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Abstract

In this article, we investigate symmetric (v, k, λ) designs D with λ prime ad-
mitting flag-transitive and point-primitive automorphism groups G. We prove that
if G is an almost simple group with socle a finite simple group of Lie type, then
D is either the point-hyperplane design of a projective space PGn−1(q), or it is of
parameters (7, 4, 2), (11, 5, 2), (11, 6, 3) or (45, 12, 3).

Mathematics Subject Classifications: 05B05, 05B25, 20B25

1 Introduction

A symmetric (v, k, λ) design is an incidence structure D = (P ,B) consisting of a set P of
v points and a set B of v blocks such that every point is incident with exactly k blocks,
and every pair of blocks is incident with exactly λ points. If 2 < k < v − 1, then D is
called a nontrivial symmetric design. A flag of D is an incident pair (α,B), where α and
B are a point and a block of D, respectively. An automorphism of a symmetric design D
is a permutation of the points permuting the blocks and preserving the incidence relation.
An automorphism group G of D is called flag-transitive if it is transitive on the set of
flags of D. If G acts primitively on the point set P , then G is said to be point-primitive.
A group G is said to be almost simple with socle X if X E G 6 Aut(X), where X is a
nonabelian simple group. Further definitions and notation can be found in Section 1.2
below.
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The main aim of this paper is to study symmetric designs with λ prime admitting a
flag-transitive and point-primitive almost simple automorphism group with socle being a
finite simple groups of Lie type. Recently, Z. Zhang, Y. Zhang and S. Zhou in [37] proved
that if D is a nontrivial symmetric (v, k, λ) designs with λ prime and G is a flag-transitive
and point-primitive automorphism group of D, then G must be of affine or almost simple
type. We have studied nontrivial symmetric (v, k, λ) design with k prime admitting flag-
transitive almost simple automorphism groups [2], and proved that such a design is either
a projective space, or it has a parameters set (11, 5, 2). We are now interested in possible
classification of symmetric (v, k, λ) designs D with λ prime admitting a flag-transitive and
point-primitive almost simple automorphism group G. We have already shown in [6] that
almost simple exceptional groups of Lie type give rise to no possible symmetric designs
with λ prime. In the present paper, we focus on the case where G is an almost simple
group with socle X being a finite simple classical group of Lie type, and prove that D is
either the point-hyperplane design of a projective space PGn−1(q), or it is of parameters
(7, 4, 2), (11, 5, 2), (11, 6, 3) or (45, 12, 3), and we give detailed information of these designs
in Section 2.

Theorem 1. Let D be a nontrivial symmetric (v, k, λ) design with λ prime, and let α be
a point of D. If G is a flag-transitive and point-primitive automorphism group of D of
almost simple group of Lie type with socle X. Then D is the point-hyperplane design of
PGn−1(q) with λ = (qn−2 − 1)/(q − 1) prime and X = PSLn(q), or D and G are as in
Table 1.

Despite of the case where k is prime, even in symmetric designs with λ prime, flag-
transitivity does not necessarily imply point-primitivity. One of these examples arose
from studying flag-transitive biplanes (symmetric designs with λ = 2). It is known that
there are only three non-isomorphic symmetric designs with parameters (16, 6, 2), two of
which admit flag-transitive and point-imprimitive design and one is not flag-transitive.
The next interesting examples are the symmetric designs with parameters (45, 12, 3).
Indeed, Praeger [33] proves that there are only two examples of flag-transitive designs
with parameters (45, 12, 3). One is point-primitive and related to unitary geometry, while
the other is point-imprimitive and constructed from a 1-dimensional affine space for which
we also give an explicit base block in Section 2 below. In general, Praeger and Zhou [34]
study symmetric (v, k, λ) designs admitting flag-transitive and point-imprimitive designs,
and running through the potential parameters, we can only exclude one possibility, and so
Corollary 2 below is an immediate consequence of their result [34, Theorem 1.1]. To our
knowledge, at this stage, any possible classification of flag-transitive and point-imprimitive
designs with λ prime seems to be out of reach.

Corollary 2. Suppose that D is a symmetric (v, k, λ) design with λ prime admitting
flag-transitive and point-imprimitive automorphism group G. If G leaves invariant a non-
trivial partition C of P with d classes of size c, then there is a constant l such that, for
each B ∈ B and ∆ ∈ C, |B ∩∆| ∈ {0, l}, and one of the following holds:

(a) k 6 λ(λ− 3)/2;
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Table 1: Parameters in Theorem 1
Line v k λ X G Gα Designs References∗

1 7 4 2 PSL2(7) PSL2(7) Sym4 Complement of Fano plane [3, 13]
2 11 5 2 PSL2(11) PSL2(11) Alt5 Hadamard [3, 13]
3 11 6 3 PSL2(11) PSL2(11) Alt5 Complement of line 2 [3, 13]
4 45 12 3 PSU4(2) PSU4(2) 2·(Alt4×Alt4)·2 - [11, 16, 33]
5 45 12 3 PSU4(2) PSU4(2):2 2·(Alt4×Alt4).2:2 - [11, 16, 33]

Note: The last column addresses to references in which a design with the parameters in
the line has been constructed.

(b) (v, k, λ) = (λ2(λ+ 2), λ(λ+ 1), λ) with (c, d, l) = (λ2, λ+ 2, λ) or (λ+ 2, λ2, 2);

(c) (v, k, λ, c, d, l) = ((λ+6)(λ2 +4λ−1)/4, λ(λ+5)/2, λ, λ+6, (λ2 +4λ−1)/4, 3), where
λ ≡ 1 or 3 (mod 6).

1.1 Outline of proofs

In order to prove Theorem 1 in Section 4, as noted above, by [6, Corollary 1.2], we only
need to consider the case where the socle X of G is a finite simple classical group. In
particular, by [1, 3, 5, 7, 15], in the case where X is a linear or unitary group, we can
assume that the dimension of the underlying vector space is at least 5. Moreover, we
include all possible symmetric (v, k, λ) designs for λ = 2, 3 obtained in [18, 30, 32] and
therein references, and so we can also assume that λ > 5. If λ is coprime to k, then the
possible designs can be read off from [9, Corollary 1.2]. Since λ(v − 1) = k(k − 1), we
need to focus on the case where λ divides k. Since also G is point-primitive, a point-
stabiliser H = Gα is maximal in G. Note that v = |G : H| is odd as λ is odd prime
and λ(v − 1) = k(k − 1). Therefore, as a key tool, we use a classification of primitive
permutation groups of odd degree [27, Theorem] which gives the possible candidates for
H. Another important and useful fact is that k divides the order of H, and so λ is a prime
divisor of |H|. At some stage, the knowledge of subdegrees (length of suborbits) of the
G-action on the right cosets of H in G is essential. We now analyse each possibilities of
H. Considering the fact that k divides λ(v−1) and if applicable k also divides λd with d a
subdegree, we find a polynomial f(q) of smallest possible degree for which k divides λf(q).
As λ is a odd prime divisor of |H|, we find possible upper bounds uλ. In most cases, we
observe that v < uλf(q)2 does not hold and this violates the fact that λv < k2. In some
cases, the inequality v < uλf(q)2 has some solutions, and these solutions suggest some
parameters set that are needed to be argued as well. In the remaining cases, however,
we need to use some other arguments and new techniques to settle down our claims. In
this manner, Theorem 1 follows from Propositions 18-21. The proof of Corollary 2 is also
given in Section 4, and the proof follows immediately from [34, Theorem 1.1] by ruling
out one possible case. In this paper, we use the software GAP [19] for computational
arguments.
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1.2 Definitions and notation

All groups and incidence structures in this paper are finite. Symmetric and alternating
groups on n letters are denoted by Symn and Altn, respectively. We write “n” for a group
of order n. Also for a given positive integer n and a prime divisor p of n, we denote
the p-part of n by np, that is to say, np = pt with pt | n but pt+1 - n. For finite simple
groups of Lie type, we adopt the standard notation as in [14], and in particular, we use
the standard notation to denote the finite simple classical groups, that is to say, PSLn(q),
for n > 2 and (n, q) 6= (2, 2), (2, 3), PSUn(q), for n > 3 and (n, q) 6= (3, 2), PSp2m(q), for
n = 2m > 4 and (m, q) 6= (2, 2), Ω2m+1(q) = PΩ2m+1(q), for n = 2m + 1 > 7 and q odd,
PΩ±

2m(q), for n = 2m > 8. In this manner, the only repetitions are

PSL2(4) ∼= PSL2(5) ∼= Alt5, PSL2(7) ∼= PSL3(2), PSL2(9) ∼= Alt6,

PSL4(2) ∼= Alt8, PSp4(3) ∼= PSU4(2).

Recall that a symmetric design D with parameters (v, k, λ) is a pair (P ,B), where P
is a set of v points and B is a set of v blocks such that each block is a k-subset of P
and each two distinct points are contained in λ blocks. We say that D is nontrivial if
2 < k < v − 1. Further notation and definitions in both design theory and group theory
are standard and can be found, for example in [10, 14, 17, 24, 26].

2 Examples and Comments

In this section, we provide some examples of symmetric designs with λ prime admitting
a flag-transitive automorphism almost simple group with socle X. We remark here that
the designs in Table 1 can be found in [3, 7], but the construction given here is obtained
by GAP [19].

Example 3. The point-hyperplane of a projective space PGn−1(q) with parameters ((qn−
1)/(q − 1), (qn−1 − 1)/(q − 1), (qn−2 − 1)/(q − 1)) for n > 3 is a well-known example of
flag-transitive symmetric designs. Any group G with PSLn(q) 6 G 6 PΓLn(q) acts flag-
transitively on PGn−1(q). If n = 3, then we have the Desarguesian plane with parameters
(q2 + q+ 1, q+ 1, 1) which is a projective plane. The design D with parameters (7, 4, 2) in
line 1 of Table 1 is the complement of the unique well-known symmetric design, namely,
Fano Plane admitting flag-transitive and point-primitive automorphism group PSL2(7) ∼=
PSU2(7) with point-stabiliser Sym4.

Example 4. The symmetric (11, 5, 2) design is a Paley difference set which is also a
Hadamard design with the base block {1, 2, 3, 5, 11}, and its full automorphism group is
PSU2(11) acting flag-transitively and point-primitively. In this case, the point-stabiliser
is isomorphic to Alt5. The complement of this design is the unique symmetric (11, 6, 3)
design whose full automorphism group PSU2(11) is also flag-transitive and point-primitive
with Alt5 as point-stabiliser.
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Example 5. There are exactly three non-isomorphic symmetric (16, 6, 2) design, two of
which are flag-transitive. The first symmetric design admitting a flag-transitive auto-
morphism group is constructed from a difference set in 24 whose automorphism group
is 24 Sym6 < 24 GL4(2) with point-stabiliser Sym6. The second example of symmetric
(16, 6, 2) design admitting a flag-transitive automorphism group arose from a difference
set in 2 × 8, and the point-stabiliser of order 48 acts as the full group of symmetries of
the cube, hence is a central extension Sym4 ◦ 2 of the symmetric group Sym4 by a group
of order 2. These two designs admit point-imprimitive automorphism group. The last
symmetric (16, 6, 2) design can be constructed as a difference set in Q8 × 2. The full
automorphism group of order 16 · 24 of this design is not flag-transitive.

Example 6. Mathon and Spence [29] have constructed 3, 752 pairwise non-isomorphic
symmetric (45, 12, 3) designs, and they have shown that at least 1, 136 of these designs
have a trivial automorphism group. Cheryl E. Praeger in [33] constructs two flag-transitive
symmetric (45, 12, 3) designs, and proves that these designs are the only two examples.
One of these symmetric designs is related to unitary geometry and admits point-primitive
automorphism group PSU4(2) · 2, while the other has point-imprimitive automorphism
groupG 6 AΓL1(81). The base block of the former design is {1, 2, 4, 5, 12, 15, 17, 21, 28, 34,
35, 38}, and more detailed information about this design can be found in [11, 13] and
therein references. We here give an explicit base block for the point-imprimitive example.
Let G be a permutation group on the set P := {1, . . . , 45} generated by the permutations
σ1, . . . , σ5 below

σ1 := (1, 2, 4, 5, 3)(6, 16, 43, 13, 14)(7, 39, 33, 45, 26)(8, 21, 37, 32, 28)(9, 11, 25, 35, 10)
(12, 44, 24, 40, 17)(15, 30, 38, 23, 19)(18, 34, 20, 31, 41)(22, 36, 27, 42, 29),

σ2 := (1, 5, 2, 3, 4)(6, 10, 16, 9, 43, 11, 13, 25, 14, 35)(7, 40, 39, 17, 33, 12, 45, 44, 26, 24)
(8, 23, 21, 19, 37, 15, 32, 30, 28, 38)(18, 22, 34, 36, 20, 27, 31, 42, 41, 29),

σ3 := (2, 5, 3, 4)(6, 17, 32, 20, 11, 26, 23, 29)(7, 30, 42, 43, 12, 21, 34, 35)
(8, 31, 10, 45, 15, 22, 13, 40)(9, 39, 19, 27, 14, 44, 28, 18)(16, 24, 37, 41, 25, 33, 38, 36),

σ4 := (2, 3)(4, 5)(6, 32, 11, 23)(7, 42, 12, 34)(8, 10, 15, 13)(9, 19, 14, 28)(16, 37, 25, 38)
(17, 20, 26, 29)(18, 39, 27, 44)(21, 35, 30, 43)(22, 40, 31, 45)(24, 41, 33, 36),

σ5 := (1, 6, 11)(3, 40, 45)(4, 41, 36)(5, 13, 10)(8, 35, 39)(9, 42, 38)(14, 37, 34)(15, 44, 43)
(17, 32, 29)(18, 30, 33)(20, 23, 26)(21, 27, 24).

Then G ∼= 34 : (5 : 8) is isomorphic to a subgroup of AΓL1(81). The group G has a
subgroup K ∼= 32 : 8 with an orbit of size 12, namely,

B = {1, 2, 3, 4, 6, 11, 19, 28, 36, 40, 41, 45}.

Let now B be the set ofG-orbitsBG. ThenD = (P ,B) forms a symmetric (45, 12, 3) design
with flag-transitive automorphism group G. Moreover, C = {1, 6, 11, 17, 20, 23, 26, 29, 32}
is a G-invariant partition on P , and so G is point-imprimitive. Note that the full auto-
morphism group of D is isomorphic to 34 : (SL2(5) : 2) which is also point-imprimitive.
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3 Preliminaries

In this section, we state some useful facts in both design theory and group theory. Recall
that a group G is called almost simple if X E G 6 Aut(X), where X is a (nonabelian)
simple group.

Lemma 7. [1, Lemma 2.2] Let G be an almost simple group with socle X, and let H be
maximal in G not containing X. Then G = HX and |H| divides |Out(X)| · |X ∩H|.

Lemma 8. [3, Lemma 2.1] Let D be a symmetric (v, k, λ) design, and let G be a flag-
transitive automorphism group of D. If α is a point of D and H = Gα, then

(a) k(k − 1) = λ(v − 1);

(b) k | |H| and λv < k2;

(c) k | λd, for all nontrivial subdegrees d of G.

Lemma 9 (Tits’ Lemma). [36, 1.6] If X is a group of Lie type in characteristic p, then
any proper subgroup of index prime to p is contained in a proper parabolic subgroup of X.

Lemma 10. [36, 1.6] Suppose that D is a symmetric (v, k, λ) design admitting a flag-
transitive and point-primitive almost simple automorphism group G with socle X of Lie
type in odd characteristic p. Suppose also that the point-stabiliser Gα, not containing X,
is not a parabolic subgroup of G. Then gcd(p, v − 1) = 1.

If a group G acts on a set P and α ∈ P , the subdegrees of G are the size of orbits of
the action of the point-stabiliser Gα on P .

Lemma 11. [28] If X is a group of Lie type in characteristic p, acting on the set of cosets
of a maximal parabolic subgroup, and X is not PSLn(q), PΩ+

n (q)(with n/2 odd) and E6(q),
then there is a unique subdegree which is a power of p.

For a point-stabiliser H of an automorphisms group G of a flag-transitive design D,
by Lemma 8(b), we conclude that λ|G| 6 |H|3, and so we have that

Corollary 12. Let D be a flag-transitive (v, k, λ) symmetric design with automorphism
group G. Then |G| 6 |H|3, where α is a point in D, and so |X| < |Out(X)|2·|H ∩X|3.

Lemma 13. [2, Lemma 2.5] Suppose that D is a (v, k, λ) symmetric design. Let G be a
flag-transitive automorphism group of D with simple socle X of Lie type in characteristic
p. If the point-stabiliser H = Gα contains a normal quasi-simple subgroup N of Lie type in
characteristic p and p does not divide |Z(N)|, then either p divides k, or NB is contained
in a parabolic subgroup P of N and k is divisible by |N :P |.

The following result gives a classification of primitive groups of odd degree of almost
simple type with socle finite simple classical groups. This result is proved independently
in [21] and [27]. Here we follow the description of this groups as in [27].
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Lemma 14. [27, Theorem] Let G be a primitive permutation group of odd degree v on
the set Γ. Assume that the socle X = X(q) of G is a simple classical group with a natural
projective module V = Vn(q), where q = pa and p prime, and let H = Gα be the stabilizer
of a point α ∈ Γ, then one of the following holds:

(a) if q is odd then one of (i), (ii) below holds:

(i) X is a classical group with natural projective module V = Vn(q) and one of
(1)-(7) below holds:

(1) H is the stabilizer of a nonsingular subspace (any subspace forX = PSLn(q));

(2) H ∩ X is the stabilizer of an orthogonal decomposition V = ⊕Vj with all
Vj’s isometric (any decomposition V = ⊕Vj with dim(Vj) constant for X =
PSLn(q));

(3) X = PSLn(q), H is the stabilizer of a pair {U,W} of subspaces of comple-
mentary dimensions with U 6 W or U ⊕W = V , and G contains a graph
automorphism;

(4) H ∩ X is SO7(2) or Ω+
8 (2) and X is Ω7(q) or PΩ+

8 (q), respectively, q is
prime and q ≡ ±3 (mod 8);

(5) X = PΩ+
8 (q), q is prime and q ≡ ±3 (mod 8), G contains a triality auto-

morphism of X and H ∩X is 23 · 26 · PSL3(2);

(6) X = PSL2(q) and H ∩X is dihedral, Alt4, Sym4, Alt5 or PGL2(q0), where
q = q20;

(7) X = PSU3(5) and H ∩X = M10.

(ii) H = NG(X(q0)), where q = qt0 and t is an odd prime;

(b) if q is even then H ∩X is a parabolic subgroup of X.

We will use the following results in order to obtain suitable lower or upper bounds for
parameters of possible designs. The proof of these results can be found in [4, 8]

Lemma 15. [8, Lemma 4.2 and Corollary 4.3]

(a) If n > 2, then

qn
2−2 <|PSLn(q)| 6 |SLn(q)| < (1− q−2)qn

2−1,

(1− q−1)qn
2−2 <|PSUn(q)| 6 |SUn(q)| < (1− q−2)(1 + q−3)qn

2−1.

(b) If n > 4, then

1

4
qn(n−1)/2 <|Ωn(q)| < |SOn(q)| 6 (1− q−2)(1− q−4)qn(n−1)/2,

1

2β
qn(n+1)/2 <|PSpn(q)| 6 |Spn(q)| 6 (1− q−2)(1− q−4)qn(n+1)/2

with β = gcd(2, q − 1).
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(c) If n > 6, then

1

8
qn(n−1)/2 <|PΩ±

n (q)| < |SO±
n (q)| 6 δ(1− q−2)(1− q−4)(1 + q−n/2)qn(n−1)/2

with δ = gcd(2, q).

Lemma 16. [8, Lemma 4.4] Suppose that t is a positive integer. Then

(a) if t > 5, then t! < 5(t2−3t+1)/3;

(b) if t > 4, then t! < 24t(t−3)/3.

Lemma 17. [4, Lemma 3.12] Let q be a prime power and n > 3 be a positive integer
number, then

q
n(n−1)

2 <
n∏
j=2

(qj − 1) <
n∏
j=2

(qj − (−1)j) < q
n2+n−2

2 .

4 Proof of the main results

In this section, we prove Theorem 1 and Corollary 2. Suppose that D is a nontrivial
symmetric design with λ prime, and that G is an automorphism group of D which is
an almost simple group whose socle X is a finite nonabelian simple group of Lie type.
Suppose now that G is flag-transitive and point-primitive. Let H = Gα, where α is a point
of D. Then H is maximal in G (see [17, 7, Corollary 1.5A]), and so Lemma 7 implies that

v =
|X|
|H ∩X|

. (1)

As mentioned in Section 1.1, we only need to focus on the case where X is a finite
simple classical group. Moreover, the parameter v is odd and the possibilities for H can
be read off from [27] which are also recorded in Lemma 14. Further, we can assume that
λ > 5 is an odd prime and in the case where X is PSLn(q) or PSUn(q), we can also assume
that n > 5. In Propositions 18-21 below, we discuss possible cases for the pairs (X,H),
and finally prove Theorem 1. In what follows, we denote by Ĥ the preimage of the group
H in the corresponding group.

Proposition 18. Let D be a nontrivial symmetric (v, k, λ) design with λ > 5 prime.
Suppose that G is an automorphism group of D of almost simple type with socle X =
PSLn(q) for n > 5. If G is flag-transitive, point-primitive and H = Gα with α a point of
D, then D is the point-hyperplane design of PGn−1(q) with λ = (qn−2 − 1)/(q − 1) prime
and H ∩X ∼= [̂qn−1]:SLn−1(q)·(q − 1).

Proof. Let H0 = H ∩X, where H = Gα with α a point of D. It follows from Lemma 8(a)
that v is odd. Then by Lemma 14, we have one of the following possibilities:
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(1) H0 is a parabolic subgroup of X;

(2) H is the stabilizer of a pair {U,W} of subspaces of complementary dimensions with
U 6 W and G contains a graph automorphism.

(3) q is odd, and H is the stabilizer of a pair {U,W} of subspaces of complementary
dimensions with U ⊕W = V , and G contains a graph automorphism.

(4) q is odd, and H0 is the stabilizer of a partition V = V1 ⊕ · · · ⊕ Vt with dim(Vj) = i;

(5) q = qt0 is odd with t odd prime, and H = NG(X(q0));

In what follows, we analyse each of these possible cases separately.

(1) Let H0 be a parabolic subgroup of X. In this case, H = Pi, where i 6 bn/2c, and
by [23, Proposition 4.1.17], the subgroup H0 is isomorphic to

q̂i(n−i) : SLi(q)× SLn−i(q) · (q − 1).

Suppose first that H = P1. Then G is 2-transitive, and this case has already been studied
by Kantor [20]. Therefore, D is the point-hyperplane design of PGn−1(q) with parameters
set ((qn − 1)/(q − 1), (qn−1 − 1)/(q − 1), (qn−2 − 1)/(q − 1)) and λ = (qn−2 − 1)/(q − 1)
prime, as desired.

Suppose now that H = Pi with i > 2. It follows from (1) and [31, p. 534] that

v =
(qn − 1)(qn−1 − 1) · · · (qn−i+1 − 1)

(qi − 1) · · · (q2 − 1)(q − 1)
> qi(n−i). (2)

Then by Lemmas 7 and 8(b), the parameter k divides |Out(X)| · |H0|, where |H0| =
qn(n−1)/2 gcd(n, q − 1)−1 ·

∏n−i
j=2(q

j − 1) ·
∏i

j=1(q
j − 1) and |Out(X)| = 2a · gcd(n, q − 1).

Note that λ is an odd prime divisor of k. Then λ must divide a, p, q−1 or (qj−1)/(q−1),
for some j ∈ {2, . . . , n− i}, and so

λ 6 (qn−i − 1)/(q − 1). (3)

Here by Lemma 8(c) and [25, Corollary 2], the parameter k divides λdi,j(q), where

di,j(q) = qj
2 ·

i∏
l=i−j+1

(ql − 1) ·
n−i∏

l=n−j−i+1

(ql − 1) ·
j∏
l=1

(ql − 1)−2, (4)

for l = 1, 2, . . . , i. Therefore, k divides λdi,1(q), where di,1(q) = q(qi−1)(qn−i−1)(q−1)−2.
Then by (2) and Lemma 8(b), we have that

λqi(n−i) < λv < k2 6 λ2q2(qi − 1)2(qn−i − 1)2(q − 1)−4.

Thus qi(n−i) · (q − 1)4 < λq2(qi − 1)2(qn−i − 1)2, and so (3) implies that qi(n−i)(q − 1)5 <
q2(qi − 1)2(qn−i − 1)3 < q3n−i+2. Thus

qi(n−i)(q − 1)5 < q3n−i+2, (5)
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and hence n(i− 3) < i2 − i+ 2. Note that 2i 6 n. Thus 2i(i− 3) 6 n(i− 3) < i2 − i− 1,
and so i2 < 5i+ 2. Hence i = 2, 3, 4, 5.

If i = 5, then by (5), we have that q2n−22(q − 1)5 < 1. Since n > 2i = 10, the
last inequality holds only for (n, q) = (10, 2), in which case by (2), v = 109221651.
Moreover, by Lemmas 7 and 8(b), k divides |Out(X)| · |H0|. Thus k is a divisor of
6710027434028590694400. It is easy to check that for possible k, the fraction k(k −
1)/(v − 1) is not a prime number.

If i = 4, then (5) implies that qn−14(q − 1)5 < 1, and so n ∈ {8, 9, 10, 11, 12, 13, 14}
as n > 2i = 8. Note by (2) that q is even as v is odd. Then gcd(v − 1, q2 + 1) = 1.
Recall by Lemma 8 that k divides λ gcd(v − 1, d4,1). Then v < λ · [d4,1/(q2 + 1)]2, where
λ 6 (qn−4 − 1)/(q − 1), and hence

v < (q − 1)−1(qn−4 − 1) · [d4,1/(q2 + 1)]2. (6)

For each possible n, by straightforward calculation, we observe that (6) does not hold.
If i = 2, then G is a rank 3 primitive group, see [22]. The symmetric designs admitting

primitive rank 3 automorphism groups have been classified by Dempwolff [16]. Running
through all these possible cases, we can not find any such symmetric design with λ > 5
prime.

If i = 3, then (2) implies that

v =
(qn − 1)(qn−1 − 1)(qn−2 − 1)

(q3 − 1)(q2 − 1)(q − 1)
> q3n−9.

We now consider the following cases:

(1.1) Let q be odd. If n is even, then v is also even, which is impossible. Therefore, n is
odd. Note by (4), [35, p. 338] and Lemma 8(c) that k divides λ gcd(d3,1(q), d3,2(q)), where
d3,1(q) = q(q2 + q + 1)(qn−3 − 1)(q − 1)−1 and d3,2(q) = q4(q2 + q + 1)(qn−4 − 1)(qn−3 −
1)(q − 1)−1(q2 − 1)−1. Therefore,

k divides λf(q), (7)

where f(q) = q(q2 + q + 1)(qn−3 − 1)(q2 − 1)−1. Then by Lemma 8(b), we have that
λq3n−9 < λv < k2 6 λ2q2(q2 + q + 1)2(qn−3 − 1)2(q2 − 1)−2. Thus

q3n−9(q2 − 1)2 < λq2(q2 + q + 1)2(qn−3 − 1)2. (8)

Since λ is an odd prime divisor of k, Lemmas 7 and 8(b) imply that λ divides a, p, q − 1
or (qj − 1)(q − 1)−1, for some j ∈ {2, 3, . . . , n− 3}.

Suppose first that λ divides a, p or q − 1. Then by (8), we have that q3n−9(q2 −
1)2 < q3(q2 + q + 1)2(qn−3 − 1)2, and so q3n−9(q2 − 1)2 < q2n−3(q2 + q + 1)2. Hence
qn−6(q2− 1)2 < (q2 + q+ 1)2. Since (q2 + q+ 1)2 < q(q2− 1)2, we conclude that qn−6 < q,
which is impossible as n > 2i = 6 is odd.

Suppose now that

λ divides (qj − 1)(q − 1)−1, (9)
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for some j ∈ {2, 3, . . . , n−3}. Since qn−3−1 < qn−3 and qj−1 < qj, it follows from (8) that
q3n−9(q−1)(q2−1)2 < q2n+j−4(q2 +q+1)2, and so qn−j−5 < (q2 +q+1)2/[(q−1)(q2−1)2].
As (q2 + q+ 1)2 < q(q− 1)(q2− 1)2, we conclude that qn−j−6 < 1, and so j > n− 6. Since
j 6 n − 3, we have that j ∈ {n − 5, n− 4, n− 3}, where n is odd. We now consider the
following two subcases.

(1.1.1) Let j = n− 3 or n− 5. Note that j is even and λ divides qj − 1 by (9). Since λ is
prime, it follows that λ 6 q(n−3)/2+1, and so (8) yields qn−9 < (q2+q+1)4(q2−1)−4. Since
(q2 + q + 1)4 < q2(q2 − 1)4, we have that qn−9 < q2, or equivalently, qn−11 < 1. Since also
n > 6 is odd, we conclude that n = 7, 9, 11. Then by (2), we can obtain v. Note for these
parameters v that gcd(v− 1, q2 + q+ 1) = 1. Since by Lemma 8, the parameter k divides
λ gcd(v− 1, d3,1), we conclude by (9) that v < (q− 1)−1(qn−3− 1) · [d3,1/(q2 + q+ 1)]2, but
for each possible n, this inequality does not hold for q > 3.

(1.1.2) Let j = n−4. Then by (9), the parameter λ divides (qn−4−1)(q−1)−1. Let u be a
positive integer such that λu = (qn−4−1)(q−1)−1. Note that (qn−4−1)(q−1)−1 is odd, and
so u is an odd number. Here by (8) and (9), uq3n−9(q−1)(q2−1) < q2(q2 + q+1)2(qn−3−
1)2(qn−4−1) < (q2+q+1)2q3n−8, and so u·(q−1)(q2−1)2 < q(q2+q+1)2. This inequality
holds only for u = 1 or (u, q) = (3, 3). In the latter case, since λu = (qn−4 − 1)(q − 1)−1,
it follows that u = 3 divides qn−5 + qn−6 + . . . + q + 1, where q = 3, which is impossible.
Therefore, u = 1, and hence λ = qn−5 + qn−6 + . . .+ q + 1. Thus by (7), the parameter k
divides λf(q), where f(q) = q(q2 + q + 1)(qn−3 − 1)(q2 − 1)−1. Let now m be a positive
integer such that mk = λf(q). Then by Lemma 8(a), we have that k = 1+m·(v−1)/f(q).
Note by (2) that v−1 = g(q)·q(qn−3−1)(q3−1)−1(q2−1)−1(q−1)−1, where g(q) = q2n−1+
qn+2−qn+1−qn−qn−1+q5−q4−q3+q+1. Therefore, k = 1+[m·g(q)/(q3−1)2] > mq2n−7.
Since k divides q(q2 + q + 1)(qn−4 − 1)(qn−3 − 1)(q2 − 1)−1(q − 1)−1, we conclude that

m · q2n−7 < q(q2 + q + 1)(qn−4 − 1)(qn−3 − 1)(q2 − 1)−1(q − 1)−1,

and so m · (q − 1)(q2 − 1) < q(q2 + q + 1). This inequality holds only for m = 1, 2. Let
now r(q) = (q + 1)(q3 − 1)2 and h(q) = qn+3 + q7 + q6 − q5 − q4 − q3. Then

(q3 − 1)2 · k = m · g(q) + (q3 − 1)2 = m · h(q)(qn−4 − 1) +m · r(q) + (q3 − 1)2. (10)

Since λ = (qn−4− 1)/(q− 1) is an odd prime divisor of k = [m · g(q) + (q3− 1)2]/(q3− 1)2,
it follows from (10) that qn−4 − 1 divides m · r(q) + (q3 − 1)2 = [m · (q + 1) + 1](q3 − 1)2.
Recall that m 6 2. Therefore, qn−4 − 1 6 [m · (q + 1) + 1](q3 − 1)2 6 (2q + 3)(q3 − 1)2.
Since q is odd, we conclude that 2q + 3 6 q2, and so qn−4 − 1 6 q8. This inequality
holds only for n = 7, 9, 11. By the same manner as in the previous cases, we observe
that v − 1 is coprime to q2 + q + 1, and since λ 6 (q − 1)−1(qn−4 − 1), it follows that
v < (q − 1)−1(qn−4 − 1) · [d3,1/(q2 + q + 1)]2 for n ∈ {7, 9, 11}. But for each possible n,
this inequality does not hold for any q > 3.

(1.2) Let q be even. Then (4) and Lemma 8(c) imply that

k divides λf(q), (11)
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where f(q) := d3,1 = q(q2 + q + 1)(qn−3 − 1)/(q − 1). Note that λ is an odd prime divisor
of a or qj − 1 with j ∈ {1, . . . , n− 3}.

Suppose first that λ divides a or q − 1. Then by Lemma 8(b), we have that λv <
k2 6 λ2q2(q2 + q + 1)2(qn−3 − 1)2/(q − 1)2. Thus q3n−9(q − 1)2 < λq2(q2 + q + 1)2(qn−3 −
1)2 < q3(q2 + q + 1)2(qn−3 − 1)2, and so q3n−9(q − 1)2 < q2n−3(q2 + q + 1)2. Hence
qn−6(q− 1)2 < (q2 + q+ 1)2. Since (q2 + q+ 1)2 < q6(q− 1)2, we conclude that qn−6 < q6,
and so n = 6, 7, 8, 9, 10. Define

dn(q) =

{
f(q)/(q2 + q + 1)2, if n = 6, 9;
f(q)/(q2 + q + 1), if n = 7, 8, 10.

Note that λ 6 q−1. Then by the same manner as before, we must have v < (q−1)·dn(q)2.
By solving this inequality for n ∈ {6, . . . , 10}, we conclude that q = 2 when n ∈ {7, 8, 10}.
In these cases, however, λ 6 max{a, q − 1} = 1, which is a contradiction.

Suppose now that λ divides qj − 1, for some j ∈ {2, . . . , n− 3}. Therefore, λ 6 qj − 1.
By (11) and Lemma 8(b), we have that λv < k2 6 λ2q2(q2 + q + 1)2(qn−3 − 1)2/(q − 1)2.
Thus

q3n−9(q − 1)2 < λq2(q2 + q + 1)2(qn−3 − 1)2. (12)

Recall that λ 6 qj − 1. Hence q3n−9(q − 1)2 < (q2 + q + 1)2q2n+j−4. Since (q2 + q + 1)2 <
q6(q − 1)2, we conclude that q3n−9 < q2n+j+2, and so j > n − 11. Since j 6 n − 3, we
have that j ∈ {n− 10, n− 9, . . . , n− 3}. Recall that λ divides qj − 1. Let u be a positive
integer such that

λ =
qj − 1

u
. (13)

Let now m be a positive integer such that mk = λfn(q), where

fn(q) = q(q2 + q + 1)(qn−3 − 1)/(q − 1).

Then by Lemma 8(a), we have that k = 1 +m(v − 1)/fn(q). Note that v − 1 = q(qn−3 −
1)gn(q)(q3− 1)−1(q2− 1)−1(q− 1)−1, where gn(q) = q2n−1 + qn+2− qn+1− qn− qn−1 + q5−
q4 − q3 + q + 1. Therefore,

k = 1 +
m · gn(q)

(q + 1)(q3 − 1)2
> m · q2n−9. (14)

Since k 6 λfn(q) and λ = (qj − 1)/u, we conclude that mq2n−9 < k 6 q(q2 + q + 1)(qj −
1)(qn−3 − 1)/[u · (q − 1)], and so mu · qn−j−7(q − 1) < (q2 + q + 1). Hence,

mu < qj−n+7. (15)

Since mu > 1, it follows that qj−n+7 > 1, and so j − n+ 7 > 0. Therefore,

j = n− t with t ∈ {3, . . . , 6}. (16)

the electronic journal of combinatorics 28(2) (2021), #P2.13 12



Table 2: The polynomials h(q) and r(q) as in Case 1.2 of Proposition 18.

j hj(q) rj(q)

n− 3 qn+2 + 2q5 − q4 − q3 − q2 3q5 − 2q4 − 2q3 − q2 + q + 1
n− 4 qn+3 + q7 + q6 − q5 − q4 − q3 q7 + q6 − 2q4 − 2q3 + q + 1
n− 5 qn+4 + q9 + q7 − q6 − q5 − q4 q9 + q7 − q6 − 2q4 − q3 + q + 1
n− 6 qn+5 + q11 + q8 − q7 − q6 − q5 + q2 q8 − q7 − q6 − q4 − q3 + q2 + q + 1

Let hj(q) and rj(q) be as in the second and third columns of Table 2. Then gn(q) =
hj(q) · (qj − 1) + rj(q), and so

(q + 1)(q3 − 1)2 · k = m · gn(q) + (q + 1)(q3 − 1)2

= m · h(q)(qj − 1) +m · r(q) + (q + 1)(q3 − 1)2. (17)

For j as in (16), we observe that |m · rj(q) + (q3 − 1)2(q + 1)| > 0. Since λ = (qj − 1)/u
is a divisor of k, it follows from (17) that (qj − 1)/u divides |m · rj(q) + (q + 1)(q3 − 1)2|,
where mu < qj−n+7 and rj(q) is as in Table 2. Since |rj(q) + (q + 1)(q3 − 1)2| < q10, we
have that qj − 1 < muq10, and so by (15), we have that qn−17 < 1. This inequality holds
only for n = 6, . . . , 16. Define

dn(q) =

{
9 · fn(q)/(q2 + q + 1)2, if n = 6, 9, 12, 15;
3 · fn(q)/(q2 + q + 1), if n = 7, 8, 10, 11, 13, 14, 16.

Note that λ 6 qn−3 − 1. Since k divides λ · gcd(v − 1, fn(q)) which is a divisor of λdn(q),
the inequality λv < k2 implies that v < (qn−3 − 1) · dn(q)2, and considering each possible
n, we conclude that q ∈ {2, 4, 8}. For each q, we obtain the parameter v by (2), and
considering all divisors k of |Out(X)| · |H0|, we observe that k(k−1)/(v−1) is not prime,
which is a contradiction.

(2) Let H be the stabilizer of a pair {U,W} of subspaces of dimension i and n− i with
2i < n and U 6 W . Then by [23, Proposition 4.1.22], the subgroup H0 is isomorphic to
[̂q2in−3i2 ]·SLi(q)

2×SLn−2i(q)·(q−1)2. It follows from (1) and Lemma 15 that v > qi(2n−3i).
We note here that Lemma 11 is still true in this case. Then there is a subdegree which is
a power of p. On the other hand, if p is odd, then the p-part (v−1)p of v−1 is q. Then by
Lemma 8(c), k divides λq. Hence Lemma 8(b) implies that λqi(2n−3i) < λv < k2 6 λ2q2,
and so

qi(2n−3i) < λq2. (18)

Note that λ is an odd prime divisor of 2a · gcd(n, q − 1) · |H0|. It follows from Lemmas
7 and 8(b) that λ divides a, p or qj − 1, where j 6 n − 2. Then λ 6 qn−2 − 1, and so
(18) implies that qi(2n−3i) < q2(qn−2 − 1). Thus n(2i − 1) < 3i2. Since n > 2i, we have
that i2 < 2i. This inequality holds only for i = 1, in which case by (18), we conclude
that q2n−3i < λq2, where λ 6 qn−2 − 1. Then q2n−3 < qn, and so n < 3, which is a
contradiction.
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(3) Let H be the stabilizer of a pair {U,W} of subspaces of dimension i and n− i with
2i < n and V = U ⊕W . Then by [23, Proposition 4.1.4], the subgroup H0 is isomorphic
toˆSLi(q) × SLn−i(q) · (q − 1). We first show that i 6= 1. If i = 1, then by (1), we have
that v = qn−1(qn−1)/(q−1). Note by [35, p. 339] that k divides λqn−2(qn−1−1)/(q−1).
On the other hand, by Lemmas 8(a) and 10, the parameter k divides λ(v − 1) and v − 1
is coprime to q. Thus

k divides λ(qn−1 − 1)/(q − 1). (19)

We now apply Lemma 8(b) and conclude that qn−1(qn − 1) < λ(qn−1 − 1)2/(q − 1). Note
that λ is an odd prime divisor of 2a · gcd(n, q− 1) · |H0|. Then Lemmas 7 and 8(b) imply
that λ divides a, p or qj − 1, with j 6 n− 1. If λ divides a, p or q− 1, then the inequality
qn−1(qn − 1) < λ(qn−1 − 1)2/(q − 1) yields qn−1(qn − 1)(q − 1) < q(qn−1 − 1)2, which is
impossible. Therefore,

λ divides (qj − 1)/(q − 1), (20)

for some j ∈ {2, . . . , n − 1}. By (19), k divides λ(qn−1 − 1)/(q − 1). Let u be a positive
integer such that uk = λfn(q), where fn(q) = (qn−1 − 1)/(q − 1). Since v − 1 = (qn−1 −
1)(qn + q − 1)/(q − 1), by Lemma 8(a), we have that

k = u · (qn + q − 1) + 1 and λ = u2q(q − 1) +
u2(2q − 1) + u

fn(q)
. (21)

Recall that k divides λfn(q). So (21) implies that u · (qn + q − 1) + 1 divides (qj −
1)(qn−1 − 1)/(q − 1)2. By Euclid’s algorithm, we have that u · (qn + q − 1) + 1 divides
u · (qn−1 +2qj−qj−1−1)+qj−1. Thus u · (qn+q−1)+1 6 u · (qn−1 +2qj−qj−1−1)+qj−1,
and so qn+q 6 qn−1+2qj. Note that j 6 n−1. Then qn+q 6 3qn−1, which is impossible.
Therefore, i > 2. In this case, by [35, p. 340], we have that v > q2i(n−i). It follows from
[35, p. 339-340] that k divides λ(qi − 1)(qn−i − 1). Hence by Lemma 8(b), we have that
λq2i(n−i) < λv < k2 6 λ2(qi − 1)2(qn−i − 1)2, and so

q2i(n−i) < λq2n. (22)

Note that λ is an odd prime divisor of k dividing 2a · gcd(n, q − 1) · |H0|. Then Lemmas
7 and 8(b) imply that λ is a divisor of a, p or qj − 1, for some j 6 n− i. Thus

λ 6 (qn−i − 1)/(q − 1), (23)

and by (22), we have that q2i(n−i)(q − 1) < q2n(qn−i − 1). Therefore, 2i(n − i) < 3n − i,
and hence n(2i − 3) < 2i2 − i. This implies that (n, i) = (5, 2), in which case v =
q6(q5 − 1)(q2 + 1)/(q − 1) and k divides λ(q2 − 1)(q3 − 1). Then by Lemma 8(a), the
parameter k divides λ gcd(v − 1, (q2 − 1)(q3 − 1)). Since gcd(v − 1, q + 1) = 1, we
conclude that k divides λ(q− 1)2(q2 + q+ 1). Then the inequality λv < k2 and (23) yields
q6(q5 − 1)(q2 + 1) < (q − 1)2(q3 − 1)3, which is impossible.
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(4) Here V = V1 ⊕ · · · ⊕ Vt with dim(Vj) = i and n = it. By [23, Proposition 4.2.9], the
subgroup H0 is isomorphic to ˆSLi(q)

t · (q − 1)t−1 · Symt. It follows from [2, p.12] that
v > qn(n−i)/(t!). Let i = 1. By [35, p. 340], we have that k divides 2λn(n−1)(q−1). Then
Lemma 8(b) implies that λqn(n−1)/(n!) < λv < k2 6 λ24n2(n− 1)2(q − 1)2. Therefore,

qn(n−1) < 4λ · (n!) · n2(n− 1)2(q − 1)2. (24)

Since λ is an odd prime divisor of k, by Lemmas 7 and 8(b), λ must divide a, n! or q− 1.
Then λ 6 max{a, n, q − 1}, and so λ < n · (q − 1). Thus by (24), we conclude that

qn(n−1) < 4n3 · (n!) · (n− 2)2(q − 1)3. (25)

It follows from Lemma 16 that qn(n−1) < 2[4n(n−3)+6]/3 · n5(q − 1)3. Since n5 < 23n,
we conclude that q3n

2−3n−9 < 24n2−3n+6, and so 3n2 − 3n − 9 6 (3n2 − 3n − 9) · logp q 6
(4n2−3n+6) · logp 2 6 (4n2−3n+6) · log3 2 < (4n2−3n+6)×0.7. Hence 2n2−9n < 132.
This inequality holds only for n = 6, 7, 8, 9, 10. However, for each such value of n, the
inequality (25) does not hold, which is a contradiction. Therefore, i > 2, in which case
by [35, p. 340], k must divide λt(t− 1)(qi − 1)2(q− 1)−1. Then Lemma 8(b) implies that
λqn(n−i)/(t!) < λv < k2 6 λ2t2(t− 1)2(qi − 1)4(q − 1)−2. Therefore,

qn(n−i) · (q − 1)2 < λ · (t!) · t2 · (t− 1)2(qi − 1)4. (26)

Since λ is an odd prime divisor of k, by Lemmas 7 and 8(b), λ must divide a, p, t! or
qj − 1 for some j 6 i, and so λ 6 max{a, p, t, (qi − 1)(q − 1)−1}, consequently

λ < t · (qi − 1)(q − 1)−1. (27)

Then (26) implies that qn(n−i) · (q − 1)3 < t5 · (t!) · (qi − 1)5. If t > 4, then by Lemma
16(b), we have that t! < 24t(t−3)/3, and hence q3n(n−i) · (q − 1)9 < 24t(t−3) · t15 · (qi − 1)15.
Since t15 < 29t and qi − 1 < qi, it follows that

q3n
2−3i(n+5)+3 < 24t2−3t, (28)

where n = it. Therefore, t2(3i2− 4) + 3 < 3t(i2− 1) + 15i < 3ti(i+ 5), and so t(3i2− 4) <
3i(i + 5). This inequality holds only for (i, t) = (2, 4) or (2, 5). For these pairs of (i, t),
we can easily observe that the inequality (28) does not hold, which is a contradiction.
Hence t = 2, 3. If t = 2, then (26) and (27) imply that q2i

2 · (q − 1)3 < 16 · (qi − 1)5. As
(q − 1)3 > 8, we conclude that q2i

2−5i−1 < 1, and so i = 2 for which n = 2i = 4, which is
impossible. If t = 3, then by (26) and (27), we have that q6i

2 · (q− 1)3 < 23 · 34 · (qi− 1)5,
and so q6i

2
< q5i+4, which is impossible.

(5) Let H = NG(X(q0)) with q = qt0 odd and t odd prime. Then by [23, Proposition
4.5.3], the subgroup H0 is isomorphic to

ˆSLn(q0) · gcd((q − 1)(q0 − 1)−1, n)

with q = qt0. Note that |Out(X)| = 2a · gcd(n, q − 1). Since |X| < |Out(X)|2 · |H0|3 by

Corollary 12, it follows from Lemma 15 that q
t(n2−2)
0 < 4a2 · q3n2

0 (qt0 − 1)3. As a2 < 2q, we

the electronic journal of combinatorics 28(2) (2021), #P2.13 15



have that q
n2(t−3)−6t
0 < 8. Since also q0 is odd, it follows that 3n

2(t−3)−6t 6 q
n2(t−3)−6t
0 <

8 < 32, and so 3n
2(t−3)−6t < 32. Therefore, t(n2 − 6) < 3n2 + 2. If t > 5, then 5(n2 − 6) 6

t(n2−6) < 3n2+2, and so n2 < 16, which is impossible as n > 5. Therefore, t = 3. In this

case by (1) and Lemma 15, we conclude that v > q2n
2−9

0 . It follows from Lemma 8(a)-(c)
that k divides λ gcd(v−1, |Out(X)| · |H0|). By Tits’ Lemma 10 v−1 is coprime to q0, and
so k must divide 2λa ·g(q0), where g(q0) = (qn0 −1) · · · (q20−1) ·gcd(q20 +q0+1, n). Then by

Lemma 8(b), we have that λq2n
2−9

0 < λv < k2 6 4a2λ2(qn0 − 1)2· · ·(q20 − 1)2 · (q20 + q0 + 1)2.
Note that (q20 + q0 + 1)2 < q50. So

qn
2−n−12

0 < 4λa2. (29)

Note by Lemmas 7 and 8(b) that λ is an odd prime divisor of a, p, q0−1 or (qj0−1)/(q0−1)
with j ∈ {2, 3, . . . , n}, and so λ 6 (qn0 − 1)/(q0 − 1). Then by the inequality (29), we

conclude that qn
2−2n−12

0 (q0− 1) < 4a2. Recall that a = ts = 3s. Then qn
2−2n−12

0 (q0− 1) <

36s2. Since n > 5, we have that q30(q0 − 1) 6 qn
2−2n−12

0 (q0 − 1) < 36 · s2, and hence
q30(q0 − 1) < 36 · s2, which is impossible.

Proposition 19. Let D be a nontrivial symmetric (v, k, λ) design with λ > 5 prime.
Suppose that G is an automorphism group of D of almost simple type with socle X. If G
is flag-transitive and point-primitive, then the socle X cannot be PSUn(q) with n > 5.

Proof. Let H0 = H ∩X, where H = Gα with α a point of D. Then by Lemma 8(a), the
parameter v is odd, and so by Lemma 14, one of the following holds:

(1) q is even, and H0 is a parabolic subgroup of X;

(2) q is odd, and H is the stabilizer of a nonsingular subspace;

(3) q is odd, and H0 is the stabilizer of an orthogonal decomposition V = ⊕Vj with all
Vj’s isometric;

(4) q = qt0 is odd with t odd prime, and H = NG(X(q0)).

We analyse each of these possible cases separately and arrive at a contradiction in each
case.

(1) Let H0 be a parabolic subgroup of X. Note in this case that q = 2a is even. By [23,
Proposition 4.1.18], the subgroup H0 is isomorphic to q̂i(2n−3i) : SLi(q

2)·SUn−2i(q)·(q2−1),
for i 6 bn/2c. It follows from (1) and [35] that v > qi(2n−3i). By Lemma 11, there is a
unique subdegree d = 2c. Note that

(v − 1)2 =


q, if n is even and i = n/2;
q3, if n is odd and i = (n− 1)/2;
q2, otherwise,

where (v − 1)2 is the 2-part of v − 1. Since k divides λ gcd(v − 1, d), it follows that k
divides λqt, where t = 1, 2, 3. Note that λ is an odd prime divisor of k. It follows from
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Lemma 8(b) that λ must divide a, q2j − 1, for some j ∈ {1, 2, . . . , i} or qj − 1, for some
j ∈ {2, . . . , n− 2i}. Since max{qn−2i + 1, qi + 1} < qn−2 + 1, we conclude that

λ < qn−2 + 1, (30)

where 2i 6 n. Then by Lemma 8(b), we have that λqi(2n−3i) < λv < k2 6 λ2q6, and so

qi(2n−3i) < λq6. (31)

It follows from (30) that qi(2n−3i) < q6(qn−2 + 1). Since q6(qn−2 + 1) < qn+5, we have that
qi(2n−3i) < qn+5, and so

n · (2i− 1) < 3i2 + 5. (32)

As n > 2i, it follows that i2 < 2i + 5. This inequality holds only for i = 1, 2, 3. If i = 1,
then k divides λq2. Let u be a positive integer such that uk = λq2. Since λ < k, we have
that u < q2. By [6, Lemma 3.7(a)], u is coprime to k, and so u = 1 or u = q2. In the
later case, we would have k = λ, which is a contradiction. Therefore, u = 1 and k = λq2.
Note for n > 4 that v − 1 = s(q) + q2, where s(q) is a polynomial divisible by q4. Since
k(k − 1) = λ(v − 1) and k = λq2, we have that k = 1 + [s(q) + q2]/q2 = [s(q) + 2q2]/q2.
Therefore, λ = [s(q) + 2q2]/q4. Since q4 divides s(q), it follows that q4 divides 2q2, which
is impossible. If i ∈ {2, 3}, by the same argument as in the case where i = 1, we conclude
that n = 5 and k = λq3 if i = 2, and n = 6 and k = λq if i = 3. Thus

λ =


q5 + q2 + 2

q3
, if i = 2;

q8 + q7 + q5 + q4 + q3 + q2 + 2

q
, if i = 3.

Since λ has to be integer, it follows that q = 2 when (n, i) = (6, 3) in which case (v, k, λ) =
(891, 446, 223), but by [11], we have no symmetric design with this parameters set.

(2) Let H be the stabilizer of a nonsingular subspace, and let q be odd. Here by [23,
Proposition 4.1.4], H0 is isomorphic to

ˆSUi(q)× SUn−i(q) · (q + 1),

where 2i < n. Then by (1) and Lemma 15, we have that v > q2i(n−i)−6. It follows
from [35, p. 336] that k divides λdi(q), where di(q) = (qi − (−1)i)(qn−i − (−1)n−i). Then
Lemma 8(b) implies that λq2i(n−i)−6 < λv < k2 6 λ2(qi− (−1)i)2(qn−i− (−1)n−i)2. Since
qi − (−1)i < 2qi and qn−i − (−1)n−i < 2qn−i, we have that

q2i(n−i)−6 < 16λq2n. (33)

Since λ is an odd prime divisor of k, it follows from Lemmas 7 and 8(b) that λ divides a,
p, q ± 1, or (qj − (−1)j)(q − (−1)j)−1 with j ∈ {3, . . . , n− i}. Thus λ 6 λi(q), where

λi(q) =

{
(qn−i + 1)(q + 1)−1, if n− i is odd;
(qn−i−1 + 1)(q + 1)−1. if n− i is even.

(34)
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Then by (33) and (34), we have that q2i(n−i)−6 · (q + 1) < 32q3n−i, and so n(2i− 3) + i <
2i2+8. Since n > 2i, we conclude that 4i2−5i < n(2i−3)+i < 2i2+8, and so 2i2 < 5i+8.
This inequality holds only for i = 1, 2, 3.

Let i = 1. In this case by (1), we have that v = qn−1(qn − (−1)n)(q + 1)−1. If n is
even, then as q is odd, v is even, which is a contradiction. Therefore, n is odd, and hence
v = qn−1(qn + 1)(q + 1)−1. Recall that k divides λd1(q), where d1(q) = (q + 1)(qn−1 − 1).
Since gcd(v − 1, (q + 1)(qn−1 − 1)) = (qn−1 − 1)(q + 1)−1, it follows that k divides λf(q),
where f(q) = (qn−1− 1)(q+ 1)−1. Let u be a positive integer such that uk = λf(q). Then
by Lemma 8(a), we have that

k = u · (qn + q + 1) + 1 and λ = u2q(q + 1) +
u2(2q + 1) + u

f(q)
. (35)

Recall that uk = λf(q), where f(q) = (qn−1 − 1)(q + 1)−1. Then by (34) and (35), we
have that u2(qn + q + 1) + u < (qn−2 + 1)(qn−1 − 1)(q + 1)−2. Therefore, u2qn(q + 1)2 <
(qn−2 + 1)(qn−1 − 1) < qn(qn−3 + 1). Note that (qn−3 + 1)(q + 1)−2 < qn−5. Thus

u2 < qn−5. (36)

Since λ is integer, by (35), we conclude that f(q) divides u2(2q + 1) + u. Thus qn − 1 6
[u2(2q + 1) + u](q + 1). As [u2(2q + 1) + u](q + 1) < 6u2q2, it follows that qn− 1 < 6u2q2,
and so by (36), we conclude that qn − 1 < 6qn−3. Therefore, q2 6 6, which is impossible
as q is odd.

Let i = 2 or 3. Then

v =
qi(n−i) · wi(n, q)

(qi − (−1)i) · · · (q + 1)
,

where wi(n, q) = (qn − (−1)n) · · · (qn−i+1 − (−1)n−i+1). Since k divides λdi(q) = λ(qi −
(−1)i)(qn−i− (−1)n−i), it follows from Lemma 8(b) and (34) that wi(n, q) < qn−5(q3−1)2

when i = 2, and wi(n, q) < 32q6(q3 + 1)(q2 − 1) when i = 3. If i = 2, then w2(n, q) >
qn(qn−1 − 1), and so q5(qn−1 − 1) < (q3 − 1)2, which is impossible as n > 2i = 4. If i = 3,
then since n > 2i = 6, w3(n, q) > (q7 + 1)(q6−1)(q5 + 1), and so (q7 + 1)(q6−1)(q5 + 1) <
32q6(q3 + 1)(q2 − 1), which is impossible.

(3) Let H0 be the stabilizer of an orthogonal decomposition V = ⊕Vj with all Vj’s
isometric, and let q be odd. In this case, by [23, Proposition 4.2.9], H0 is isomorphic to

ˆSUi(q)
t · (q + 1)t−1 · Symt

It follows from [2, Proposition 3.5] that v > qi
2t(t−1)/2/(t!). Suppose first that i > 2.

Since λ is an odd prime divisor of k, the parameter λ must divide 2a · (t!) · qit(i−1)/2)(qi −
(−1)i)t· · ·(q2− 1)t(q+ 1)t−1. Since max{p, t, (qi− (−1)i)/2} < t · (qi− (−1)i)/2, it follows
that

λ < t · (qi − (−1)i)/2. (37)
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By [35, p.336], the parameter k divides λt(t− 1)(qi − (−1)i)2. Then by Lemma 8(b), we
have that λqi

2t(t−1)/2/(t!) < λv < k2 6 t2(t− 1)2λ2(qi − (−1)i)4, and so

qi
2t(t−1)/2 < λ · (t!) · t2(t− 1)2(qi − (−1)i)4. (38)

Then by (37), we have that 2qi
2t(t−1)/2 < (t!)·t3(t−1)2(qi−(−1)i)5. Since qi−(−1)i < 2qi,

it follows that qi
2(t2−t)/2 < 16(t!) · t3(t − 1)2q5i. If t > 4, then by Lemma 16(b), we have

that t! < 24t(t−3)/3, and so qi
2(t2−t)/2 < 2[4t(t−3)+12]/3 · t5q5i. Note that t5 6 23t. Thus,

qi
2(t2−t)/2 < 2[4t2−3t+12]/3 · q5i, and so q3i

2(t2−t)−30i < 28t2−6t+24. Therefore,

t2(3i2 − 8) < 3i2t+ 30i− 6t+ 24. (39)

Since t > 4, we have that t2(3i2 − 8) < 3i2t + 30i − 6t + 24 < (3i2 + 30i)t, and so
t(3i2 − 8) < 3i2 + 30i. Thus 12i2 − 32 6 t(3i2 − 8) < 3i2 + 30i, and so 9i2 − 30i < 32.
Then i = 2, 3, 4.

Suppose that i = 2. Then by (39), we conclude that 4t2 < 6t + 84 implying that
t = 4, 5. If (i, t) = (2, 4), then by (38) and (37), we have that q24 < 44 ·33(q2−1)5, which is
impossible. If (i, t) = (2, 5), then by (38) and (37), we conclude that q40 < 54 ·43 ·3(q2−1)5,
which is impossible. The case where i = 3, 4, can be ruled out by the same manner as
above.

Suppose now that i = 1. Then H0 is isomorphic to (̂q + 1)n−1 · Symn, and so by (1),
we have that

v =
qn(n−1)/2(qn − (−1)n) · · · (q2 − 1)

(q + 1)n−1 · n!
. (40)

Note that λ is an odd prime divisor of k. Then λ divides 2a(n!)(q + 1)n−1. Therefore, λ
must divide a, n! or q+1, and so λ 6 max{a, n, (q+1)/2}. In conclusion, λ < n(q+1)/2.
We now consider the following subcases:

(3.1) Let q > 5. Here by [35, p.337], we have that k divides λn(n − 1)(q + 1)2/2. Then
Lemma 8(b) implies that 4qn(n−1)/2(qn− (−1)n) · · · (q2− 1) < λ(n!) ·n2(n− 1)2(q+ 1)n+3.
Recall that λ < n(q + 1)/2. Therefore,

8qn(n−1)/2(qn − (−1)n) · · · (q2 − 1) < (n!) · n3(n− 1)2(q + 1)n+4. (41)

Note that q + 1 < 2q. Then (41) and Lemma 17 imply that qn
2−2n−4 < 2n+1(n!) · n3(n−

1)2 < 2n+1(n!)·n5. As n > 5, we conclude that n5 6 23n. Then by [8, Lemma 4.4], we have
that q3n

2−6n−12 < 24n2+3. Since q > 5, it follows that 26n2−12n−24 < q3n
2−6n−12 < 24n2+3.

Thus 2n2 < 12n+27, and so n = 5, 6, 7. Let now hn(q) = 8q(n
2−3n−8)/2(qn−(−1)n) · · · (q2−

1). Then since q+ 1 < 2q, we conclude by (41) that hn(5) 6 hn(q) < 2n+4 ·n3(n−1)2(n!),
for n ∈ {5, 6, 7}. Define

un =


216 · 3 · 54, if n = 5;
217 · 35 · 53, if n = 6;
217 · 34 · 5 · 74, if n = 7.
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Then hn(q) < un for n ∈ {5, 6, 7}, and hence hn(5) < un, which is impossible.

(3.2) Let q = 3. Here by [35, p.337], we have that k divides λn(n− 1)(n− 2)(q + 1)3/6.
Then Lemma 8(b) implies that 6qn(n−1)/2(qn− (−1)n) · · · (q2− 1) < λ(n!) ·n2(n− 1)2(n−
2)2(q + 1)n+5. Recall that λ < n. Therefore,

3qn(n−1)/2(qn − (−1)n) · · · (q2 − 1) < 22n+9n3(n− 1)2(n− 2)2 · (n!). (42)

Since qn(n−1)/2 6 (qn−(−1)n) · · · (q2−1), replacing q by 3, we have that 3n
2−n < 22n+9(n!)·

n3(n − 1)2(n − 2)2 < 22n+9(n!) · n7. As n > 5, we conclude that n7 6 24n, and so [8,
Lemma 4.4] implies that 33n2−3n < 24n2+6n+27. Therefore, 3n2 − 3n < (4n2 + 6n + 27) ·
log3 2 < (4n2 + 6n + 27) × 0.7, and so 2n2 < 72n + 189, and hence n ∈ {5, . . . , 38}. Let
hn(q) = 3q(n

2−n)/2(qn − (−1)n) · · · (q2 − 1). Then hn(3) < un, where un = 22n+9n3(n −
1)2(n − 2)2 · (n!). However, it is easy to check that this inequality does not hold for
n ∈ {5, . . . , 38}.
(4) Let H = NG(X(q0)) with q = qt0 odd and t odd prime. By [23, Proposition 4.5.3], the
subgroup H0 is isomorphic to

ˆSUn(q0) · gcd((q + 1)/(q0 + 1), n).

Since |Out(X)| = 2a·gcd(n, q+1), by Lemma 15 and the inequality |X| < |Out(X)|2·|H0|3,
we have that q

t(n2−2)
0 < 8a2 · q3n2

0 (1 + q−1
0 )3(1 + q−3

0 )3(qt0 + 1)3. As a2 < 2q, qt0 + 1 < 2qt0
and (1 + q−1

0 )3(1 + q−3
0 )3 < 2, we have that q

n2(t−3)−6t
0 < 256. Note that q0 is odd. So

3n
2(t−3)−6t < 256. If t > 5, then 32n2−30 < 256 < 36, and so 2n2 − 30 < 6, which

contradicts the fact that n > 5. Therefore, t = 3. In this case, by (1) and Lemma 15, we

have that v > q2n
2−10

0 . By Lemmas 7 and 8(b), the parameter k divides 2a · qn(n−1)/2
0 (qn0 −

(−1)n)· · ·(q20 − 1) · gcd(q20 − q0 + 1, n). It follows from Lemma 8(a) and (c) that k divides
λ gcd(v−1, |Out(X)| · |H0|). Since by Lemma 10, v−1 is coprime to q0, we conclude that

k divides 2aλ · |H0|p′ . (43)

Then by (43) and Lemma 8(b), we have that

λq2n
2−10

0 < λv < k2 6 4a2λ2(qn0 − (−1)n)2· · ·(q20 − 1)2 · (q20 − q0 + 1)2.

Since (q20 − q0 + 1)2 < q40, we conclude that qn
2−n−12

0 < 4a2λ. Since also λ is an odd
prime divisor of |H|, it must divide a, p, q ± 1 or (qj0 − (−1)j)/(q0 − (−1)j), for some

j ∈ {2, 3, . . . , n}. Then λ 6 (qn0 − 1)/(q0 − 1), and so the inequality qn
2−n−12

0 < 4a2λ

implies that qn
2−2n−12

0 (q0 − 1) < 4a2. As a = 3s and n > 5, it follows that q30(q0 − 1) 6
qn

2−2n−12
0 (q0 − 1) < 36s2. Therefore, q30(q0 − 1) < 36s2, which is impossible.

Proposition 20. Let D be a nontrivial symmetric (v, k, λ) design with λ prime. Sup-
pose that G is an automorphism group of D of almost simple type with socle X. If G
is flag-transitive and point-primitive, then the socle X cannot PSp2m(q) with (m, q) 6=
(2, 2), (2, 3).
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Proof. Let H0 = H ∩X, where H = Gα with α a point of D. Then by Lemma 8(a), v is
odd, and so by Lemma 14 one of the following holds:

(1) q is even, and H0 is a parabolic subgroup of X;

(2) q is odd, and H is the stabilizer of a nonsingular subspace;

(3) q is odd, and H0 is the stabilizer of an orthogonal decomposition V = ⊕Vj with all
Vj’s isometric;

(4) q = qt0 is odd with t odd prime, and H = NG(X(q0)).

We now analyse each of these possible cases separately.

(1) Let H0 be a parabolic subgroup of X, and let q = 2a be even. Then [23, Proposition
4.1.19] implies that H0 is isomorphic to

[qh] · (GLi(q)× PSp2m−2i(q)),

where h = 2mi + (i − 3i2)/2 and i 6 m. It follows from (1) and Lemma 15 that v >
qi(4m−3i). By Lemma 11, there is a unique subdegree d = 2c. The 2-power (v − 1)2 is q.
Since k divides λ gcd(v − 1, d), it follows that k divides λq. By the fact that λ is an odd
prime divisor of k, Lemma 8(b) implies that λ must divide a, qj − 1 with j ∈ {1, . . . , i}
or q2j − 1 with j ∈ {1, . . . ,m− i}. Thus

λ 6 (qm − 1)/(q − 1). (44)

It follows from Lemma 8(b) that λqi(4m−3i) < λv < k2 6 λ2q2, and so qi(4m−3i) < λq2.
Then by (44), we have that

qi(4m−3i)(q − 1) < q2(qm − 1). (45)

Therefore, i(4m− 3i) < m + 2, and so m(4i− 1) < 3i2 + 2. Since i 6 m, it follows that
i(4i− 1) 6 m(4i− 1) < 3i2 + 2. Thus i2 < i+ 2, and hence i = 1. By (45), we have that
q4m−3(q − 1) < q2(qm − 1), and so q4m−3 < qm+2, which is impossible.

(2) Let H be the stabilizer of a nonsingular subspace, and let q be odd. Here by [23,
Proposition 4.1.3], the subgroup H0 is isomorphic to

PSp2i(q)× PSp2m−2i(q) · 2,

where 2i < m. In this case, v > q4i(m−i), and so Lemma 8(c) implies that k divides
λdi(q), where di(q) = (q2i−1)(q2m−2i)(q2−1)−2. Again by Lemma 8(b), we conclude that
λq4i(m−i) < λv < k2 6 λ2(q2i − 1)2(q2m−2i − 1)2(q2 − 1)−4. Therefore,

q4i(m−i)(q2 − 1)4 < λ(q2i − 1)2(q2m−2i − 1)2 (46)

Since λ is an odd prime divisor of k, Lemmas 7 and 8(b) imply that λ must divide a, p
or q2j − 1, for some j ∈ {1, . . . ,m− i}, and so

λ 6 qm−i + 1. (47)
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Then by (46), we have that q4i(m−i)+6 < q5m−i. Thus 4i(m − i) + 6 < 5m − i, and so
m(4i− 5) < 4i2− i− 6. As m > 2i, the last inequality holds only for i = 1, in which case
by (1), we have that v = q2m−2(q2m − 1)(q2 − 1)−1 and

k divides λd1(q), (48)

where d1(q) = (q2m−2 − 1)(q2 − 1)−1. Let u be a positive integer such that uk = λd1(q).
Since v − 1 = (q2m−2 − 1)(q2m + q2 − 1)(q2 − 1)−1, by Lemma 8(a), we have that

k = u · (q2m + q2 − 1) + 1 and λ = u2q2(q2 − 1) +
u2(2q2 − 1) + u

d1(q)
. (49)

It follows from (49) and (48) that u·(q2m+q2−1)+1 6 (qm−1+1)(q2m−2−1)(q2−1)−1, and
so uq2m(q2− 1) < (qm−1 + 1)(q2m−2− 1). Since (qm−1 + 1)(q2m−2− 1) < q2m−2(qm+1 + 1),
we have that u 6 2qm−4. Since λ is a positive integer, we conclude by (49) that d1(q)
must divide u2(2q2 − 1) + u. Since also u 6 2qm−4, we have that q2m−2 − 1 6 (u2(2q2 −
1) + u)(q2 − 1) 6 2u2q2(q2 − 1) < 8q2(m−4)+2(q2 − 1), and so q2m−2 − 1 < 8q2m−6(q2 − 1).
Thus q2m−2 − 1 < 8q2m−4, and hence q2 6 8, which is impossible as q is odd.

(3) Let H0 be the stabilizer of an orthogonal decomposition V = ⊕Vj with all Vj’s
isometric, and let q be odd. In this case, by [23, Proposition 4.2.10], the subgroup H0 is
isomorphic to ˆSp2i(q)oSymt with it = m. Here by [2, p.16], we have that v > q2i

2t(t−1)/(t!).
The parameter λ divides k. Then it divides 2a · (t!) · qi2t(q2i − 1)t· · ·(q2 − 1)t by Lemmas
7 and 8(b). Therefore, λ divides a, p, t! or q2j − 1, for some j ∈ {1, . . . , i}, and since
λ 6 max{a, p, t, (qi + 1)/2}, it follows that

λ < t · (qi + 1)/2. (50)

Note also by [35, p.328] that

k divides λt(t− 1)(q2i − 1)2(q − 1)−1/2. (51)

Then Lemma 8(b) implies that λv < k2 6 λ2t2(t− 1)2(q2i − 1)4(q − 1)−2/4, and so

4q2i
2t(t−1)(q − 1)2 < λ · t2(t− 1)2(t!)(q2i − 1)4. (52)

It follows from (50) and (52) that

8q2i
2t(t−1)(q − 1)2 < t3(t− 1)2(t!)(q2i − 1)4(qi + 1). (53)

We now consider the following subcases:

(3.1) Assume first that t > 4. Note by Lemma 16(b) that t! < 24t(t−3)/3. Then
43q6i

2t(t−1)·(q − 1)6 < 24t(t−3)·t15(q2i − 1)12q3i, and so q6i
2t2−6i2t−27i+3 < 24t2−3t−6. Thus

2t2(3i2 − 2) < 3t(2i2 − 1) + 27i− 9 < 3ti(2i+ 9). Therefore,

2t(3i2 − 2) < 3i(2i+ 9). (54)
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As t > 4, it follows that 8(3i2−2) 6 2t(3i2−2) < 3i(2i+9), and so 8(3i2−2) < 3i(2i+9).
Then i = 1, 2. If i = 2, then by (54), we conclude that 20t = 2t(3i2 − 2) < 3i(2i + 9) =
78, and so t < 4, which is a contradiction. Therefore, i = 1. By (53), we have that
8q2t(t−1)(q − 1)2 < t3(t− 1)2(t!)(q2 − 1)4(q + 1). As t > 4, by Lemma 16(b), we conclude
that 4q2t(t−1)−8 < 24t(t−3)/3·t5. Since t5 < 23t, we have that q6t(t−1)−24 < 24t2−3t−6. Thus
6t(t − 1) − 24 6 [6t(t − 1) − 24]· logp q < (4t2 − 3t − 6) · logp 2 < (4t2 − 3t − 6) × 0.7.
Therefore, 32t2 − 39t < 198, which is impossible for any t > 4.

(3.2) Assume now that t = 3. It follows from (53) that q12i
2·(q−1)2 < 34·(q2i−1)4(qi+1).

Since q2i−1 < q2i and qi+1 < 2qi, we conclude that q12i
2·(q−1)2 < 34·(q2i−1)4(qi+1) <

2 · 34q9i, and so q12i
2
< q9i+4. Thus i = 1. Again, we apply (53) and conclude that

q12·(q − 1)2 < 34·(q2 − 1)4(q + 1), which is impossible.
(3.3) Assume finally that t = 2. The inequality (53) implies that q4i

2·(q − 1)2 < 2(q2i −
1)4(qi+1). Since qi+1 < 2qi, we have that q4i

2·(q−1)2 < 2q9i. This inequality holds only
for i ∈ {1, 2}. If i = 2, then m = 4, and so by (1), we have that v = q8(q4+q2+1)(q4+1)/2.
By (51) and Lemma 8(a), the parameter k must divide λ(q2 + 1)2. Then by Lemma 8(b),
we conclude that λq8(q4+q2+1)(q4+1)/2 < k2 6 λ2(q2+1)4, and so q8(q4+q2+1)(q4+1) <
2λ(q2 +1)4. Then (50) implies that q8(q4 +q2 +1)(q4 +1) < (q2 +1)5, which is impossible.
Therefore, i = 1, and hence (1) implies that

v =
q2(q2 + 1)

2
. (55)

Since gcd(v − 1, q + 1) divides gcd(3, q + 1), it follows from (51) and Lemma 8(a) that

k divides c1λf(q),

f(q) = q2−1 and c1 = gcd(3, q+1). Let now u be a positive integer such that uk = c1λf(q).
Then Lemma 8 implies that

2c1k = u · (q2 + 2) + 2c1 and 2c21λ = u2 +
3u2 + 2c1u

q2 − 1
. (56)

Recall that k divides λ · c1f(q). Then (56) implies that u(q2 + 2) + 2c1 6 2λ · c21f(q), and
so

u < 2c21λ. (57)

Note that λ is an odd prime divisor of k. Then Lemmas 7 and 8(b) implies that λ divides
4aq2(q2 − 1)2. Therefore, λ divides a, p, (q − 1)/2 or (q + 1)/2. We now analyse each of
these possibilities.

(3.3.1) Let λ divides a. By (57), we have that u < 2a · c21. Note that λ is an integer
number. Then (56) implies that q2 − 1 must divide 3u2 + 2c1u, where u < 2a · c21. Thus
q2 − 1 6 3u2 + 2c1u 6 12a2 · c41 + 4a · c31, and so q2 < 16a2 · c41, where c1 = gcd(3, q + 1),
and this holds only for the pairs (p, a) ∈ {(3, 1), (5, 1)}, and so λ divides a = 1, which is
impossible.
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(3.3.2) Let λ divides p. Since λ > 1, we have that λ = p, and so by (57), we have that
u < 2p · c21. As λ is a positive integer, it follows from (56) that q2 − 1 divides 3u2 + 2c1u,
where u < 2p · c21. Thus q2 − 1 6 3u2 + 2c1u 6 12p2 · c41 + 4p · c31, and so q2 < 16p2 · c41,
where c1 = gcd(3, q + 1). Thus either (p, a) = (3, 2), or a = 1. If (p, a) = (3, 2), then by
(55), we have that v = 3321 and that k divides λ · c1f(p2) = 3f(9) = 240. Since λ = 3,
we conclude that 3(v− 1) = k(k− 1), for some divisor k of 240, which is a contradiction.
Thus a = 1, and so q = p. Since λ is an odd prime divisor of k, it follows from (56)
that q = p must divide u + c1. Let now u1 be a positive integer such that u = u1p − c1.
Then by (57), u1p − c1 < 2p · c21, and since p > 3 > c1 = gcd(3, p + 1), we have that
u1p < 2p · c21 + c1 6 2p · c21 + p, and so

u1 < 2c21 + 1. (58)

If c1 = 1, then u1 = 1 or 2. Clearly, we have that p2 − 1 - 3u21p
2 − 4u1p + 1. If c1 = 3,

then u1 = 1, 2, . . . , 18. For each value of u1, by Euclid’s algorithm, it is easy to know that
p2 − 1 - 3u21p

2 − 12u1p+ 9 except for the case where

(p, u1) ∈ {(5, 1), (5, 3), (5, 5), (11, 1), (11, 3), (17, 1)}.

Note here that p = q = λ. Then for each such pair by (55), we can obtain v, and this is a
contradiction as for each v and p, the equation p(v− 1) = k(k− 1) has no positive integer
solutions.

(3.3.3) Let λ divides (q − ε1)/2, where ε ∈ {+,−}. Then gcd(λ, p) = 1. On the other
hand by Lemma 10, we know that gcd(v − 1, p) = 1, and so Lemma 8(a) implies that
gcd(k, p) = 1. It follows from Lemmas 7 and 8(a) that k divides |Out(X)| · |H ∩X|p′ =
4a(q2 − 1)2. Then (56) implies that

u · (q2 + 2) + 2c1 divides 8a · c1(q2 − 1)2. (59)

Note that 8ac1u · (q2 − 1)2 = 8ac1h(q)[u · (q2 + 2) + 2c1] + G(u, q), where h(q) = q2 − 4
and G(u, q) = 8ac1[9u− 2c1h(q)]. Then G(u, q) = 0 or we conclude by (59) that

u · (q2 + 2) + 2 · c1 divides |G(u, q)|. (60)

Suppose that G(u, q) = 0. Then 9u = 2c1h(q). Then u = 2c1h(q)/9 = 2c1(q
2 − 4)/9.

Then (56) implies that λ = 2(q2 − 1)(q2 − 4)/81, which is impossible.
Suppose now that G(u, q) > 0. Then u > 2(q2−4)/9 and by (60), u · (q2 + 2) + 2 · c1 <

|G(u, q)| = 72ac1u− 16ac21h(q) 6 72ac1u, and so q2 + 2 < 72ac1. Since r(q) = 9, it follows
that q2 + 2 < 72a · c1. This inequality holds when q = 3, 5, 7, 9, 11. Note by (57) that u <
c21(q+1) as λ divides (q−ε1)/2. Thus for q ∈ {3, 5, 7, 9, 11}, as 2(q2−4)/9 < u < c21(q+1),
we have that (q, u) ∈ {(3, 2), (3, 3), (5, 5), (5, 6), . . . , (5, 17), (11, 27), (11, 28), . . . , (11, 35)}.
We can now check (56) for these pairs (q, u), and observe that for no such pairs, λ is
prime.

Suppose finally that G(u, q) < 0. Then (60) implies that u ·(q2 +2)+2c1 < |G(u, q)| =
16ac21h(q) − 72ac1u < 16ac1h(q) = 16ac1 · (q2 − 4), and so u < 16ac1. Note by (56) that
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Table 3: Some parameters for Case 3.3.3 in Proposition 20

p 3 5 7 11, 13, . . . 89

a 6 4 3 2 1
u < 82 378 50 270

q2 − 1 divides 3u2 + 2c1u. Then q2 − 1 6 3u2 + 2c1u < 3 · 162a2c21 + 2 · 16ac21, and so
q2 − 1 < 210a2c21, and this holds only for q = pa as in Table 3. For each q, we can find
an upper bound for u listed in the same table, and it is easy to check by (56) that these
possible pairs (q, u) give rise to no possible parameters with λ prime.

(4) Let H = NG(X(q0)) with q = qt0 odd and t odd prime. Then by [23, Proposition
4.5.4], the subgroup H0 is isomorphic to PSp2m(q0) with q = qt0. As |Out(X)| divides 2a,

by Lemma 15 and Corollary 12, we have that q
tm(2m−1)
0 < 16a2·q3m(2m+1)

0 . Since a2 < 2q,
it follows that

q
t(2m2−m−1)
0 < 32·q6m2+3m

0 . (61)

As q0 is odd, q
t(2m2−m−1)
0 < q6m

2+3m+4
0 . Thus t(2m2 −m − 1) < 6m2 + 3m + 4. If t > 9,

then 9(2m2−m− 1) 6 t(2m2−m− 1) < 6m2 + 3m+ 4, and so 12m2 < 12m+ 13, which

is impossible. Therefore, t = 3, 5, 7. If t = 7, then by (61), we have that q8m
2−10m−7

0 < 32.

As m > 2 and q0 is odd, 35 6 q8m
2−10m−7

0 < 32, and so 35 < 32, which is impossible. If

t = 5, then (61) implies that q4m
2−8m−5

0 < 32, and this inequality holds only for m = 2. If
(m, t) = (2, 5), then by (1), we have that

v =
q160 (q200 − 1)(q100 − 1)

(q40 − 1)(q20 − 1)
> q350 .

By Lemmas 7 and 8(b), the parameter k divides 2a·q40(q40 − 1)(q20 − 1). It follows from
Lemmas 8 and 10 that k divides 2λa·(q40 − 1)(q20 − 1). Then by Lemma 8(b), we conclude
that λq350 < λv < k2 6 4λ2a2·(q40 − 1)2(q20 − 1)2 < 4λ2a2·q120 . Hence, q230 < 4λa2. Since k
divides 2a·q40(q40−1)(q20−1) and λ is an odd prime divisor of k, we conclude that λ 6 q20+1.
Then the inequality q230 < 4a2λ implies that q210 < 8a2, and since a = ts = 5s, it follows
that q210 < 200·s2, which is impossible. Hence t = 3. In this case by (1) and Lemma 15,

we have that v > q4m
2−4m−2

0 . It follows from Lemmas 7 and 8 and Tits’ Lemma 10 that k
divides 2aλ·g(q0), where g(q0) = (q2m0 − 1)· · ·(q20 − 1). By Lemma 8(b), we conclude that

λq4m
2−4m−2

0 < λv < k2 6 4λ2a2·(q2m0 − 1)2· · ·(q20 − 1)2. Thus

q2m
2−6m−2

0 < 4a2λ. (62)

Note that λ is an odd prime divisor of k and k divides |H|. Then λ must divide a, p or
(q2j0 − 1), for some j ∈ {1, . . . ,m}, and so

λ 6 qm0 + 1. (63)
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Therefore, by the inequality (62), we have that q2m
2−6m−2

0 < 4a2·(qm0 + 1). As a = ts = 3s

and qm0 + 1 < 2qm0 , we conclude that q2m
2−7m−2

0 < 72s2 implying that m = 2, 3, 4. If
m = 2, then by (1), we have that v = q80(q80 + q40 + 1)(q40 + q20 + 1) > q200 . Here by
Lemma 8(a)-(c), k divides 2λa· gcd(v − 1, |H ∩ X|). Then by Lemma 10 and the fact
that gcd(v − 1, q20 + 1) = 2, we conclude that k 6 4λa·(q20 − 1)2. So Lemma 8(b) implies
that λq200 < λv < k2 6 16λ2a2(q20 − 1)4. Thus, q120 < 16λa2. So by (63), we have that
q120 < 16a2·(q20 + 1). Recall that a = 3s and q20 + 1 < 2q20. Then q120 < 25·32·s2, which is
impossible. By the same manner as above, the remaining cases where m = 3, 4 can be
ruled out.

Proposition 21. Let D be a nontrivial symmetric (v, k, λ) design with λ prime. Suppose
that G is an automorphism group of D of almost simple type with socle X. If G is flag-
transitive and point-primitive, then the socle X cannot be PΩε

n(q) with ε ∈ {◦,−,+}.

Proof. Let H0 = H ∩X, where H = Gα with α a point of D. Note by Lemma 8(a) that
v is odd, and so by Lemma 14, we have one of the following possibilities:

(1) q is even, and H0 is a parabolic subgroup of X;

(2) q is odd, and H is the stabilizer of a nonsingular subspace;

(3) q is odd, and H0 is the stabilizer of an orthogonal decomposition V = ⊕Vj with all
Vj’s isometric;

(4) H0 is SO7(2) or Ω+
8 (2) and X is Ω7(q) or PΩ+

8 (q), respectively, q = p ≡ ±3 (mod 8);

(5) X = PΩ+
8 (q), q = p ≡ ±3 (mod 8), G contains a triality automorphism of X and H0

is 23 · 26 · PSL3(2);

(6) q = qt0 is odd with t odd prime, and H = NG(X(q0)).

Note in the cases (1) and (6) for X = Ω2m+1(q) that we argue exactly the same as in the
symplectic groups. Therefore, we exclude these possibilities, and analyse the remaining
cases.

(1) Let H0 be a parabolic subgroup of X, and let q be even. As noted above, we only
need to consider the case where X = PΩε

2m(q) with (m, ε) 6= (2,+), ε = ± and q even.
We postpone the case where (m, ε) = (4,+) and G contains a triality automorphism
till the end of this case. In this case by [23, Proposition 4.1.20], H0 is isomorphic to
[qh] ·GLi(q)× Ωε

2m−2i(q), where h = 2mi− (3i2 + i)/2.
Suppose first that H stabilises a totally singular i-space with i 6 m−1, and so H = Pi

excluding the case where i = m − 1 and ε = +, where H = Pm,m−1. It follows from (1)
and Lemma 15 that v > 2−5q(4mi−3i2−i−2)/2. Note that λ is an odd prime divisor of k and
|Out(X)| divides 6a. Then by Lemma 8(b), we have that

λ 6 qm−1 + 1. (64)
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In all cases, by Lemma 11 there is a unique subdegree d of X that is a power of p except
for the case where ε = +, m is odd and H = Pm or Pm−1. Note that the p-part (v − 1)p
of v − 1 is q2 or 8. Since k divides λ gcd(v − 1, d), it follows that k divides λq3. It
follows from Lemma 8(b) that λq(4mi−3i2−i−2)/2 < 32λv < 32k2 6 32λ2q6. Therefore,
q(4mi−3i2−i−2)/2 < 32λq6, an so by (64), we have that

q(4mi−3i2−i−2)/2 < 32q6(qm−1 + 1). (65)

Then q(4mi−3i2−i−2)/2 < 25 · q6(qm−1 + 1). Since qm−1 + 1 < 2qm−1, it follows that
q2m(2i−1)−3i2−i−12 < 212. Since also m > i + 1, it follows that 2(i + 1)(2i − 1) 6
2m(2i − 1) < 3i2 + i + 24, and so i2 + i < 26, then i ∈ {1, 2, 3, 4}. If i = 1, then
2m = 2m(2i − 1) < 3i2 + i + 24 = 28, and so m = 4, . . . , 13. By (1), we have that v =
(qm−ε1)(qm−1+ε1)/(q−1). Recall that there is a unique subdegree d of X that is a power
of p. Since k divide λ gcd(v − 1, d), it follows that k divides λq. Thus Lemma 8(b) that
λ(qm−1 + ε1)(qm− ε1)/(q−1) 6 λv < k2 6 λ2q2, and so (qm−1 + ε1)(qm− ε1) < λq2(q−1).
Then by (64), we have that (qm − ε1)(qm−1 + ε1) < q2(q − 1)(qm−1 + 1). If ε = +, then
(qm−1 + 1)(qm − 1) < q2(q − 1)(qm−1 + 1), and so (qm − 1) < q2(q − 1), which does not
hold for any m > 4, which is a contradiction. If ε = −, then (qm−1 − 1)(qm + 1) <
q2(q − 1)(qm−1 + 1), and so q2m−1 − qm + qm−1 − 1 < qm+2 − qm+1 + q3 − q2, and so
q2m−3−qm−2+qm−3 6 qm−qm−1+q−1. Since qm−3 > q−1, qm−2(qm−1−1) 6 qm−2(q2−q),
and so (qm−1 − 1) 6 (q2 − q), which is impossible. For the remaining cases i = 2, 3, 4, we
argue exactly as in the case where i = 1.

Suppose finally that H = Pm when X = PΩ+
2m(q). Note that here Pm−1 and Pm are

the stabilizers of totally singular m-spaces from the two different X-orbits. Here by (1),
we have that

v = (qm−1 + 1)(qm−2 + 1) · · · (q + 1) > qm(m−1)/2. (66)

Note that λ is an odd prime divisor of k and |Out(X)| divides 6a. Then by Lemma 8(b),
λ must divide 3, a or qj − 1, for some j ∈ {1, . . . ,m}. Thus

λ 6 (qm − 1)/(q − 1). (67)

Assume that m is even. Note by [35, p. 332] that there is a subdegree d which is a
power of p. On the other hand, the p-part of v − 1 is q. Since k divides λ gcd(v − 1, d),
we have that k divides λq, and so Lemma 8(b) implies that λqm(m−1)/2 < λv < k2 < λ2q2,
and so qm(m−1)/2 < λq2. Thus by (67), we conclude that qm(m−1)/2(q − 1) < (qm − 1)q2,
and so m(m− 1) < 2m+ 4, which is impossible for m > 4.

Assume that m is odd. Then [35, p. 332] implies that k divides λq(qm − 1), and so
by Lemma 8(b), we have that λqm(m−1)/2 < λv < k2 < λ2q2(qm − 1)2. Thus qm(m−1)/2 <
λq2(qm − 1)2. Then (67) implies that qm(m−1)/2(q − 1) < q2(qm − 1)3, and so m(m− 1) <
6m + 4, then m = 5, 7. If m = 5, then action here is of rank three. The symmetric
designs with a primitive rank 3 automorphism group have been classified by Dempwolff
[16], we know that there is no such symmetric design with λ prime. If m = 7, then since
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k divides λq(q7 − 1) and gcd(v − 1, q6 + q5 + q4 + q3 + q2 + q + 1) = 1, the parameter k
must divide λq(q − 1). It follows from Lemma 8(b), that λq21 < λv < k2 < λ2q2(q − 1)2,
and so q21 < λq2(q − 1)2. Thus by (67), we conclude that q21 < q2(q − 1)2(q7 − 1), which
is impossible.

Let now X = PΩ+
8 (q), and let G contain a triality automorphism. We use [12, Table

8.50], where the maximal subgroups are determined. By case (1), we only need to consider
the case where H ∩ X is isomorphic to [q11]:(q − 1)2 · GL2(q). By (1), we have that
v = (q6−1)(q4−1)2/(q−1)3 > q11. Since the p-part of v−1 is q and k divides λ gcd(v−1, d),
it follows that k divides λq. Then Lemma 8(b) implies that λq11 < λv < k2 < λ2q2, and
so q11 < λq2. Note that λ is and odd prime divisor of k dividing |Out(X)| · |H ∩X|. Then
Note that λ is an odd prime divisor of k and |Out(X)| divides 6a. Then λ must divide 3,
a or qj − 1, for some j ∈ {1, 2}, and so λ 6 max{3, q+ 1} 6 q+ 1. Recall that q11 < λq2.
Therefore, q11 < q2(q + 1), which is a impossible.

(2) Let H be the stabilizer of a nonsingular subspace, and let q be odd. Here, we need
to discuss the odd and even dimension of the underlying orthogonal space separately.

(2.1) Let X = Ω2m+1(q) with q odd and m > 3. In this case H = N ε
i with i 6 m. If

i = 1, then by [23, Proposition 4.1.6], H0 is isomorphic toˆΩε
2m(q)·2 with ε ∈ {+,−}. It

follows from (1) that v = qm(qm + ε1)/2. Note here that if ε = −, then m is odd as v
must be odd.

According to [35, p.331-332], k must divide λdε(q), where dε(q) = (qm − ε1)/2. Let u
be a positive integer such that uk = λ(qm − ε1)/2. Then by Lemma 8(a), we have that

k = u · (qm + ε2) + 1 and λ = 2u2 +
ε3u2 + u

dε(q)
. (68)

Since uk = λdε(q) = λ(qm−ε1)/2, it follows from Lemma 8(b) that λv < k2 6 λ2dε(q)2/u2.
Therefore,

2u2qm(qm + ε1) < λ(qm − ε1)2. (69)

Note that here |Out(X)| = 2a and λ is an odd prime divisor of k. Then by Lemmas 7
and 8(b), λ must divide a, p, qm− ε1 or q2j − 1, for some j ∈ {1, . . . ,m− 1}. Considering
all these possible cases, it is easy to see that λ 6 (qm − ε1)/(q − ε1). So by (69), we have
that 2u2qm(qm + ε1) < λ(qm − ε1)2/(q − ε1) 6 (qm − ε1)3/(q − ε1). Therefore,

u2 <
(qm − ε1)3

2qm(qm + ε1)(q − ε1)
. (70)

Note that λ is an integer number. Then (68) implies that dε(q) must divide |ε3u2 + u|,
where dε(q) = (qm − ε1)/2.

Let now ε = +. Then, by (70), we conclude that

qm − 1

2
= d+(q) 6 3u2 + u 6 4u2 <

2(qm − 1)3

qm(qm + 1)(q − 1)
,
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and so qm(qm + 1)(q− 1) < 4(qm− 1)2. Therefore, (q− 1) < 4(qm− 1)2/[qm(qm + 1)] < 4,
and hence q = 3. In this case, G has rank 3 by [22, Theorem 1.1], and by [16], we know
that there is no such symmetric design with λ prime.

Let now ε = −. Then (70) yields

qm + 1

2
= d−(q) 6 3u2 − u < 3u2 <

3(qm + 1)3

2qm(qm − 1)(q + 1)
,

and so qm(qm−1)(q+1) < 3(qm+1)2. Since q > 3, it follows that 4qm(qm−1) < 3(qm+1)2,
and so q2m < 10qm + 3, which is impossible as m > 3.

Therefore, i > 2. Here by [23, Proposition 4.1.6], H ∩ X is isomorphic to Ωε
i(q) ×

Ωn−i(q)·4, where i is even and ε ∈ {+,−}. It follows from [35, p.331], we have that
v > qi(n−i)/4 and k 6 2aλqm, where n = 2m + 1 and m > 3. Then by Lemma 8(b), we
have that

qi(n−i) < 16λa2qn−1. (71)

Since λ is an odd prime divisor of k, Lemmas 7 and 8 imply that λ must divide a, p,
qj1 − ε or q2j2 − 1, where j1 6 bm/2c and j2 6 b(n − i − 1)/2c. Note that m > i. Thus
λ 6 (q(n−i−1)/2 + 1)/2, and so (71) implies that qi(n−i) < 16a2q(3n−i−3)/2. Therefore,

qn(2i−3)−2i2+i+3 6 256a4. (72)

As m > i, we have that n > 2i, and so q2i
2−5i+3 6 256a4. This inequality holds only for

i = 2, in which case (72) implies that qn−3 = qn(2i−3)−2i2+i+3 6 256a4. This inequality
holds only for (n, q) = (7, 3), in which case by [12, Tables 8.39], H ∩X is isomorphic to
Ω−

2 (3)× Ω5(3) · 4, and so (1) implies that v = 22113. By Lemmas 7 and 8, k is a divisor
of 415720. For these values of (v, k), the fraction k(k − 1)/(v − 1) is not prime, which is
a contradiction.

(2.2) Let X = PΩε
2m(q) with q odd, m > 4 and ε ∈ {−,+}. Then H = Ni with i 6 m.

Set n = 2m.
If i = 1, then by [23, Proposition 4.1.6], H ∩ X is isomorphic to ˆΩ2m−1(q)·4. Here

by (1), we have that v = qm−1(qm − ε1)/2. Note that |Out(X)| divides 6a· gcd(4, qm − 1)
and λ is an odd prime divisor of k. Then by Lemmas 7 and 8(b), λ must divide a, 3, p or
q2j − 1, for some j ∈ {1, 2, . . . ,m− 1}. Therefore,

λ 6 (qm−1 + 1)/2. (73)

According to [35, p.332-333], the parameter k divides λ(qm−1 + ε1)/2 if q ≡ 1 (mod 4), or
λ(qm−1− ε1)/2 if q ≡ 3 (mod 3). Thus k divides λdε(q), where dε(q) = (qm−1± ε1)/2. By
Lemma 8(a), k divides λ(v − 1). Therefore, k must divide λ gcd(v − 1, dε(q)). Note that
gcd(v−1, dε(q)) < q−1. Therefore, k < λ(q−1). Then by (73) and Lemma 8(b), we have
that λqm−1(qm − ε1) 6 λv < k2 < λ2(q − 1)2, and so (73) implies that qm−1(qm − ε1) <
(qm−1 + 1)(q − 1)2, which is impossible.
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Table 4: Some large maximal subgroups of finite simple classical groups in Proposition 21.

X H ∩X v k divides

PΩ−
8 (3) (̂Ω−

2 (3)× Ω+
6 (3))·22 209223 388177920

PΩ−
8 (5) (̂Ω−

2 (5)× Ω+
6 (5))·22 102703125 1392768000000

PΩ−
8 (7) (̂Ω−

2 (7)× Ω+
6 (7))·22 6075747307 296651671142400

PΩ−
8 (9) (̂Ω−

2 (9)× Ω+
6 (9))·22 127287028233 32486299582464000

PΩ−
10(3) (̂Ω−

2 (3)× Ω+
8 (3))·22 16409061 158469754060800

PΩ+
10(3) (̂Ω+

2 (3)× Ω+
8 (3))·22 32549121 158469754060800

Therefore, we can assume that 1 < i 6 m. Then by [2, p.19], v > qi(2m−i)/4 and by [35,
p. 333], k 6 4aλ·qm. Then Lemma 8(b) implies that λv < λqi(2m−i) < 4k2 < 64λ2a2q2m.
Thus

q2m(i−1)−i2 < 64λa2. (74)

Note that λ is an odd prime divisor of k and by Lemma 8(b), k divides |Out(X)|·|H ∩X|,
where |Out(X)| divides 6a· gcd(qm − ε1). Here by [23, Proposition 4.1.6], H ∩X divides
|Ωδ1

i (q)× Ωδ2
n−i(q)·4|, where δi ∈ {◦,−,+} and i > 2. Then λ 6 λi(q), where n = 2m and

λi(q) =


2−1·(q(n−i)/2 + 1), if (n− i)/2 is even and δ2 = −;
2−1·(q(n−i−1)/2 + 1), if i is odd;
(q(n−i)/2 − (−1)δ2)(q − (−1)δ2)−1, otherwise.

(75)

Thus by (74) and (75), we have that q2m(i−1)−i2 < 32a2·(q(n−i)/2 + 1). Since q(n−i)/2 + 1 <
2q(n−i)/2, it follows that

qm(2i−3)−i2 < 64a2. (76)

Note that i 6 m. Thus qi
2−3i 6 qm(2i−3)−i2 < 64a2, and so qi

2−3i < 64a2. This inequality
holds only for i = 2, 3. If i = 3, then by (74) and (75), we have that q4m−9 < 32a2·(qm−2 +
1). Hence q3m−7 < 64a2. As m > 4, it follows that q5 6 q3m−7 < 64a2, and so q5 < 64a2,
which is impossible. Therefore, i = 2. We now consider the following two subcases:

(2.2.1) Let m be even. If δ2 = −, then by (74) and (75), we have that q2m−4·(q + 1) <
32a2·(qm−1 + 1). Hence qm−3·(q+ 1) < 64a2. This inequality holds only for (m, q) = (4, 3)
in which case v = 189540, which is not odd. If δ2 = +, then by (74) and (75), we
have that q2m−4·(q − 1) < 32a2·(qm−1 − 1). Hence qm−3·(q − 1) < 32a2. This inequality
holds only for (m, q) ∈ {(4, 3), (4, 5), (4, 7), (4, 9)}. We now apply [23, Proposition 4.1.6]
and obtain H ∩ X as listed in Table 4, and considering the fact that v is odd, we have
that (m, q, ε) ∈ {(4, 3,−), (4, 5,−), (4, 7,−), (4, 9,−)}. Moreover, Lemma 8(b) says that
k divides |Out(X)|·|H ∩X|, and so we can find the possible values of k as in the fourth
column of Table 4. This is a contradiction as for each k and v as in Table 4, the fraction
k(k − 1)/(v − 1) is not prime.
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Table 5: Some parameters for Case 3 in Proposition 21

Line X H ∩X v k divides

1 Ω7(3) 26·Alt7 28431 645120
2 Ω7(5) 26·Alt7 1416796875 645120
3 Ω9(3) 28·Alt9 1416290265 185794560
4 Ω11(3) 210·Alt11 3741072100580529 81749606400
5 Ω13(3) 212·Alt13 564416277323644023433155 51011754393600
6 PΩ+

8 (3) 26·Alt8 3838185 15482880
7 PΩ+

8 (5) 26·Alt8 6906884765625 15482880
8 PΩ+

12(3) 210·Alt12 27575442453379079259 2942985830400
9 PΩ−

10(3) 28·Alt10 1399578039873 3715891200
6 PΩ−

14(3) 212·Alt14 32152618284915465959467883895 1428329123020800

(2.2.2) Letm be odd. If δ2 = −, then by (74) and (75), we have that q2m−4 < 32a2·(qm−1+
1). Hence qm−3 < 64a2. This inequality holds only for m = 5 and q = 3, 5, 7, 9. All these
cases can be ruled out as v has to be odd. If δ2 = +, then by (75) and (74), we have
that q2m−4·(q − 1) < 32a2·(qm−1 − 1). Hence qm−3·(q − 1) < 32a2. This inequality holds
only for (m, q) = (5, 3) for ε = ±. By [23, Proposition 4.1.6], we can obtain H ∩X as in
Table 4, and for each such H ∩ X, by (1), we find v as in the third column of Table 4.
Note by Lemma 8(b) that k divides |Out(X)|·|H ∩ X|, and so we can find the possible
values of k as in the fourth column of Table 4. All these cases can be ruled out as the
fraction k(k − 1)/(v − 1) is not prime.

(3) Let H0 be the stabilizer of an orthogonal decomposition V = ⊕Vj with all Vj’s
isometric, and let q be odd. This case has to be treated separately for both odd and even
dimension of V .

(3.1) Let X = Ω2m+1(q) with q odd and m > 3. In this case H is the stabilizer of a
subspace decomposition into isometric non-singular spaces of dimension i, where i is odd.

Let i = 1. Then by [23, Proposition 4.2.15], the subgroup H ∩ X is isomorphic to
22m·Sym2m+1 or 22m·Alt2m+1 if q ≡ ±1 (mod 8) or q ≡ ±3 (mod 8), respectively. The
subgroups H ∩ X satisfying |X| < |Out(X)|2·|H ∩ X|3 are listed in Table 5, and for
each such H ∩X, by (1), we obtain the parameter v as in the fourth column of Table 5.
Moreover, Lemma 8(b) says that k divides |Out(X)| · |H ∩ X|, and so we can find the
possible values of k as in the fifth column of Table 5. For each possible case, we observe
that k(k − 1)/(v − 1) is not prime, which is a contradiction.

Therefore, i > 3, and hence [23, Proposition 4.2.14] implies that H ∩X is isomorphic
to

(2t−1 × Ωi(q)
t·2t−1)·Symt,

where it = 2m+ 1.
Let i = 3. Then H ∩ X is isomorphic to (2t−1 × Ω3(q)

t · 2t−1) · Symt, and so by
Lemma 15, we conclude that qm

2∏m
j=1(q

2j − 1) < a2 · 23 · 26t−6 · (t!)3 · q3t(q2 − 1)3t/2−3t.
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Since a2 < q and qm
2
6
∏m

j=1(q
2j − 1), it follows that q2m

2
< 23t−3 · (t!)3 · q9t+1. Thus

q2m
2−9t−1 < 23t−3 · (t!)3. Since 2m+ 1 = 3t, we conclude that

q9t
2−24t−1 < 26t−6 · (t!)6. (77)

If t = 3, then q8 < 218 · 36. This inequality holds for q ∈ {3, 5, 7, 9}, and so in each
case, we easily observe by (1) that v is even, which is a contradiction. Thus t > 5.
Since by Lemma 16(a) we have that t! < 5(t2−3t+1)/3, it follows from (77) that q9t

2−24t−1 <
26t−6 ·(t!)6 < 26t−6 ·52t2−6t+2. Thus q9t

2−24t−1 < 26t−6 ·52t2−6t+2. Since 26t−6 ·52t2−6t+2 < 52t2 ,
it follows that q9t

2−24t−1 < 52t2 . Then logp q · (9t2 − 24t− 1) < logp 5 · (2t2) < 3t2, and so
9t2 − 24t− 1 < 3t2. Thus, 6t2 − 24t− 1 < 0, this inequality does not hold for any t > 5,
which is a contradiction.

Let i > 5. Then by Corollary 12 and Lemma 15, we have that qm
2∏m

j=1(q
2j − 1) <

a2·23·26t−6 · (t!)3·q3it(i−1)/2. Since a2 < q and qm
2
6
∏m

j=1(q
2j − 1), it follows that q2m

2
<

26t−3 · (t!)3·q[3it(i−1)+2]/2. Thus q2m
2−[3it(i−1)+2]/2 < 26t−3 · (t!)3. Since 2m + 1 = it, we

conclude that

q(it−1)2−3it(i−1)−2 < 212t−6·(t!)6. (78)

If t = 3, then q3i−1 < 236·36. Since 236·36 < 329, it follows that q3i−1 < 329. This
inequality holds only for i ∈ {5, 7, 9}. If i = 5, then by (78), we conclude that q14 <
236·36. This inequality holds only for q ∈ {3, 5, 7, 9}. Then by (1), we easily observe
that v is not odd, which is a contradiction. By the same manner, we can rule out
the remaining case where i = 7, 9. Therefore t > 5, and hence by Lemma 16(a), we
have that t! < 5(t2−3t+1)/3, and so (78) implies that q(it−1)2−3it(i−1)−2 < 212t−6·(t!)6 <
212t−6·52t2−6t+2. Since 212t−6·52t2−6t+2 < 52t2 , it follows that q(it−1)2−3it(i−1)−2 < 52t2−1.
Then [i2t(t− 3) + it− 1] · logp q < (2t2 − 1) · logp 5 < 3t2, and so

i2t(t− 3) + it− 1 < 3t2. (79)

Note that i > 5. Then (79) implies that 25t2 − 20t− 1 6 i2t(t− 3)− 5it− 1 < 3t2, and
so 23t2 − 20t− 1 < 0, which is impossible.

(3.2) Let X = PΩε
2m(q) with q odd, m > 4 and ε ∈ {−,+}. In this case, H is an

imprimitive subgroup ofG stabilizing a decomposition V = V1⊕· · ·⊕Vt with the dimension
of each Vj’s equal to i, so 2m = it.

(3.2.1) Let i = 1. Then by Corollary 12 and [23, Proposition 4.2.15], we can obtain H∩X
as listed in Table 5. For each such H ∩X, by (1), we can obtain v as in the third column
of Table 5. Moreover, Lemma 8(b) says that k divides |Out(X)| · |H ∩X|, and so we can
find the possible values of k as in the fourth column of Table 5. This is a contradiction
as for each k and v as in Table 5, the fraction k(k− 1)/(v− 1) is not prime. Hence i > 2.

(3.2.2) Let i be odd. Then by [23, Proposition 4.2.14], H ∩X is isomorphic to (2t−2 ×
Ωi(q)

t.2t−1).Symt with t even and ε = (−1)m(q−1)/2.
If i = 3, then t > 4 as 3t = it = 2m > 8. It follows from Corollary 12 and Lemma

15 that qm(2m−1) < |Out(X)|2 · 26t−6 · (t!)3 · q3t(q2 − 1)3t/2−3t. Since |Out(X)| divides 24a
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and a2 < q, we conclude that q2m
2−m < 23t · 32 · (t!)3q9t+1. Thus q2m

2−m−9t−4 < 23t · (t!)3.
Since 2m = 3t, we have that

q9t
2−21t−8 < 26t · (t!)6. (80)

Note by Lemma 16(b) that t! < 24t(t−3)/3. Thus (80) implies that q9t
2−21t−8 < 26t · (t!)6 <

26t ·28t2−24t, and so q9t
2−21t−8 < 28t2−18t. Then (9t2−21t−8) · logp q < (8t2−18t) · logp 2 <

(8t2 − 18t)× 0.7, and so 90t2 − 210t− 80 < 56t2 − 126t. Therefore, 34t2 − 84t− 80 < 0,
this inequality does not hold for any t > 4, which is a contradiction.

Therefore, i > 5. If t = 2, then m = i as 2m = it. Let u be a positive integer such
that i = 2u+ 1. Then by (1), we have that

v =
q3u

2+2u(q2u+1 − ε1)(q4u − 1)(q4u−2 − 1) · · · (q2 − 1)

2(q2u − 1)2(q2u−2 − 1)2 · · · (q2 − 1)2
,

which is even, and this is a contradiction. If t > 4, then by Corollary 12 and Lemma 15,
we have that qm(2m−1) < |Out(X)|2 · 26t−6 · (t!)3 · q3it(i−1)/2. Thus, q4m

2−2m < |Out(X)|4 ·
212t−12 · (t!)6 · q3it(i−1). Note that |Out(X)| divides 24a and a2 < q. Thus, q4m

2−2m <
212t · 34 · (t!)6q3it(i−1)+2. Since 2m = it, we conclude that

qi
2t2−it−3it(i−1)−6 < 212t · (t!)6. (81)

Since t! < 24t(t−3)/3 for t > 4 by Lemma 16(b), we conclude that qi
2t2−it−3it(i−1)−6 <

212t · (t!)6 < 212t · 28t2−24t, and so qi
2t2−it−3it(i−1)−6 < 28t2−12t. Then (i2t2− it− 3it(i− 1)−

6)·logp q < (8t2−12t)·logp 2 < (8t2−12t)×0.7, and so 10i2t(t−3)+20it−60 < 56t2−84t.
Since i > 5, it follows that 250t2− 650t− 60 6 10i2t(t− 3) + 20it− 60 < 56t2− 84t, Thus,
250t2− 650t− 60 < 56t2− 84t, and so 194t2− 566t− 60 < 0, this inequality does not hold
for any t > 4, which is a contradiction.

(3.2.3) Let i be even. Then by [23, Proposition 4.2.11], the H ∩X is isomorphic to

d−1Ωε1
i (q)t.22(t−1).Symt,

where ε = εt1 and d ∈ {1, 2, 4}.
If t = 2, then m = i, as 2m = it. Let u be a positive integer such that i = 2u. Then

by (1), we have that

v =
q2u

2
(qu + ε11) · (q4u−2 − 1)(q4u−4 − 1) · · · (q2 − 1)

2 · (q2u−2 − 1)2(q2u−4 − 1)2 · · · (q2 − 1)2
.

This contradicts the fact that v is odd. Therefore, t > 3.
If i = 2, thenm = t, and so by (1) and Lemma 15, we have that v > q2t

2−t/[2t−2(t!)·(q+
1)t]. By [35, p. 333], the parameter k is at most 25 ·3·λa·t(t−1)(q+1)2, and so by Lemma
8(b), we conclude that λq2t

2−t/[2t−2(t!) · (q+1)t] < λv < k2 6 21032λ2a2 · t2(t−1)2(q+1)4.
Since a2 < q, 21032 < 214 and t2(t− 1)2 < t4, it follows that

q2t
2−t−1 < 2t+12λt4(t!)(q + 1)t+4. (82)
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Table 6: Some parameters for Case 3.2.3 in Proposition 21

Line X H ∩X v k divides

1 PΩ+
12(3) ˆΩ+

4 (3)3.22.Sym3 5898080746972747508175 18345885696
2 PΩ+

12(5) ˆΩ+
4 (5)3.22.Sym3 181234396436428964138031005859375 286654464000000

Note that λ is a prime divisor of k. Thus by Lemma 8(b), λ must divide a, t or (q+ ε1)/2.
Therefore λ 6 max{a, t, (q + 1)/2} < t(q + 1)/2, and so by (82), we have that

q2t
2−t−1 < 2t+11t5(t!)(q + 1)t+5. (83)

As q + 1 < 2q and t5 6 23t, we conclude that q2t
2−2t−6 < 25t+15(t!). Note that t =

m > 4. Then by Lemma 16(b), we have that q2t
2−2t−6 < 25t+15(t!) < 25t+1524t(4−3)/3.

Thus q6t
2−6t−18 < 24t2+3t+45, and so (6t2 − 6t − 18) · logp q < (4t2 + 3t + 45) · logp 2 6

(4t2+3t+45)×0.7. Hence 60t2−60t−180 < 28t2+21t+300, and so 32t2−81t−480 < 0,
then t = 4, 5. If t = 5, then (83) implies that q44 < 216 · 55(5!) · (q + 1)10 < 226 · 55(5!)q10,
and so q34 < 226 · 55 · (5!), which is impossible. If t = 4, then by the same manner,
we must have q18 < 237 · 3, which is valid for q = 3. Since λ divides a = 1, t = 4 or
(q + ε1)/2 = (3 + ε1)/2, we conclude that λ = 2, which is a contradiction.

If i = 4, then m = 2t, and so by Corollary 12 and Lemma 15, we conclude that
qm(2m−1) < |Out(X)|2 · 26t−3 · (t!)3 · q6t(q4− 1)3t. Thus, qm(2m−1) < |Out(X)|2 · 26t−3 · (t!)3 ·
q18t. Note that |Out(X)| divides 24a, a2 < q and m = 2t. Thus, q8t

2−2t = qm(2m−1) <
26t+332(t!)3q18t+1, and so

q8t
2−20t−3 < 26t−3 · (t!)3. (84)

If t = 3, then (84) yields q9 < 218 · 33, and so q = 3, 5. In each of these cases, H ∩X and
v are recorded as in Table 6. By Lemma 8(b), the parameter k divides |Out(X)| · |H ∩X|
as in the fifth column of Table 6. It is easy to check for each possible parameters v and
k that the fraction k(k − 1)/(v − 1) is not prime, which is a contradiction. If t > 4,
then by Lemma 16(b), we have that t! < 24t(t−3)/3, and so (84) implies that q8t

2−20t−3 <
26t−3 · (t!)3 < 24t2−6t−3. Thus q8t

2−20t−3 < 24t2−6t−3, and so (8t2 − 20t − 3) · logp q <
(4t2− 6t− 3) · logp 2 6 (4t2− 6t− 3)× 0.7. Hence 80t2− 200t− 30 < 28t2− 42t− 21, and
so 52t2 − 158t− 9 < 0, which has no solution for t > 4, which is a contradiction.

If i > 6, then Corollary 12 and Lemma 15 imply that qm(2m−1) < |Out(X)|2 · 26t−3 ·
(t!)3 · q3it(i−1)/2. Thus, q4m

2−2m < |Out(X)|4 · 212t−6 · (t!)6 · q3it(i−1). Note that |Out(X)|
divides 24a and a2 < q. Thus, q4m

2−2m < 212t+634(t!)6q3it(i−1)+2. Since 2m = it, we
conclude that

qi
2t(t−3)+2it−6 < 212t+6 · (t!)6. (85)

If t = 3, then (85) yields q6i−6 < 248 · 36. As q is odd and i > 6, it follows that
q6i−6 < 248 ·36. This inequality holds only for (i, q) = (6, 3) in which case by (1), we easily
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Table 7: Some parameters for Cases 4 and 5 in Proposition 21

Line X H0 Conditions v k divides q

1 Ω7(q) SO7(2) q = p ≡ ±3 (mod 8) q9(q6−1)(q4−1)(q2−1)
210·34·5·7 210·34·5·7 3, 5

2 PΩ+
8 (q) Ω+

8 (2) q = p ≡ ±3 (mod 8) q12(q6−1)(q4−1)2(q2−1)
214·35·52·7 215·35·52·7 3, 5

3 Ω+
8 (q) 23·26·PSL3(2) q = p ≡ ±3 (mod 8) q12(q6−1)(q4−1)2(q2−1)

214·3·7 215·32·7 3

observe that v is even, which is a contradiction. If t > 4, then t! < 24t(t−3)/3 by Lemma
16(b). Thus by (85), we conclude that qi

2t(t−3)+2it−6 < 212t+6(t!)6 < 212t+628t2−24t, and so
qi

2t(t−3)+2it−6 < 28t2−12t+6. Then [i2t(t− 3) + 2it− 6]× logp q < (8t2 − 12t+ 6)× logp 2 6
(8t2 − 12t + 6) × 0.7. Hence 10i2t(t − 3) + 20it − 60 < 56t2 − 84t + 42. Since i > 6,
it follows that 360t2 − 960t − 60 6 10i2t(t − 3) + 20it − 60 < 56t2 − 84t + 42 and so
304t2 − 876t− 102 < 0, which is impossible for t > 4.

(4)-(5) In these cases, the pairs (X,H0) are recorded in Table 7, and for each case, by
(1), we obtain the parameter v as in the fifth column of the same table. Moreover, for
each pairs (X,H ∩X), by Lemmas 7 and 8(b), the parameter k divides the number listed
in the sixth column of Table 7. We now apply Lemma 8(b), and so v < k2. For each row,
this inequality is true only for q given in the last column of Table 7. It is easy to check
that for each appropriate pairs (v, k), the fraction k(k−1)/(v−1) is not a prime number.

(6) Let H = NG(X(q0)) with q = qt0 odd and t odd prime. Here, as noted before, we
only need consider the case where X = PΩε

2m(q) with q odd, n = 2m and ε = ±. By [23,
Proposition 4.5.10], the subgroup H0 is isomorphic to PΩε

2m(q0), where m > 4. Note that
|Out(X)| divides 6a. Then by Lemma 15 and the inequality |X| < |Out(X)|2·|H ∩X|3,
we have that q

tm(2m−1)
0 < 25·32·a2·q3m(2m−1)

0 ·(1 + q−m0 )3. Since a2 < 2q and 1 + q−m0 < 2,

it follows that q
(2m2−m)(t−3)−t
0 < 29·32. If t > 5, then q4m

2−2m−5
0 6 q

(2m2−m)(t−3)−t
0 < 29·32,

which is impossible. Hence t = 3 in which case by (1) and Lemma 15, we have that

v > q4m
2−2m−4

0 . Since k divides λ(v − 1, |H|) and v − 1 is coprime to q0, the parameter

k must divide 6aλ·|H ∩X|p′ . Since |H ∩X|p′ < q
2m(m−1)
0 (qm0 + 1)2, Lemma 8(b) implies

that λq4m
2−2m−4

0 < λv < k2 6 36a2λ2q
2m(m−1)
0 (qm0 + 1)2. Therefore,

q2m
2−4

0 < 36a2λ·(qm0 + 1)2. (86)

Note that λ is an odd prime divisor of k. Thus Lemmas 7 and 8(b) imply that λ divides 3,
a, p, qm0 −ε1 or q2j0 −1, for some j ∈ {1, . . . ,m−1}, and so λ 6 qm0 +1. Then by inequality

(86), we have that q2m
2−4

0 < 36a2·(qm0 + 1)3. Since qm0 + 1 < 2q0, q
2m2−3m−4
0 < 25·32a2. As

a = 3s, m > 4 and q0 is odd, 316s 6 q2m
2−3m−4

0 < 25·33s2, and so 316s < 25·33s2, which is
impossible.

Proof of Theorem 1 Suppose that D is a nontrivial symmetric (v, k, λ) design admitting
a flag-transitive and point-primitive automorphism group G with socle X a finite simple
group of Lie type. Suppose also that λ is prime. The symmetric designs with λ = 2, 3
admitting flag-transitive transitive automorphism groups are classified in [18, 30, 32], and
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so by a quick check, we observe that the pairs (D, G) are as in Table 1. Therefore, we
can assume that λ > 5. Since k(k − 1) = λ(v − 1), it follows that λ is coprime to k or
λ divides k. In the former case, by [9, Corollary 1.2], we conclude that D is a projective
space PGn(q) or D is the unique Hadamard design with parameters (11, 5, 3) which has
been already recorded in Table 1. We now consider the latter case where λ divides k. We
first observe by [6, Corollary 1.2] that the socle X cannot be a finite simple exceptional
group. Let now X be a finite simple classical groups. Since G is point-primitive, the point-
stabiliser H = Gα is maximal in G, and considering the fact that k(k− 1) = λ(v− 1), we
conclude that v is odd, and our main result then follows from Propositions 18-21.

Proof of Corollary 1 Suppose that D is a nontrivial symmetric (v, k, λ) design with λ
prime admitting a flag-transitive and point-imprimitive automorphism group G. Suppose
also that (c, d, l) is as in the statement of Corollary 1. If (v, k, λ) is not one of the
possibilities mentioned in Corollary 1, then [34, Theorem 1.1] implies that k = λ2/2,
and since λ is prime, we conclude that λ = 2, and hence k = 4/2 = 2 = λ, which is a
contradiction.
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