A note on complex-4-colorability of signed planar graphs

Arnfried Kemnitz
Technical University Braunschweig
Braunschweig, Germany

a.kemnitz@tu-bs.de

Margit Voigt
University of Applied Sciences Dresden
Dresden, Germany
margit.voigt@htw-dresden.de

Submitted: Sep 3, 2020; Accepted: Apr 14, 2021; Published: May 7, 2021
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A pair (G, σ) is called a signed graph if $\sigma: E(G) \longrightarrow\{1,-1\}$ is a mapping which assigns to each edge e of G a sign $\sigma(e) \in\{1,-1\}$. If (G, σ) is a signed graph, then a complex-4-coloring of (G, σ) is a mapping $f: V(G) \longrightarrow\{1,-1, i,-i\}$ with $i=\sqrt{-1}$ such that $f(u) f(v) \neq \sigma(e)$ for every edge $e=u v$ of G.

We prove that there are signed planar graphs that are not complex-4-colorable. This result completes investigations of Jin, Wong and Zhu as well as Jiang and Zhu on 4-colorings of generalized signed planar graphs disproving a conjecture of the latter authors.

Mathematics Subject Classifications: 05C10, 05C15, 05C22

1 Introduction and results

Let $G=(V, E)$ be a simple graph. A mapping $f: V(G) \longrightarrow[k]=\{1,2, \ldots, k\}(k$ is a positive integer) is called a k-coloring of G if $f(u) \neq f(v)$ for every edge $e=u v$ of G. If such a coloring exists, then G is called k-colorable.

A pair (G, σ) is called a signed graph if $\sigma: E(G) \longrightarrow\{1,-1\}$ is a mapping which assigns to each edge e of G a sign $\sigma(e) \in\{1,-1\}$. The mapping σ is called a signature of G, and an edge e is positive or negative if $\sigma(e)=1$ or $\sigma(e)=-1$, respectively.

Colorings of signed graphs have been introduced in the early 1980s by Zaslavsky [4] and were later the topic of various papers (see [1] for recent informations).

Let the set N_{k} be defined by $N_{k}=\left\{ \pm 1, \pm 2, \ldots, \pm \frac{k}{2}\right\}$ if k is even or $N_{k}=\{0, \pm 1, \pm 2, \ldots$ $\left.\ldots, \pm \frac{k-1}{2}\right\}$ if k is odd, respectively.

Definition 1. If (G, σ) is a signed graph and k a positive integer, then a k-coloring of (G, σ) is a mapping $f: V(G) \longrightarrow N_{k}$ such that $f(u) \neq \sigma(e) f(v)$ for every edge $e=u v$ of G. A graph G is called signed k-colorable if (G, σ) has a k-coloring for every signature σ of G.

In [1] the concept of k-colorings of signed graphs was modified for the case $k=4$ in the following way.
Definition 2. If (G, σ) is a signed graph, then a complex-4-coloring of (G, σ) is a mapping $f: V(G) \longrightarrow\{1,-1, i,-i\}$ with $i=\sqrt{-1}$ such that $f(u) f(v) \neq \sigma(e)$ for every edge $e=u v$ of G.

It is conjectured in [1] that every signed planar graph is complex-4-colorable. We will disprove the conjecture in this note (see Theorem 6). Moreover, our result completes the investigations of Jiang and Zhu [1] on S - k-colorability in that paper.

The concept of S - k-colorability generalizes colorings of signed graphs and was introduced in [1] and [2]. Discussions on the relationship to other coloring concepts and a list of corresponding references can be found in these references.

The symmetric group S_{k} consists of all permutations π of $1,2, \ldots, k$. The identity permutation is written $i d$. The permutation which interchanges exactly the elements i and j is written by $(i j)$ and is called a cycle of length 2 . All permutations can be written as product of cycles. A set S of permutations is called inverse closed if for each $\pi \in S$ also $\pi^{-1} \in S$ where π^{-1} is the inverse permutation of π.
Definition 3. If $G=(V, E)$ is a graph and $S \subseteq S_{k}$ an inverse closed set of permutations, then an S-signature of G is a pair (D, σ) where D is an orientation of G and $\sigma: E(D) \longrightarrow$ S a mapping which assigns to each arc $e=(u, v)$ a permutation $\sigma(e) \in S$. A k-coloring of an S-signature of G is a mapping $f: V(D) \longrightarrow[k]$ such that for each arc $e=(u, v)$ of D it holds $\sigma(e)(f(u)) \neq f(v)$. A graph G is called S - k-colorable if every S-signature (D, σ) of G has a k-coloring.

Moreover, an involution is a permutation π with $\pi^{-1}=\pi$. If all the permutations $\pi \in S$ are involutions, then the orientation of the edges is irrelevant. In our investigations we deal with involutions only. Therefore we give a further adapted definition.
Definition 4. If $G=(V, E)$ is a graph and $S \subseteq S_{k}$ a set of involutions, then an S signature of G is a mapping $\sigma: E(G) \longrightarrow S$ which assigns to each edge $e=u v$ an involution $\sigma(e) \in S$. A k-coloring of an S-signature of G is a mapping $f: V(G) \longrightarrow[k]$ such that for each edge $e=u v$ of G it holds $\sigma(e)(f(u)) \neq f(v)$. A graph G is called S - k-colorable if every S-signature σ of G has a k-coloring.

Clearly if $S=\{i d\}$, then S - k-colorability of G is equivalent to k-colorability of G. If $S=\{i d,(12)(34) \ldots((2\lfloor k / 2\rfloor-1)(2\lfloor k / 2\rfloor))\}$, then S - k-colorability is equivalent to signed k-colorability. Moreover, if $S=\{(12),(34)\}$ then S-4-colorability is equivalent to complex-4-colorability as shown in the proof of Theorem 6 .

In [1] the question is posed for which subsets S of S_{4} every planar graph is S-4colorable. We will prove in Theorem 1 that for $S=\{(12),(34)\}$ there exist planar graphs which are not S-4-colorable.

Theorem 5. If $S=\{(12),(34)\}$, then there are planar graphs that are not S-4-colorable.
Theorem 5 will be proved in Section 2.
Theorem 6. There are signed planar graphs that are not complex-4-colorable.
Proof. Let G be a planar graph, $S=\{(12),(34)\}$, and σ an S-signature of G such that G is not S-4-colorable. Such a configuration exists according to Theorem 5. Define a mapping $\sigma^{*}: E(G) \longrightarrow\{1,-1\}$ by

$$
\sigma^{*}(e)=\left\{\begin{array}{lll}
-1 & \text { if } & \sigma(e)=(12) \\
1 & \text { if } & \sigma(e)=(34)
\end{array}\right.
$$

Assume to the contrary that G has a complex-4-coloring $f^{*}: V(G) \longrightarrow\{1,-1, i,-i\}$ and define

$$
f(v)=\left\{\begin{array}{lll}
1 & \text { if } & f^{*}(v)=1 \\
2 & \text { if } & f^{*}(v)=-1 \\
3 & \text { if } & f^{*}(v)=i \\
4 & \text { if } & f^{*}(v)=-i
\end{array}\right.
$$

It is easy to check that f is a proper S-4-coloring of G contradicting the assumption.
In [1] a subset S of S_{4} is called good if every planar graph is S-4-colorable and the question was posed which subsets of S_{4} are good. The authors mentioned that it is sufficient to restrict oneselves to subsets S of S_{4} where for each $a \in\{1,2,3,4\}$ there is a permutation $\pi \in S$ with $\pi(a)=a$. Such subsets are called normal subsets. If $S \in S_{4}$ is not normal then it is trivially good since there is an $a \in\{1,2,3,4\}$ with $\pi(a) \neq a$ for all $\pi \in S$ and consequently the mapping $f(v)=a$ for all $v \in V(G)$ is an S-4-coloring for arbitrary G and arbitrary S-signature σ of G.

It is proved in [1] that all normal subsets $S \subseteq S_{4}$ not containing $\{i d\}, S \neq S^{\prime}=$ $\{(12),(34)\}$ and $S \neq S^{\prime \prime}=\{(12),(34),(12)(34)\}$ are not good. Moreover, it is proved in [2] that if S is a good subset of S_{4} containing $i d$ then $S=\{i d\}$. Note that $S=\{i d\}$ is good because of the Four Color Theorem.

Summarizing these results the authors of [1] noticed that the only remaining open cases are whether S^{\prime} and $S^{\prime \prime}$ are good subsets or not. Applying Theorem 5 and the results of [1] and [2] we obtain the following statement which is in some sense a strengthening of the Four Color Theorem.

Theorem 7. $S=\{i d\}$ is the only normal good subset of S_{4}.

2 Proof of the main result

At first we will proof a claim and then our main result of Theorem 5.
Claim 8. If $S=\{(12),(34)\}$, then there is a planar graph G, a family of triangles $F_{1}, F_{2}, \ldots, F_{q}$ of G where each F_{i} is associated with a coloring ϕ_{i} such that the following holds:
(1) ϕ_{i} colors the vertices of F_{i} with three distinct colors,
(2) for any S-4-coloring c of G, there is an index i such that c agrees with ϕ_{i} on F_{i}.

Proof. First we construct a graph G. Then we describe the assignment of permutations to its edges to identify the triangles F_{i} and its corresponding colorings depending on the possible S-4-colorings c of G.

Let T be a graph consisting of two triangles $D=w_{1} w_{2} u$ and $D^{\prime}=w_{1} w_{2} u^{\prime}$ sharing the edge $w_{1} w_{2}$. If we want to color the vertices u and u^{\prime} with colors from $\{1,2,3,4\}$, then we have 16 possibilities: $(1,1),(1,2), \ldots,(4,4)$. For each of these cases $\left(c(u), c\left(u^{\prime}\right)\right)=(a, b)$ ($a=b$ is possible) we take one copy of T, denoted by $T_{a, b}$, and construct G by identifying the 16 vertices u to one vertex, also denoted by u, and the 16 vertices u^{\prime} to one vertex, also denoted by u^{\prime}. Therefore, $|V(G)|=34$ and $|E(G)|=80$.

(a) $c(u)=1, c\left(u^{\prime}\right)=1$,
(b) $c(u)=1, c\left(u^{\prime}\right)=2$,
(c) $c(u)=1, c\left(u^{\prime}\right)=3$

Figure 1: Copies of $T_{a, b}$, a solid edge e has assigned permutation $\sigma(e)=(12)$, a dashed edge e has $\sigma(e)=(34)$.

For each of the copies $T_{a, b}$ we assign permutations to the edges depending from a and b. We consider the possible colorings of D and D^{\prime} which can be created by these permutations provided that $c(u)=a$ and $c\left(u^{\prime}\right)=b$. Based on these considerations we specify colorings of the vertices of D and D^{\prime} given below. Note that each of these colorings uses three distinct colors and either the coloring of D or the coloring of D^{\prime} must occur if $c(u)=a$ and $c\left(u^{\prime}\right)=b$.

Because of symmetry it is sufficient to consider the cases $(a, b) \in\{(1,1),(1,2),(1,3)\}$ which are depicted in Figure 1.

At first assume that $c(u)=1, c\left(u^{\prime}\right)=1$ and assign $\sigma(e)$ as indicated in Figure 1(a). Then either $D=w_{1} w_{2} u$ with $c\left(w_{1}\right)=3, c\left(w_{2}\right)=4$, and $c(u)=1$ or $D^{\prime}=w_{1} w_{2} u^{\prime}$ with $c\left(w_{1}\right)=4, c\left(w_{2}\right)=3$, and $c\left(u^{\prime}\right)=1$.

Next assume that $c(u)=1, c\left(u^{\prime}\right)=2$ and permutations assigned to the edges according to Figure 1(b). Analogously, we have either $D=w_{1} w_{2} u$ with $c\left(w_{1}\right)=3, c\left(w_{2}\right)=4$, and $c(u)=1$ or $D^{\prime}=w_{1} w_{2} u^{\prime}$ with $c\left(w_{1}\right)=4, c\left(w_{2}\right)=3$, and $c\left(u^{\prime}\right)=2$.

Finally, we assume that $c(u)=1, c\left(u^{\prime}\right)=3$ and $\sigma(e)$ as shown in Figure 1(c). Then either $D=w_{2} u w_{1}$ with $c\left(w_{2}\right)=2, c(u)=1$, and $c\left(w_{1}\right)=4$ or $D^{\prime}=u^{\prime} w_{2} w_{1}$ with $c\left(u^{\prime}\right)=3$, $c\left(w_{2}\right)=4$, and $c\left(w_{1}\right)=1$.

The family $F_{1}, F_{2}, \ldots, F_{q}$ consists of all triangles D and D^{\prime} where the colorings ϕ_{i} are given by the specified colorings indicated above. Thus Claim 8 is proved.

Proof of Theorem 5. In every triangle $F_{i}=x y z$ of G we insert a structure $H_{\alpha, \beta, \gamma}$ as described below which depends on the coloring ϕ_{i} as indicated in the above proof. Let G^{*} be the resulting graph.

Figure 2: Subgraph $H_{1,2,3}: c\left(v_{1}\right)=1, c\left(v_{2}\right)=2, c\left(v_{10}\right)=3$, a solid edge e has assigned permutation $\sigma(e)=(12)$, a dashed edge e has $\sigma(e)=(34)$.

Consider the triangle $F_{i}=x y z$ with associated coloring ϕ_{i} where $c(x)=\alpha, c(y)=\beta$, and $c(z)=\gamma$. We will show that the precoloring of x, y, z is not extendable to the inserted $H_{\alpha, \beta, \gamma}$. Note that by suitable assignment of the vertices of F_{i} we may assume that $\{c(x), c(y)\}=\{1,2\}$ and $c(z) \in\{3,4\}$ or $\{c(x), c(y)\}=\{3,4\}$ and $c(z) \in\{1,2\}$. Thus, because of symmetry it is sufficient to consider

$$
c(x)=1, c(y)=2, c(z)=3 .
$$

Consider the subgraph $H_{1,2,3}$ as shown in Figure 2 with the specified permutations on the edges and assume that $v_{1}=x, v_{2}=y$, and $v_{10}=z$ with $c\left(v_{1}\right)=1, c\left(v_{2}\right)=2$, and $c\left(v_{10}\right)=3$.

According to the assigned permutations (12) to the edges $v_{1} v_{4}$ and $v_{2} v_{5}$ color 2 is not possible for the vertices v_{4} and v_{5}. If both v_{4} and v_{5} would not be colored by color 1 then v_{4} and v_{5} must be colored by the same color 3 or 4 because of $\sigma\left(v_{4} v_{5}\right)=(34)$. Then v_{3} would not be colorable. It follows that one of the vertices v_{4} and v_{5} must be colored by 1 . We consider two cases.
Case 1: $c\left(v_{4}\right)=1$
Because of $c\left(v_{5}\right) \in\{3,4\}$ and $\left\{c\left(v_{6}\right), c\left(v_{7}\right)\right\} \subset\{2,3,4\}$ it follows that either v_{6} or v_{7} is colored by color 2 . Hence $c\left(v_{9}\right)=4$ and v_{8} is not colorable.
Case 2: $c\left(v_{5}\right)=1$
Clearly, we have $c\left(v_{9}\right) \in\{2,4\}$

- $c\left(v_{9}\right)=2$ It follows that $c\left(v_{8}\right)=4$ and $c\left(v_{7}\right)=3$ which implies that v_{4} is not colorable.
- $c\left(v_{9}\right)=4$ It follows that $c\left(v_{8}\right)=1, c\left(v_{7}\right)=4$, and $c\left(v_{6}\right)=2$.

Now all three vertices of the triangle inside D_{1} must be colored by 3 or 4 which is not possible.

Therefore, the precoloring of v_{1}, v_{2}, and v_{10} cannot be extended to $H_{1,2,3}$.
By Claim 8, one of the specified triangles of G must be colored by the corresponding colors α, β, γ. However, the coloring is not extendable to the inserted subgraph $H_{\alpha, \beta, \gamma}$. Thus G^{*} is not $\mathrm{S}-4$-colorable and the proof of Theorem 5 is complete.

Added in proof. Our main result is also contained in [3] which was presubmitted during the reviewing process of this paper.

References

[1] Y. Jiang, X. Zhu: 4-colouring of generalized signed planar graphs, The Electronic Journal of Combinatorics 27 (2020), \#P3.31.
[2] L. Jin, T. Wong, and X. Zhu: Colouring of S-labeled planar graphs, Europaen Journal of Combinatorics 92 (2021), 103198, https://doi.org/10.1016/j.ejc.2020.103198, arXiv:1811.08584v2.
[3] R. Naserasr, L. Pham: Complex and homomorphic chromatic number of signed planar simple graphs, preprint, HAL Id: hal-03000542.
[4] T. Zaslavsky: Signed graph coloring, Discrete Math. 39 (1982) 215 - 228.

