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Abstract

We study the triangular array defined by the Graham–Knuth–Patashnik recur-
rence

T (n, k) = (αn+ βk + γ)T (n− 1, k) + (α′n+ β′k + γ′)T (n− 1, k − 1)

with initial condition T (0, k) = δk0 and parameters µ = (α, β, γ, α′, β′, γ′). We
show that the family of arrays T (µ) is invariant under a 48-element discrete group
isomorphic to S3 ×D4. Our main result is to determine all parameter sets µ ∈ C6

for which the ordinary generating function f(x, t) =
∑∞

n,k=0 T (n, k)xktn is given by
a Stieltjes-type continued fraction in t with coefficients that are polynomials in x.
We also exhibit some special cases in which f(x, t) is given by a Thron-type or
Jacobi-type continued fraction in t with coefficients that are polynomials in x.

Mathematics Subject Classifications: 05A10 (Primary); 05A15, 05A19, 30B70
(Secondary)
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1 Introduction

Graham, Knuth and Patashnik (GKP), in their book Concrete Mathematics [34],
posed the following “research problem” [34, Problem 6.94, pp. 319 and 564]:

Problem 1.1. Develop a general theory of the solutions to the recurrence

T (n, k) = (αn+ βk + γ)T (n− 1, k) + (α′n+ β′k + γ′)T (n− 1, k − 1) (1.1)

for n > 1 and k ∈ Z, with initial condition T (0, k) = δk0. (Here and in the following, δab
denotes the Kronecker delta.)

By induction on n we clearly have T (n, k) = 0 if k < 0 or k > n. Therefore, for each
choice of the parameters µ = (α, β, γ, α′, β′, γ′), we obtain a unique solution T (n, k) =
T (n, k;µ), forming a triangular array T (µ) =

(
T (n, k;µ)

)
06k6n

. Here the parameters

µ can be considered to be indeterminates, in which case the matrix elements T (n, k;µ)
belong to the polynomial ring Z[µ]; or they can be real or complex numbers, in which
case the matrix elements T (n, k;µ) are likewise real or complex numbers. We shall take
each of these two points of view at appropriate places in this paper.

Given a triangular array T =
(
T (n, k)

)
06k6n

, we define its row-generating polynomials

Pn(x)
def
=

n∑
k=0

T (n, k)xk , (1.2)

its ordinary generating function (ogf)

f(x, t)
def
=
∑
n>0

Pn(x) tn =
∑
n,k>0

T (n, k) xktn , (1.3)

and its exponential generating function (egf)

F (x, t)
def
=
∑
n>0

Pn(x)
tn

n!
=
∑
n,k>0

T (n, k) xk
tn

n!
. (1.4)

It is straightforward to check that the row-generating polynomials Pn(x) = Pn(x;µ) of
the GKP recurrence satisfy the linear differential recurrence

Pn(x) =
[
n(α + α′x) + γ + (β′ + γ′)x

]
Pn−1(x) + x(β + β′x)

dPn−1(x)

dx
(1.5)
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for n > 1, with initial condition P0(x) = 1. Similarly, the exponential generating function
F (x, t) = F (x, t;µ) satisfies the first-order linear partial differential equation

(1− αt− α′xt)Ft = (βx+ β′x2)Fx + (α + γ + (α′ + β′ + γ′)x)F (1.6)

with initial condition F (x, 0) = 1.
Explicit solutions for the matrix elements T (n, k) or the egf F (x, t) were found for

some special cases of the parameters µ by Théorêt [57–59], Neuwirth [40], Spivey [52],
and Mansour and Shattuck [39]. In particular, Neuwirth [40] solved the case α′ = 0,
while Spivey [52] solved three additional cases: (S1) β = −α, (S2) β = β′ = 0, and (S3)
α/β = α′/β′+1. Wilf [64] pointed out that the PDE (1.6) can in principle be solved by the
method of characteristics, and he showed how to obtain the solution (albeit in an unwieldy
form) by using the Maple function pdsolve. Finally, Barbero, Salas and Villaseñor [2]
explicitly solved the PDE (1.6) by the method of characteristics. In general this solution
contains inverse functions [2, Theorems 2.1–2.4], but in many combinatorially interesting
cases there exist closed-form expressions in terms of elementary functions [2, Appendix A].
It is worthy of note that the function µ 7→ T (µ) is not injective: there are some families
of parameters µ that produce the same triangular array T [57, section 2.4] [2, section 3].
Finally, some additional properties of the triangular arrays T =

(
T (n, k)

)
06k6n

have

recently been obtained by Spivey [54].
Our goal in the present paper is twofold: to study the symmetry group of the GKP

recurrence, and to study some continued-fraction expansions of the ordinary generating
function (1.3). Let us now discuss these two goals in turn.

By a “symmetry” of the GKP recurrence (1.1), we mean a map M : µ 7→ µ′ for which
the array T (µ′) can be written in a “simple” way in terms of T (µ). (See Section 2 for
more details of what we mean by “simple”.) Here we will show that the symmetry group
of the GKP recurrence is surprisingly large, and includes a 48-element discrete group that
is isomorphic to S3 ×D4.

It is well known that many combinatorial sequences a = (an)n>0 with a0 = 1 lead to
an ogf that can be expressed as a continued fraction of Stieltjes type (or S-fraction for
short), ∑

n>0

an t
n =

1

1−
c1t

1−
c2t

1− · · ·

, (1.7)

for some coefficients c = (ci)i>1. (Both sides of this expressions are to be interpreted
as formal power series in the indeterminate t.) This line of investigation goes back at
least to Euler [23, 24], but it gained impetus following Flajolet’s [27] seminal discovery
that the S-fraction (1.7) can be interpreted combinatorially as a generating function for
Dyck paths with a weight ci for each fall from height i. There are now literally dozens of
sequences a = (an)n>0 of combinatorial numbers or polynomials for which a continued-
fraction expansion of the type (1.7) is explicitly known.
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In the generic S-fraction (1.7), the Taylor coefficients an are polynomials in the Stieltjes
coefficients c: these are the Stieltjes–Rogers polynomials Sn(c1, . . . , cn) [27]. If, however,
one seeks conversely to express the Stieltjes coefficients c in terms of the Taylor coefficients
a, one obtains in general rational functions, not polynomials:

c1 = a1 (1.8a)

c2 =
a2 − a2

1

a1

(1.8b)

c3 =
a1a3 − a2

2

a1 (a2 − a2
1)

(1.8c)
...

In particular, if one applies these formulae to the row-generating polynomials of the
GKP recurrence, an = Pn(x;µ), one obtains Stieltjes coefficients ci that, for i > 2, are
rational functions of x and the parameters µ. Nevertheless, for many specific cases of
the GKP recurrence — including the binomial coefficients, the Stirling cycle and Stirling
subset numbers, and the Eulerian numbers, among others — it is known that the Stieltjes
coefficients ci are polynomials in x (and fairly simple ones at that). Consequently, the
second (and principal) goal of this paper is to obtain a complete determination of the
submanifolds of µ ∈ C6 where the Stieltjes coefficients c are polynomials in x. These
coefficients will always be of the form ci = ci0 + ci1x; and while a priori we allow ci0 and
ci1 to be rational functions of the parameters µ, we will find a posteriori that they are in
fact always polynomials in µ (or more precisely, in suitable parameters coordinatizing the
given submanifold). Our results are contained in Theorem 3.1 and Propositions 3.6–3.11.

More generally, we shall briefly consider some continued fractions of the Thron type
(or T-fractions) [60],

∑
n>0

an t
n =

1

1− d1t−
c1t

1− d2t−
c2t

1− · · ·

, (1.9)

and of the Jacobi type (or J-fractions)

∑
n>0

an t
n =

1

1− e0t−
f1t

2

1− e1t−
f2t

2

1− · · ·

, (1.10)

once again interpreted as formal power series in t. We will find some recurrences of the
GKP type (1.1) whose ogf can be expressed as a T-fraction (or J-fraction) in which the
coefficients c = (ci)i>1 and d = (di)i>1 (or e = (ei)i>0 and f = (fi)i>1) are polynomials
in the indeterminates x and µ. However, this list is almost certainly incomplete; we have
not attempted to make a complete determination, for reasons that will be explained later.

the electronic journal of combinatorics 28(2) (2021), #P2.18 5



This paper is organized as follows: In Section 2 we analyze the symmetry group of
the GKP recurrence. In Section 3 we completely characterize those GKP recurrences
whose ogf has an S-fraction representation in which the coefficients are polynomials in x.
In Section 4 we review some transformation formulae that will be needed for our dis-
cussion of T-fractions and J-fractions. In Section 5 we show some examples (but not a
complete characterization) of GKP recurrences whose ogf has a T-fraction or J-fraction
representation in which the coefficients are polynomials in x.

Finally, in Section 6 we propose some problems for future work. In particular, one
motivation for the continued-fraction expansions studied here is a conjecture [50] concern-
ing the coefficientwise Hankel-total positivity [48, 49] of the row-generating polynomials
Pn(x;µ) of the GKP recurrence. Section 6.2 is devoted to introducing and discussing this
conjecture.

Appendix A provides some more details concerning the matrix product of two GKP
arrays (as well as some more general arrays), while Appendix B gives a general treatment
of inverse pairs of lower-triangular arrays. Finally, in the Supplementary Material we
provide details of the computer-assisted search that constitutes the first stage of the proof
of Theorem 3.1.

2 Symmetries of the GKP recurrence

In this section we will treat some symmetries of the GKP recurrence: by this we mean
maps M : µ 7→ µ′ for which the array T (µ′) can be written in a simple way in terms
of T (µ). By “simple” we mean that the row-generating polynomials Pn(x;µ′) can be
written as a Möbius transformation of Pn(x;µ):

Pn(x;µ′) = [c(µ)x + d(µ)]n Pn

(
a(µ)x + b(µ)

c(µ)x + d(µ)

)
(2.1)

for some functions a(µ), b(µ), c(µ), d(µ). We do not purport to find all such transfor-
mations, but we will find a fairly large (48-element) discrete group of them. Some (but
not all) of the transformations we will consider are involutions, i.e. satisfy M(M(µ)) = µ.

2.1 Some special symmetries

The most obvious symmetry is:

Scaling. For parameters κ and λ, define the map Sκ,λ by

Sκ,λ(α, β, γ, α
′, β′, γ′) = (κα, κβ, κγ, λα′, λβ′, λγ′) . (2.2)

Then we have the obvious relation

T (n, k;Sκ,λµ) = κn−kλk T (n, k;µ) . (2.3)

Here the parameters κ and λ can be indeterminates, or they can be real or complex
numbers. All the maps Sκ,λ trivially commute: we have Sκ,λSκ′,λ′ = Sκκ′,λλ′ . Thus, if
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we consider κ and λ to be nonzero complex numbers, then the maps Sκ,λ form a group

isomorphic to C∗ × C∗, where C∗ def
= C \ {0}.

Later, we shall use in particular the scaling maps S = S−1,1, S ′ = S1,−1 and SS ′ =
S−1,−1. Of course these are commuting involutions, which generate a group {1, S, S ′, SS ′}
isomorphic to Z2 × Z2.

Let us now turn to some discrete symmetries of the GKP recurrence. The most
important of these is:

Duality [2, 57–59]. Given a triangular array T =
(
T (n, k)

)
06k6n

, let us define the

dual (or reversed) array T ∗ =
(
T ∗(n, k)

)
06k6n

by

T ∗(n, k)
def
= T (n, n− k) . (2.4)

The map T 7→ T ∗ is obviously an involution, i.e. (T ∗)∗ = T . In the GKP recurrence, the
duality map T 7→ T ∗ can be implemented by the transformation of parameters [57, p. 67,
Proposition 3.1.1]

µ 7→ Dµ
def
= (α′ + β′,−β′, γ′, α + β,−β, γ) . (2.5)

That is, we have
T (n, k;Dµ) = T (n, n− k;µ) . (2.6)

Of course, the map D is also an involution, i.e. D(D(µ)) = µ. The corresponding
generating functions transform as

Pn(x;Dµ) = xn Pn

(
1

x
;µ

)
(2.7a)

f(x, t;Dµ) = f

(
1

x
, xt;µ

)
(2.7b)

F (x, t;Dµ) = F

(
1

x
, xt;µ

)
(2.7c)

Remark. Neuwirth’s [40] case α′ = 0 is dual to Spivey’s [52] case (S1) β = −α, while
Spivey’s [52] cases (S2) β = β′ = 0 and (S3) α/β = α′/β′ + 1 are self-dual. �

Another important involution is the following:

Zhu involution [67]. Define the map Z : µ 7→ Zµ by

Z (α, β, γ, α′, β′, γ′)
def
=

(
α− β

β′
α′,−β,−β + γ − β

β′
γ′, α′, β′, γ′

)
. (2.8)

A simple computation shows that Z is an involution, i.e. Z(Z(µ)) = µ. Here we should
either consider µ to be indeterminates and work in the polynomial ring Z[µ, (β′)−1], or
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else consider µ to be real or complex numbers subject to the condition β′ 6= 0. The
triangular array T transforms as

T (n, k;Zµ) =
n∑
j=k

T (n, j;µ)

(
j

k

) (
− β
β′

)j−k
(2.9a)

T (n, k;µ) =
n∑
j=k

T (n, j;Zµ)

(
j

k

) (
β

β′

)j−k
(2.9b)

This has a simple expression in terms of the row-generating polynomials:

Pn(x;Zµ) = Pn

(
x− β

β′
; µ

)
. (2.10)

Equivalently, the generating functions transform as

f(x, t;Zµ) = f

(
x− β

β′
, t;µ

)
(2.11a)

F (x, t;Zµ) = F

(
x− β

β′
, t;µ

)
(2.11b)

The identity (2.9a) is a special case of Corollary A.15 in Appendix A.
Let us observe that that (2.9a) can be written as a matrix product

T (Zµ) = T (µ)B−β/β′ (2.12)

where Bξ denotes the ξ-binomial matrix

Bξ(n, k) =

(
n

k

)
ξn−k . (2.13)

Equivalently, (2.9b) can be written as T (µ) = T (Zµ)Bβ/β′ . Please note that the ξ-
binomial matrix satisfies BξBξ′ = Bξ′Bξ = Bξ+ξ′ and hence in particular (Bξ)

−1 = B−ξ.
A brute-force computation using n = 0, 1, 2, 3 shows that the only solutions to the

equations Pn(x;µ′) = Pn(x + ξ;µ) valid for generic parameters µ are the identity map
(ξ = 0, µ′ = µ) and the map (2.8)/(2.10).

The dual of the Zhu involution is:

“Riordan” involution R = DZD [3, Proposition 17]. We have

R (α, β, γ, α′, β′, γ′)
def
=

(
α, β, γ, α′ + β′ − β′

β
α,−β′, γ′ + β′ − β′

β
γ

)
. (2.14)
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Here we should either consider µ to be indeterminates and work in the polynomial ring
Z[µ, β−1], or else consider µ to be real or complex numbers subject to the condition β 6= 0.
The triangular array T transforms as

T (n, k;Rµ) =
k∑
j=0

T (n, j;µ)

(
n− j
n− k

) (
−β

′

β

)k−j
(2.15a)

T (n, k;µ) =
k∑
j=0

T (n, j;Rµ)

(
n− j
n− k

) (
β′

β

)k−j
(2.15b)

This has a simple expression in terms of the row-generating polynomials:

Pn(x;Rµ) =

(
β − β′ x

β

)n
Pn

(
β x

β − β′ x
; µ

)
. (2.16)

We say that T (µ) and T (Rµ) form an inverse pair of lower-triangular arrays: see Ap-
pendix B.

2.2 Determination of the symmetry group

Let us now consider the discrete group G generated by the three involutions S, D and
Z. (This group also includes S ′ = DSD and R = DZD.) Of course S2 = D2 = Z2 =
(S ′)2 = 1. It is easy to see that

SZ = ZS (2.17a)

S ′Z = ZS ′ (2.17b)

SS ′ = S ′S (2.17c)

(DS)2 = (SD)2 = SS ′ (2.17d)

and hence (DS)4 = (SD)4 = 1. A slightly more involved computation shows that

(DZ)6 = (ZD)6 = SS ′ (2.18)

and hence (DZ)12 = (ZD)12 = 1. This motivates defining the group element

X
def
= DZ , (2.19)

which acts on µ as

X (α, β, γ, α′, β′, γ′) =

(
α′ + β′,−β′, γ′, α− β − β

β′
α′, β, γ − β − β

β′
γ′
)

(2.20)

and on the row-generating polynomials as

Pn(x;Xµ) = xn Pn

(
1

x
− β

β′
; µ

)
. (2.21)
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We therefore consider G as generated by X together with the two commuting involutions
S and Z. These generators satisfy the relations

X12 = 1 (2.22a)

S2 = 1 (2.22b)

Z2 = 1 (2.22c)

SZ = ZS (2.22d)

SXS = X7 (2.22e)

ZXZ = X11 = X−1 (2.22f)

and we shall see shortly that there are no other independent relations. Brute-force com-
putation shows that the group G has 48 elements, each of which corresponds to a distinct
transformation µ 7→ µ′. There are two central elements: the identity element 1, and the
nontrivial central element X6 = SS ′. The conjugacy classes of G are as follows (here the
integer labeling a conjugacy class denotes the order of its elements):

• Class 1 (central, order 1, size 1): {1}

• Class 2a (central, order 2, size 1): {X6}

• Class 2b (order 2, size 2): {S, SX6}

• Class 2c (order 2, size 2): {SX3, SX9}

• Class 2d (order 2, size 3): {SZ, SZX4, SZX8}

• Class 2e (order 2, size 3): {SZX2, SZX6, SZX10}

• Class 2f (order 2, size 6): {Z,ZX2, ZX4, ZX6, ZX8, ZX10}

• Class 2g (order 2, size 6): {ZX,ZX3, ZX5, ZX7, ZX9, ZX11}

• Class 3 (order 3, size 2): {X4, X8}

• Class 4a (order 4, size 2): {X3, X9}

• Class 4b (order 4, size 6): {SZX, SZX3, SZX5, SZX7, SZX9, SZX11}

• Class 6a (order 6, size 2): {X2, X10}

• Class 6b (order 6, size 4): {SX, SX5, SX7, SX11}

• Class 6c (order 6, size 4): {SX2, SX4, SX8, SX10}

• Class 12 (order 12, size 4): {X,X5, X7, X11}
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Let us now show that the group G can be identified as the direct product S3 × D4,
where S3 is the permutation group on three letters (or equivalently, the dihedral group
D3 of symmetries of an equilateral triangle) and D4 is the dihedral group of symmetries
of the square:

S3 = 〈a, b : a3 = b2 = 1, bab = a−1〉 (2.23a)

D4 = 〈c, d : c4 = d2 = 1, dcd = c−1〉 (2.23b)

and hence

S3 ×D4 = 〈a, b, c, d : a3 = b2 = c4 = d2 = 1, bab = a−1, dcd = c−1,

ac = ca, ad = da, bc = cb, bd = db〉 . (2.24)

Assuming temporarily that G ' S3 × D4, let us find the presentation. Since a is an
element of order 3, we must have a = X4 or its inverse X8; the two choices are equivalent,
so let us choose a = X4. Since c is an element of order 4 that commutes with a, we must
have c = X3 or its inverse X9 (the other order-4 elements are ruled out because SZ does
not commute with X4: from (2.22e,f) we see that SZX4SZ = X−4); the two choices
are equivalent, so let us choose c = X3. Note that c2 = X6 is a central element, as it
should be, and that a commutes with c. Then b has to be a non-central order-2 element
that commutes with X3, and d has to be a non-central order-2 element that commutes
with X4. Looking at classes 2b–2g and using (2.22d,e,f), we see that the only choices are
b = SZX2m for m ∈ {0, 1, 2, 3, 4, 5}, and d = SX3n for n ∈ {0, 1, 2, 3}. It is easily checked
that all of these choices satisfy bd = db, bab = a−1 and dcd = c−1. For b there are two
inequivalent choices:

• Choosing m even means that the group S3 generated by a and b is {1, X4, X8,
SZ, SZX4, SZX8}. We might as well choose m = 0, hence b = SZ.

• Choosing m odd means that the group S3 generated by a and b is {1, X4, X8,
SZX2, SZX6, SZX10} = {1, X4, X8, S ′Z, S ′ZX4, S ′ZX8} We might as well choose
m = 3, hence b = SZX6 = S ′Z.

The two inequivalent choices for b are related by duality S ′ = DSD, so there is no loss of
generality in taking b = SZ. On the other hand, all four choices of d give rise to the same
group D4 generated by c and d, namely {1, X3, X6, X9, S, SX3, SX6, SX9}. So we might
as well choose n = 0, hence d = S. We are therefore led to conjecture that G ' S3 ×D4

with the identifications

a = X4, b = SZ, c = X3, d = S . (2.25)

Since we have already checked all the relations (2.24), and we have verified that G has 48
elements — the same as S3 ×D4 — the conjecture is proven.

Within the group G, a special role is played by the subgroup G0 generated by S and
D (or equivalently by S, S ′ and D):

G0 = {1, S, S ′, SS ′, D, SD, S ′D,SS ′D} . (2.26)
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This is a dihedral group D4: in the presentation (2.23b) we can take c = SD and d = S.
Please note, however, that this subgroup D4 is not the “canonical” subgroup D4 that
arises in the direct product G ' S3 ×D4 with the identifications (2.25). It is also useful
to consider the conjugate subgroups

Gk
def
= X−kG0X

k = {1, S, S ′, SS ′, DX2k, SDX2k, S ′DX2k, SS ′DX2k} (2.27a)

= {1, S, S ′, SS ′, ZX2k−1, SZX2k−1, S ′ZX2k−1, SS ′ZX2k−1}
(2.27b)

for k ∈ Z. Since Gk involves X2k, and since the central element X6 = SS ′ belongs to G0,
the subgroup Gk depends only on k mod 3, so it suffices to consider k = 0, 1, 2. Note that
all three subgroups Gk contain the abelian subgroup {1, S, S ′, SS ′} and in particular the
central element SS ′ = X6.

The special role played by the subgroup G0 is the following: If we examine the formulae
Mµ for all elements M ∈ G, we find that Mµ is a polynomial in µ if and only if M ∈ G0.
In the other cases:

• Mµ is a polynomial in µ and (β′)−1 when M ∈ {X,X7, SX, SX7, Z, ZX6, SZ,
SZX6}. This is the right coset G0X, or equivalently the left coset XG1.

• Mµ is a polynomial in µ and β−1 when M ∈ {X5, X11, SX5, SX11, ZX4, ZX10,
SZX4, SZX10} = {X,X7, SX, SX7, R,RX6, SR, SRX6}. This is the right coset
G0X

5, or equivalently the left coset X5G5 = X5G2.

• Mµ is a polynomial in µ, β−1 and (β′)−1 when M is any of the other 24 elements
of G. These are the right cosets G0X

k, or equivalently the left cosets XkGk, for
k = 2, 3, 4.

Remark. The group S3 ×D4 has many other aliases: see e.g. [14]. �

2.3 Further scaling properties of the GKP recurrence

In Section 2.1 we studied several symmetries of the GKP recurrence, and in particular
the behavior of the triangular-array entries T (n, k) under the trivial scaling map Sκ,λ
defined in (2.2)/(2.3). We would now like to point out some less obvious scaling properties.
These properties are most naturally formulated in the first instance for the more general
“binomial-like” recurrence

T (n, k) = an,k T (n− 1, k) + a′n,k T (n− 1, k − 1) (2.28)

for n > 1, again with initial condition T (0, k) = δk0.1 Spivey [52, Theorem 1] showed the
following:

1A detailed study of this type of recurrence can be found in the thesis of Théorêt [57]. He uses the
term “hyperbinomial” to denote the matrix T = (T (n, k))n,k>0 satisfying such a recurrence.
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Lemma 2.1 (Rescaling of a binomial-like recurrence). Let (an,k), (a′n,k), (cn), (dk) and
(en) be indeterminates, and define triangular arrays (T (n, k))06k6n and (T ′(n, k))06k6n by
the recurrences

T (n, k) = an,k T (n− 1, k) + a′n,k T (n− 1, k − 1) (2.29)

T ′(n, k) = cn−kenan,k T
′(n− 1, k) + dkena

′
n,k T

′(n− 1, k − 1) (2.30)

for n > 1, with initial conditions T (0, k) = T ′(0, k) = δk0. Then

T ′(n, k) = c1 · · · cn−k d1 · · · dk e1 · · · en T (n, k) . (2.31)

Sketch of proof. Represent T (N,K) as a sum over walks in N× N from (0, 0) to (N,K),
where a “level step” (n − 1, k) → (n, k) gets a weight an,k and a “rise” (n − 1, k − 1) →
(n, k) gets a weight a′n,k, and the weight of a walk is the product of the weights of its
steps; and analogously for T ′(N,K). The result (2.31) then follows by simple arguments
[49]. Alternatively [52, 53] one can show that the quantities (2.31) satisfy the recurrence
(2.30).

Let us now specialize Lemma 2.1 to the GKP recurrence

an,k = αn+ βk + γ , a′n,k = α′n+ β′k + γ′ . (2.32)

It is easy to see that there are precisely three cases in which the recurrence (2.30) for
T ′(n, k) is also of the GKP form:

(a) α = β = 0 and cn = κn+ λ, dk = 1, en = 1

(b) α′ = β′ = 0 and dk = κk + λ, cn = en = 1

(c) α = β = α′ = β′ = 0 and en = κn+ λ, cn = 1, dk = 1

We thus obtain:

Corollary 2.2 (Rescaling of a GKP recurrence). Let α, β, γ, α′, β′, γ′ and κ, λ be inde-
terminates. Then:

(a) When α = β = 0 we have

T (n, k; κγ, 0, λγ, α′, β′, γ′) =

(κ+ λ)(2κ+ λ) · · · [(n− k)κ+ λ] T (n, k; 0, 0, γ, α′, β′, γ′) . (2.33)

(b) When α′ = β′ = 0 we have

T (n, k; α, β, γ, 0, κγ′, λγ′) =

(κ+ λ)(2κ+ λ) · · · (kκ+ λ) T (n, k; α, β, γ, 0, 0, γ′) . (2.34)

(c) When α = β = α′ = β′ = 0 we have

T (n, k; κγ, 0, λγ, κγ′, 0, λγ′) =

(κ+ λ)(2κ+ λ) · · · (nκ+ λ) T (n, k; 0, 0, γ, 0, 0, γ′) . (2.35)
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3 Characterization of the GKP recurrences with an S-fraction
representation

Our main goal in this paper is to determine all families of parameters µ ∈ C6 such
that the corresponding ogf (1.3) has an S-type continued fraction (1.7) with coefficients
c1, c2, . . . that are polynomials in x (rather than rational functions). Our findings can be
summarized in the following:

Theorem 3.1. Let µ = (α, β, γ, α′, β′, γ′) ∈ C6, and let T (µ) =
(
T (n, k;µ)

)
06k6n

be

the triangular array determined via the recurrence (1.1). Then the corresponding ogf
f(x, t;µ) has a nonterminating S-type continued fraction representation (in the sense of
formal power series in the indeterminate t)

f(x, t;µ) =
∞∑
n=0

Pn(x;µ) tn =
1

1−
c1t

1−
c2t

1− · · ·

(3.1)

with coefficients c1, c2, . . . that are polynomials in x only if the parameter µ belongs to
one or more of the following families:

F1a. µ = (0, β, 0, α′,−α′, γ′)
F1b. µ = (0, β, γ, α′,−α′, 0)

F2a. µ = (α,−α,−α, α′, β′, γ′)
F2b. µ = (α, β, γ, 0, β′,−β′)
F3a. µ = (0, β, 0, 0, β′, γ′)

F3b. µ = (α,−α, γ, α′,−α′, 0)

F4a. µ = (0, κβ′, κ(β′ + γ′), 0, β′, γ′)

F4b. µ = (α,−α, γ, κα,−κα, κ(α + γ))

F5. µ = (α, 0, γ, α′, 0, γ′)

F6. µ = (κ(α′ + β′), κβ′, κγ′, α′, β′, γ′)

Moreover, in all these cases f(x, t;µ) does have a representation (3.1) with coefficients
c1, c2, . . . that are polynomials in x (though in some degenerate cases this continued fraction
might be terminating).

Here families 1a and 1b are duals of each other, and likewise for the pairs (2a,2b),
(3a,3b) and (4a,4b); families 5 and 6 are self-dual. Note that families 1a, 1b, 3a, 3b,
4a, 4b have three free parameters, while families 2a, 2b, 5, 6 have four free parameters;
that is, the submanifolds in µ-space are of (complex) dimension 3 and 4, respectively.
However, we shall see later that in families 2a, 2b and 6 some of the parameters are
redundant in the sense that they have no effect on the matrix T (µ) [or therefore on the
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coefficients ci]. In these cases the manifold of matrices T (µ) is of lower dimension than
the manifold of parameters µ: it is of (complex) dimension 2 for families 2a and 2b, and
(complex) dimension 3 for family 6. Note, finally, that these families have some overlaps:
for instance, family 1a at α′ = 0 coincides with family 3a at β′ = 0; and family 2a at
α = α′ = 0 coincides with family 3a at β = 0.

Having already observed how duality (D) acts on our ten families, we can also work
out how the rest of the group G acts on them. Obviously S and S ′ map each family
into itself. The Zhu involution Z maps 1a ↔ 4b, 1b ↔ 3b, 2a ↔ 6, 3a ↔ 4a, and 2b
into itself; Z cannot be defined on family 5 because it requires β′ 6= 0. Equivalently, the
Riordan involution R = DZD maps 1a ↔ 3a, 1b ↔ 4a, 2b ↔ 6, 3b ↔ 4b, and 2a into
itself; R cannot be defined on family 5 because it requires β 6= 0. Finally, the map X
(which is not an involution) maps cyclically 1a → 4a → 3b → 1a, 1b → 3a → 4b → 1b,
2a → 6 → 2b → 2a; X cannot be defined on family 5 because it requires β′ 6= 0. It follows
from this that the group G has one orbit {1a,1b,3a,3b,4a,4b} and another orbit {2a,2b,6}.
On family 5 only the subgroup G0 ⊂ G generated by S, S ′, D acts, and it leaves family 5
invariant.

The details of the continued fractions for each of the above families will be presented
in Propositions 3.6–3.11 below. We will find that the coefficients c = (ci)i>1 in each S-
fraction are not only polynomials in x (with coefficients that might be rational functions
of the parameters µ); in fact, they are polynomials (with nonnegative integer coefficients)
simultaneously in all the relevant variables (in each case some subset of α, β, γ, α′, β′, γ′

and κ as well as x) when those variables are treated as indeterminates. The restriction
to nonterminating S-fractions will be explained in Section 3.1.

The strategy for our proof is the following:

1. Make a computer-assisted search to find all viable candidates to have such an S-
fraction representation (see Section 3.1). See the Supplementary Material for a full
account of this procedure.

2. Prove (by specializing a continued fraction to be explained in Section 3.2) that
the ogf of each candidate found in step 1 indeed has the conjectured S-fraction
representation (see Section 3.3).

3.1 Computer-assisted search

Let a = (an)n>0 be a sequence in which a0 = 1 and a1, a2, . . . are indeterminates.
Then the ogf

∑
n>0

ant
n can be expressed as an S-fraction (1.7) with coefficients c1, c2, . . .

that are rational functions of a1, a2, . . . : that is, cn ∈ Q(a1, . . . , an). The first few ci are
given in (1.8).

If we then substitute an = Pn(x) where the Pn are polynomials with complex coef-
ficients in x (and P0 = 1), then the coefficients ci are generically rational functions of
x. We say “generically” because it is possible that some coefficient ci might vanish, in
which case the coefficients cj for j > i are ill-defined because their denominator vanishes.
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Here we restrict attention to nonterminating S-fractions, i.e. we insist that no ci vanishes
identically. Under this assumption, all the coefficients ci are well-defined and are rational
functions of x (with complex coefficients): that is, ci ∈ C(x).

We now specialize to the case in which the polynomials Pn are those coming from the
GKP recurrence (1.1), i.e. an = Pn(x;µ) for some µ ∈ C6. Our goal is to determine
the submanifolds in C6 where the coefficients ci are polynomials — and not just rational
functions — in x. We do this by making a computer-assisted search using Mathematica
to find a finite set of viable candidates for such an S-fraction; then we prove, case by case,
that all of these candidates work. It is convenient to explain this computer-assisted search
by showing explicitly its first few steps.

The row-generating polynomial Pn(x;µ) is a polynomial of degree n in x with coeffi-
cients that are (fairly complicated) polynomials with integer coefficients in the parameters
µ. For instance, the first few Pn are

P0(x) = 1 (3.2a)

P1(x) = (α + γ) + (α′ + β′ + γ′)x (3.2b)

P2(x) = (α + γ)(2α + γ)

+ (4αα′ + βα′ + 3αβ′ + ββ′ + 3γα′ + 2γβ′ + 3αγ′ + βγ′ + 2γγ′)x

+ [(α′ + β′ + γ′)(2α′ + 2β′ + γ′)]x2 (3.2c)

We now insert these an = Pn(x;µ) into the equations (1.8) giving the coefficients ci.

Coefficient c1. The first coefficient c1 = P1(x) is of course a polynomial in x, which
is of degree at most 1. More precisely, it is of degree 1 if α′ + β′ + γ′ 6= 0, of degree 0 if
α′ + β′ + γ′ = 0 and α + γ 6= 0, and identically zero if α′ + β′ + γ′ = α + γ = 0. This
third case is now discarded because of our restriction to nonterminating S-fractions; and
as will be seen shortly, we will need to consider the first two cases separately.

Coefficient c2. The next coefficient c2 is

c2(x) =
P2(x)− P1(x)2

P1(x)
def
=

Q(x)

R(x)
, (3.3)

where the denominator R(x) is a polynomial of degree 6 1 in x and the numerator Q(x) is
a polynomial of degree 6 2 in x, and the coefficients in these polynomials are polynomial
expressions in µ. We need to determine the conditions under which such a rational
function Q(x)/R(x) is in fact a polynomial in x. Let us explain the idea in general.

Let Q(x) =
m∑
k=0

ak(µ)xk and R(x) =
n∑
k=0

bk(µ)xk be polynomials in x in which the

coefficients ak and bk are polynomial expressions in some set of indeterminates µ. The
polynomial remainder rem(Q(x), R(x)) is then well-defined whenever the leading coeffi-
cient bn of the denominator polynomial is nonzero, and in this case it is a polynomial
in x of degree < n. On the other hand, if bn = 0 and bn−1 6= 0, then we must consider
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R as a polynomial of degree n − 1, yielding a remainder that is of degree < n − 1; or
if bn = bn−1 = 0 and bn−2 6= 0, then we must consider R as a polynomial of degree
n − 2, yielding a remainder that is of degree < n − 2; and so on. The last nontrivial
case is bn = . . . = b1 = 0 and b0 6= 0: then R is a nonzero constant function and Q/R
is automatically a polynomial. The completely degenerate case bn = . . . = b0 = 0 (i.e.
R = 0) is excluded by our restriction to nonterminating S-fractions. There are therefore
n + 1 nontrivial cases, corresponding to the order of the highest nonvanishing coefficient
bi (0 6 i 6 n). For each of these cases, we obtain a set of polynomial equations and
inequations in the indeterminates µ: namely, the equations bn = . . . = bi+1 = 0, the in-
equation bi 6= 0, and then the equations asserting that all the coefficients of the remainder
polynomial are zero (since this remainder polynomial has degree at most i−1, there are i
such equations).2 This system of equations and inequations must then be solved, yielding
some algebraic variety in the space of parameters µ (in our case C6).

Let us examine from this point of view the coefficient c2 given by (3.3). The numerator
and denominator polynomials are

Q(x) = P2(x)− P1(x)2 = α(α + γ)

+ (2αα′ + α′β + αβ′ + ββ′ + α′γ + αγ′ + βγ′)x

+ (α′ + β′)(α′ + β′ + γ′)x2 (3.4a)

R(x) = P1(x) = (α + γ) + (α′ + β′ + γ′)x (3.4b)

Note that the polynomial R(x) cannot be identically zero, because R(x) = c1(x) and we
have already assumed that c1(x) is not identically zero: that is, α+γ 6= 0 or α′+β′+γ′ 6= 0
or both. So we have either degR = 1 or degR = 0. Then c2(x) = Q(x)/R(x) is a
polynomial in x if and only if either

(a) degR = 1: The leading coefficient α′+β′+γ′ of the denominator polynomial R(x)
is nonzero, and the remainder

rem(Q(x), R(x)) =
α + γ

α′ + β′ + γ′
[
(α + γ)β′ − (α′ + β′ + γ′)β

]
(3.5)

is zero; or else

(b) degR = 0: The leading coefficient α′ + β′ + γ′ of the denominator polynomial
R(x) is zero, and the constant term α + γ is nonzero. In this case no constraint is
imposed on the numerator polynomial Q(x).

Therefore, we should consider three distinct cases:

(a1) α′+ β′+ γ′ 6= 0 and α+ γ = 0: Then µ = (α, β,−α, α′, β′, γ′) with α′+ β′+ γ′ 6= 0,
and c2(x) = (α + β) + (α′ + β′)x.

2To compute this remainder polynomial, we work in the ring C(µ)[x] of polynomials in x whose
coefficients are rational functions (with complex coefficients) in the indeterminates µ.
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(a2) α′+β′+γ′ 6= 0 and (α+γ)β′ = (α′+β′+γ′)β: Then µ =
(
α,

(α + γ)β′

α′ + β′ + γ′
, γ, α′, β′, γ′

)
with α′ + β′ + γ′ 6= 0, and c2(x) = α + (α′ + β′)x.

(b) α′ + β′ + γ′ = 0 and α + γ 6= 0. Then µ = (α, β, γ, α′, β′,−(α′ + β′)), and c2(x) =
α + α′x.

In each family, the number of independent parameters in µ is five. And in each case we
will impose, going forward, a disjunction of inequations to guarantee that the polynomial
c2(x) is not identically zero: for instance, in case (a1) we will impose α + β 6= 0 or
α′ + β′ 6= 0.

Coefficient c3. For each of the three cases encountered in the analysis of c2, we
consider separately the formula (1.8c) for c3, which becomes

c3(x) =
P1(x)P3(x)− P2(x)2

P1(x)[P1(x)2 − P2(x)]
def
=

Q3(x)

R3(x)
(3.6)

for some polynomials Q3(x) and R3(x). If P1, P2, P3 were arbitrary polynomials of degree
1,2,3, respectively, one would expect generically that the numerator polynomial Q3 has
degree 4 and the denominator polynomial R3 has degree 3. And indeed this is what
happens if one inserts the general expressions for Pn(x;µ). However, in the three special
cases (a1), (a2) and (b), the equality conditions cause the degrees of Q3 and R3 to be
reduced to 6 2 and 6 1, respectively. Furthermore, in all cases the denominator R3(x)
turns out to be a nonzero multiple of c2(x); so as a consequence of the inequations imposed
at the preceding stage, the polynomial R3(x) cannot be the zero polynomial. Therefore,
in each of these three cases the remainder rem(Q3(x), R3(x)) is simply a constant, just
as it was for c2. One thus repeats, for each of these three cases, an analysis along the
same lines as was done for c2: firstly distinguishing whether the leading coefficient of
R3 is nonzero or zero (i.e. whether degR3 = 1 or 0), and then dividing the first case
according to the different factors in the remainder. In each sub-case it turns out that we
must impose one additional equality beyond those imposed at the preceding stage; the
equation to be solved is always of degree 1 in at least one of the variables, so we can
solve for this variable as a (possibly rational) function of the others. At the end one finds
that case (a1) divides into four sub-cases, case (a2) divides into four sub-cases, and case
(b) divides into three sub-cases. In this way we find 11 subfamilies in which ci(x) is a
polynomial in x for all i 6 3. In ten of the 11 subfamilies there are now four independent
parameters in µ, while in one there are only three.

Coefficients c4, c5, . . . . The procedure should by now be clear: at each stage we
divide each previously found case into sub-cases, thus forming a decision tree. Some
branches of this tree terminate, i.e. the solution set of the system of equations is empty.
It was necessary to go up to level c7 in order to find all the terminating branches. For
each of the branches that survived to level c7, we continued this procedure through level
c10, just to convince ourselves that the candidate was indeed viable. Thus, we declared a
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branch to be viable if, for the corresponding family µ, the coefficients ci for 1 6 i 6 10
are polynomials in x (always of degree 6 1) that are not identically vanishing. For each
such branch, the coefficients ci turned out to have very simple forms (namely, affine in i
separately odd and even i), from which we were able to conjecture a precise formula for
all the coefficients ci(x;µ).

We also streamlined this procedure as follows: whenever we obtained a branch of the
decision tree that is either identical to or a subset of a previously found branch, then we
dropped that branch as redundant.

Along the way, we sometimes obtained branches in which the most recent coefficient
ci(x) is identically vanishing. These branches correspond to terminating S-fractions and
were therefore dropped. Some of these terminating S-fractions are simply special cases
of the families 1a–6 of Theorem 3.1, in which one of the coefficients ci(x) happens to
vanish. (Indeed, there are infinitely many such special cases, corresponding to the choice
of the index i of the vanishing coefficient.) On the other hand, a few of the terminating
S-fractions are non-trivial in the sense that they are not simply specializations of the
families 1a–6. Since these may be of some interest in their own right, we compile them in
Section 4 of the Supplementary Material.

It is also worthy of note that, at every stage in this procedure, the simplification noted
above for c3(x) [cf. (3.6)] occurred: namely, the polynomials Qi(x) and Ri(x), which one
would expect generically to be of degrees

(
i
2

)
+ 1 and

(
i
2

)
, respectively, turned out to have

degrees 2 and 1 (or in a few cases even less), as a result of the equality conditions imposed
at earlier stages. We leave it as an open problem to find a general explanation of this
remarkable simplification.

The details of this computer-assisted search are given in the Supplementary Mate-
rial. Let us stress that our search was “computer-assisted” only in the sense that it used
Mathematica to perform elementary algebraic operations such as manipulation of poly-
nomials and rational functions, series expansions, and PolynomialRemainder. We did not
need to use any more advanced algebraic functions such as Solve or Reduce. If one as-
sumes the correctness of Mathematica’s algebraic manipulations, the rest of the proof is
easily human-verifiable (though tedious) and is explained in detail in the Supplementary
Material.

The final list of candidates contains 10 members. Seven of them are families 1a, 1b, 2a,
2b, 3a, 3b and 5 of Theorem 3.1. In these cases, the entries of µ are linear combinations
of a subset of the parameters (α, β, γ, α′, β′, γ′), and the conjectured coefficients ci(x;µ)
are polynomials (with nonnegative integer coefficients) jointly in x and the parameters.
Their expressions are:

F1a. c2k−1 = [γ′ + (k − 1)α′]x and c2k = kβ.

F1b. c2k−1 = γ + (k − 1)β and c2k = kα′x.

F2a. c2k−1 = [γ′ + k(α′ + β′)]x and c2k = k(α′ + β′)x.

F2b. c2k−1 = kα + γ and c2k = kα.

F3a. c2k−1 = (γ′ + kβ′)x and c2k = k(β + β′x).
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F3b. c2k−1 = kα + γ and c2k = k(α + α′x).

F5. c2k−1 = (γ + γ′x) + k(α + α′x) and c2k = k(α + α′x).

For these families we therefore find a posteriori that the S-fraction (3.1) might also be
valid when the µ (or rather, some subset of them) are treated as indeterminates.

The other three cases require additional discussion. For instance, family 6 comes
originally from

µ =

(
α,

α β′

α′ + β′
,
α γ′

α′ + β′
, α′, β′, γ′

)
, (3.7)

leading to the coefficients

c2k−1 = [γ′ + k(α′ + β′)]

(
α

α′ + β′
+ x

)
, c2k = k(α + (α′ + β′)x) . (3.8)

These coefficients are clearly not polynomials in the parameters α′, β′. However, we

can remedy this problem by making the change of parameters α
def
= κ(α′ + β′). Then

(3.7) reduces to the form given in Theorem 3.1 for family 6, and the coefficients (3.8)
become polynomials (with nonnegative integer coefficients) jointly in x and α′, β′, γ′, κ.
A similar procedure handles families 4a and 4b. Once these changes of parameters have
been performed, the coefficients ci are polynomials in x and the chosen parameters:

F4a. c2k−1 = (γ′ + kβ′)(κ+ x) and c2k = kβ′x.

F4b. c2k−1 = (γ + kα)(1 + κx) and c2k = kα.

F6. c2k−1 = [γ′ + k(α′ + β′)](κ+ x) and c2k = k(α′ + β′)(κ+ x).

We thus again find a posteriori that the S-fraction (3.1) might also be valid when the
chosen parameters (now including κ) are treated as indeterminates.

Of course, all the candidate families and their S-fractions are still at this point merely
conjectures. We will prove them in Section 3.3, using some general results to be presented
in Section 3.2.

3.2 A “master S-fraction” for permutations

Euler [23, section 21]3 showed that the generating function of the factorials can be
represented as a beautiful S-fraction,

∞∑
n=0

n! tn =
1

1−
1t

1−
1t

1−
2t

1−
2t

1− · · ·

, (3.9)

3The paper [23], which is E247 in Eneström’s [20] catalogue, was probably written circa 1746; it was
presented to the St. Petersburg Academy in 1753, and published in 1760.
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with coefficients c2k−1 = c2k = k. Inspired by (3.9), Sokal and Zeng [51] introduced the
polynomials Pn(w, y, u, v) defined by the continued fraction

∞∑
n=0

Pn(w, y, u, v) tn =
1

1−
wt

1−
yt

1−
(w + u)t

1−
(y + v)t

1− · · ·

(3.10)

with coefficients

c2k−1 = w + (k − 1)u (3.11a)

c2k = y + (k − 1)v (3.11b)

Clearly Pn(w, y, u, v) is a homogeneous polynomial of degree n; it therefore has three
“truly independent” variables. Since Pn(1, 1, 1, 1) = n!, which enumerates permutations
of an n-element set, it is natural to expect that Pn(w, y, u, v) enumerates permutations of
[n] according to some natural trivariate statistic. Sokal and Zeng [51] gave two alternative
versions of this trivariate statistic; here is one of them:

Theorem 3.2 (Sokal–Zeng). The polynomials Pn(w, y, u, v) defined by (3.10)/(3.11) have
the combinatorial interpretation

Pn(w, y, u, v) =
∑
σ∈Sn

wcyc(σ)yerec(σ)un−exc(σ)−cyc(σ)vexc(σ)−erec(σ) , (3.12)

where the sum runs over the set Sn of permutations of [n].

The permutation statistics appearing in (3.12) are defined as follows. Given a permutation
σ ∈ Sn, an index i ∈ [n] is called a

• record (rec) (or left-to-right maximum) if σ(j) < σ(i) for all j < i [note that index
1 is always a record];

• antirecord (arec) (or right-to-left minimum) if σ(j) > σ(i) for all j > i [note that
index n is always an antirecord];

• exclusive record (erec) if it is a record and not also an antirecord;

• exclusive antirecord (earec) if it is an antirecord and not also a record.

Also, an index i ∈ [n] is called an excedance if σ(i) > i. The number of exclusive records,
excedances and cycles of σ are denoted by erec(σ), exc(σ) and cyc(σ), respectively.

Remark. The foregoing quantities are a proper subset of a more elaborate classifica-
tion of the permutations σ ∈ Sn — the “record-and-cycle classification” into ten disjoint
categories [51] — but we do not need this refinement here. �
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For all the candidate families in Theorem 3.1, their conjectured S-fraction coefficients
(see Section 3.1) belong to a very special subclass of Theorem 3.2, namely c2k ∝ k, so
that v = y:

Pn(w, y, u, y) =
∑
σ∈Sn

wcyc(σ)yexc(σ)un−exc(σ)−cyc(σ) . (3.13)

These latter polynomials have a nice explicit formula, as follows:

Proposition 3.3. The polynomial Pn(w, y, u, y) defined by (3.13) can be written as

Pn(w, y, u, y) =
n∑
r=0

{
n

r

}
(y − u)n−r

r∑
i=0

[
r

i

]
wi ur−i (3.14a)

=
n∑
r=0

{
n

r

}
(y − u)n−r

r−1∏
k=0

(w + ku) , (3.14b)

where
{
n
k

}
denotes the number of partitions of an n-element set into k nonempty blocks,

and
[
n
k

]
denotes the number of permutations of an n-element set with k cycles.

Furthermore, the polynomials Pn(w, y, u, y) have the exponential generating function

∞∑
n=0

Pn(w, y, u, y)
tn

n!
=

(
y − u

y − ue(y−u)t

)w/u
. (3.15)

We shall prove the formulae (3.14a,b) by making use of a result due to Ma [38, Corol-
lary 2.3]:

Lemma 3.4 (Ma). For n, i, ` > 0 with i+ ` 6 n, define

An(i, `)
def
=
∣∣{σ ∈ Sn : cyc(σ) = i and exc(σ) = `}

∣∣ . (3.16)

Then

An(i, `) =
n−∑̀
r=i

(−1)n−r−`
{
n

r

}[
r

i

](
n− r
`

)
. (3.17)

And to get the exponential generating function (3.15), we shall use the following
general result:

Lemma 3.5 (egf of a Stirling subset transform). Let R be a commutative ring containing
the rationals, let a = (an)n>0 be a sequence in R, and let x be an indeterminate; and
define the sequence b = (bn)n>0 in R[x] by

bn =
n∑
k=0

{
n

k

}
akx

n−k . (3.18)

(We call this the “x-Stirling subset transform”.) Then the exponential generating func-

tions A(t) =
∞∑
n=0

ant
n/n! and B(t) =

∞∑
n=0

bnt
n/n! are related by

B(t) = A

(
ext − 1

x

)
. (3.19)
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Proof. We have

∞∑
n=0

an
tn

n!
=

∞∑
n=0

n∑
k=0

{
n

k

}
ak x

n−k t
n

n!
(3.20a)

=
∞∑
k=0

ak x
−k

∞∑
n=k

{
n

k

}
(xt)n

n!
(3.20b)

=
∞∑
k=0

ak x
−k (ext − 1)k

k!
by [34, eq. (7.49)] (3.20c)

= A

(
ext − 1

x

)
. (3.20d)

Proof of Proposition 3.3. Multiply (3.17) by wiy`un−i−` and sum over i and `. Using the
well-known identities [34, eqs. (7.48)/(5.12)]

∑
i

[
r

i

]
wi ur−i =

r−1∏
k=0

(w + ku) (3.21)

∑
`

(
n− r
`

)
y` (−u)n−r−` = (y − u)n−r (3.22)

gives (3.14a,b). Now use Lemma 3.5 with

∞∑
r=0

r∑
i=0

[
r

i

]
wi ur−i

tr

r!
= (1− ut)−w/u def

= A(t) (3.23)

[34, eq. (7.55)] and x = y − u to obtain (3.15).

Remarks. 1. Lemma 3.5 is a special case of the fundamental theorem of exponential
Riordan arrays (FTERA) [5,6].

2. Let us stress that this proof of Proposition 3.3 is based on the combinatorial
definition (3.13) of the polynomials Pn(w, y, u, y); it makes no use of continued fractions
or the Sokal–Zeng Theorem 3.2. On the other hand, Theorem 3.2 then tells us that the
ogf of these polynomials has an S-fraction representation of the form (3.10) with v = y.
Zeng [65] has shown that the J-fraction associated by contraction to this S-fraction (see
Proposition 4.1 below) can alternatively be obtained directly from the egf (3.15) by the
Stieltjes–Rogers addition-formula method. �

Two particular cases of (3.14)/(3.15) are of especial interest:
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1) When u = y, we obtain the homogenized Stirling cycle polynomials: (3.13)/(3.14)
reduce to

Pn(w, y, y, y) =
n∑
r=0

[
n

r

]
wr yn−r =

n−1∏
k=0

(w + ky) , (3.24)

the limit u→ y of (3.15) gives the egf [34, eq. (7.55)]

∞∑
n=0

Pn(w, y, y, y)
tn

n!
= (1− yt)−w/y (3.25)

[cf. (3.23)], and the ogf has the S-fraction

∞∑
n=0

Pn(w, y, y, y) tn =
1

1−
wt

1−
yt

1−
(w + y)t

1−
2yt

1− · · ·

(3.26)

with coefficients c2k−1 = w + (k − 1)y, c2k = ky. This S-fraction was found by Euler [23,
section 26] [24].4

2) When u = w, we obtain the homogenized Eulerian polynomials: (3.13)/(3.14)
reduce to

Pn(w, y, w, y) =
n∑
k=0

〈
n

k

〉
yk wn−k =

n∑
r=0

r!

{
n

r

}
(y − w)n−r wr (3.27)

where
〈
n
k

〉
denotes the number of permutations of [n] with k excedances, (3.15) gives the

egf [34, eq. (7.56)]
∞∑
n=0

Pn(w, y, w, y)
tn

n!
=

y − w
y − we(y−w)t

, (3.28)

and the ogf has the S-fraction

∞∑
n=0

Pn(w, y, y, y) tn =
1

1−
wt

1−
yt

1−
2wt

1−
2yt

1− · · ·

(3.29)

4The paper [24], which is E616 in Eneström’s [20] catalogue, was apparently presented to the St. Pe-
tersburg Academy in 1776, and published posthumously in 1788.
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with coefficients c2k−1 = kw, c2k = ky. This S-fraction was found by Stieltjes [56, sec-
tion 79].5 The equality of the last two terms in (3.27) is a well-known identity [34,
eqns. (6.39)/(6.40)] that relates the Eulerian polynomials to the ordered Bell polynomi-
als.6

Remarks. The polynomials (3.14) apparently first appeared in the work of Carlitz [9].
(He considered the case u = 1, but this is equivalent by homogenization to the general
case.) More specifically, Carlitz [9, p. 422] (see also Dillon and Roselle [13]) showed
that the generalized Eulerian polynomials An(y, w) defined by the exponential generating
function (

1− y
e(y−1)t − y

)w
=

∞∑
n=0

An(y, w)
tn

n!
(3.30)

have the explicit expression

An(y, w) =
n∑
r=0

{
n

r

}
(y − 1)n−r

r−1∏
k=0

(w + k) . (3.31)

(We proved this in reverse by using Lemma 3.5.) The formula (3.17) for the coefficients of
the polynomials (3.31) can also be found in Dillon and Roselle [13, eqns. (1.3)/(3.3)/(3.5)].

Furthermore, Dillon and Roselle [13, section 5] showed that An(y, w) enumerates per-
mutations of [n] with a weight y for each descent [i.e. each index i ∈ [n − 1] such that
σ(i) > σ(i + 1)] and a weight w for each record. And by Foata’s fundamental transfor-
mation, this is equivalent to enumerating permutations of [n] with a weight y for each
excedance and w for each cycle.7 So this chain of reasoning gives an alternate proof of
the equivalences between (3.13), (3.14) and (3.15).

5Stieltjes does not specifically mention the Eulerian polynomials, but he does state that the continued
fraction is the formal Laplace transform of (1−y)/(et(y−1)−y), which is well known to be the exponential
generating function of the Eulerian polynomials [cf. (3.28) with w = 1]. Stieltjes also refrains from
showing the proof: “Pour abréger, je supprime toujours les artifices qu’il faut employer pour obtenir
la transformation de l’intégrale définie en fraction continue” (!). But a proof is sketched, albeit also
without much explanation, in the book of Wall [63, pp. 207–208]. The J-fraction corresponding to the
contraction (see Proposition 4.1 below) of this S-fraction was proven, by combinatorial methods, by
Flajolet [27, Theorem 3B(ii) with a slight typographical error]. Also, Dumont [15, Propositions 2 and 7]
gave a direct combinatorial proof of the S-fraction, based on an interpretation of the Eulerian polynomials
in terms of “bipartite involutions of [2n]” and a bijection of these onto Dyck paths.

6The ordered Bell polynomials appear already (albeit without the combinatorial interpretation) in
Euler’s book Foundations of Differential Calculus, with Applications to Finite Analysis and Series, first
published in 1755 [22, paragraph 172]. This book is E212 in Eneström’s [20] catalogue. Furthermore, the
identity (3.27) appears already there [22, paragraphs 172 and 173]; it was rediscovered a century-and-a-
half later by Frobenius [30]. See also [28, pp. 150–151] for a simple bijective proof.

7We use Foata’s fundamental transformation [29, section I.3] in the following form [55, pp. 17–18]:
Given a permutation σ ∈ Sn, we write σ in disjoint cycle notation with the convention that (a) each cycle
is written with its largest element (the cycle maximum) first, and (b) the cycles are written in increasing
order of their largest element; we then erase the parentheses and call the resulting word σ̂. The map
σ 7→ σ̂ is a bijection, because the permutation σ can be uniquely recovered from σ̂ by inserting a left
parenthesis preceding each record and a right parenthesis where appropriate (i.e. before every internal
left parenthesis and at the end). There is now a one-to-one correspondence between cycle maxima in σ
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On the other hand, Stieltjes [56, section 81] observed that the continued fraction (3.10)
with v = y and u = 1 is the formal Laplace transform of the exponential generating func-
tion (3.30).8 Combining this result with the just-mentioned combinatorial interpretation
of An(y, w) in terms of excedances and cycles [29, section IV.3] proves the v = y special
case of the Sokal–Zeng Theorem 3.2. (By contrast, the proof of Sokal and Zeng [51] is
purely combinatorial, and makes no use of exponential generating functions.)

See also [8, 10,36,38,47] for some later work on these polynomials. �

3.3 Proof that the candidate families have an S-fraction representation

We will now complete the proof of Theorem 3.1 by showing that each of the ten families
indeed has an S-fraction representation with the conjectured coefficients c. This section is
organized as follows: For each family, we will state the main result and give its proof; then
we will describe some additional properties of the given family and mention some special
cases of combinatorial interest. The families are grouped by duality; two families related
by duality will have essentially identical proofs, with ci(x)→ x ci(1/x). Each proof will be
based on identifying the exponential generating function (1.4) as a special case of (3.15);
it will then follow from Theorem 3.2 and Proposition 3.3 that the corresponding ordinary
generating function (1.3) is given by the S-fraction (3.12) with v = y and suitable values
for w, u, y.

3.3.1 Families 1a and 1b

Proposition 3.6 (S-fraction for families 1a and 1b). The ogf f(x, t;µ) for the recurrence
(1.1) with µ = (0, β, 0, α′,−α′, γ′) has an S-type continued fraction representation in the
ring Z[x, β, α′, γ′][[t]] with coefficients

c2k−1 = [γ′ + (k − 1)α′]x , c2k = kβ . (3.32)

Similarly, the ogf f(x, t;µ) for the recurrence (1.1) with µ = (0, β, γ, α′,−α′, 0) has an
S-type continued fraction representation in the ring Z[x, β, γ, α′][[t]] with coefficients

c2k−1 = γ + (k − 1)β , c2k = kα′x . (3.33)

Family 1a: µ = (0, β, 0;α′,−α′, γ′)

This is Spivey’s [52] case (S3) α/β = α′/β′ + 1 specialized to α = γ = 0. Its egf can
be computed from [2, eq. (A2)]:

F (x, t) =

[
β − α′ x e(β−α′ x)t

β − α′ x

]−γ′/α′

. (3.34)

and records in σ̂, and between anti-excedances in σ and descents in σ̂. Finally, the bijection σ 7→ R◦σ◦R
where R(i) = n + 1 − i interchanges anti-excedances and excedances while preserving the number of
cycles. This proves the equivalence asserted in the text.

8Here too, Stieltjes refrained from showing the proof: see footnote 5.
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This is the special case of (3.15) with w = γ′x, u = α′x, y = β, so the ogf is given by
the S-fraction (3.11) with w = γ′x, u = α′x, y = v = β, exactly as stated in (3.32). This
completes the proof for family 1a.

Family 1b: µ = (0, β, γ, α′,−α′, 0)

This is Spivey’s [52] case (S3) α/β = α′/β′ + 1 specialized now to α = γ′ = 0. Its egf
is [2, eq. (A2)]

F (x, t) =

[
α′x − βe(α′x−β)t

α′x− β

]γ/β
. (3.35)

This is the special case of (3.15) with w = γ, u = β, y = α′x, so the ogf is given by
the S-fraction (3.11) with w = γ, u = β, y = v = α′x, exactly as stated in (3.33). This
completes the proof for family 1b.

Of course, this result can also be obtained by applying duality to family 1a. Since the
dual of µ = (0, β, 0, α′,−α′, γ′) is Dµ = (0, α′, γ′, β,−β, 0), we obtain family 1b from the
dual of family 1a by applying the map (α′, γ′, β) 7→ (β, γ, α′).

Particular cases

These two families contain several specific cases of combinatorial interest:

• The Stirling subset numbers
{
n
k

}
have µ = (0, 1, 0, 0, 0, 1) and belong to family 1a.

The S-fraction for the ogf of the Bell polynomials Bn(x) =
n∑
k=0

{
n
k

}
xk, with coeffi-

cients c2k−1 = x and c2k = k, is well known.9

• The generalized (s, 0)-Eulerian numbers [3]
〈
n
k

〉
(s,0)

have µ = (0, 1, s, 1,−1, 0) with

s ∈ N and belong to family 1b. The case s = 1 corresponds to the Eulerian numbers〈
n
k

〉
with the Graham–Knuth–Patashnik indexing [34, section 6.2] [41, A173018].

• The generalized (0, t)-Eulerian numbers [3]
〈
n
k

〉
(0,t)

have µ = (0, 1, 0, 1,−1, t) with

t ∈ N and belong to family 1a. The case t = 1 corresponds to the Eulerian numbers
with the traditional indexing

〈
n
k

〉
(0,1)

=
〈
n
k−1

〉
for n > 1 [41, A008292].

3.3.2 Families 2a and 2b

Proposition 3.7 (S-fraction for families 2a and 2b). The ogf f(x, t;µ) for the recurrence
(1.1) with µ = (α,−α,−α, α′, β′, γ′) has an S-type continued fraction representation in
the ring Z[x;α, α′, β′, γ′][[t]] with coefficients

c2k−1 = [γ′ + k(α′ + β′)]x , c2k = k(α′ + β′)x . (3.36)

9Flajolet [27, Theorem 2(ib)] found a J-type continued fraction that is equivalent by contraction (see
Proposition 4.1 below) to this S-fraction. Later, Dumont [16] found the S-fraction directly by a functional-
equation method, and Zeng [66, Lemma 3] used this same method to find two q-generalizations of the
S-fraction.
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Similarly, the ogf f(x, t;µ) for the recurrence (1.1) with µ = (α, β, γ, 0, β′,−β′) has an
S-type continued fraction representation in the ring Z[x;α, β, γ, β′][[t]] with coefficients

c2k−1 = γ + kα , c2k = kα . (3.37)

Before proceeding further, let us observe that the coefficients (3.36) for family 2a do
not depend on α, and moreover they depend on α′ and β′ only via their sum. Similarly,
the coefficients (3.37) for family 2b do not depend on β or β′. These cases illustrate the
parametric ambiguities discussed in [2, Section 3], in which the map µ 7→ T (µ) fails to
be injective. So families 2a and 2b, which appear to be four-dimensional, are in fact only
two-dimensional.

This degeneracy also implies that family 2a, which is defined by µ = (α,−α,−α,
α′, β′, γ′), in fact has the same matrix T (µ) as µ′ = (0, 0, 0, 0, α′ + β′, γ′), which is a
special case of family 3a. The S-fraction (3.36) for family 2a is thus obtained from the
S-fraction (3.45) for family 3a by making the replacements β → 0 and β′ → α′ + β′.
Similarly, family 2b, which is defined by µ = (α, β, γ, 0, β′,−β′), has the same matrix
T (µ) as µ′ = (α,−α, γ, 0, 0, 0), which is a special case of family 3b. So the S-fraction
(3.37) for family 2b is obtained from the S-fraction (3.46) for family 3b by making the
specialization α′ = 0. Consequently, families 2a and 2b are redundant if we work at the
level of the matrices T (µ) rather than the parameters µ.

In fact, both of these families are also degenerate in a further sense: in family 2a we
have T (n, k) = 0 whenever k 6= n, and in family 2b we have T (n, k) = 0 whenever k 6= 0.
From the recurrence (1.1) one easily gets for family 2a

T (n, k) = δkn

n∏
j=1

[γ′ + j(α′ + β′)] (3.38)

and hence

Pn(x) = xn
n∏
j=1

[γ′ + j(α′ + β′)] , (3.39)

and for family 2b

T (n, k) = δk0

n∏
j=1

(γ + jα) (3.40)

and hence

Pn(x) =
n∏
j=1

(γ + jα) . (3.41)

In these formulae we see explicitly the parametric ambiguities mentioned above. The
S-fractions (3.36) and (3.37) are then simply the S-fraction (3.26) for the homogenized
Stirling cycle polynomials with the variables w and y in that formula replaced by suitable
linear combinations of the parameters µ.
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Alternatively, we can deduce the S-fractions directly from the exponential generating
functions. Family 2a is Spivey’s [52] case (S1) β = −α specialized to γ = −α, and its egf
is [2, eq. (A4)]

F (x, t) =
[
1− (α′ + β′)xt

]−(α′+β′+γ′)/(α′+β′)
. (3.42)

This is the special case of (3.25) with w = (α′+β′+γ′)x, y = (α′+β′)x, and inserting these
parameters into (3.26) gives (3.36). Family 2b is Neuwirth’s [40] case α′ = 0 specialized
to γ′ = −β′, and its egf is [2, eq. (A8)]

F (x, t) = (1− αt)−(α+γ)/α . (3.43)

This is the special case of (3.25) with w = α + γ, y = α, and inserting these parameters
into (3.26) gives (3.37).

Particular cases

These two families contain several specific cases of combinatorial interest:

• Multifactorials: They appear in both families. To make the story short, let us
consider family 2b. It is obvious that µ = (0, 0, 1, 0, 0, 0) leads to T (n, k) = δk0. If
we apply Corollary 2.2(c) with κ = ν and λ = −ρ, we get that the triangular-array
entries

T ′(n, k) =

(
n−1∏
j=0

(nν − ρ− jν)

)
δk0 (3.44)

satisfy the GKP recurrence with µ′ = (ν, 0,−ρ, 0, 0, 0). For instance:

◦ If ν = 1 and ρ = 0, then µ′ = (1, 0, 0, 0, 0, 0) leads to the factorials T ′(n, k) =
n! δk0. In this case, we recover Euler’s S-fraction (3.9).

◦ If ν = 2 and ρ = −1, then µ′ = (2, 0,−1, 0, 0, 0) leads to the semi-factorials
T ′(n, k) = (2n− 1)!! δk0, or the double factorial of odd numbers [41, A001147].
The corresponding S-fraction was also found by Euler [23, section 29].

◦ If ν = 3 and ρ = −1, then µ′ = (3, 0,−1, 0, 0, 0) leads to the triple factorials
T ′(n, k) = (3n− 1)!! ! δk0 [41, A007661].

◦ If ν = 4 and ρ = −1, then µ′ = (4, 0,−1, 0, 0, 0) leads to the quadruple
factorials T ′(n, k) = (4n− 1)!! !! δk0 [41, A007662].

◦ In general, if ν > 2 is an integer, then µ′ = (ν, 0,−1, 0, 0, 0) leads to the ν-th
factorials T ′(n, k) =

∏n−1
j=0 (nν − jν − 1) δk0.

• µ = (0, 1, s, 0, 1,−1) leads to T (n, k) = δk0s
n. These numbers are the inverse pairs

of the generalized Eulerian numbers
〈
n
k

〉
(s,−s) [3] given by µ = (0, 1, s, 1,−1,−s).

(See the end of Section 3.3.6.)
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3.3.3 Families 3a and 3b

Proposition 3.8 (S-fraction for families 3a and 3b). The ogf f(x, t;µ) for the recurrence
(1.1) with µ = (0, β, 0, 0, β′, γ′) has an S-type continued fraction representation in the ring
Z[x, β, β′, γ′][[t]] with coefficients

c2k−1 = (γ′ + kβ′)x , c2k = k(β + β′x) . (3.45)

Similarly, the ogf f(x, t;µ) for the recurrence (1.1) with µ = (α,−α, γ, α′,−α′, 0) has an
S-type continued fraction representation in the ring Z[x, α, γ, α′][[t]] with coefficients

c2k−1 = γ + kα , c2k = k(α + α′x) . (3.46)

Family 3a: µ = (0, β, 0; 0, β′, γ′)

Family 3a is Neuwirth’s [40] case α′ = 0 specialized to α = γ = 0. Its egf is [2, eq. (A8)]

F (x, t) =

[
1 +

β′ x

β

(
1− eβ t

)]−(β′+γ′)/β′

. (3.47)

This is the special case of (3.15) with w = (β′ + γ′)x, u = β′x, y = β + β′x, so the ogf is
given by the S-fraction with coefficients (3.45).

Family 3b: µ = (α,−α, γ, α′,−α′, 0)

Family 3b is Spivey’s [52] case (S1) β = −α specialized to β′ = −α′ and γ′ = 0, and
its egf is [2, eq. (A4)]

F (x, t) =
[
1 +

α

α′ x

(
1− eα′xt

)]−(α+γ)/α

. (3.48)

This is the special case of (3.15) with w = α + γ, u = α, y = α + α′x, so the ogf is given
by the S-fraction with coefficients (3.46). Of course, this result can also be obtained by
applying duality to family 3a.

Particular cases

These two families contain several interesting special cases, although some of them
have already appeared in the previous two subsections:

• The Stirling subset numbers
{
n
k

}
have µ = (0, 1, 0, 0, 0, 1) and belong to family 3a

(as well as 1a).

• The ordered Stirling subset numbers (also called surjective numbers [26]) k!
{
n
k

}
have

µ = (0, 1, 0, 0, 1, 0) and belong to family 3a.
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• Multifactorials: we now apply Corollary 2.2(b) to µ = (0, 0, 1, 0, 0, 0) with κ = ν
and λ = −ρ. Then, the numbers

T ′(n, k) =

(
n∏
j=1

(jν − ρ)

)
δk0 (3.49)

satisfy the GKP recurrence with µ′ = (ν,−ν,−ρ, 0, 0, 0) which belongs to family 3b.
By choosing ν and ρ in the same way as we did at the end of Section 3.3.2, we obtain
factorials, double factorials, triple factorials, etc.

3.3.4 Families 4a and 4b

Proposition 3.9 (S-fraction for families 4a and 4b). The ogf f(x, t;µ) for the recurrence
(1.1) with µ = (0, κβ′, κ(β′+ γ′), 0, β′, γ′) has an S-type continued fraction representation
in the ring Z[x; β′, γ′, κ][[t]] with coefficients

c2k−1 = (γ′ + kβ′) (κ+ x) , c2k = kβ′x . (3.50)

Similarly, the ogf f(x, t;µ) for the recurrence (1.1) with µ = (α,−α, γ, κα,−κα, κ(α+γ))
has an S-type continued fraction representation in the ring Z[x;α, γ, κ][[t]] with coefficients

c2k−1 = (γ + kα) (1 + κx) , c2k = kα . (3.51)

Family 4a: µ = (0, κβ′, κ(β′ + γ′), 0, β′, γ′)

Family 4a is Neuwirth’s [40] case α′ = 0 specialized to α = 0 and β/β′ = (γ − β)/γ′.
Its egf is [2, eq. (A8)]

F (x, t) =

[
1− κ+ x

κ

(
1− e−κβ′t

)]−(β′+γ′)/β′

. (3.52)

This is the special case of (3.15) with w = (β′+ γ′)(κ+ x), u = β′(κ+ x), y = β′x, so the
ogf is given by the S-fraction with coefficients (3.50).

Family 4b: µ = (α,−α, γ, κα,−κα, κ(α+ γ))

Family 4b is Spivey’s [52] case (S1) β = −α specialized to β′ = −α′ and γ′/α′ =
1 + γ/α, and its egf is [2, eq. (A4)]

F (x, t) =

[
1− 1 + κx

κx

(
1− e−καxt

)]−(α+γ)/α

. (3.53)

This is the special case of (3.15) with w = (α+ γ)(1 + κx), u = α(1 + κx), y = α, so the
ogf is given by the S-fraction with coefficients (3.51).
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Particular cases

• Family 4a with γ′ = 0, β = 1, i.e. µ = (0, 1, 1, 0, 1, 0), yields a sequence [41, A028246]
closely related to the ordered Stirling subset numbers:

T (n, k) = k!

{
n+ 1

k + 1

}
. (3.54)

Note that these numbers and the Eulerian numbers
〈
n
k

〉
with µ = (0, 1, 1, 1,−1, 0)

(cf. family 1b), are related by the Riordan involution R.

3.3.5 Family 5

This self-dual family is given by µ = (α, 0, γ, α′, 0, γ′). It corresponds to the case of
the GKP recurrence (1.1) in which the coefficients depend only on n, and is Spivey’s [52]
case (S2) β = β′ = 0. It is the Type-IV case of Problem 1.1 as defined in Ref. [2], and we
can read all the relevant information from [2, eqs. (2.15), (A20), (A21)]:

F (x, t) =
[
1− (α + α′x) t

]−[(α+γ)+(α′+γ′)x]/(α+α′x)
(3.55)

Pn(x) =
n∏
k=1

[
(γ + γ′x) + k(α + α′x)

]
(3.56)

T (n, k) =
n∑
t=0

t∑
s=0

[
n

t

](
t

s

)(
n− t
k − s

)
(α + γ)t−s(α′ + γ′)sαn−k+s−t(α′)k−s (3.57)

So these polynomials are just translates and rescalings of the homogenized Stirling cycle
polynomials (3.24). Using (3.26) with w = (α + γ) + (α′ + γ′)x and y = (α + α′x), we
obtain:

Proposition 3.10 (S-fraction for family 5). The ogf f(x, t;µ) for the recurrence (1.1)
with µ = (α, 0, γ, α′, 0, γ′) has an S-type continued fraction representation in the ring
Z[x;α, γ, α′, γ′][[t]] with coefficients

c2k−1 = (γ + γ′x) + k(α + α′x) , c2k = k(α + α′x) . (3.58)

As previously mentioned, family 5 is self-dual. Duality (2.5) acts on family 5 by
interchanging (α, γ)↔ (α′, γ′).

Particular cases

• The binomial coefficients
(
n
k

)
have µ = (0, 0, 1, 0, 0, 1). In this case the ogf is a

rational function f(x, t) = 1/[1− (1 +x)t], and the S-fraction terminates at the first
level (that is, c2 = 0).

• The Stirling cycle numbers
[
n
k

]
correspond to µ = (1, 0,−1, 0, 0, 1).

• The reversed Stirling cycle numbers
[
n

n−k

]
correspond to µ = (0, 0, 1, 1, 0,−1).
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3.3.6 Family 6

This self-dual family is given by µ = (κ(α′ + β′), κβ′, κγ′, α′, β′, γ′). It is Spivey’s [52]
case (S3) α/β = α′/β′ + 1 specialized to β/β′ = γ/γ′. We can deduce all the relevant
information from [2, eq. (A2)]:

F (x, t) =
[
1− (α′ + β′) (κ+ x) t

]−(α′+β′+γ′)/(α′+β′)
(3.59)

Pn(x) = (κ+ x)n
n∏
j=1

[
γ′ + j(α′ + β′)

]
(3.60)

T (n, k) = κn−k
(
n

k

) n∏
j=1

[
γ′ + j(α′ + β′)

]
(3.61)

Like family 5, these polynomials are translates and rescalings of the homogenized Stirling
cycle polynomials (3.24), but now in the parameters rather than in x; the x-dependence is
a trivial power (κ+x)n. Using (3.26) with w = (α′+β′+γ′)(κ+x) and y = (α′+β′)(κ+x)
we obtain:

Proposition 3.11 (S-fraction for family 6). The ogf f(x, t;µ) for the recurrence (1.1)
with µ = (κ(α′ + β′), κβ′, κγ′, α′, β′, γ′). has an S-type continued fraction representation
in the ring Z[x, α′, β′, γ′, κ][[t]] with coefficients

c2k−1 =
[
γ′ + k(α′ + β′)

]
(κ+ x) , c2k = k(α′ + β′)(κ+ x) (3.62)

Please note that the coefficients (3.62) for family 6 depend on α′ and β′ only via their
sum. So family 6, which appears to be four-dimensional, is in fact only three-dimensional.
Moreover, the parameter κ acts only by translation of x. In fact, family 6 is derived from
family 2a by the substitution x 7→ x + κ. It follows that the matrix T (µ) for family 6
arises from the one for family 2a by multiplication on the right by the κ-binomial matrix
Bκ [cf. (2.13)]:

T (κ(α′ + β′), κβ′, κγ′, α′, β′, γ′) = T (α,−α,−α, α′, β′, γ′)Bκ . (3.63)

Indeed, this follows immediately by comparing (3.38) with (3.61).

Remark. By applying Corollary A.15 to family 2a and using (3.63), we see that
family 6 also satisfies the recurrence

T (n, k) =
[
(α + κα′)n + (−α + 2κβ′)k − α + κ(β′ + γ′)

]
T (n− 1, k)

+ (α′n+ β′k + γ′)T (n− 1, k − 1)

+ κ (−α + κβ′) (k + 1)T (n− 1, k + 1) (3.64)

for n > 1. (This is a recurrence of GKPZ form: see Section 6.3 below.) It is far from
obvious (at least to us) that the solution of this recurrence is independent of α or depends
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on α′, β′ only via their sum, much less that it satisfies the GKP recurrence (1.1) for
family 6. But it does. �

As previously mentioned, family 6 is self-dual. The action of duality on family 6 can

be seen most clearly by employing the parameter δ′
def
= α′ + β′ in place of α′, thereby

parametrizing family 6 by the quadruplet (δ′, β′, γ′, κ). Then duality (2.5) acts by taking
(δ′, β′, γ′, κ) 7→ (κδ′,−κβ′, κγ′, 1/κ).

Particular cases

• The generalized (s,−s)-Eulerian numbers
〈
n
k

〉
(s,−s) [3] correspond to µ = (0, 1, s,

1,−1,−s). They are trivial rescalings of the binomial coefficients:〈
n

k

〉
(s,−s)

= (−1)k sn
(
n

k

)
. (3.65)

• The numbers T (n, k) = n!
(
n
k

)
[41, A196347] can be obtained from µ = (1, 0, 0, 1, 0,0).

This can be seen by applying Corollary 2.2(c) with κ = 1, λ = 0 to the binomial
coefficients.

4 Preliminaries for T-fractions and J-fractions

In this section we review some transformation formulae for continued fractions that
will be needed for our discussion in Section 5 of T-fractions and J-fractions for the GKP
recurrence. The plan of this section is as follows: First we review the formula for the
contraction of S-fractions or special T-fractions to J-fractions (Section 4.1). Then we
review the theory of the binomial transform and its action on S-fractions, special T-
fractions, and J-fractions (Section 4.2).

4.1 Contraction

It is a classical result, going back to the middle of the nineteenth century, that any
S-fraction (1.7) can be re-expressed as a J-fraction (1.10). This operation, which is known
as contraction, is given as follows:

Proposition 4.1 (Even contraction for S-fractions). We have

1

1−
c1t

1−
c2t

1−
c3t

1− · · ·

=
1

1− c1t−
c1c2t

2

1− (c2 + c3)t−
c3c4t

2

1− (c4 + c5)t−
c5c6t

2

1− · · ·

, (4.1)
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so that the J-fraction on the right-hand side has coefficients

e0 = c1 (4.2a)

en = c2n + c2n+1 for n > 1 (4.2b)

fn = c2n−1c2n (4.2c)

The classic algebraic proof of this result, using the convergents of the continued frac-
tion, can be found in the book of Wall [63, p. 21]. A very simple and elegant algebraic
proof can be found in [18, Lemmas 1 and 2] [17, proof of Lemma 1] [12, Lemma 4.5].
A beautiful and enlightening combinatorial proof, using Flajolet’s [27] representation of
S-fractions (resp. J-fractions) in terms of Dyck (resp. Motzkin) paths, can be found in the
lectures of Viennot [61, pp. V-31–V-32].

There is also [49] a generalization of Proposition 4.1 to a subclass of T-fractions,
namely, those with di = 0 for all even levels i:

Proposition 4.2 (Even contraction for T-fractions with di = 0 at all even levels i). We
have

1

1− d1t−
c1t

1−
c2t

1− d3t−
c3t

1− · · ·

=

1

1− (c1 + d1)t−
c1c2t

2

1− (c2 + c3 + d3)t−
c3c4t

2

1− (c4 + c5 + d5)t−
c5c6t

2

1− · · ·

, (4.3)

so that the J-fraction on the right-hand side has coefficients

e0 = c1 + d1 (4.4a)

en = c2n + c2n+1 + d2n+1 for n > 1 (4.4b)

fn = c2n−1c2n (4.4c)

Proposition 4.2 can be proven [49] either algebraically by manipulating the continued
fraction, or combinatorially by using the representation of T-fractions (resp. J-fractions)
in terms of Schröder (resp. Motzkin) paths.

4.2 Binomial transform

Let a = (an)n>0 be a sequence with values in a commutative ring (with identity
element) R, and let ξ be an element of R (or an indeterminate). Then the ξ-binomial
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transform of a is the sequence b = (bn)n>0 defined by

bn =
n∑
k=0

(
n

k

)
ak ξ

n−k , (4.5)

or in other words b = Bξ a where Bξ is the (unit-lower-triangular) ξ-binomial matrix [cf.,
(2.13)]

(Bξ)nk =

(
n

k

)
ξn−k . (4.6)

If the ring R contains the rationals, then we can form the exponential generating
functions

A(t)
def
=

∞∑
n=0

an
tn

n!
, B(t)

def
=

∞∑
n=0

bn
tn

n!
(4.7)

(considered as formal power series in the indeterminate t), and an easy computation shows
that they are related by

B(t) = eξtA(t) . (4.8)

Therefore, an egf exhibiting a prefactor eξt is the necessary and sufficient signal of a
ξ-binomial transform.

On the other hand, if we look at the ordinary generating functions

a(t)
def
=

∞∑
n=0

an t
n , b(t)

def
=

∞∑
n=0

bn t
n (4.9)

(again considered as formal power series in the indeterminate t), Euler [21] showed that10

b(t) =
1

1− ξt
a
( t

1− ξt

)
. (4.10)

Furthermore, it turns out that whenever a(t) can be expressed as an S-fraction (resp.
J-fraction), then b(t) can be expressed as a T-fraction (resp. J-fraction), as we shall now
show.

Let us start with the case of an S-fraction. Let c = (ci)i>1 be indeterminates, and
define the Stieltjes–Rogers polynomials Sn(c) ∈ Z[c] by

∞∑
n=0

Sn(c1, . . . , cn) tn =
1

1−
c1t

1−
c2t

1− · · ·

. (4.11)

10The identity (4.10) is a special case of the fundamental theorem of Riordan arrays (FTRA) [5, pp. 137–
144].
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Similarly, let c = (ci)i>1 and d = (di)i>1 be indeterminates, and define the Thron–Rogers
polynomials Tn(c,d) ∈ Z[c,d] by

∞∑
n=0

Tn(c1, . . . , cn, d1, . . . , dn) tn =
1

1− d1t−
c1t

1− d2t−
c2t

1− · · ·

. (4.12)

Barry [4, Proposition 3] proved the following:

Proposition 4.3 (ξ-binomial transform of S-fraction as T-fraction). We have

n∑
k=0

(
n

k

)
Sk(c) ξ

n−k = Tn(c, ξ1odd) (4.13)

as an identity in Z[c, ξ], where 1odd = (1, 0, 1, 0, . . .).

So the ξ-binomial transform of an S-fraction with coefficients c = (ci)i>1 is a T-fraction
with the same coefficients c and in which di = ξ (resp. 0) for odd (resp. even) i.

In fact, this result can be generalized [49] from S-fractions to a subclass of T-fractions,
namely, those in which di = 0 at all even levels i:

Proposition 4.4 (ξ-binomial transform of a subclass of T-fractions). We have

n∑
k=0

(
n

k

)
Tk(c,dodd) ξn−k = Tn(c,dodd + ξ1odd) (4.14)

as an identity in Z[c,dodd, ξ], where dodd = (d1, 0, d3, 0, . . .) and 1odd = (1, 0, 1, 0, . . .).

Finally, let us consider the case in which a(t) can be expressed as a J-fraction. Let
e = (ei)i>0 and f = (fi)i>1 be indeterminates, and define the Jacobi–Rogers polynomials
Jn(e,f) ∈ Z[e,f ] by

∞∑
n=0

Jn(e,f) tn =
1

1− e0t−
f1t

2

1− e1t−
f2t

2

1− · · ·

. (4.15)

We then have:

Proposition 4.5 (ξ-binomial transform of J-fraction). We have

n∑
k=0

(
n

k

)
Jk(e,f) ξn−k = Jn(e+ ξ1,f) (4.16)

as an identity in Z[e,f , ξ], where 1 = (1, 1, 1, 1, . . .).
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In other words, the ξ-binomial transform simply adds a constant ξ to all the coefficients
ei. This result can be found in Aigner [1, eq. (6.15)] and Barry [4, Proposition 4], but it
may well go back to the late nineteenth century.

Let us remark that all three Propositions can be proven either algebraically by manip-
ulating the continued fraction using Euler’s formula (4.10), or combinatorially by using
the expressions for the Stieltjes–Rogers, Jacobi–Rogers and Thron–Rogers polynomials in
terms of Dyck, Motzkin and Schröder paths, respectively. See [49] for details.

By combining the contraction formula (Proposition 4.1) with Proposition 4.5, we can
alternatively write the ξ-binomial transform of an S-fraction as a J-fraction:

Corollary 4.6 (ξ-binomial transform of S-fraction as J-fraction). We have

n∑
k=0

(
n

k

)
Sk(c) ξ

n−k = Jn(e,f) (4.17)

where

e0 = c1 + ξ (4.18a)

en = c2n + c2n+1 + ξ for n > 1 (4.18b)

fn = c2n−1c2n (4.18c)

So the ξ-binomial transform of an S-fraction can be written either as a T-fraction
(Proposition 4.3) or as a J-fraction (Corollary 4.6). Of course, the T-fraction and the
J-fraction are equivalent by virtue of Proposition 4.2; otherwise put, the ξ-binomial trans-
form commutes with contraction (as it must).

Similarly, by combining the contraction formula for special T-fractions (Proposition
4.2) with Proposition 4.5, we can write the ξ-binomial transform of a special T-fraction
as a J-fraction:

Corollary 4.7 (ξ-binomial transform of special T-fraction as J-fraction). We have

n∑
k=0

(
n

k

)
Tn(c,dodd) ξn−k = Jn(e,f) (4.19)

where dodd = (d1, 0, d3, 0, . . .) and

e0 = c1 + d1 + ξ (4.20a)

en = c2n + c2n+1 + d2n+1 + ξ for n > 1 (4.20b)

fn = c2n−1c2n (4.20c)

Once again, the ξ-binomial transform commutes with contraction.
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5 Some GKP recurrences with a T-fraction or J-fraction repre-
sentation

All of the S-fractions found in Propositions 3.6–3.11 trivially give rise to T-fractions by
setting all di = 0 and to J-fractions by contraction (Proposition 4.1). In this section we will
show some less trivial cases of the GKP recurrence in which the ogf has a representation
as a T-fraction or a J-fraction. However, unlike what we did for S-fractions, we shall
not attempt a complete determination. One obstacle to a complete analysis is that T-
fractions are highly underdetermined: corresponding to the n inputs a1, . . . , an there
are 2n parameters c1, . . . , cn and d1, . . . , dn. For this reason, a systematic search for T-
fractions, such as we did Section 3 for the S-fractions, does not seem at present to be
feasible. A systematic search seems more feasible for the J-fractions, since they, like the
S-fractions, are fully determined (modulo degenerate cases): the 2n inputs a1, . . . , a2n give
rise to 2n parameters e0, . . . , en−1 and f1, . . . , fn. But this search is more involved than
what we have done for S-fractions, and we have not yet carried it to completion. So the
examples given in this section are surely only the tip of the iceberg.

We begin by presenting some examples of GKP recurrences whose ogf can be expressed
as a T-fraction or J-fraction arising from a binomial transform (Section 5.1). We then
present some examples whose ogf can be expressed as a T-fraction not arising from a
binomial transform (Section 5.2) or a J-fraction not arising from a binomial transform
(Section 5.3).

5.1 Examples of GKP recurrences with T-fraction or J-fraction arising from
the binomial transform

We will now use the ξ-binomial transform to find some cases of the GKP recurrence
(1.1) in which the ogf has a representation as a T-fraction or J-fraction. More specifically,
the row-generating polynomials Pn(x) of our families 7a and 7b will be the ξ-binomial
transforms, for suitable ξ, of the row-generating polynomials for families 3a and 3b: that
is, we will have

Pn(x;µ′) =
n∑
k=0

(
n

k

)
Pk(x;µ) ξn−k (5.1)

for suitable µ, µ′ and ξ. The T-fractions for families 7a and 7b will then be deduced from
the S-fractions for families 3a and 3b (Proposition 3.8) by using Proposition 4.3, and the
J-fractions will be found in a similar way by using Corollary 4.6.

Let us observe that, under duality, the coefficients c and d in the T-fraction behave
in the same way as the coefficient c of the S-fraction: namely, ci(x) → x ci(1/x) and
di(x)→ x di(1/x). Therefore, if f(x, t;µ) has a T-fraction representation with coefficients
that are affine in x, then f(x, t;Dµ) has also a T-fraction representation with coefficients
that are also affine in x: namely, a+ bx→ b+ ax.

5.1.1 Families 7a and 7b

Families 7a and 7b are defined as follows:
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F7a. µ = (0, β, γ, 0, β′, γ′)

F7b. µ = (α,−α, γ, α′,−α′, γ′)

Please note that family 7a is a generalization of family 3a (which corresponds to γ = 0),
while family 7b is a generalization of family 3b (which corresponds to γ′ = 0). Further-
more, family 7a is also a generalization of family 4a (which corresponds to γ/β = 1+γ′/β′),
while family 7b is a generalization of family 4b (which corresponds to γ′/α′ = 1 + γ/α).
Family 7a corresponds to the case of the GKP recurrence (1.1) in which the coefficients
depend only on k, while family 7b is the dual case in which the coefficients depend only
on n− k.

The key fact is the following:

Proposition 5.1 (Families 7a and 7b as binomial transforms). The row-generating poly-
nomials of family 7a are the γ-binomial transform of those of family 3a:

Pn(x; 0, β, γ, 0, β′, γ′) =
n∑
k=0

(
n

k

)
Pn(x; 0, β, 0, 0, β′, γ′) γn−k . (5.2)

Similarly, the row-generating polynomials of family 7b are the (γ′x)-binomial transform
of those of family 3b:

Pn(x;α,−α, γ, α′,−α′, γ′) =
n∑
k=0

(
n

k

)
Pn(x;α,−α, γ, α′,−α′, 0) (γ′x)n−k . (5.3)

Proof. Family 7a is Neuwirth’s [40, Theorem 18] case α′ = 0 specialized to α = 0. Its egf
is given by [2, eq. (A8)]:

F (x, t) = eγt
[
1 +

β′ x

β

(
1− eβ t

)]−(β′+γ′)/β′

. (5.4)

Comparing this with (3.47), we see that family 7a is the γ-binomial transform of family 3a.
(We will give an alternate proof of this result in Appendix A: see the Remark after
Corollary A.6.)

Similarly, family 7b is Spivey’s case (S1) β = −α specialized to β′ = −α′ [52]. Its egf
is given by [2, eq. (A4)]:

F (x, t) = eγ
′xt
[
1 +

α

α′ x

(
1− eα′xt

)]−(α+γ)/α

. (5.5)

Comparing this with (3.48), we see that family 7b is the (γ′x)-binomial transform of
family 3b.

Remark. Since Bξ1Bξ2 = Bξ1+ξ2 , it follows that the ξ-binomial transform of family 7a
is simply family 7a with γ → γ + ξ, and the (ξx)-binomial transform of family 7b is
family 7b with γ′ → γ′ + ξ. �

Combining this with Propositions 3.8 and 4.3, we obtain:
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Corollary 5.2 (T-fraction for families 7a and 7b). The ogf f(x, t;µ) for the recurrence
(1.1) with µ = (0, β, γ, 0, β′, γ′) has a T-type continued fraction representation in the ring
Z[x; β, γ, β′, γ′][[t]] with coefficients

c2k−1 = (γ′ + kβ′)x , c2k = k (β + β′x) , (5.6a)

d2k−1 = γ , d2k = 0 (5.6b)

Moreover, an analogous T-type representation exists in Z[x;α, γ, α′, γ′][[t]] for the dual
parameter µ = (α,−α, γ, α′,−α′, γ′) with coefficients

c2k−1 = γ + kα , c2k = k(α + α′ x) , (5.7a)

d2k−1 = γ′x , d2k = 0 (5.7b)

Similarly, combining Proposition 5.1 with Proposition 3.8 and Corollary 4.6, we obtain:

Corollary 5.3 (J-fraction for families 7a and 7b). The ogf f(x, t;µ) for the recurrence
(1.1) with µ = (0, β, γ, 0, β′, γ′) has a J-type continued fraction representation in the ring
Z[x; β, γ, β′, γ′][[t]] with coefficients

en = [γ + (β′ + γ′)x] + n(β + 2β′x) (5.8a)

fn = n(γ′ + nβ′)x(β + β′x) (5.8b)

Moreover, an analogous J-type representation exists in Z[x;α, γ, α′, γ′][[t]] for the dual
parameter µ = (α,−α, γ, α′,−α′, γ′) with coefficients

en = (α + γ + γ′x) + n(2α + α′x) (5.9a)

fn = n(γ + nα)(α + α′x) (5.9b)

Remarks. 1. The dual of µ = (0, β, γ, 0, β′, γ′) is Dµ = (β′,−β′, γ′; β,−β, γ), so fam-
ily 7b is obtained from family 7a by applying duality followed by the map (β′, γ′, β, γ) 7→
(α, γ, α′, γ′). The T-fraction for family 7b can then be deduced by duality from the one
for family 7a, by using the observations made at the beginning of this section.

2. The special case µ = (0, 0, 1; 0, 1, 0) of family 7a leads to the injective numbers
Inj(n, k) = n!/(n − k)! [26] [41, A008279]. The dual array T (n, k) = n!/k! [41, A094587]
is the special case µ = (1,−1, 0; 0, 0, 1) of family 7b.

3. As noted earlier, families 2a and 2b are equivalent, at the level of the matrices T (µ),
to special cases of families 3a and 3b, respectively. Therefore, the γ-binomial transform
of family 2a is a special case of family 7a, and the (γ′x)-binomial transform of family 2b
is a special case of family 7b. �
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5.2 Examples of GKP recurrences with T-fraction not arising from the bi-
nomial transform

5.2.1 Families 8a and 8b: Generalized Ward polynomials and their dual

In a very recent paper [19], Elvey Price and Sokal have given [19, Theorem 1.2] a
T-fraction for the ordinary generating function of some polynomials Wn(x, u, z, w) that
generalize the Ward polynomials [41, A134991/A181996/A269939]: the coefficients of this
T-fraction are

ci = x+ (i− 1)u , di = z + (i− 1)w . (5.10)

Moreover, in the special case u = x, these polynomials satisfy a linear recurrence of GKP

form [19, Corollary B.2]: setting Wn(x, x, z, w) =
n∑
k=0

Wn,k(z, w)xk, the triangular array(
Wn,k(z, w)

)
06k6n

satisfies

Wn,k = (wk + z)Wn−1,k + (n+ k − 1)Wn−1,k−1 for n > 1 (5.11)

with initial condition W0,k = δk0. So the ogf of the GKP recurrence with µ = (0, β, γ, 1, 1,
−1) has a T-fraction with coefficients ci = ix, di = γ+(i−1)β. And by applying the scaling
S1,λ [cf. (2.2)] to this T-fraction, we deduce that the ogf of the GKP recurrence with µ =
(0, β, γ, α′, α′,−α′) has a T-fraction with coefficients ci = iα′x, di = γ + (i− 1)β. Finally,
by applying duality to this result, we deduce that the ogf of the GKP recurrence with
µ = (2α̂,−α̂,−α̂, α′,−α′, γ′) has a T-fraction with coefficients ci = iα̂, di = γ′+(i−1)α′.

(We use the change of parameters α
def
= 2α̂ to avoid fractions.)

We summarize this by defining family 8a (the rescaled generalized Ward polynomials
at u = x) and family 8b (their dual):

F8a. µ = (0, β, γ, α′, α′,−α′)
F8b. µ = (2α̂,−α̂,−α̂, α′,−α′, γ′)

We then have:

Proposition 5.4 (T-fraction for families 8a and 8b). The ogf f(x, t;µ) for the recurrence
(1.1) with µ = (0, β, γ, α′, α′,−α′) has a T-type continued fraction representation in the
ring Z[x; β, γ, α′][[t]] with coefficients

ci = iα′x , di = γ + (i− 1)β . (5.12)

Moreover, an analogous T-type representation exists in Z[x; α̂, α′, γ′][[t]] for the dual pa-
rameter µ = (2α̂,−α̂,−α̂, α′,−α′, γ′) with coefficients

ci = iα̂ , di = [γ′ + (i− 1)α′]x . (5.13)

Let us remark that the proof of this result in [19] is rather indirect. The polyno-
mials Wn(x, u, z, w) are defined combinatorially, as generating polynomials for “super-
augmented perfect matchings” of [2n] with suitable weights. The T-fraction (5.10) and
the recurrence (5.11) are then proven by combinatorial arguments (of very different forms).
It is an interesting open problem to prove Proposition 5.4 by direct arguments leading
from the recurrence to the T-fraction (or vice versa).
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5.2.2 Families 9a and 9b: Conjectured T- and J-fractions

We have found empirically a T-fraction for the family

F9a. µ = (0, β, (κ+ 1)β,−α̂′, 2α̂′, κα̂′)
and its dual

F9b. µ = (α,−2α, κα, α′,−α′, (κ+ 1)α′)

(In family 9a we have introduced the change of parameters α′
def
= −α̂′ in order to have

plus signs in the T-fraction.)

Conjecture 5.5 (T-fraction for families 9a and 9b). The ogf f(x, t;µ) for the recurrence
(1.1) with µ = (0, β, (κ+1)β,−α̂′, 2α̂′, κα̂′) has a T-type continued fraction representation
in the ring Z[x; β, α̂′, κ][[t]] with coefficients

c2k−1 = (κ+ k)α̂′x , c2k = kα̂′x , (5.14a)

d2k−1 = (κ+ 2k − 1)β , d2k = 0 (5.14b)

Moreover, an analogous T-type representation exists in Z[x;α, α′, κ][[t]] for the dual pa-
rameter µ = (α,−2α, κα, α′,−α′, (κ+ 1)α′) with coefficients

c2k−1 = (κ+ k)α , c2k = kα , (5.15a)

d2k−1 = (κ+ 2k − 1)α′x , d2k = 0 (5.15b)

We have verified Conjecture 5.5 for 0 6 n 6 20.
It will be observed that the T-fractions of Conjecture 5.5 have di = 0 at all even levels

i. Therefore, Proposition 4.2 implies that Conjecture 5.5 is equivalent to:

Conjecture 5.6 (J-fraction for families 9a and 9b). The ogf f(x, t;µ) for the recurrence
(1.1) with µ = (0, β, (κ+ 1)β, α′,−2α′,−κα′) has a J-type continued fraction representa-
tion in the ring Z[x; β, α̂′, κ][[t]] with coefficients

en = (κ+ 2n+ 1)(β + α̂′x) (5.16a)

fn = n(κ+ n)(α̂′x)2 (5.16b)

Moreover, an analogous J-type representation exists in Z[x;α, α′, κ][[t]] for the dual pa-
rameter µ = (α,−2α, κα, α′,−α′, (κ+ 1)α′) with coefficients

en = (κ+ 2n+ 1)(α + α′x) (5.17a)

fn = n(κ+ n)α2 (5.17b)

Remark. Since the recurrence for family 9a has a term (−n+2k+κ)α̂′ T (n−1, k−1)
on the right-hand side, and the recurrence for family 9b has a term (n−2k)αT (n−1, k) —
neither of which is nonnegative for all 0 6 k 6 n — it is far from obvious that the resulting
coefficients T (n, k) will be polynomials with nonnegative coefficients in x and β, κ, α̂′ (or
x and α, κ, α′). But this property is an immediate consequence of the T-fractions or
J-fractions. Indeed, the T-fractions imply the much stronger property of coefficientwise
Hankel-total positivity (see Section 6.2 below). It would be good to understand, directly
from the recurrence, why one gets polynomials with nonnegative coefficients. �
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5.3 Examples of GKP recurrences with J-fraction not arising from the bino-
mial transform

5.3.1 Family 1c

Family 1c is defined as follows:

F1c. µ = (0, β, γ, α′,−α′, γ′)

It is a simultaneous generalization of family 1a (which corresponds to γ = 0) and family 1b
(which corresponds to γ′ = 0). Family 1c is self-dual: duality acts by interchanging
(β, γ)↔ (α′, γ′).

Family 1c is Spivey’s [52] case (S3) α/β = α′/β′ + 1 specialized to α = 0. Its egf
is [2, eq. (A2)]

F (x, t) = e(γ/β)(β−α′x)t

(
β − α′xe(β−α′x)t

β − α′x

)−γ/β−γ′/α′

. (5.18)

For family 1c we have the following J-fraction:

Proposition 5.7 (J-fraction for family 1c). The ogf f(x, t;µ) for the recurrence (1.1)
with µ = (0, β, γ, α′,−α′, γ′) has a J-type continued fraction representation in the ring
Z[x; β, γ, α′, γ′][[t]] with coefficients

en = (γ + nβ) + (γ′ + nα′)x (5.19a)

fn = n[βγ′ + γα′ + (n− 1)βα′]x (5.19b)

Proposition 5.7 is in fact a special case of a recent result of Zhu [68], as will be discussed
in Section 6.3.

6 Open questions

We conclude this paper by proposing some open problems that arise naturally from
our work.

6.1 T-fractions, J-fractions, and binomial transforms

The main result of the present paper, Theorem 3.1, is a complete list of all families of
parameters µ ∈ C6 for which the ordinary generating function (1.3) of the GKP recurrence
has an S-fraction expansion (1.7) with coefficients c1, c2, . . . that are polynomials in x
(rather than rational functions). In Section 5 we exhibited some additional families where
the ogf (1.3) has an expansion as a T-fraction (1.9) or a J-fraction (1.10) with polynomial
coefficients, but this list was not systematic. Some of these families arose from the ξ-
binomial transform, but even this sublist was not systematic. This naturally suggests the
following open problems:
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Problem 6.1 (Classification of T-fractions). Determine all parameters µ ∈ C6 for which
the ordinary generating function (1.3) has a T-fraction expansion (1.9) with coefficients
c1, c2, . . . and d1, d2, . . . that are polynomials in x.

Problem 6.2 (Classification of J-fractions). Determine all parameters µ ∈ C6 for which
the ordinary generating function (1.3) has a J-fraction expansion (1.10) with coefficients
e0, e1, . . . and f1, f2, . . . that are polynomials in x.

Problem 6.3 (Classification of ξ-binomial transforms). Determine all parameter sets
(µ,µ′, ξ0, ξ1) ∈ C14 for which

Pn(x;µ′) =
n∑
k=0

(
n

k

)
Pk(x;µ) (ξ0 + ξ1x)n−k . (6.1)

In the special case ξ1 = 0, this problem becomes: Determine all parameter sets
(µ,µ′, ξ) ∈ C13 for which

Pn(x;µ′) =
n∑
k=0

(
n

k

)
Pk(x;µ) ξn−k (6.2)

or equivalently
T (µ′) = Bξ T (µ) (6.3)

where Bξ is the ξ-binomial matrix (4.6).

Remark. The special case ξ0 = 0 can also be written by a formula similar to (6.3).
Indeed, (6.1) reads

n∑
j=0

T (n, j;µ′)xj =
n∑
k=0

(
n

k

) k∑
j=0

T (k, j;µ)xj (ξx)n−k . (6.4)

Extracting the coefficient of x` and then substituting ` = n− k +m, we obtain

T (n, n−m;µ′) =
n∑
k=0

(
n

k

)
ξn−k T (k, k −m;µ) (6.5)

or in other words

T (n,m;Dµ′) =
n∑
k=0

(
n

k

)
ξn−k T (k,m;Dµ) , (6.6)

i.e.
T (Dµ′) = Bξ T (Dµ) , (6.7)

which is is just (6.3) applied to the duals Dµ′ and Dµ. So the two special cases ξ0 = 0
and ξ1 = 0 are related by duality, and we obtain an essentially new problem only when
both ξ0 and ξ1 are nonzero. �

A related problem, in which the ξ-binomial matrix acts on the right, is:
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Problem 6.4 (Classification of x-shift transforms). Determine all parameter sets (µ,µ′,
ξ) ∈ C13 for which

Pn(x;µ′) = Pn(x+ ξ;µ) (6.8)

or equivalently
T (µ′) = T (µ)Bξ . (6.9)

In Section 2.1 we mentioned that a brute-force computation using n = 0, 1, 2, 3 showed
that the only solutions to the equations Pn(x;µ′) = Pn(x+ ξ;µ) valid for generic param-
eters µ are the identity map (ξ = 0, µ′ = µ) and the Zhu involution (ξ = −β/β′ with
µ′ given by (2.8)). However, there almost certainly do exist solutions that are valid for
lower-dimensional sets of µ; the goal of Problem 6.4 is to find them all.

Finally, Problems 6.3 and 6.4 can be amalgamated as follows:

Problem 6.5 (Classification of two-sided ξ-binomial transforms). Determine all param-
eter sets (µ,µ′, ξ0, ξ1, ξ2) ∈ C15 for which

Pn(x;µ′) =
n∑
k=0

(
n

k

)
Pk(x+ ξ2;µ) (ξ0 + ξ1x)n−k . (6.10)

6.2 Coefficientwise Hankel-total positivity

We begin by recalling that a finite or infinite matrix of real numbers is called totally
positive (TP) if all its minors are nonnegative, and totally positive of order r (TPr) if
all its minors of size 6 r are nonnegative. Background information on totally positive
matrices can be found in [25,31,35,43]; they have application to many fields of pure and
applied mathematics. In particular, it is known [32, Théorème 9] [43, section 4.6] that
an infinite Hankel matrix (ai+j)i,j>0 of real numbers is totally positive if and only if the
underlying sequence (an)n>0 is a Stieltjes moment sequence, i.e. the moments of a positive
measure on [0,∞).

Let us now consider sequences and matrices, not of real numbers, but of polynomials
(with integer or real coefficients) in one or more indeterminates x: in applications they
will often be generating polynomials that enumerate some combinatorial objects with
respect to one or more statistics. We equip the polynomial ring R[x] with the coefficien-
twise partial order: that is, we say that P is nonnegative (and write P � 0) in case P
is a polynomial with nonnegative coefficients. We then say that a matrix with entries in
R[x] is coefficientwise totally positive if all its minors are polynomials with nonnegative
coefficients; and analogously for coefficientwise total positivity of order r. We say that
a sequence a = (an)n>0 with entries in R[x] is coefficientwise Hankel-totally positive if
its associated infinite Hankel matrix is coefficientwise totally positive; and likewise for
the version of order r. Coefficientwise Hankel-total positivity of a sequence of polynomi-
als (Pn(x))n>0 obviously implies the pointwise Hankel-total positivity (i.e. the Stieltjes
moment property) for all x > 0, but it is vastly stronger.

The key fact connecting S-fractions to coefficientwise Hankel-total positivity is the
following result [48, 49], which is an immediate consequence of old ideas of Viennot [61,
pp. IV-13–IV-15]:
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Theorem 6.6 (Total positivity of S-fractions). Let c = (ci)i>1 be indeterminates, and
define the Stieltjes–Rogers polynomials Sn(c) ∈ Z[c] by

∞∑
n=0

Sn(c1, . . . , cn) tn =
1

1−
c1t

1−
c2t

1− · · ·

. (6.11)

Then the sequence S = (Sn(c))n>0 is coefficientwise Hankel-totally positive in the inde-
terminates c.

In particular, if we specialize the ci to be polynomials with nonnegative real coefficients
in some indeterminates x, then the specialized sequence S = (Sn(c))n>0 is coefficientwise
Hankel-totally positive in the indeterminates x.

Moreover, this result generalizes to T-fractions [48,49]:

Theorem 6.7 (Total positivity of T-fractions). Let c = (ci)i>1 and d = (di)i>1 be inde-
terminates, and define the Thron–Rogers polynomials Tn(c,d) ∈ Z[c,d] by

∞∑
n=0

Tn(c1, . . . , cn, d1, . . . , dn) tn =
1

1− d1t−
c1t

1− d2t−
c2t

1− · · ·

. (6.12)

Then the sequence T = (Tn(c,d))n>0 is coefficientwise Hankel-totally positive in the in-
determinates c and d.

In particular, if we specialize the ci and di to be polynomials with nonnegative real
coefficients in some indeterminates x, then the specialized sequence T = (Tn(c,d))n>0 is
coefficientwise Hankel-totally positive in the indeterminates x.

There is also a result for J-fractions [48, 49], but it is more delicate; Hankel-total
positivity does not hold coefficientwise in the parameters e = (ei)i>0 and f = (fi)i>1, but
only when those parameters satisfy suitable inequalities. The paper [49] describing this
general theory for S-, T- and J-fractions is not yet publicly available, but the foregoing
results (as well as some much stronger ones) can be found (with proofs) in [42, section 9].

Now, simple inspection of the results summarized in Propositions 3.6–3.11 shows that
all the coefficients ci are polynomials with nonnegative integer coeffcients in the variable
x and the parameters α, β, γ, α′, β′, γ′, κ (or a subset of them). Therefore, Theorem 6.6
implies that the corresponding sequence P = (Pn(x;µ))n>0 of row-generating polynomials
is coefficientwise Hankel-totally positive, jointly in all these indeterminates. Similarly, in
Corollary 5.2 and Proposition 5.4, all the coefficients ci and di are polynomials with non-
negative integer coeffcients in x and the parameters, so Theorem 6.7 implies coefficientwise
Hankel-total positivity. Our results in this paper therefore imply:
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Corollary 6.8. In all the families 1a–6 of Theorem 3.1, as well as families 7a and 7b of
Corollary 5.2 and families 8a and 8b of Proposition 5.4, the sequence P = (Pn(x;µ))n>0

of row-generating polynomials is coefficientwise Hankel-totally positive, jointly in all the
indeterminates x and α, β, γ, α′, β′, γ′, κ.

But vastly more appears to be true: it seems that coefficientwise Hankel-total positivity
is a general property of the GKP recurrence, not just of the special families 1a–8b studied
here. Namely, we conjecture:

Conjecture 6.9 (Coefficientwise Hankel-total positivity of the GKP recurrence). The se-
quence P = (Pn(x;µ))n>0 of row-generating polynomials of the GKP recurrence is coeffi-
cientwise Hankel-totally positive, jointly in all seven indeterminates x and α, β, γ, α′, β′, γ′.

This conjecture was made a few years ago by one of us [50] and was confirmed at that
time up to the 8× 8 Hankel matrix (Pi+j(x;µ))06i,j67.11

In fact, a slightly stronger conjecture appears to be true: in place of the usual GKP
recurrence

T (n, k) = (αn+ βk + γ)T (n− 1, k) + (α′n+ β′k + γ′)T (n− 1, k − 1) , (6.13)

we can write instead

T (n, k) = [α̃(n−1)+β̃k+γ̃]T (n−1, k)+[α̃′(n−1)+β̃′(k−1)+γ̃′]T (n−1, k−1) , (6.14)

which is equivalent to (6.13) with

α = α̃, β = β̃, γ = γ̃ − α̃, α′ = α̃′, β′ = β̃′, γ′ = γ̃′ − α̃′ − β̃′ . (6.15)

Even in this new parametrization, we apparently still get coefficientwise Hankel-total
positivity:

Conjecture 6.10 (Coefficientwise Hankel-total positivity of the GKP recurrence, strong
version). The sequence P = (Pn(x; µ̃))n>0 of row-generating polynomials of the recurrence
(6.14) is coefficientwise Hankel-totally positive, jointly in all seven indeterminates x and

α̃, β̃, γ̃, α̃′, β̃′, γ̃′.

It was in fact this stronger conjecture that was confirmed [50] up to the 8×8 Hankel matrix.
We have now also confirmed the coefficientwise Hankel-total positivity of orders 2 and 3
up to the 21× 21 and 9× 9 Hankel matrices, respectively.12

11This computation was performed in Mathematica; it required approximately 1.2×107 seconds CPU
time and 587 GB memory, on a system using Intel Xeon E7-8837 processors running at 2.67 GHz.

12For order 2, this computation was done by checking the strong log-convexity (6.19), coefficientwise
in all seven indeterminates, up to n = 38. This is equivalent [49] to the coefficientwise total positivity of
order 2 of the 21× 21 Hankel matrix. This computation took 1.19× 107 seconds CPU time and 19 GB
memory.

For order 3, this computation was done by the direct method: it took 656116 seconds CPU time and
157 GB memory.
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Please observe that (6.14) is exactly what we need to ensure that the matrix elements

T (n, k) are polynomials with nonnegative coefficients in the parameters α̃, β̃, γ̃, α̃′, β̃′, γ̃′,
since we have written n−1 (resp. k−1) precisely in those terms where we know that n−1
(resp. k − 1) must be nonnegative if the corresponding term is to make a nonzero contri-
bution. In other words, it is immediate from (6.14) that the sequence P = (Pn(x; µ̃))n>0

is coefficientwise Hankel-totally positive of order 1 in x and α̃, β̃, γ̃, α̃′, β̃′, γ̃′. But the
coefficientwise Hankel-total positivity of higher order is decidedly nontrivial!

Some very weak versions of Conjectures 6.9 and 6.10 have been proven. Liu and
Wang [37, Theorem 4.1 and Remark 4.2] showed that if α, β, γ, α′, β′, γ′ are real numbers
satisfying

α > 0 , α + β > 0 , α + γ > 0 (6.16a)

α′ > 0 , α′ + β′ > 0 , α′ + β′ + γ′ > 0 (6.16b)

βα′ − αβ′ > 0 (6.16c)

β(α′ + β′)− αβ′ > 0 (6.16d)

β(α′ + β′ + γ′)− (α + γ)β′ > 0 (6.16e)

then the sequence P = (Pn(x; µ̃))n>0 is coefficientwise log-convex in x, i.e.

Pn(x)Pn+2(x) − Pn+1(x)2 �x 0 (6.17)

for all n > 0. This is equivalent to the coefficientwise nonnegativity (in x) of all the
contiguous 2× 2 minors of the Hankel matrix (Pi+j(x;µ))i,j>0; it is weaker than the full
coefficientwise Hankel-total positivity of order 2.

Chen, Wang and Yang [11, Theorem 2.4] showed that under the slightly different
hypotheses

α > 0 , β > 0 , α + β + γ > 0 (6.18a)

α′ > 0 , β′ > 0 , α′ + β′ + γ′ > 0 (6.18b)

— which neither imply nor are implied by (6.16) — the sequence P = (Pn(x; µ̃))n>0 is
coefficientwise strongly log-convex in x, i.e.

Pm(x)Pn+2(x) − Pm+1(x)Pn+1(x) �x 0 (6.19)

for all n > m > 0. It can be shown [49] that the coefficientwise strong log-convexity (in x)
is equivalent to the coefficientwise (in x) Hankel-total positivity of order 2.

But these results are very far from proving even the coefficientwise Hankel-total pos-
itivity of order 2 — much less the coefficientwise Hankel-total positivity of all orders —
in the seven indeterminates jointly.
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6.3 A generalization: The Graham–Knuth–Patashnik–Zhu recurrence

Inspired by a very recent paper of Zhu [68], we would like to propose the following
generalization of the GKP recurrence, which we shall call the Graham–Knuth–Patashnik–
Zhu (GKPZ) recurrence:

T (n, k) = (αn+ βk + γ)T (n− 1, k) + (α′n+ β′k + γ′)T (n− 1, k − 1)

+ σ (n− k + 1)T (n− 1, k − 2) + τ (k + 1)T (n− 1, k + 1) (6.20)

for n > 1 and k ∈ Z, with initial condition T (0, k) = δk0 and parameters µ = (α, β, γ,
α′, β′, γ′, σ, τ). Please note that because the coefficient n − k + 1 in the T (n− 1, k − 2)
term vanishes when k = n+ 1, it follows by induction on n that T (n, k) = 0 when k > n.
Similarly, because the coefficient k+ 1 in the T (n− 1, k + 1) term vanishes when k = −1,
it follows that T (n, k) = 0 when k < 0. So the matrix T (µ) =

(
T (n, k;µ)

)
n>0, k∈Z remains

lower-triangular even in the presence of the two new terms.

A simple computation shows that the dual array T ∗(n, k)
def
= T (n, n − k) satisfies a

GKPZ recurrence with parameters

Dµ
def
= (α′ + β′,−β′, γ′, α + β,−β, γ, τ, σ) . (6.21)

This is simply the GKP duality (2.5) together with an interchange of σ and τ .
For the special case [68, eq. (1.3)]13

µ = (0, β, γ, α′,−α′ + κβ, γ′, κα′, 0) , (6.22)

Zhu [68] proved a Dobiński-type formula for the row-generating polynomials Pn(x) [68,
Theorem 2.2(i)], an explicit formula for the exponential generating function [68, Theo-
rem 2.2(ii)], a J-fraction for the ordinary generating function [68, Theorem 2.7(i)], and
coefficientwise Hankel-total positivity (in x) for various further-specialized cases of the
parameters µ [68, Theorem 2.7(iii)]. The egf and J-fraction can be stated as follows:

Proposition 6.11 (Zhu [68]). For the GKPZ recurrence (6.20) with parameters µ =
(0, β, γ, α′,−α′ + κβ, γ′, κα′, 0):

(a) The egf F (x, t;µ) is of the form

F (x, t) = eat
[
1− b(ect − 1)

]−∆
(6.23)

where either

a =
γ

β
(β − α′x) (6.24a)

b = (α′ + κβ)xβ − α′x (6.24b)

c = β − α′x (6.24c)

∆ =
γ

β
+

γ′ + κ(β − γ)

α′ + κβ
(6.24d)

13The connection with Zhu’s [68, eq. (1.3)] variables λ, d, a1, a2, b1, b2 is κ = d/λ and then a1 = β/λ,
a2 = γ/λ, b1 = α′ + κβ, b2 = γ′ + κ(β − γ).
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or alternatively

a = − γ
′ + κ(β − γ)

α′ + κβ
(β − α′x) (6.25a)

b = − β(1 + κx)

β − α′x
(6.25b)

c = −(β − α′x) (6.25c)

∆ =
γ

β
+

γ′ + κ(β − γ)

α′ + κβ
(6.25d)

(b) The ogf f(x, t;µ) has a J-type continued fraction representation in the ring Z[x, β, γ,
α′, κ][[t]] with coefficients

en = (γ + nβ)(1 + κx) + [γ′ + κ(β − γ) + n(α′ + κβ)]x (6.26a)

fn = n[βγ′ + γα′ + κβ2 + (n− 1)β(α′ + κβ)]x(1 + κx) (6.26b)

There is of course also a dual result to Proposition 6.11, whose statement we leave to the
reader.

We remark that Zhu [68] proves the Dobiński-type formula for Pn(x) [68, Theo-
rem 2.2(i)] by induction on n; from this he deduces the formula (6.23)–(6.25) for the
egf [68, Theorem 2.2(ii)] by a straightforward computation. Finally, he deduces the J-
fraction (6.26) [68, Theorem 2.7(i)] from the egf by the Stieltjes–Rogers addition-formula
method [63, pp. 203–207].14

In two special cases, the GKPZ parameters (6.22) have σ = τ = 0 and thus reduce to
a GKP recurrence:

1) When κ = 0, the GKPZ parameters (6.22) reduce to our family 1c (Section 5.3.1),
and the J-fraction (6.26) reduces to (5.19).

2) When α′ = 0, the GKPZ parameters (6.22) reduce to our family 7a (Section 5.1.1),
and the J-fraction (6.26) reduces to (5.8).

It is a very interesting open problem to generalize our work in the present paper, and
the proposed work in the preceding two subsections, to the GKPZ recurrence.

14Let us remark that the argument from this egf to the J-fraction for the corresponding ogf was
essentially already known to Stieltjes. More precisely, as noted already in Section 3.2, Stieltjes [56,
section 81] observed that the S-fraction (3.10) with v = y and u = 1 is the formal Laplace transform
of the exponential generating function (3.30); or in other words, the ogf corresponding to the egf (6.23)
specialized to a = 0 has an S-fraction with coefficients c2k−1 = bc(∆ + k − 1), c2k = k(b + 1)c. This
leads by contraction (Proposition 4.1) to a J-fraction with coefficients en = bc∆ + nc(2b + 1), fn =
nb(b + 1)(∆ + n − 1)c2. Then one restores a by applying an a-binomial transform (Proposition 4.5),
leading to a J-fraction with en = a + bc∆ + nc(2b + 1), fn = nb(b + 1)(∆ + n − 1)c2. Inserting either
(6.24) or (6.25) then yields (6.26).
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A Matrix product of two GKP arrays

In this appendix we provide more details concerning the matrix product T (µ)T (µ̂)
of two GKP arrays (as well as some more general arrays), with special attention to the
case in which one of the two arrays is the ξ-binomial matrix Bξ defined in (4.6). Some of
these results can be found in the very interesting (but apparently little-known) thesis of
Théorêt [57], whose approach we largely follow in Section A.1. A few of our results are
also in Spivey [52], but it seems to us that our formulations and proofs are simpler.

A.1 General results

It is convenient to start from the more general “binomial-like” recurrence introduced
in Section 2.3. We have [57, p. 11, proof of Proposition 1.1.2] [59, p. 199]:

Proposition A.1 (Matrix product of two “binomial-like” arrays). LetA =
(
A(n, k)

)
06k6n

and B =
(
B(n, k)

)
06k6n

be triangular arrays defined by the recurrences

A(n, k) = an,k A(n− 1, k) + a′n,k A(n− 1, k − 1) (A.1a)

B(n, k) = bn,k B(n− 1, k) + b′n,k B(n− 1, k − 1) (A.1b)

for n > 1, with initial conditions A(0, k) = B(0, k) = δk0. Then

n∑
j=0

A(n, j)B(j, k) =
n−1∑
j=0

(an,j + a′n,j+1bj+1,k)A(n− 1, j)B(j, k)

+
n−1∑
j=0

a′n,j+1b
′
j+1,k A(n− 1, j)B(j, k − 1) + δn0δk0 . (A.2)
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Proof. The formula obviously holds for n = 0. For n > 1 we have

n∑
j=0

A(n, j)B(j, k)

=
n−1∑
j=0

an,j A(n− 1, j)B(j, k)

+
n∑
j=1

a′n,j A(n− 1, j − 1)
[
bj,k B(j − 1, k) + b′j,k B(j − 1, k − 1)

]
(A.3a)

=
n−1∑
j=0

an,j A(n− 1, j)B(j, k)

+
n−1∑
j=0

a′n,j+1 A(n− 1, j)
[
bj+1,k B(j, k) + b′j+1,k B(j, k − 1)

]
. (A.3b)

Grouping terms gives (A.2).

Proposition A.1 does not in general give a recurrence for the matrix product C = AB,
because the coefficients on the right-hand side of (A.2) depend in general on j (not just
on n and k). However, this dependence is eliminated whenever an,k and a′n,k depend
only on n and also bn,k and b′n,k depend only on k. In this case we have [57, p. 11,
Exemple 1] [7, proof of Theorem 4.8] [40, Theorem 10]:

Corollary A.2. Let A =
(
A(n, k)

)
06k6n

and B =
(
B(n, k)

)
06k6n

be triangular arrays
defined by the recurrences

A(n, k) = anA(n− 1, k) + a′nA(n− 1, k − 1) (A.4a)

B(n, k) = bk B(n− 1, k) + b′k B(n− 1, k − 1) (A.4b)

for n > 1, with initial conditions A(0, k) = B(0, k) = δk0. Then the matrix product
C = AB satisfies the recurrence

C(n, k) = (an + a′nbk)C(n− 1, k) + a′nb
′
k C(n− 1, k − 1) (A.5)

for n > 1, with initial condition C(0, k) = δk0.

In fact, Théorêt [57, p. 13, Corollaire 1.1.3] exhibits a more general situation in which
the coefficients on the right-hand side of (A.2) are independent of j:

Corollary A.3. Let A =
(
A(n, k)

)
06k6n

and B =
(
B(n, k)

)
06k6n

be triangular arrays
defined by the recurrences

A(n, k) = (αn + βnγk)A(n− 1, k) + βnδk A(n− 1, k − 1) (A.6a)

B(n, k) =
φk − γn−1

δn
B(n− 1, k) +

ψk
δn
B(n− 1, k − 1) (A.6b)
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for n > 1, with initial conditions A(0, k) = B(0, k) = δk0. Then the matrix product
C = AB satisfies the recurrence

C(n, k) = (αn + βnφk)C(n− 1, k) + βnψk C(n− 1, k − 1) (A.7)

for n > 1, with initial condition C(0, k) = δk0.

Proof. Apply Proposition A.1.

Remarks.

1. Note that the coefficients γ and δ occur with both n (or n− 1) and k as subscripts,
while α and β occur only with n, and φ and ψ only with k. Note also that δ is
trivially eliminated from the matrix product C = AB as a consequence of the
rescaling lemma (Lemma 2.1). The elimination of γ is, however, less obvious.

2. Théorêt proves [57, pp. 13–14, Remarque 1] that (A.6) is the most general pair
of “binomial-like” recurrences (with nonvanishing coefficients an,k, a

′
n,k, bn,k, b

′
n,k) in

which the coefficients on the right-hand side of (A.2) are independent of j. However,
he also shows later [57, section 2.6] some other cases in which the matrix product of
two binomial-like arrays is binomial-like, using a sufficient condition that is different
from Proposition A.1. �

Specializing Proposition A.1 to the GKP recurrence

an,k = αn+ βk + γ , a′n,k = α′n+ β′k + γ′ (A.8a)

bn,k = α̂n+ β̂k + γ̂ , b′n,k = α̂′n+ β̂′k + γ̂′ (A.8b)

we obtain [52, Corollary 5]:

Proposition A.4 (Matrix product of two GKP arrays). Let A =
(
A(n, k)

)
06k6n

and

B =
(
B(n, k)

)
06k6n

be triangular arrays defined by the recurrences

A(n, k) = (αn+ βk + γ)A(n− 1, k) + (α′n+ β′k + γ′)A(n− 1, k − 1) (A.9a)

B(n, k) = (α̂n+ β̂k + γ̂)B(n− 1, k) + (α̂′n+ β̂′k + γ̂′)B(n− 1, k − 1) (A.9b)

for n > 1, with initial conditions A(0, k) = B(0, k) = δk0. Then

n∑
j=0

A(n, j)B(j, k) =
n−1∑
j=0

A(n− 1, j)B(j, k)

×
[
(αn+ βj + γ) + (α′n+ β′(j + 1) + γ′)(α̂(j + 1) + β̂k + γ̂)

]
+

n−1∑
j=0

A(n− 1, j)B(j, k − 1) (α′n+ β′(j + 1) + γ′)(α̂′(j + 1) + β̂′k + γ̂′)

+ δn0δk0 . (A.10)
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Let us remark that Spivey [52] used the variant notation (6.14) for the GKP recurrence;
restating his result [52, Corollary 5] in terms of the standard notation (1.1) and simplifying
the expression slightly yields (A.10).

And specializing further to β = β′ = α̂ = α̂′ = 0, we obtain the GKP special case of
Corollary A.2:

Corollary A.5. Let A =
(
A(n, k)

)
06k6n

and B =
(
B(n, k)

)
06k6n

be triangular arrays
defined by the recurrences

A(n, k) = (αn+ γ)A(n− 1, k) + (α′n+ γ′)A(n− 1, k − 1) (A.11a)

B(n, k) = (β̂k + γ̂)B(n− 1, k) + (β̂′k + γ̂′)B(n− 1, k − 1) (A.11b)

for n > 1, with initial conditions A(0, k) = B(0, k) = δk0. Then the matrix product
C = AB satisfies the recurrence

C(n, k) =
[
(αn+ γ) + (α′n+ γ′)(β̂k + γ̂)

]
C(n− 1, k)

+ (α′n+ γ′)(β̂′k + γ̂′)C(n− 1, k − 1) (A.12)

for n > 1, with initial condition C(0, k) = δk0.

Of course, the binomial-like recurrence (A.12) need not in general be of GKP form,
due to the possibility of coefficients involving the product nk. But these terms vanish if,
in addition, either α′ = 0 or β̂ = β̂′ = 0:

Corollary A.6. Let A =
(
A(n, k)

)
06k6n

and B =
(
B(n, k)

)
06k6n

be triangular arrays
defined by the recurrences

A(n, k) = (αn+ γ)A(n− 1, k) + (α′n+ γ′)A(n− 1, k − 1) (A.13a)

B(n, k) = (β̂k + γ̂)B(n− 1, k) + (β̂′k + γ̂′)B(n− 1, k − 1) (A.13b)

for n > 1, with initial conditions A(0, k) = B(0, k) = δk0. Assume further that either

α′ = 0 or β̂ = β̂′ = 0. Then the matrix product C = AB satisfies the GKP recurrence

C(n, k) =
[
(α + α′γ̂)n+ γ′β̂k + (γ + γ′γ̂)

]
C(n− 1, k)

+ (α′γ̂′n+ γ′β̂′k + γ′γ̂′)C(n− 1, k − 1) (A.14)

for n > 1, with initial condition C(0, k) = δk0.

Remark. In Corollary A.6, the matrix B is precisely the matrix T of family 7a (with
hats inserted on the parameters); and if we further specialize to (α, γ, α′, γ′) = (0, ξ, 0, 1),
then A is the ξ-binomial matrix Bξ. In this case the matrix product BξT satisfies a GKP
recurrence (A.14) of the same form (A.13b) but with γ̂ → γ̂ + ξ. This gives the promised
direct proof that family 7a is the γ-binomial transform of family 3a (Proposition 5.1). �

Alternatively, we can obtain GKP recurrences from Corollary A.3 by setting

αn = αn+γ , βn = γ′ , γk = (β/γ′)k , δk = 1 , φk = β̂k , ψk = β̂′k+γ̂′ . (A.15)

We then have:
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Corollary A.7. Let A =
(
A(n, k)

)
06k6n

and B =
(
B(n, k)

)
06k6n

be triangular arrays
defined by the recurrences

A(n, k) = (αn+ βk + γ)A(n− 1, k) + γ′A(n− 1, k − 1) (A.16a)

B(n, k) =
(
− β
γ′
n+ β̂k +

β

γ′

)
B(n− 1, k) + (β̂′k + γ̂′)B(n− 1, k − 1)(A.16b)

for n > 1, with initial conditions A(0, k) = B(0, k) = δk0. Then the matrix product
C = AB satisfies the recurrence

C(n, k) = (αn+ γ′β̂k + γ)C(n− 1, k) + γ′(β̂′k + γ̂′)C(n− 1, k − 1) (A.17)

for n > 1, with initial condition C(0, k) = δk0.

Going back to Proposition A.4, another way to handle the j-dependent terms — rather
than assuming that they are nonexistent, i.e. β = β′ = α̂ = α̂′ = 0 — is to transform
them away by employing identities to convert the j-dependence to n- or k-dependence.
This works in some special cases, as a result of the following simple fact:

Lemma A.8 (Identities for nearly-binomial matrices).

(a) If the matrix T is of the form

T (n, k) =

(
n

k

)
γn−k f(k) (A.18)

for some function f(k), then for every integer r > 0,

(n− k)r T (n, k) = γr nr T (n− r, k) . (A.19)

[Here xr
def
= x(x− 1) · · · (x− r + 1).] This holds in particular whenever T = T (µ)

with µ = (0, 0, γ, 0, β′, γ′), in which case

T (n, k) =

(
n

k

)
γn−k

k∏
j=1

(γ′ + jβ′) . (A.20)

(b) If the matrix T is of the form

T (n, k) =

(
n

k

)
(γ′)k g(n− k) (A.21)

for some function g(n− k), then for every integer r > 0,

kr T (n, k) = (γ′)r nr T (n− r, k − r) . (A.22)

This holds in particular whenever T = T (µ) with µ = (α,−α, γ, 0, 0, γ′), in which
case

T (n, k) =

(
n

k

)
(γ′)k

n−k∏
j=1

(γ + jα) . (A.23)
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Proof. An easy computation.

We next discuss some special cases of Proposition A.4 (or more generally, Proposi-
tion A.1) where Lemma A.8 can be used to remove the j-dependence; we divide these
according as the special matrix (i.e. the one to which Lemma A.8 is applied) is on the left
(Section A.2) or on the right (Section A.3).

A.2 Special matrix on the left

We distinguish two cases, according as we apply part (a) or (b) of Lemma A.8 to the
matrix A:

Case 1: α = β = α′ = 0. WhenA is given by a GKP recurrence with α = β = α′ = 0,
we can handle a matrix B that is more general than a GKP recurrence: namely, it can
be given by a binomial-like recurrence (A.1b) in which bn,k and b′n,k are affine in n but
with coefficients depending in an arbitrary way on k:

an,k = γ , a′n,k = β′k + γ′ , bn,k = α̂kn+ γ̂k , b′n,k = α̂′kn+ γ̂′k . (A.24)

We then start from Proposition A.1 with the specializations (A.24), and isolate the terms
proportional to j or j2: the matrix C = AB satisfies

C(n, k) =
[
(β′ + γ′)(α̂k + γ̂k) + γ

]
C(n− 1, k)

+ (β′ + γ′)(α̂′k + γ̂′k)C(n− 1, k − 1)

+
[
β′(α̂k + γ̂k) + (β′ + γ′)α̂k

] n−1∑
j=1

j A(n− 1, j)B(j, k)

+ β′α̂k

n−1∑
j=1

j2A(n− 1, j)B(j, k)

+
[
β′(α̂′k + γ̂′k) + (β′ + γ′)α̂′k

] n−1∑
j=1

j A(n− 1, j)B(j, k − 1)

+ β′α̂′k

n−1∑
j=1

j2A(n− 1, j)B(j, k − 1) (A.25)

for n > 1. Now apply Lemma A.8(a) to the matrix A: from (A.19) with r = 1, 2 we
deduce

j A(n, j) = nA(n, j) − γnA(n− 1, j) (A.26a)

j2A(n, j) = n2A(n, j) − γn(2n− 1)A(n− 1, j) + γ2n(n− 1)A(n− 2, j)

(A.26b)

Inserting (A.26a,b) with n→ n− 1 on the right-hand side of (A.25), we obtain:
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Corollary A.9. Let A =
(
A(n, k)

)
06k6n

and B =
(
B(n, k)

)
06k6n

be triangular arrays
defined by the recurrences

A(n, k) = γ A(n− 1, k) + (β′k + γ′)A(n− 1, k − 1) (A.27a)

B(n, k) = (α̂kn+ γ̂k)B(n− 1, k) + (α̂′kn+ γ̂′k)B(n− 1, k − 1) (A.27b)

for n > 1, with initial conditions A(0, k) = B(0, k) = δk0. Then the matrix product
C = AB satisfies the recurrence

C(n, k) = c1C(n− 1, k) + c2C(n− 1, k − 1)

+ c3C(n− 2, k) + c4C(n− 2, k − 1)

+ c5C(n− 3, k) + c6C(n− 3, k − 1) (A.28)

for n > 1, with initial condition C(0, k) = δk0, where

c1 = (β′n+ γ′) (α̂kn+ γ̂k) + γ (A.29a)

c2 = (β′n+ γ′) (α̂′kn+ γ̂′k) (A.29b)

c3 = −(n− 1)γ
[
γ′α̂k + β′(γ̂k + (2n− 1)α̂k)

]
(A.29c)

c4 = −(n− 1)γ
[
γ′α̂′k + β′(γ̂′k + (2n− 1)α̂′k)

]
(A.29d)

c5 = (n− 1)(n− 2)γ2β′α̂k (A.29e)

c6 = (n− 1)(n− 2)γ2β′α̂′k (A.29f)

This is rather complicated, but it simplifies significantly when also β′ = 0, in which
case A is a rescaled binomial: A(n, k) =

(
n
k

)
γn−k(γ′)k. Normalizing to γ′ = 1 and writing

γ = ξ, then A becomes the ξ-binomial matrix Bξ defined in (4.6), and Corollary A.9
becomes:

Corollary A.10. Let B =
(
B(n, k)

)
06k6n

be a triangular array defined by the recurrence

B(n, k) = (α̂kn+ γ̂k)B(n− 1, k) + (α̂′kn+ γ̂′k)B(n− 1, k − 1) (A.30)

for n > 1, with initial condition B(0, k) = δk0. Then the matrix product C = BξB
satisfies the recurrence

C(n, k) = (α̂kn+ γ̂k + ξ)C(n− 1, k) + (α̂′kn+ γ̂′k)C(n− 1, k − 1)

− (n− 1)ξ
[
α̂k C(n− 2, k) + α̂′k C(n− 2, k − 1)

]
(A.31)

for n > 1, with initial condition C(0, k) = δk0.

When also α̂k = α̂′k = 0 for all k, the terms C(n − 2, k) and C(n − 2, k − 1) disappear,
and we have a special case of Corollary A.2.

Specializing Corollary A.10 to the GKP case

α̂k = α̂ , γ̂k = β̂k + γ̂ , α̂′k = α̂′ , γ̂′k = β̂′k + γ̂′ , (A.32)

we get:
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Corollary A.11. Let B =
(
B(n, k)

)
06k6n

be a triangular array defined by the recurrence

B(n, k) = (α̂n+ β̂k + γ̂)B(n− 1, k) + (α̂′n+ β̂′k + γ̂′)B(n− 1, k − 1) (A.33)

for n > 1, with initial condition B(0, k) = δk0. Then the matrix product C = BξB
satisfies the recurrence

C(n, k) = (α̂n+ β̂k + γ̂ + ξ)C(n− 1, k) + (α̂′n+ β̂′k + γ̂′)C(n− 1, k − 1)

− (n− 1)ξ
[
α̂ C(n− 2, k) + α̂′C(n− 2, k − 1)

]
(A.34)

for n > 1, with initial condition C(0, k) = δk0.

When also α̂ = α̂′ = 0, the terms C(n− 2, k) and C(n− 2, k − 1) disappear, and we are
back in the situation discussed in the Remark after Corollary A.6.

The form (A.34) of the output matrix in Corollary A.10 suggests that one consider,
as input, a triangular array B =

(
B(n, k)

)
06k6n

defined by a similar recurrence. Then
we can obtain, using essentially the same proof as for Corollary A.10, the following more
general result:

Corollary A.12. Let B =
(
B(n, k)

)
06k6n

be a triangular array defined by the recurrence

B(n, k) = (α̂kn+ γ̂k)B(n− 1, k) + (α̂′kn+ γ̂′k)B(n− 1, k − 1)

+ (n− 1) δ̂k B(n− 2, k) + (n− 1) δ̂′k B(n− 2, k − 1) (A.35)

for n > 1, with initial condition B(0, k) = δk0. Then the matrix product C = BξB
satisfies the recurrence

C(n, k) = (α̂kn+ γ̂k + ξ)C(n− 1, k) + (α̂′kn+ γ̂′k)C(n− 1, k − 1)

+ (n− 1) (δ̂k − ξα̂k)C(n− 2, k) + (n− 1) (δ̂′k − ξα̂′k)C(n− 2, k − 1) (A.36)

for n > 1, with initial condition C(0, k) = δk0.

Proof. The matrix C = BξB satisfies

C(n, k) =
n∑
j=0

Bξ(n, j)B(j, k) (A.37a)

=
n∑
j=0

[
ξ Bξ(n− 1, j) +Bξ(n− 1, j − 1)

]
B(j, k) (A.37b)

= ξ C(n− 1, k) +
n∑
j=1

Bξ(n− 1, j − 1)B(j, k) . (A.37c)
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Now insert the recurrence (A.35) for B(j, k). The first two terms on the right-hand side
produce the terms given in Corollary A.10. So we only need to deal with the last two
terms on the right-hand side. The contribution of the first one is

δ̂k

n∑
j=1

(j − 1)Bξ(n− 1, j − 1)B(j − 2, k)

= δ̂k

n−1∑
j=0

j Bξ(n− 1, j)B(j − 1, k) (A.38a)

= δ̂k (n− 1)C(n− 2, k) [using (A.22) with r = 1] . (A.38b)

Similarly, the contribution of the second term is δ̂′k (n − 1)C(n − 2, k − 1). These two
contributions plus those given by Corollary A.10 give the claimed formula (A.36).

Case 2: β = −α, α′ = β′ = 0. As in Case 1, we can handle a matrix B given by a
binomial-like recurrence (A.1b) in which bn,k and b′n,k are affine in n but with coefficients
depending in an arbitrary way on k:

an,k = α(n− k) + γ , a′n,k = γ′ , bn,k = α̂kn+ γ̂k , b′n,k = α̂′kn+ γ̂′k . (A.39)

We then insert the specializations (A.39) into Proposition A.1 and isolate the terms pro-
portional to j (note that the terms proportional to j2 vanish in this case): the matrix
C = AB satisfies

C(n, k) =
[
αn+ γ + γ′(α̂k + γ̂k)

]
C(n− 1, k) + γ′(α̂′k + γ̂′k)C(n− 1, k − 1)

+ (γ′α̂k − α)
n−1∑
j=1

j A(n− 1, j)B(j, k) + γ′α̂′k

n−1∑
j=1

j A(n− 1, j)B(j, k − 1)

(A.40)

for n > 1. Now apply Lemma A.8(b) with r = 1 to the matrix A:

j A(n− 1, j) = γ′ (n− 1)A(n− 2, j − 1) . (A.41)

And apply the recurrence (A.9b) to B(j, k) and B(j, k− 1) in order to convert j to j − 1
(so that we can again get a matrix product AB). The last two terms of (A.40) become

γ′ (n− 1)(γ′α̂k − α)
n−1∑
j=1

A(n− 2, j − 1) ×[
(α̂kj + γ̂k)B(j − 1, k) + (α̂′kj + γ̂′k)B(j − 1, k − 1)

]
.

+ (γ′)2 (n− 1) α̂′k

n−1∑
j=1

A(n− 2, j − 1) ×[
(α̂k−1j + γ̂k−1)B(j − 1, k − 1) + (α̂′k−1j + γ̂′k−1)B(j − 1, k − 2)

]
. (A.42)
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The appearance here of the terms α̂ij and α̂′ij (for i = k, k − 1) would lead in general to
an infinite regress of j-dependence, but this j-dependence disappears if α̂′k = 0 for all k
and moreover either (a) γ′α̂k = 0 for all k or (b) γ′α̂k = α for all k. We then have:

Corollary A.13. Let A =
(
A(n, k)

)
06k6n

and B =
(
B(n, k)

)
06k6n

be triangular arrays
defined by the recurrences

A(n, k) = (α(n− k) + γ)A(n− 1, k) + γ′A(n− 1, k − 1) (A.43a)

B(n, k) = (α̂kn+ γ̂k)B(n− 1, k) + γ̂′k B(n− 1, k − 1) (A.43b)

for n > 1, with initial conditions A(0, k) = B(0, k) = δk0. Suppose further that either
γ′α̂k = 0 for all k or γ′α̂k = α for all k. Then the matrix product C = AB satisfies the
recurrence

C(n, k) = c′1C(n− 1, k) + c′2C(n− 1, k − 1)

+ c′3C(n− 2, k) + c′4C(n− 2, k − 1) (A.44)

for n > 1, with initial condition C(0, k) = δk0, where

c′1 = αn + γ + γ′(α̂k + γ̂k) (A.45a)

c′2 = γ′ γ̂′k (A.45b)

c′3 = (n− 1) γ′ (γ′α̂k − α) γ̂k (A.45c)

c′4 = (n− 1) γ′ (γ′α̂k − α) γ̂′k (A.45d)

In particular, when γ′α̂k = α for all k, we have c′3 = c′4 = 0 and hence a binomial-like
recurrence for C.

The further specialization of Corollary A.13 to the GKP case (A.32) is easily written
out. In particular, when α̂′ = 0 and γ′α̂ = α, then the recurrence for C is of GKP form.

Remarks. 1. The “suppose further” hypotheses of Corollary A.13 are satisfied when
γ′ = 0, but this is a trivial case: the matrix A vanishes outside the zeroth column, so
that AB = A.

2. Suppose that α̂k has a constant value α̂ (independent of k) but that we suppress
the hypothesis on γ′α̂. Then the difference between the left-hand and right-hand sides of
(A.44) is, for each pair n, k, a polynomial in the parameters that has γ′α̂ (γ′α̂− α) as an
overall factor. �

The intersection of cases 1 and 2: α = β = α′ = β′ = α̂k = α̂′
k = 0. Let us now

compare Corollary A.9 specialized to β′ = α̂k = α̂′k = 0 with Corollary A.13 specialized
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to α = α̂k = 0. We obtain a recurrence of GKP type with

c1 = c′1 = γ′ γ̂k + γ (A.46a)

c2 = c′2 = γ′ γ̂′k (A.46b)

c3 = c′3 = 0 (A.46c)

c4 = c′4 = 0 (A.46d)

c5 = 0 (A.46e)

c6 = 0 (A.46f)

A.3 Special matrix on the right

Once again we distinguish two cases, according as we apply part (a) or (b) of Lemma
A.8 to the matrix B:

Case 3: α̂ = β̂ = α̂′ = 0. We start from Proposition A.4 specialized to α̂ = β̂ = α̂′ =
0, and isolate the terms proportional to j (note that the terms proportional to j2 vanish
in this case): the matrix C = AB satisfies

C(n, k) =
[
(αn+ γ) + γ̂(α′n+ β′ + γ′)

]
C(n− 1, k)

+ (α′n+ β′ + γ′) (β̂′k + γ̂′)C(n− 1, k − 1)

+ (β + β′γ̂)
n−1∑
j=1

j A(n− 1, j)B(j, k)

+ β′(β̂′k + γ̂′)
n−1∑
j=1

j A(n− 1, j)B(j, k − 1) (A.47)

for n > 1. The next step would be to apply Lemma A.8(a) with r = 1 to the matrix B:

j B(j, k − 1) = (k − 1)B(j, k − 1) + γ̂j B(j − 1, k − 1) . (A.48)

But this leads to an infinite regress of j-dependence (except in the degenerate case γ̂ = 0,
which leads to a matrix B that vanishes outside the zeroth column). So we do not know
how to obtain a recurrence for C = AB in this case.

Case 4: β̂ = −α̂, α̂′ = β̂′ = 0. Similarly to what was done in Cases 1 and 2 — but
now with the roles of A and B, and also n and k, reversed — we can handle a matrix A
given by a binomial-like recurrence (A.1a) in which an,k and a′n,k are affine in k but with
coefficients depending in an arbitrary way on n:

an,k = βnk + γn , a′n,k = β′nk + γ′n , bn,k = α̂(n− k) + γ̂ , b′n,k = γ̂′ . (A.49)
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We insert the specializations (A.49) into Proposition A.1 and isolate the terms propor-
tional to j or j2: the matrix C = AB satisfies

C(n, k) =
[
γn + (β′n + γ′n)(−α̂k + α̂ + γ̂)

]
C(n− 1, k)

+ γ̂′(β′n + γ′n)C(n− 1, k − 1)

+
[
βn + β′n(−α̂k + α̂ + γ̂) + α̂(β′n + γ′n)

] n−1∑
j=1

j A(n− 1, j)B(j, k)

+ β′nα̂
n−1∑
j=1

j2A(n− 1, j)B(j, k)

+ β′nγ̂
′
n−1∑
j=1

j A(n− 1, j)B(j, k − 1) (A.50)

for n > 1. Now apply Lemma A.8(b) in reverse to the matrix B: from (A.22) with
r = 1, 2 we deduce

j B(j, k) =
1

γ̂′
(k + 1)B(j + 1, k + 1) − B(j, k) (A.51)

and a similar but more complicated formula for j2B(j, k). Applying the recurrence (A.9b)
to B(j + 1, k + 1) in order to convert j + 1 to j, we can rewrite (A.51) as

j B(j, k) = k B(j, k) +
1

γ̂′
(k + 1) [α̂(j − k) + γ̂]B(j, k + 1) . (A.52)

But this leads to an infinite regress of j-dependence unless we assume α̂ = 0, so we do
this henceforth; this also kills the j2 term in (A.50). Then B is a rescaled binomial,
B(n, k) =

(
n
k

)
γ̂n−k(γ̂′)k, and we have

j B(j, k) = k B(j, k) +
γ̂

γ̂′
(k + 1)B(j, k + 1) . (A.53)

Now insert (A.53) into (A.50). Normalizing to γ̂′ = 1 and writing γ̂ = ξ, then B becomes
the ξ-binomial matrix Bξ defined in (4.6), and we obtain:

Corollary A.14. Let A =
(
A(n, k)

)
06k6n

be a triangular array defined by the recurrence

A(n, k) = (βnk + γn)A(n− 1, k) + (β′nk + γ′n)A(n− 1, k − 1) (A.54)

for n > 1, with initial condition A(0, k) = δk0. Then the matrix product C = ABξ

satisfies the recurrence

C(n, k) =
[
(βn + 2ξβ′n)k + γn + ξ(β′n + γ′n)

]
C(n− 1, k)

+ (β′nk + γ′n)C(n− 1, k − 1)

+ ξ (βn + ξβ′n) (k + 1)C(n− 1, k + 1) (A.55)

for n > 1, with initial condition C(0, k) = δk0.
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Specializing Corollary A.14 to the GKP case

βn = β , γn = αn+ γ , β′n = β′ , γ′n = α′n+ γ′ , (A.56)

we get:

Corollary A.15. Let A =
(
A(n, k)

)
06k6n

be a triangular array defined by the GKP
recurrence

A(n, k) = (αn+ βk + γ)A(n− 1, k) + (α′n+ β′k + γ′)A(n− 1, k − 1) (A.57)

for n > 1, with initial condition A(0, k) = δk0. Then the matrix product C = ABξ

satisfies the recurrence

C(n, k) =
[
(α + ξα′)n + (β + 2ξβ′)k + γ + ξ(β′ + γ′)

]
C(n− 1, k)

+ (α′n+ β′k + γ′)C(n− 1, k − 1)

+ ξ (β + ξβ′) (k + 1)C(n− 1, k + 1) (A.58)

for n > 1, with initial condition C(0, k) = δk0.

The ξ = 1 special case of this result was obtained by Spivey [52, Theorem 10]. In the
special case ξ = 1 and α′ = β′ = 0, a combinatorial proof was given by Mansour and
Shattuck [39, Theorem 2.3].

Let us observe that the recurrence (A.58) is a special case of the Graham–Knuth–
Patashnik–Zhu recurrence (6.20). It reduces to a GKP recurrence in two cases: the
trivial case ξ = 0, and the case ξ = −β/β′ corresponding to the Zhu involution (2.8).
This suggests (but does not prove) that the matrix product C = T (µ)Bξ satisfies a GKP
recurrence for generic parameters µ only if ξ = 0 or ξ = −β/β′. We have verified, by a
brute-force computation using n = 0, 1, 2, 3, that this is indeed the case: the only solutions
to the equations T (µ′) = T (µ)Bξ valid for generic parameters µ are the identity map
ξ = 0 and the Zhu involution ξ = −β/β′. Of course, there are additional solutions valid
on subvarieties in µ-space; the goal of Problem 6.4 is to find them all.

The observation that (A.58) is a special case of the GKPZ recurrence suggests that we
can go farther, and generalize Corollary A.15 by starting from a matrix A satisfying the
GKPZ recurrence — or even more strongly, generalize Corollary A.14 by starting from a
matrix A that satisfies an amalgamation of (A.54) and the GKPZ recurrence. This idea
leads to the following:

Corollary A.16. Let A =
(
A(n, k)

)
06k6n

be a triangular array defined by the recurrence

A(n, k) = (βnk + γn)A(n− 1, k) + (β′nk + γ′n)A(n− 1, k − 1)

+ σn (n− k + 1)A(n− 1, k − 2) + τn (k + 1)A(n− 1, k + 1) (A.59)
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for n > 1, with initial condition A(0, k) = δk0. Then the matrix product C = ABξ

satisfies the recurrence

C(n, k) =
[
(βn + 2ξβ′n − 3ξ2σn)k + γn + ξ(β′n + γ′n) + ξ2σn(n− 1)

]
C(n− 1, k)

+
[
(β′n − 3ξσn)k + γ′n + ξσn(2n+ 1)

]
C(n− 1, k − 1)

+ σn (n− k + 1)C(n− 1, k − 2)

+ (τn + ξβn + ξ2β′n − ξ3σn) (k + 1)C(n− 1, k + 1) (A.60)

for n > 1, with initial condition C(0, k) = δk0.

Proof. The matrix C = ABξ satisfies

C(n, k) =
n∑
j=0

(βnj + γn)A(n− 1, j)Bξ(j, k) +
n∑
j=0

(β′nj + γ′n)A(n− 1, j − 1)Bξ(j, k)

+ σn

n∑
j=0

(n− j + 1)A(n− 1, j − 2)Bξ(j, k) + τn

n∑
j=0

(j + 1)A(n− 1, j + 1)Bξ(j, k)

(A.61)

for n > 1. The first term on the right-hand side of (A.61) can be handled by using the
identity

j Bξ(j, k) = kBξ(j, k) + ξ (k + 1)Bξ(j, k + 1) . (A.62)

This yields
(βnk + γn)C(n− 1, k) + ξβn (k + 1)C(n− 1, k + 1) . (A.63)

The second term on the right-hand side of (A.61) can be dealt with by using the identities

Bξ(j, k) = Bξ(j − 1, k − 1) + ξ Bξ(j − 1, k) (A.64a)

j Bξ(j, k) = k Bξ(j − 1, k − 1) + (2k + 1)ξ Bξ(j − 1, k) + (k + 1)ξ2Bξ(j − 1, k + 1)

(A.64b)

This yields

ξ (2β′nk + β′n + γ′n)C(n− 1, k) + (β′nk + γ′n)C(n− 1, k − 1)

+ ξ2 (k + 1)β′nC(n− 1, k + 1) . (A.65)

In the third term on the right-hand side of (A.61), we use the identities

Bξ(j, k) = Bξ(j − 2, k − 2) + 2ξ Bξ(j − 2, k − 1) + ξ2Bξ(j − 2, k) (A.66a)

j Bξ(j, k) = k Bξ(j − 2, k − 2) + (3k + 1)ξ Bξ(j − 2, k − 1)

+ (3k + 2)ξ2Bξ(j − 2, k) + (k + 1)ξ3Bξ(j − 2, k + 1) (A.66b)
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This yields

σn
[
ξ2 (n− 3k − 1)C(n− 1, k) + ξ (2n− 3k + 1)C(n− 1, k − 1)

+ (n− k + 1)C(n− 1, k − 2)− ξ3 (k + 1)C(n− 1, k + 1)
]
. (A.67)

And finally, the fourth term on the right-hand side of (A.61) is handled by using the
absorption/extraction identity (j + 1)Bξ(j, k) = (k + 1)Bξ(j + 1, k + 1), yielding

τn (k + 1)C(n− 1, k + 1) . (A.68)

Putting together the partial results (A.63)/(A.65)/(A.67)/(A.68), we arrive at the claimed
result (A.60).

Specializing Corollary A.16 to the GKPZ case

βn = β , γn = αn+ γ , β′n = β′ , γ′n = α′n+ γ′ , σn = σ , τn = τ , (A.69)

we get:

Corollary A.17. Let A =
(
A(n, k)

)
06k6n

be a triangular array defined by the GKPZ
recurrence

A(n, k) = (αn+ βk + γ)A(n− 1, k) + (α′n+ β′k + γ′)A(n− 1, k − 1)

+ σ (n− k + 1)A(n− 1, k − 2) + τ (k + 1)A(n− 1, k + 1) (A.70)

for n > 1, with initial condition A(0, k) = δk0. Then the matrix product C = ABξ

satisfies the GKPZ recurrence

C(n, k) =
[
(α + ξ2σ)n + (β + 2ξβ′ − 3ξ2σ)k + γ + ξ(β′ + γ′)− ξ2σ

]
C(n− 1, k)

+
[
(α′ + 2ξσ)n + (β′ − 3ξσ)k + γ′ + ξσ

]
C(n− 1, k − 1)

+ σ (n− k + 1)C(n− 1, k − 2)

+ (τn + ξβ + ξ2β′ − ξ3σ) (k + 1)C(n− 1, k + 1) (A.71)

for n > 1, with initial condition C(0, k) = δk0.

B Inverse pairs of lower-triangular arrays

Let A = (ank)n>k>0 be a lower-triangular array with entries in a commutative ring R,
and define as usual the row-generating polynomials

An(x) =
n∑
k=0

ank x
k ∈ R[x] (B.1)

and the reversed row-generating polynomials

An(x) = xnAn(1/x) =
n∑
k=0

ank x
n−k ∈ R[x] . (B.2)
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Lemma B.1 (Inverse pairs of lower-triangular arrays). Let A = (ank)n>k>0 and B =

(bnk)n>k>0 be lower-triangular arrays with entries in a commutative ring R, and let An(x),

An(x) and Bn(x), Bn(x) be their row-generating polynomials. Let α ∈ R. Then the
following are equivalent:

(a) An(x) = (1 + αx)nBn

( x

1 + αx

)
.

(b) Bn(x) = (1− αx)nAn

( x

1− αx

)
.

(c) An(x) = Bn(x+ α) .

(d) Bn(x) = An(x− α) .

(e) ank =
k∑
j=0

αk−j
(
n− j
k − j

)
bnj .

(f) bnk =
k∑
j=0

(−α)k−j
(
n− j
k − j

)
anj .

(g) an,n−k =
k∑
j=0

bn,n−j

(
j

k

)
αj−k .

(h) bn,n−k =
k∑
j=0

an,n−j

(
j

k

)
(−α)j−k .

Proof. The equivalence of (a)–(d) is an easy manipulation of generating functions; ex-
tracting the coefficient of xk yields (e)–(h).

Pairs (A,B) satisfying the conditions of Lemma B.1 arise frequently in combinatorial
applications, most often with α = 1.

Let us remark that (1 + αx)nBn

( x

1 + αx

)
is here simply an abbreviation for

n∑
k=0

bnk x
k (1 + αx)n−k. So there is no need to work in a field of rational functions; ev-

erything can be done in the ring R[x] of polynomials, and moreover the ring R is not
required to be an integral domain.

Let us also observe that, in Lemma B.1, the labels n “go for the ride”: the statements
for different n are completely unrelated. So we can just rename An, Bn as f, g. Fur-
thermore, in statements (a,b,e,f), f and g need not be polynomials; they can be general
formal power series. And the power n in (1±αx)n need not be a positive integer (provided
that the ring R contains the rationals); it can be an indeterminate, call it p. So what
(a)⇐⇒ (b) really asserts is the easily verified equivalence

f(x) = (1 + αx)p g
( x

1 + αx

)
⇐⇒ g(x) = (1− αx)p f

( x

1− αx

)
, (B.3)
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in which the coefficient of each power of x is a polynomial (with coefficients in R ⊇ Q) in
the indeterminates p and α. Similarly, (e)⇐⇒ (f) is the binomial identity

k∑
j=0

αk−j
(
p− j
k − j

)
(−α)j−`

(
p− `
j − `

)
= δk` , (B.4)

in which both sides are polynomials (with coefficients in Q) in the indeterminates p and
α. The identity (B.4) can be found in Riordan [44, p. 49, Table 2.1, item 3].15 It can
also be proven without using generating functions: First rewrite the Chu–Vandermonde

identity
m∑
i=0

(
−(x+ 1)

i

)(
x+ y + 1

m− i

)
=

(
y

m

)
as

m∑
i=0

(−1)i
(
x+ i

i

)(
x+ y + 1

m− i

)
=

(
y

m

)
.

Specializing to y = m− 1 we have
m∑
i=0

(−1)i
(
x+ i

i

)(
x+m

m− i

)
=

(
m− 1

m

)
= δm0.16 Sub-

stitute m = k − ` and x = p− k, and then rewrite the summation in terms of j = k − i:
this yields (B.4).
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[58] P. Théorêt, Fonctions génératrices pour une classe d’équations aux différences par-
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