minimum caterpillar partition of a forest. For any forest F with minimum
caterpillar partition P , we define the canopy graph as the graph CP (F,P), or just CP
when clear from context, with vertex set corresponding to the caterpillars of P contracted
to vertices. If P = {C1, . . . , C`}, then we write V (CP ) = {c1, . . . , c`}. Two vertices ci
and cj of CP are adjacent if the corresponding caterpillars Ci and Cj are neighbors.

Observation 7. For any caterpillar partition P of a forest F , CP (F,P) is a forest.

Proof. Notice that any cycle in CP can be extended to a cycle in F , yielding a contra-
diction.

Suppose P = {C1, . . . , C`} and that for any i ∈ [`], Ci contains b(i) branch vertices.
Let L be a maximum path of Ci represented from left to right. If v is a vertex of L, we
say that the position of v is 1 when v is the left-most vertex on L. If v is some other
vertex of L, then the position of v is one plus the distance from the vertex of position 1.
If v is a vertex not on L, then the position of v is the distance of v from the vertex of
position 1. Let us define the branch vertices of Ci as vi1 , . . . , vib(i) where ij < ij′ when the
position of vij is smaller than the position of vij′ . Define the rank of a branch vertex vij
as j.

In other words, the rank of a branch vertex on Ci is one plus the number of branch
vertices that preceded it (with respect to position) on Ci, when counting from left to right.
We note here that there may be more than one branch vertex with the same position.

We say that an integer label is available if it has not been used previously on a vertex.
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Lemma 8. For any minimum caterpillar partition P of a forest F , if F contains a
component which is not a caterpillar, then there exist distinct integers i and j between 1
and ` such that Ci and Cj each contain vertices which are adjacent in F and have rank 1.

Proof. Choose a caterpillar, say C1, contained in a component which is not a caterpillar,
and call the vertex on C1 of rank 1, u1. If u1 is adjacent to a vertex of rank 1 on another
caterpillar, the proof is complete. Otherwise, say u1 is adjacent to a vertex on a caterpillar
of P − C1, C

′
2. Call the vertex of rank 1 on C ′2, u2. If u2 is adjacent to a vertex of rank

1 on another caterpillar, the proof is complete. Otherwise, say u2 is adjacent to a vertex
on a caterpillar of P − C1 − C ′2, C ′3. Continue this process and notice that it must result
in a vertex of rank 1 adjacent to another vertex of rank 1, since there are finitely many
caterpillars in P .

Algorithm 2 (Forest Labeling). Let F be a given non-trivial forest. For the forest F ,
choose a minimum caterpillar partition P = {C1, . . . , C`}. For every i ∈ [`], define the
branch vertices of Ci as vi1 , . . . , vib(i) . In the labeling that follows, we label vertices by
consecutive integers, starting with 1. Perform the following labeling for every i ∈ [`].

1. Set j = 1 and set F1 = F .

2. For every i, perform the Caterpillar Labeling on Ci on all non-labeled vertices up
to the vertices of the same position as the branch vertex of rank 1, except for the
branch vertices on that position, if such a vertex exists. If no such vertex exists,
perform the caterpillar labeling on the remaining non-labeled vertices of Ci.

3. For all branch vertices of rank 1 that do not have the largest position of all vertices
on the caterpillar to which they belong, label the branch vertices of rank 1 which
are adjacent to other branch vertices of rank 1 by consecutive integers, starting with
the smallest available label. Furthermore, when labeling consecutive branch vertices
such that one is a leaf, label the leaf branch vertex before the non-leaf branch vertex.

4. Label every caterpillar which does not contain an unlabeled branch vertex by the
Caterpillar Labeling

5. Remove all caterpillars which have all but one vertex labeled and then remove all
remaining labeled vertices and their incident edges.

6. Let j = j + 1 and call the remaining forest Fj, then repeat the labeling unless
Fj = ∅.

7. Label all isolate vertices by the next consecutive available labels.

Definition 9. We say a forest F is caterpillar-critical if for any leaf edge e, |P(F − e)| <
|P(F )|.

In other words, a forest is caterpillar-critical if the removal of any leaf edge produces
a forest with fewer caterpillars in any minimum caterpillar partition.
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Lemma 10. Suppose F is a caterpillar-critical forest with minimum caterpillar partition
P. Then any leaf caterpillar C ∈ P is one of the following graphs

1. P2 with one branch vertex

2. P5 with the vertex of position 3 as the only branch vertex of C

Proof. Suppose C is a leaf caterpillar of P which contains a path L = {v1, . . . , vk} of
maximum length.

We first note that C can have no leaf edges of F other than v1v2 and vk−1vk, since
we can remove such an edge without reducing the number of caterpillars in a minimum
caterpillar partition, contradicting the criticality of F . In other words, the removal of
such a leaf edge does not allow for C to combine with another caterpillar to form a new
caterpillar.

Next, we claim that only vertices of L may be branch vertices. Indeed, if v not on
L is a branch vertex, then for any k > 3, v1 and vk are each of distance at least 2 to v.
Now the removal of either edge v1v2 or vk−1vk does not reduce the number of caterpillars
in a minimum caterpillar partition, contradicting the criticality of F . In other words, if
we remove v1v2 or vk−1vk from C, then the resulting caterpillar cannot be combined with
one of its neighbors to create a new caterpillar, which is a contradiction.

Together, these two observations imply that C is a path. Since C is a leaf caterpillar,
it must have exactly one branch vertex. Notice that no branch vertex v of C can be of
distance more than 2 from either v1 (or vk), since otherwise removing v1v2 (vk−1vk) does
not reduce the number of caterpillars in a minimum caterpillar partition. This means
that k 6 5. If k is 3 or 4, then there are two vertices of distance at least 2 to the
neighboring caterpillar to C. In this case, the removal of a leaf edge from C does not
allow us to combine it with its neighbor to form a caterpillar, since otherwise we could
have combined C with its neighbor to form a caterpillar, contradicting the minimality of
P . Again, this contradicts the criticality of F .

Lemma 11. If F is a caterpillar-critical forest so that every minimum caterpillar partition
P does not contain a leaf caterpillar that is P5, then every leaf caterpillar in P is a neighbor
of a caterpillar that is P5 with the central vertex as the only branch vertex.

Proof. Let M be a path of maximum length in the canopy graph CP . If c1 is an end
vertex of M , then by Lemma 10, c1 corresponds to a caterpillar of F which is either P5

or P2 and we must assume the latter. Suppose further that M = {c1, c2, . . . , cm} with
consecutive vertices as neighbors. Let C2 be the caterpillar of F which corresponds to
the vertex c2 in CP . If C2 does not contain a leaf in F , then the leaves in the induced
subgraph of C2 in F , [C2]F , must be branch vertices in F . Since all caterpillars have at
least two leaves, there are at least two such branch vertices. Call one such branch vertex
x and the other y, and call the caterpillar of P containing a branch vertex adjacent to x,
C ′, and the one containing a branch vertex adjacent to y, C ′′. Notice that by maximality
of M and the fact that c1 is an end vertex of L, there exists at most one neighbor of c2
in CP , which is not a leaf of CP , otherwise CP would have a longer path than M . This
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means that either C ′ or C ′′ is a leaf caterpillar in P . Without loss of generality suppose
that it is C ′. Notice that C ′ cannot be P2 since in that case it could be combined with
C2 to produce a larger caterpillar, contradicting the minimality of P . Thus, by Lemma
10, C ′ must be P5, which leads to a contradiction to the preclusion of P5 leaf caterpillars.
Thus, C2 must contain at least one leaf of F .

Next, let L = {v1, . . . , vk} be a path of maximum length of C2 and notice as in the proof
of Lemma 10, since F is caterpillar-critical, C2 can have no leaf edges of F other than v1v2
and vk−1vk. It is also easy to see that k > 5, since otherwise C2 could be combined with
C1 to form a larger caterpillar, contradicting the minimality of the caterpillar partition
P . Furthermore, we may argue as in the proof of Lemma 10 that only vertices of L may
be branch vertices since otherwise the removal of v1v2 or vk−1vk would not reduce the size
of P . This means that C2 is a path.

By the maximality of M in CP , we note that there can be no vertex in CP of distance
2 to c2 which is not on M . This means that any neighbors of c2 other than c1 or c3 must
be leaves, and by assumption, correspond to caterpillars of F which are P2. We now note
that v3 and vk−3 in C2 must be branch vertices since otherwise the removal of v1v2 or
vk−1vk would not reduce the size of P , contradicting the criticality of F .

If k > 5, then C3 is either not adjacent to C2 by a branch edge to v3 or to vk−3.
Without loss of generality, we will assume that C3 is not adjacent to C2 by a branch
edge to v3. Let C be a caterpillar adjacent to C2 by a branch edge to v3. Then C is
a leaf caterpillar P2 = {u1, u2} where u2 is a branch vertex. Note now that we may
produce a new minimum caterpillar partition P ′ from P by combining C1 and C2 into
a leaf caterpillar P5 with the remaining vertices of C2 as its neighbor. That is, we form
a leaf P5 caterpillar from {v1, v2, v3, u2, u1}, we define C ′2 as the caterpillar {v4, . . . , vk},
and we make no alterations to the rest of the caterpillars in P . Since |P ′| = |P|, this
contradicts our assumptions about F . Thus, we conclude that k = 5 and notice that only
v3 can be a branch vertex, so the proof is complete.

Theorem 12. For any forest F , γgr(F ) = |V (F )| − |P|.

Proof. First, notice that by Lemma 8, every iteration of the Forest Labeling can be
initiated. To prove that γgr(T ) > |V (T )|−|P| we argue that the Forest Labeling produces
a legal sequence for any forest F of length |F | − |P|. First, notice that step (2) produces
a legal sequence by the Caterpillar Labeling. In step (3), notice that a branch vertex
which is a leaf footprints itself, and that any branch vertex which is not a leaf footprints
a vertex of position one larger on the same caterpillar. Step (4) produces a legal sequence
by the Caterpillar Labeling. Next, we note that while leaves may footprint themselves
in the Caterpillar Labeling, non-leaf vertices footprint other vertices on the Caterpillar.
This fact justifies the legality of iterating the Forest Labeling for increments of j, since if
vertices that had been removed in the previous iteration footprinted vertices in a current
iteration, the vertices in the current iteration do not only footprint themselves. Finally,
notice that if u is a branch vertex with the largest position on the corresponding caterpillar
C, then u is the only vertex of C which is not in the Grundy dominating sequence.
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Next we show that

γgr(F ) 6 |V (F )| − |P|. (4)

We induct on the size of F , |E(F )|. The statement is true for P2 so we suppose that
it holds for all forests with fewer than m edges. Let F be a forest of size m.

Claim 13. For any forest F , if e is a leaf edge of F , then γgr(F − e) > γgr(F ).

Proof. Let S be a Grundy dominating sequence of F and suppose that e = xy with x a
leaf vertex. Notice that if both x and y are elements of S, then x must be chosen in S
previous to y, else it would not have a footprint in F . Thus, y must footprint some other
vertex in F . This implies that we may choose S for F − e, where x footprints itself as an
isolate.

If x is an element of S but y is not, then we may choose S for F − e and, if y remains
undominated, create the legal sequence S ′ by choosing y as a final vertex and adding it
to S.

If y is an element of S but x is not, then let S ′′ be S with y replaced by x. If y remains
undominated, create the legal sequence S ′′′ by choosing y as a final vertex and adding it
to S ′′.

Notice that in all of these instances, we produce a legal set of F of size at least |S|.
This completes the proof of the claim.

Next, suppose that there exists a leaf edge e so that the size of a minimum caterpillar
partition of F is the same as the size of a minimum caterpillar partition of F − e.

Let P ′ be a minimum caterpillar partition of F − e. By Claim 13, we write

γgr(F ) 6 γgr(F − e) 6 |F − e| − |P ′| 6 |F | − |P|.

We are now left to assume that F is caterpillar-critical. By Lemma 10, every leaf
caterpillar of F is either P2 or P5. Let C be a leaf caterpillar.

Regardless of whether C is P2 or P5, by Lemma 10, it contains exactly one branch
vertex which we will call v. Call the neighbor of v on the neighboring caterpillar, x and
let e = vx.

We note that the size of any minimum caterpillar partition of F is the same as the size
of any minimum caterpillar partition of F −e. By Theorem 3, we need only consider three
possibilities, γgr(F − e) = γgr(F ) + 1, γgr(F − e) = γgr(F ), and γgr(F − e) = γgr(F )− 1.
Let S be a maximum legal sequence of F .

If there is a legal sequence S ′ of F − e, so that |S| = |S ′| − 1, then by the induction
hypothesis,

γgr(F ) = |S| = |S ′| − 1 6 γgr(F − e)− 1 6 |F − e| − |P(F − e)| − 1 = |F | − |P(F )| − 1

which which is a contradiction with the already proved direction of the theorem.
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If there is a legal sequence S ′ of F − e, so that |S| = |S ′|, then by the induction
hypothesis,

γgr(F ) = |S| = |S ′| 6 γgr(F − e) 6 |F − e| − |P(F − e)| = |F | − |P(F )|

which again proves the theorem.

Thus, we restrict our attention to the case when γgr(F ) = γgr(F − e) + 1. Since by the
induction hypothesis together with the lower bound, γgr(F − e) = |F − e| − |P(F − e)| =
|F | − |P(F )|, this implies that

γgr(F ) = |F | − |P(F )|+ 1 (5)

Notice that if either v is not in the footprint of x or x is not in the footprint v, then
S is still a legal sequence of F − e. The same conclusion is attained if neither v nor x
belong to Ŝ. Also, if x ∈ Ŝ and the footprint of x contains v and some other vertex of
F , then S is a legal sequence of F − e. The same is true if v ∈ Ŝ and the footprint of v
contains x and some other vertex of F .

Next we consider the two possibilies for C. Assume C = P5 and that it is composed
of the vertices v1, v2, v3, v4, v5 with leaves v1, v5, where vertices with consecutive indices
are adjacent. This means that the branch vertex v = v3.

Suppose first that {x} is the footprint of v3. Applying the Pigeonhole Principle to

equation (5), either C contains |V (C)| vertices of Ŝ or F − C contains at least |V (F )| −
|V (C)| − |P(F − C)|+ 1 = |V (F )| − |V (C)| − |P(F )|+ 2 vertices of Ŝ.

Suppose C contains |V (C)| vertices of Ŝ. Notice that v1, v5 ∈ Ŝ and that v1 and v5
must come earlier in S than v2 and v4. However, this leads to a contradiction since if v2
came before v4 in S, then v4 cannot be in S, since it would not have a footprint, and if
v4 came before v2, then v2 could not be chosen in S. This means that C cannot contain
|V (C)| vertices.

Suppose F − C contains at least |V (F )| − |V (C)| − |P(F )| + 2 vertices of Ŝ. Since

the footprint of v3 is {x}, we note that Ŝ ∩ (F − C) is a legal set for F − C. Since
|P(F −C)| = |P(F )|−1, by the induction hypothesis we have that any legal set of F −C
must be of size at most |V (F )| − |V (C)| − |P(F − C)| = |V (F )| − |V (C)| − |P(F )| + 1,

which contradicts the assumption on the number of vertices of Ŝ in F − C.

Next, we suppose that {v3} is the footprint of x. Applying the Pigeonhole Principle,

as previously, if we assume that C contains |V (C)| vertices of Ŝ, then v1 and v5 must be

in Ŝ and appear in S before v2 and v4. Again, the appearance of v2 in S precludes v4 and
the appearance of v4 precludes v2.

This means that we may assume that F−C contains at least |V (F )|−|V (C)|−|P(F )|+
2 vertices of Ŝ. First, let us assume that F−C contains exactly |V (F )|−|V (C)|−|P(F )|+2

vertices of Ŝ. Notice that since {v3} is the footprint of x, if v2 ∈ Ŝ, then v2 footprints v1
and so v1 /∈ Ŝ. Similarly, if v4 ∈ Ŝ, then v4 footprints v5 and so v5 /∈ Ŝ. This means that
some two vertices of C are not in Ŝ. However, now we have that

|S| 6 |V (F )| − |V (C)| − |P(F )|+ 2 + |V (C)| − 2 = |V (F )| − |P(F )|.
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Next, assume that F−C contains more than |V (F )|−|V (C)|−|P(F )|+2 vertices of Ŝ.
We first consider the forest F ′ = F −{v1, v2, v4, v5} and note that v3 is a simplicial vertex
in F ′. Applying Proposition 5, we note that γgr(F −C) > γgr(F

′)− 1. Furthermore, note

that γgr(F
′) > |Ŝ ∩ (F −C)| since Ŝ ∩ (F −C) is a legal set in F ′. However, this leads to

γgr(F − C) > |Ŝ ∩ (F − C)| − 1 > |V (F )| − |V (C)| − |P(F )|+ 1,

which contradicts the induction hypothesis that

γgr(F − C) 6 |V (F )| − |V (C)| − |P(F − C) 6 |V (F )− |V (C)| − |P(F )|+ 1.

Finally, we may assume that F contains no leaf caterpillars which are P5 so that
C = P2 and that it is composed of the vertices u1 and u2 where u2 is a branch vertex.
By Lemma 11, C is a neighbor of a caterpillar C1 = P5 which is composed of the vertices
v1, v2, v3, v4, v5 with leaves v1, v5 and branch vertex v3. If v3 does not have a neighbor
which is not on C or C1, then we say we are in case (∗), which implies that that the
component of the canopy graph of F contains only two vertices, caterpillars P2 and P5,
and so P5 is a leaf of the canopy graph, which has already been considered. Otherwise, if
we are not in case (∗), let x be the neighbor of v3 which is not on C or C1 and let e = v3x.

As in the previous case, we suppose first that {x} is the footprint of v3. Applying the
Pigeonhole Principle to equation (5), either C ∪C1 contains at least |V (C)|+ |V (C1)| − 1

vertices of Ŝ or F−C−C1 contains at least |V (F )|−|V (C)|−|V (C1)|−|P(F−C−C1)|+1 =

|V (F )| − |V (C)| − |V (C1)| − |P(F )|+ 3 vertices of Ŝ.

Suppose C∪C1 contains |V (C)|+ |V (C1)|−1 vertices of Ŝ. Notice that the footprinter
of v3 is either v2, v4, or u2. If u2 footprints v3, then only one of v1 or v2 may belong to
Ŝ, and similarly, only one of v4 or v5 may belong to Ŝ. This implies that C ∪ C1 may
contain at most |V (C)| + |V (C1)| − 2 vertices of Ŝ. If v2 footprints v3, then only one of

v4 or v5 may belong to Ŝ, and only one of u1 or u2 may belong to Ŝ. Again, this implies
that C ∪C1 may contain at most |V (C)|+ |V (C1)|−2 vertices of Ŝ. The assumption that
v4 footprints v3 proceeds in the same way.

Suppose F − C − C1 contains |V (F )| − |V (C)| − |V (C1)| − |P(F )| + 3 vertices of Ŝ.

Since the footprint of v3 is {x}, we note that Ŝ∩(F −C−C1) is a legal set for F −C−C1.
Since |P(F −C −C1)| = |P(F )| − 2, by the induction hypothesis we have that any legal
set of F −C−C1 must be of size at most |V (F )|− |V (C)|− |V (C1)|− |P(F −C−C1)| =
|V (F )|−|V (C)|−|V (C1)|+2, which contradicts the assumption on the number of vertices

of Ŝ in F − C − C1.

Next, we suppose that {v3} is the footprint of x. Again, we apply the Pigeonhole

Principle, assuming first that C ∪C1 contains at least |V (C)|+ |V (C1)| − 1 vertices of Ŝ.

Since {v3} is the footprint of x, and not of v2 or v4, if v2 is in Ŝ, then v2 footprints v1, and

v1 is not in Ŝ. Likewise, if v4 is in Ŝ, then v4 footprints v5, and v5 is not in Ŝ. However,
this implies that C ∪ C1 may contain at most |V (C)| + |V (C1)| − 2 vertices of Ŝ. Note
that this argument also holds if we are in case (∗).

This means that we are left with the case where F −C−C1 contains at least |V (F )|−
|V (C)|−|V (C1)|−|P(F )|+3 vertices of Ŝ. First, assume that F−C−C1 contains exactly

the electronic journal of combinatorics 28(2) (2021), #P2.12 11



|V (F )|− |V (C)|− |V (C1)|− |P(F )|+ 3 vertices of Ŝ. Since v3 is in the footprint of x it is

not footprinted by v2, v4, or u2. This means that if v2 is in Ŝ, then it footprints v1, if v4 is
in Ŝ, then it footprints v5, and if u2 is in Ŝ, then it footprints u1. In each of these cases, the
footprinted vertex is not in Ŝ. However, now we have |Ŝ∩(C∪C1)| 6 |V (C)|+|V (C1)|−3,
which leads to

|S| 6 |V (F )| − |V (C)| − |V (C1)| − |P(F )|+ 3 + |V (C)|+ |V (C1)| − 3 = |V (F )| − |P(F )|.

Finally, we assume that F −C −C1 contains more than |V (F )| − |V (C)| − |V (C1)| −
|P(F )|+ 3 vertices of Ŝ. We first consider forest F ′ = F − {v1, v2, v4, v5, u1, u2} and note
that v3 is a simplicial vertex in F ′. Applying Proposition 5, we note that γgr(F−C−C1) >
γgr(F

′)− 1. Furthermore, note that γgr(F
′) > |Ŝ ∩ (F −C −C1)| since Ŝ ∩ (F −C −C1)

is a legal set in F ′. However, this leads to

γgr(F − C − C1) > |Ŝ ∩ (F − C − C1)| − 1 > |V (F )− |V (C)| − |V (C1)| − |P(F )|+ 2,

which contradicts the induction hypothesis that

γgr(F − C − C1) 6 |V (F )| − |V (C)| − |V (C1)| − |P(F − C − C1)|
6 |V (F )| − |V (C)| − |V (C1)| − |P(F )|+ 2.

We now show two examples of the Forest Labeling. In the first example we assume all
caterpillars are paths so as to focus on running the algorithm through several iterations. In
the second example, we allow for arbitrary caterpillars to illustrate the labeling of branch
vertices which are leaves in a caterpillar. The marked edges in each of the following forests
are the edges which can be removed to produce the caterpillars in the decomposition. The
rank of vertices is shown inside branch vertices. The enclosed vertices are those which are
removed at the end of the iteration for the given value of j.

1 2
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3 4
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2

5 6
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15
2 3

7 8
1
16
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9 10
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17 18

11 12
1 2
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C6

C7
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Forest Labeling Algorithm Example 1
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14 16

1
12 15

1
13

C2

C3

j=2

Forest Labeling Algorithm Example 2

4 Grundy domination of strong products of graphs

We first note that to solve Conjecture 1, we may assume that G and H are connected
graphs, since strong products of graphs have components corresponding to the components
of the factor graphs.

To prove our main result, we need to introduce some notation and an essential lemma.
For any graphs G and H, choose a maximum legal sequence D of G � H. For some

v ∈ V (G) let Dv = D̂∩({v}×H) and Fv be the set of vertices of D̂ which have a footprint
in Hv. More specifically, for any u ∈ N [v], let Du(Fv) be the set of vertices in Du which
have a footprint in Hv.

Lemma 14. For any graphs G and H, and any v ∈ V (G), |Fv| 6 γgr(H).

Proof. Let D be a maximum legal sequence of G�H. Say NG(v) = {u1, . . . , uk}. Notice
that |Fv| = |Du1(Fv) ∪ · · · ∪ Duk

(Fv) ∪ Dv(Fv)|. Choose any vertex x ∈ Fv and without
loss of generality, suppose x = (u1, h) for h ∈ V (H). Notice that x has the same footprint
in Hv as (v, h). This means that we may project Du1(Fv) ∪ · · · ∪Duk

(Fv) ∪Dv(Fv) onto
H and produce a legal set of H. Such a legal set has size at most γgr(H) and the lemma
is proven.

Theorem 15. For any tree G and graph H,

γgr(G�H) = γgr(G)γgr(H).

Proof. By inequality (3), it suffices to show that

γgr(G�H) 6 γgr(G)γgr(H).

We induct on the order n of G. The statement is trivial for n = 1. Since every tree
contains at least two leaf vertices, and leaves are simplicial, we may choose a leaf v and
consider the tree T = G− {v}. Notice that if P is a minimum caterpillar partition for G
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and P ′ is a minimum caterpillar partition for T , then |P| − 1 6 |P ′| 6 |P|. If |P ′| = |P|,
we may apply Proposition 2, the inductive hypothesis, and Theorem 12 to show

γgr(G�H) 6 γgr(H) + γgr

(
(G− {v})�H

)
6 γgr(H) + γgr(G− {v})γgr(H)

6 γgr(H) +
(

(n− 1)− |P ′|
)
γgr(H)

6 (n− |P ′|)γgr(H) = (n− |P|)γgr(H)

= γgr(G)γgr(H).

We may now suppose that for any leaf v, |P ′| = |P| − 1, which means that G is
caterpillar-critical. By Lemma 10, we may have chosen P as a minimum caterpillar
partition of G so that P5 = v1 − v2 − v3 − v4 − v5 is a leaf caterpillar in P or so that
P2 = u1 − u2 is a leaf caterpillar. First suppose we chose such a minimum partition P
with leaf caterpillar C = P5. Let v6 be the neighbor of v3 which is not on C.

Let D′ be a maximum legal sequence of G�H with the maximum number of entries
from {v1} × H. For all such sequences D′, let D be one with the maximum number of
entries from {v5} ×H.

Claim 16. Every vertex v ∈ D∩ ({v2}×H) must only footprint vertices of {v3}×H and
every vertex v′ ∈ D ∩ ({v4} ×H) must only footprint vertices of {v3} ×H.

Proof. If v footprints x ∈ {v1} ×H, then say v = (v2, h), notice that (v1, h) footprints x
and may replace v, and we still retain a maximum legal sequence of G � H. However,
now the resulting sequence contains more vertices in {v1} ×H than D which contradicts
the choice of D.

Next, suppose (v2, h) footprints (v2, h
′) for some h and h′ in V (H). Since D̂ is a legal

set and dominates {v1} × H, some vertex y of D̂ must dominate (v1, h
′), and thus, y

dominates (v2, h
′). This means that either y or (v2, h) footprint both (v2, h

′) and (v1, h
′).

The symmetric argument applies to v′.

Using our notation from this section, we note that by Lemma 14,

|Dv2(Fv3)|+ |Dv3(Fv3)|+ |Dv4(Fv3)|+ |Dv6(Fv3)| = |Fv3| 6 γgr(H). (6)

By Claim 16,

Dv1 = Fv1 , Dv5 = Fv5 , Dv2 = Dv2(Fv3), Dv4 = Dv4(Fv3). (7)

We apply inequality (6) and identities (7) to show

|D̂| = |Dv1 ∪Dv2 ∪Dv3 ∪Dv4 ∪Dv5|+ |D ∩ ((G− C)�H)|
6 |Dv1|+ |Dv5|+ |Dv2(Fv3)|+ |Dv4(Fv3)|+ |Dv3|+ |Dv6(Fv3)|

+|D ∩ ((G− C)�H)|
= |Dv1|+ |Dv5|+

[
|Dv2(Fv3)|+ |Dv4(Fv3)|+ |Dv6(Fv3)|

+|Dv3(Fv3)|
]

+ |Dv3 −Dv3(Fv3)|+ |D ∩ ((G− C)�H)|
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6 4γgr(H) + γgr((G− C)�H)
(which we bound by applying the inductive hypothesis to G− C)

6 4γgr(H) + γgr((G− C))γgr(H)
(and applying Theorem 12)

= 4γgr(H) + (|V (G)| − 5− |P|+ 1)γgr(H)
= (|V (G)| − |P|)γgr(H) = γgr(G)γgr(H)

We must now consider the case where no P5 leaf caterpillar exists and P is chosen as
a minimum caterpillar partition of G so that C = P2 = u1 − u2 is a leaf caterpillar. By
Lemma 11, we may assume that C1 = P5 = v1− v2− v3− v4− v5 is a neighbor of C with
u2 and v3 as branch vertices. Let v6 be the neighbor of v3 which is not on C or C1.

Let D′′ be a maximum legal sequence of G�H with the maximum number of entries
from {v1} ×H. For all such sequences D′′, let D′ be one with the maximum number of
entries in {v5} ×H, and for all such sequences D′, let D be the one with the maximum
number of entries in {u1} ×H.

Claim 17. Every vertex v ∈ D ∩ ({v2} × H) must only footprint vertices of {v3} × H,
v′ ∈ D ∩ ({v4} ×H) must only footprint vertices of {v3} ×H, and v′′ ∈ D ∩ ({u2} ×H)
must only footprint vertices of {v3} ×H.

The proof of Claim 17 is identical to that of Claim 16 with the argument for v repeated
for u2.

By Lemma 14,

|Dv2(Fv3)|+ |Dv3(Fv3)|+ |Dv4(Fv3)|+ |Du2(Fv3|+ |Dv6(Fv3)| (8)

= |Fv3| 6 γgr(H).

By Claim 17

Dv1 = Fv1 , Dv5 = Fv5 , Dv2 = Dv2(Fv3), Dv4 = Dv4(Fv3), Du2 = Du2(Fv3). (9)

We apply inequality (8) and identities (9) to show

|D̂| = |Du1 ∪Du2 ∪Dv1 ∪Dv2 ∪Dv3 ∪Dv4 ∪Dv5|+ |D ∩ ((G− C − C1)�H)|
6 |Du1|+ |Dv1|+ |Dv5|+ |Du2(Fv3)|+ |Dv2(Fv3)|+ |Dv4(Fv3)|+ |Dv3|

+ |Dv6(Fv3)|+ |D ∩ ((G− C − C1)�H)|

= |Du1 |+ |Dv1|+ |Dv5|+
[
|Du2(Fv3)|+ |Dv2(Fv3)|+ |Dv4(Fv3)|+ |Dv6(Fv3)|

+ |Dv3(Fv3)|
]

+ |Dv3 −Dv3(Fv3)|+ |D ∩ ((G− C − C1)�H)|

6 5γgr(H) + γgr((G− C − C1)�H)

(which we bound by applying the inductive hypothesis to G− C − C1)

6 5γgr(H) + γgr((G− C − C1))γgr(H)

(and applying Theorem 12)

= 5γgr(H) + (|V (G)| − 7− |P|+ 2)γgr(H)

= (|V (G)| − |P|)γgr(H) = γgr(G)γgr(H)
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Corollary 18. For any forest G and graph H,

γgr(G�H) = γgr(G)γgr(H).

5 Some results about Grundy dominating sets

Theorem 19. For any connected graph G, there exists a spanning tree T of G so that
γgr(G) 6 γgr(T ).

Proof. We induct on the number of cycles in G. Notice that the theorem is trivially true if
G is a tree. Assume that G contains m cycles and that the theorem holds for every graph
with fewer cycles. Let C be a cycle on vertices x1, . . . , xk so that consecutive vertices in
the list are adjacent as are x1 and xk. Call the edge of C from xi to xi+1, ei, for i ∈ [k−1],
and the edge from xk to x1, ek.

We will now show that for some i ∈ [k], γgr(G) 6 γgr(G− ei), completing the proof.
Let S be a maximal legal set for G. Notice that for any edge e = xy of C, γgr(G−e) <

γgr(G) only if either x footprints only y, or y footprints only x, in S. Indeed, if x does not
footprint y and y does not footprint x, then S is a legal sequence in G− e which means
that γgr(G) 6 γgr(G − e). Furthermore, if x footprints y as well as some other vertex z,
then y cannot footprint x and notice that removing e allows the selection of every vertex
of S for a legal sequence S ′ of G− e to which we may add y if it is not dominated. Again,
this means that γgr(G) 6 γgr(G − e). The argument is identical if y footprints x and
another vertex.

Note further that two vertices may not footprint the same vertex, by definition of a
legal sequence. We now consider whether the removal of any ei results in the statement
of the claim. Suppose the claim is false. Without loss of generality, suppose x1 footprints
only x2. This means that x2 must footprint only x3, and following this chain of reasoning,
xi must footprint only xi+1 for every i ∈ [k− 1]. Finally, xk must footprint only x1. This
leads to a contradiction, because some vertex from the cycle must be chosen first from the
vertices of C for S, and thus cannot be footprinted by any other vertex in the cycle.

Originally, we hoped that Theorem 19, together with Theorem 15, would allow us to
induct on the number of cycles in G to solve (or at least make progress on) the strong
product conjecture. However, at this time, we do not know the right incantation to
conjure that spell.

Theorem 20. For any connected non-complete graph G with at least one edge, there
exists a Grundy dominating set Ŝ of G, so that the induced subgraph of Ŝ in G contains
no isolated vertices.

Proof. We show that if v is an isolated vertex in the induced subgraph of Ŝ in G, then
we can remove v from S and add another vertex to S, possibly at a different point in
the sequence, so that the resulting sequence is legal and the new vertex is a neighbor of
another vertex of Ŝ.

To this end, we choose such a vertex v and note that no vertex of N(v) belongs to Ŝ.
We consider two cases.
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Case 1. Suppose there exists a vertex x ∈ Ŝ at distance 2 from v.

Notice that v must footprint itself. Let u be a common neighbor of v and x. We form
the desired legal sequence S ′ by removing v from S and adding u as the last vertex in S ′,
so that u footprints v.

Case 2. Suppose no vertex of Ŝ is at distance 2 from v.

Since Ŝ is a dominating set, any vertex u′ which is at distance 2 from v, must be a
neighbor of at least one vertex of Ŝ. Let w be the footprinter of u′ and let u be a common
neighbor of v and u′. Notice that v must footprint u since it is the only neighbor of u
which is in Ŝ. Form the legal sequence S ′ by removing v from S and adding u′ as the
penultimates vertex and u as the ultimate vertex in S ′. Notice that u′ footprints u and u
footprints v in S ′. However, we now have |Ŝ ′| = |Ŝ| + 1 which is impossible, so this case
cannot occur.

Theorem 20 implies that every connected non-complete graph has a Grundy dominat-
ing set which is a total dominating set.
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