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Abstract

Given a poset P , let inc(P ) be its incomparability graph, and Xinc(P ) the cor-
responding chromatic symmetric function defined by Stanley in Adv. Math., 111
(1995) pp. 166–194. Let ω be the standard involution on symmetric functions. We
express coefficients of Xinc(P ) and ωXinc(P ) as character evaluations to obtain sim-
ple combinatorial interpretations for coefficients of the power sum and monomial
expansions of ωXinc(P ) which hold for all posets P . Consequences include new com-
binatorial interpretations of the permanent, induced trivial character immanants,
and power sum immanants of totally nonnegative matrices, and of the sum of el-
ementary coefficients in the Shareshian-Wachs chromatic quasisymmetric function
Xinc(P ),q when P is an appropriately labeled unit interval order.

Mathematics Subject Classifications: 05E05, 05C15, 15C15, 15A15, 20C08

1 Introduction

The Frobenius isomorphism from the space Tn of symmetric group traces to the space Λn

of homogeneous degree-n symmetric functions,

Frob : Tn → Λn

θ 7→ 1

n!

∑
w∈Sn

θ(w)pctype(w),
(1)

where ctype(w) is the cycle type of w, allows one to translate statements about the
representation theory of the symmetric group Sn to the language of symmetric functions.
Conversely, one may use the inverse of the Frobenius isomorphism to study symmetric
functions, such as Stanley’s chromatic symmetric functions XG [30], in terms of Sn-
class functions. In particular, for G the incomparability graph inc(P ) of a poset P , we
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will expand XG in the standard symmetric function bases, and we will use the inverse
Frobenius isomorphism to interpret the resulting coefficients. Our main tool is reminiscent
of the Cauchy and dual Cauchy identities [24, §I.4] for symmetric functions in two sets of
variables,∏

i,j>1

1

1− yixj
=
∑
λ

eλ(y)fλ(x) =
∑
λ

hλ(y)mλ(x) =
∑
λ

pλ(y)

zλ
pλ(x)

=
∑
λ

sλ(y)sλ(x) =
∑
λ

mλ(y)hλ(x) =
∑
λ

fλ(y)eλ(x), (2)

∏
i,j>1

(1 + yixj) =
∑
λ

eλ(y)mλ(x) =
∑
λ

hλ(y)fλ(x) =
∑
λ

(−1)n−`(λ)pλ(y)

zλ
pλ(x)

=
∑
λ

sλ>(y)sλ(x) =
∑
λ

mλ(y)eλ(x) =
∑
λ

fλ(y)hλ(x), (3)

with the inverse Frobenius isomorphism applied only to the symmetric functions in y.
In Section 2 we present standard bases of the trace space of the Hecke algebra Hn(q),

the trace space of the symmetric group algebra Z[Sn], and the space Λn of homoge-
neous degree-n symmetric functions. We show that the expansion of any homogeneous
degree-n symmetric function in any standard basis of Λn yields coefficients which are trace
evaluations. In Section 3 we apply this result to the standard expansions of chromatic
symmetric functions of the form Xinc(P ) and the related symmetric functions ωXinc(P ).
We obtain combinatorial interpretations for resulting coefficients of Xinc(P ) and ωXinc(P )

for all posets P , thus extending previous results which hold only for special classes of
posets. In particular, we interpret the monomial and power sum coefficients of ωXinc(P )

in Theorems 10 and 13, respectively. We also obtain a new proof in Proposition 8 of
Kaliszewski’s interpretation of hook-Schur coefficients. In each case, the trace evaluations
allow for very simple proofs of our results. In Section 4 we apply our interpretations of
trace evaluations to functions of totally nonnegative matrices, obtaining new interpre-
tations of these. In particular, we interpret “hook” irreducible character immanants in
Theorem 27, induced trivial character immanants in Theorem 31, and power sum im-
manants in Theorem 32. These results include two new interpretations (55) – (56) of the
permanent of a totally nonnegative matrix and play an important role in the evaluation of
hyperoctahedral group characters at elements of the type-BC Kazhdan-Lusztig basis [29].
These results also lead to a new expression in Section 5 for the sum of elementary coeffi-
cients of the Shareshian-Wachs chromatic quasisymmetric function Xinc(P ),q when P is a
unit interval order.

2 Symmetric functions and traces

Let Λ be the ring of symmetric functions in x = (x1, x2, . . . ) having integer coefficients,
and let Λn be the Z-submodule of homogeneous functions of degree n. This submodule
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has rank equal to the number of integer partitions of n, the weakly decreasing positive
integer sequences λ = (λ1, . . . , λ`) satisfying λ1 + · · ·+ λ` = n. The ` = `(λ) components
of λ are called its parts, and we let |λ| = n and λ ` n denote that λ is a partition of n.
Given λ ` n, we define the transpose partition λ>= (λ>1, . . . , λ

>
λ1

) by

λ>i = #{j |λj > i}.

Sometimes it is convenient to name a partition with exponential notation, omitting paren-
theses and commas, so that 4216 := (4, 4, 1, 1, 1, 1, 1, 1). We define a composition of n to be
any rearrangement of a partition of n and write α � n to denote that α is a composition of
n. Six standard bases of Λn consist of the monomial {mλ |λ ` n}, elementary {eλ |λ ` n},
(complete) homogenous {hλ |λ ` n}, power sum {pλ |λ ` n}, Schur {sλ |λ ` n}, and
forgotten {fλ |λ ` n} symmetric functions. (See, e.g., [32, Ch. 7] for definitions.) An
involutive automorphism ω : Λ → Λ defined by ω(ek) = hk for all k acts on these bases
of Λn by

ω(sλ) = sλ>, ω(mλ) = fλ, ω(eλ) = hλ, ω(pλ) = (−1)n−`(λ)pλ.

Let Hn(q) be the (type A) Hecke algebra, generated over Z[q
1
2 , q¯

1
2 ] by Ts1 , . . . , Tsn−1

subject to relations

T 2
si

= (q − 1)Tsi + q for i = 1, . . . , n− 1,

TsiTsj = TsjTsi for |i− j| > 2,

TsiTsjTsi = TsjTsiTsj for |i− j| = 1.

For each w ∈ Sn and w = si1· · · si` a reduced expression, define the natural basis element
Tw = Tsi1 · · ·Tsi` (which does not depend upon the choice of a reduced expression). (See,

e.g., [3].) The (modified) Kazhdan-Lusztig basis of Hn(q) as a Z[q
1
2 , q¯

1
2 ]-module consists

of elements {C̃w(q) |w ∈ Sn} related to the natural basis by

C̃w(q) =
∑
v6w

Pv,w(q)Tv, (4)

where 6 is the Bruhat order on Sn, and where {Pv,w(q) | v, w ∈ Sn} are the recursively

defined Kazhdan-Lusztig polynomials. (Our basis element C̃w(q) is q
`(w)
2 times the basis

element C ′w in [20].) When w avoids the patterns 3412 and 4231 (the one-line notation
w1 · · ·wn contains no subword wi1wi2wi3wi4 whose letters have values appearing in the
same relative order as 4231 or 3412), each polynomial Pv,w(q) is identically 1.

Let Tn,q be the Z[q
1
2 , q¯

1
2 ]-module of Hn(q)-traces, linear functionals θq : Hn(q) →

Z[q
1
2 , q¯

1
2 ] satisfying θq(gh) = θq(hg) for all g, h ∈ Hn(q). For any trace θq : Tw 7→ a(q) in

Tn,q, the q
1
2 = 1 specialization θ : w 7→ a(1) belongs to the space Tn := Tn,1 of Z[Sn]-traces

from Z[Sn]→ Z (Sn-class functions). Like the Z-module Λn, the trace spaces Tn,q and Tn
have dimension equal to the number of integer partitions of n. The Frobenius Z-module
isomorphism (1) and its q-extension, Frobq : Tn,q → Λn, θq 7→ Frob(θ), define bijections
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between standard bases of Λ, Tn, and Tn,q. Schur functions correspond to irreducible
characters,

sλ ↔ χλ ↔ χλq ,

while elementary and homogeneous symmetric functions correspond to induced sign and
trivial characters,

eλ ↔ ελ = sgn
xSn
Sλ
↔ ελq = sgnq

xHn(q)
Hλ(q),

hλ ↔ ηλ = triv
xSn
Sλ
↔ ηλq = trivq

xHn(q)
Hλ(q),

where Sλ is the Young subgroup of Sn indexed by λ and Hλ(q) is the corresponding
parabolic subalgebra of Hn(q). The power sum, monomial, and forgotten bases of Λn

correspond to bases of Tn (Tn,q) which are not characters. We call these the power sum
{ψλ |λ ` n} ({ψλq |λ ` n}), monomial {φλ |λ ` n} ({φλq |λ ` n}), and forgotten {γλ |λ `
n} ({γλq |λ ` n}) traces, respectively. Specifically, these are the bases related to the
irreducible character bases by the same matrices of character evaluations and inverse
Koskta numbers that relate power sum, monomial, and forgotten symmetric functions to
Schur functions,

pλ =
∑
µ

χµ(λ)sµ, ψλ =
∑
µ

χµ(λ)χµ, ψλq =
∑
µ

χµ(λ)χµq ,

mλ =
∑
µ

K−1
λ,µsµ, φλ =

∑
µ

K−1
λ,µχ

µ, φλq =
∑
µ

K−1
λ,µχ

µ
q ,

fλ =
∑
µ

K−1
λ,µ>

sµ, γλ =
∑
µ

K−1
λ,µ>
χµ, γλq =

∑
µ

K−1
λ,µ>
χµq ,

(5)

where χµ(λ) := χµ(w) for any w ∈ Sn having ctype(w) = λ. Just as the power sum
symmetric functions form a Q-basis of Λn, the power sum traces form Q-bases of Tn and
Tn,q. The power sum traces of Tn also have the natural definition

ψλ(w) :=

{
zλ if ctype(w) = λ,

0 otherwise,
(6)

where zλ = λ1 · · ·λ`α1! · · ·αn! and αi is the number of parts of λ equal to i.
It can be useful to record trace evaluations in a symmetric generating function. In

particular, for g ∈ Q(q)⊗Hn(q), we record induced sign character evaluations by defining

Yq(g) :=
∑
λ`n

ελq (g)mλ ∈ Q(q)⊗ Λn. (7)

This symmetric generating function in fact gives us all of the standard trace evaluations.

Proposition 1. The symmetric function Yq(g) is equal to

∑
λ`n

ηλq (g)fλ =
∑
λ`n

(−1)n−`(λ)ψλq (g)

zλ
pλ =

∑
λ`n

χλ
>

q (g)sλ =
∑
λ`n

φλq (g)eλ =
∑
λ`n

γλq (g)hλ;
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equivalently, ωYq(g) is equal to

∑
λ`n

ελq (g)fλ =
∑
λ`n

ηλq (g)mλ =
∑
λ`n

ψλq (g)

zλ
pλ =

∑
λ`n

χλq (g)sλ =
∑
λ`n

φλq (g)hλ =
∑
λ`n

γλq (g)eλ.

(8)

While this follows from (2) – (3), we provide a short proof.

Proof. Consider the second and fourth sums in (8), in which the symmetric functions and
traces satisfy

sλ =
∑
µ`n

Kλ,µmµ, ηµq =
∑
λ`n

Kλ,µχ
λ
q . (9)

Using (9) to expand the fourth sum in the monomial symmetric function basis, we have∑
λ`n

χλq (g)
∑
µ`n

Kλ,µmµ =
∑
µ`n

∑
λ`n

Kλ,µχ
λ
q (g)mµ =

∑
µ`n

ηµq (g)mµ,

i.e., it is equal to the second sum. Similarly, for each of the remaining sums
∑

λ θ
λ
q (g)tλ

in (8), there is a matrix (Mλ,µ)λ,µ`n and equations

sλ =
∑
µ`n

Mλ,µtµ, θµq =
∑
λ`n

Mλ,µχ
λ
q ,

relating it to the fourth sum. In particular, Mλ,µ = Kλ>,µ, χ
λ(µ), K−1

µ,λ, K
−1
µ,λ>

, respectively.

(See [2, §2].)

Since each symmetric function is a quasisymmetric function, researchers sometimes ex-
press elements of Λn in terms of bases of the Z-module QSymn of degree-n quasisymmetric
functions. (See [32, §7.19] for definitions). The coefficients arising in such expansions also
can be viewed as trace evaluations. In particular, let {Fn,S |S ⊆ [n − 1]} be the fun-
damental quasisymmetric function basis of QSymn. For any Young tableau U of shape
λ = (λ1, . . . , λr), let U1, . . . , Ur denote its rows, and let ◦ denote concatenation of rows.
Define the inverse descent set of U by

ides(U) = {i ∈ [n− 1] | i+ 1 appears before i in Ur ◦ · · · ◦ U1}.

Now we have the following fundamental quasisymmetric expansion of Yq(g).

Corollary 2. For λ = (λ1, . . . , λr) ` n and S ⊆ [n − 1], define b(λ, S) to be the number
of standard Young tableaux U of shape λ with ides(U) = S. Then we have

Yq(g) =
∑

S⊆[n−1]

∑
λ`n

b(λ, S)χλ
>

q (g)Fn,S; ωYq(g) =
∑

S⊆[n−1]

∑
λ`n

b(λ, S)χλq (g)Fn,S.
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Proof. By [13, Thm. 11], the coefficients {cλ |λ ` n} and {dS |S ⊆ [n − 1]} appearing in
the Schur and fundamental expansions∑

λ`n

cλsλ =
∑

S⊆[n−1]

dSFn,S

of a symmetric function satisfy

dS =
∑
λ`n

b(λ, S)cλ.

The result now follows from Proposition 1.

To say that the functions {Yq(g) | g ∈ Hn(q)} arise often in the study of symmetric
functions would be an understatement; essentially every element of Z[q] ⊗ Λn has this
form.

Proposition 3. Every symmetric function in Z[q] ⊗ Λn has the form Yq(g) for some
element g ∈ Q(q)⊗Hn(q).

Proof. Fix a symmetric function in Z[q] ⊗ Λn, express it in the elementary basis as∑
λ`n aλeλ, and define the Hn(q) element

g =
∑
µ`n

aµ
[µ1]q! · · · [µ`(µ)]q!

C̃wµ(q),

where

[b]q :=

{
1 + q + · · ·+ qb−1 if b > 1,

0 if b = 0;
[b]q! :=

{
[1]q[2]q · · · [b]q if b > 1,

1 if b = 0;

and wµ is the maximal element of the Young subgroup Sµ of Sn. By [16, Prop. 4.1], we
have

φλq (C̃wµ(q)) =

{
[µ1]q! · · · [µ`(µ)]q! if λ = µ,

0 otherwise.

Thus Yq(g) is equal to

∑
λ`n

φλq

(∑
µ`n

aµ
[µ1]q! · · · [µ`(µ)]q!

C̃wµ(q)
)
eλ =

∑
λ`n

∑
µ`n

aµ
φλq (C̃wµ(q))

[µ1]q! · · · [µ`(µ)]q!
eλ =

∑
λ`n

aλeλ. (10)

Of course, for g ∈ Q[Sn], the q
1
2 = 1 specialization Y (g) := Y1(g) of (7) satisfies the

q
1
2 = 1 specializations of Proposition 1, Corollary 2, and Proposition 3.
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3 Chromatic symmetric functions

Closely related to symmetric generating functions for Z[Sn]-traces are symmetric gen-
erating functions for graph colorings. Define a proper coloring of a (simple undirected)
graph G = (V,E) to be an assignment κ : V → {1, 2, . . . , } of colors (positive integers)
to V such that adjacent vertices have different colors. For G on |V | = n vertices and any
composition α = (α1, . . . , α`) � n, say that a coloring κ of G has type α if αi vertices have
color i for i = 1, . . . , `. Let c(G,α) be the number of proper colorings of G of type α.
Stanley [30] defined the chromatic symmetric function of G to be

XG :=
∑
κ

xκ(1) · · ·xκ(n) =
∑
λ`n

c(G, λ)mλ, (11)

where the first sum is over all proper colorings of G. By Proposition 3 we see that for each
graph G on n vertices, there exists an element g ∈ Q[Sn] such that XG = Y (g). Such an
element g is not uniquely determined by G, and is not in general easily described in terms
of the structure of G. On the other hand, the evaluations of traces at such elements are
easily described in terms of G.

Observation 4. Let G be a graph on n vertices and let g ∈ Q[Sn] satisfy Y (g) = XG.
Then for each trace θ =

∑
λ`n aλε

λ ∈ Tn, we have θ(g) =
∑

λ`n aλc(G, λ).

Proof. By (7) and (11) we have ελ(g) = c(G, λ) for each λ ` n.

For every trace θ ∈ Tn, Proposition 3 and Observation 4 allow us to define

θ(G) := θ(g), (12)

where g is any element in Q[Sn] satisfying Y (g) = XG. By Proposition 1, we have that
XG =

∑
λ`n ε

λ(G)mλ is equal to

∑
λ`n

ηλ(G)fλ =
∑
λ`n

(−1)n−`(λ)ψλ(G)

zλ
pλ =

∑
λ`n

χλ
>
(G)sλ =

∑
λ`n

φλ(G)eλ =
∑
λ`n

γλ(G)hλ;

(13)
equivalently, ωXG is equal to

∑
λ`n

ελ(G)fλ =
∑
λ`n

ηλ(G)mλ =
∑
λ`n

ψλ(G)

zλ
pλ =

∑
λ`n

χλ(G)sλ =
∑
λ`n

φλ(G)hλ =
∑
λ`n

γλ(G)eλ.

(14)

Some conditions on graphs G and traces θ imply the numbers θ(G) to be positive, and
sometimes the resulting positive numbers have nice combinatorial interpretations, particularly
when G is the incomparability graph of a poset. (See, e.g., [8], [27], [30].) Given a poset P ,
define its incomparability graph inc(P ) to be the graph having a vertex for each element of P
and an edge {i, j} for each incomparable pair of elements of P . For positive integers a, b, call
a poset (a + b)-free if it has no induced subposet isomorphic to a disjoint sum of an a-element
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chain and a b-element chain. For example, the following poset P is (3 + 1)-free and (2 + 2)-free,
and has incomparability graph inc(P ) = G.

P =

4

1

5

2
3
, (3 + 1) = , (2 + 2) = , G =

1 2 4

3

5

. (15)

If we cannot interpret θ(inc(P )) for all posets P , sometimes we can do so when P is (3 + 1)-
free. For an n-element poset P which is both (3 + 1)-free and (2 + 2)-free, also called a unit
interval order, a simple procedure produces an element g ∈ Sn satisfying Y (g) = Xinc(P ).
Explicitly, for each element y ∈ P , compute

β(y) := #{x ∈ P |x 6P y} −#{z ∈ P | z >P y}

and label the poset elements 1, . . . , n so that we have

β(1) 6 · · · 6 β(n). (16)

Then define w = w(P ) = w1 · · ·wn by

wj = max({i | i 6>P j}r {w1, . . . , wj−1}). (17)

For example, elements of the poset P in (15) are already labeled to satsify (16),

(β(1), β(2), β(3), β(4), β(5)) = (−2,−1, 0, 1, 2).

Thus we compute w(P ) = 34521. The labeling (16) of P is natural in the sense that elements
labeled a1, a2 satisfy

a1 <P a2 =⇒ a1 < a2 (as integers). (18)

The map P 7→ w(P ) is a bijection from n-element unit interval orders to the 1
n+1

(
2n
n

)
312-

avoiding permutations in Sn, and gives us the following result [8, Cor. 7.5].

Proposition 5. Let P be an n-element unit interval order and w = w(P ) the corresponding
312-avoiding permutation in Sn. Then we have Xinc(P ) = Y (C̃w(1)).

Combinatorial interpretations of numbers θ(inc(P )) often involve structures called P -tableaux
and statistics on these. Define a P -tableau of shape λ ` |P | to be a filling of a (French) Young
diagram of shape λ with the elements of P , one per box. Given such a P -tableau U , let Ui
be the ith row (from the bottom) of U , and let Ui,j be the jth entry in row i. If P -tableau
U consists of a single row, we will call it a P -permutation. In particular, each concatenation
Ui1 ◦· · ·◦Uik of the rows (in any order) of a P -tableau U is a P -permutation. If the elements of a
poset are [n] := {1, . . . , n}, we will sometimes write a P -permutation as an ordinary permutation
v1 · · · vn ∈ Sn. For example, (19) shows a poset P , a P -tableau U of shape 32, the second row
U2 and entry U2,1 of U , and the P -permutation U2 ◦ U1 which may be viewed as an element of
S5.

P =

5

3

1

4

2
, U =

5 4
1 2 3

,
U2 = 5 4 ,

U2,1 = 5,

U2 ◦ U1 = 5 4 1 2 3 ,

= 54123.
(19)
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The statistics we apply to P -tableaux are P -analogs of traditional permutation statistics. Call
a position (i, j) in U a P -descent if Ui,j >P Ui,j+1, and define desP (U) to be the number of P -
descents in U . Define U to be the P -tableau obtained from U by ordering the elements in each
row from least to greatest labels. That is, U i,j is the entry of Ui whose label is jth-smallest, as
an integer. Call a position (i, j) in U a P -excedance if Ui,j >P U i,j , and define excP (U) to be the
number of P -excedances in U . Call a position (i, j) in U a P -record if Ui,1, . . . , Ui,j−1 <P Ui,j ,
and call the record nontrivial if j 6= 1. Define recP (U) to be the number of nontrivial P -records
in U . For example, we look again at the poset P in (19), the P -tableaux there, and three more,

T =
5
2 4
1 3

, U=
5 4
1 2 3

, V =
4 5
1 3 2

, W =
5 4
3 1 2

, U2 ◦ U1 = 5 4 1 2 3 . (20)

We have desP (T ) = desP (U) = desP (V ) = 0, while desP (W ) = desP (U2 ◦ U1) = 1, because
3 >P 1 and 4 >P 1. We have that recP (U) = recP (U2 ◦ U1) = recP (W ) = 0 since the first entry
in each row of these tableaux is greater than or incomparable to the remaining entries in the
same row. On the other hand, recP (T ) = 2 since 1 <P 3 and 2 <P 4, and recP (V ) = 1 since
1 <P 3. Reordering the entries of each row in the tableaux above we obtain

T = T, U = V = W =
4 5
1 2 3

, U2 ◦ U1 = 1 2 3 4 5 .

Comparing T , U , V with T , U , V , we have excP (T ) = excP (U) = excP (V ) = 0. Comparing
W and W , we see that position (1, 1) is the only P -excedance: 3 >P 1. Thus excP (W ) = 1.
Comparing U2 ◦ U1 to U2 ◦ U1, we see that positions (1, 1) and (1, 2) are both P -excedances:
5 >P 1, 4 >P 2. Thus excP (U2 ◦ U1) = 2.

Using comparability in P and the above statistics, we define six classes of P -tableaux. Call
a P -tableau U of shape λ

1. P -descent-free or row-semistrict if desP (U) = 0,

2. column-strict if the entries of each column satisfy Ui,j <P Ui+1,j ,

3. standard if it is column-strict and row-semistrict,

4. cyclically row-semistrict if it is row-semistrict and if Ui,λi 6>P Ui,1 for all i,

5. P -excedance-free if excP (U) = 0,

6. P -record-free if it has no nontrivial P -records.

For example, we may examine the tableaux in (20) for these properties to obtain the table

T U V W U2 ◦ U1

row-semistrict X X X
column-strict X X X X

standard X X
cyclically row-semistrict X

P -excedance-free X X X
P -record-free X X X

,

where the row-semistrict tableaux T and U fail to be cyclically row-semistrict because
their first rows begin with 1 and end with 3 >P 1.
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3.1 Induced sign characters / monomial coefficients of Xinc(P )

By definition, the induced sign characters satisfy

ελ(G) = c(G, λ),

ελ(inc(P )) = # column-strict P -tableaux of shape λ>
(21)

for all graphs G = (V,E) and posets P . Since εn(G) = 1 if G has no edges and is 0
otherwise, we can easily express ελ(G) in terms of subgraphs of G. For J ⊆ V = [n], let
J = [n] r J , and define

GJ = subgraph of G induced by vertices J,

PJ = subposet of P induced by elements J.

Given α = (α1, . . . , αr) � n, call a sequence (I1, . . . , Ir) of subsets of [n] an ordered set
partition of [n] of type α if we have

1. |Ii| = αi for i = 1, . . . , r,

2. Ii ∩ Ij = ∅ for i 6= j,

3. I1 ∪ · · · ∪ Ir = [n].

Using (21) and the language of ordered set partitions, we can decompose some trace
evaluations θ(G) as follows.

Lemma 6. Let G be a graph on n vertices.

1. If λ = (λ1, . . . , λr) ` n is the weakly decreasing rearrangement of the parts of µ ` k
and ν ` n− k, then we have

ελ(G) =
∑

(I1,...,Ir)

ελ1(GI1) · · · ελr(GIr) =
∑
J⊆[n]

εµ(GJ)εν(GJ), (22)

where the first sum is over ordered set partitions of [n] of type λ.

2. Let symmetric functions t1 ∈ Λk, t2 ∈ Λn−k, t1t2 ∈ Λn correspond by the Frobenius
isomorphism to traces θ1 ∈ Tk, θ2 ∈ Tn−k, θ = θ1⊗ θ2

xSn
Sk×Sn−k ∈ Tn. Then we have

θ(G) =
∑
J⊆[n]
|J |=k

θ1(GJ)θ2(GJ). (23)

Proof. (1) c(G, λ) equals the number of ordered set partitions (I1, . . . , Ir) of [n] of type λ
such that GIj is an independent set for all j, and also the number of ordered set partitions
of [n] of type (µ1, . . . , µ`(µ), ν1, . . . , ν`(ν)) having the same property.
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(2) Express t1, t2 in the elementary bases of Λk, Λn−k as

t1 =
∑
µ`k

aµeµ, t2 =
∑
ν`k

bνeν , (24)

and let λ(µ, ν) ` n be the weakly decreasing rearrangement of the parts of µ and ν. Then
we have

t1t2 =
∑
µ`k

ν`n−k

aµbνeλ(µ,ν), θ(G) =
∑
µ`k

ν`n−k

aµbνε
λ(µ,ν)(G).

By (22) and (24), θ(G) equals∑
µ`k

ν`n−k

aµbν
∑
J⊆[n]
|J |=k

εµ(GJ)εν(GJ) =
∑
J⊆[n]
|J |=k

∑
µ`k

aµε
µ(GJ)

∑
ν`n−k

bνε
ν(GJ) =

∑
J⊆[n]
|J |=k

θ1(GJ)θ2(GJ).

We will use this fact to prove similar formulas for induced trivial characters and power
sum traces.

3.2 Irreducible characters / Schur coefficients of Xinc(P )

While χλ(inc(P )) is negative for some posets P , Stanley and Stembridge [33, Conj. 5.1]
conjectured it to be nonnegative for (3 + 1)-free posets P . Gasharov [14] proved this by
showing that for these posets we have

χλ(inc(P )) = # standard P -tableaux of shape λ. (25)

Kaliszewski [18, Prop. 4.3] extended this result to all posets P when λ is a hook shape.
We give an alternate proof of this fact using (21) and the inverse Kostka numbers, which
satisfy

χµ =
∑
λ`n

K−1
λ,µ>

ελ. (26)

For partitions λ, µ with |µ| 6 |λ| = n and µi 6 λi for all i, define a (skew) Young diagram
of shape λ/µ to be the diagram obtained from a Young diagram of shape λ by removing
the µi leftmost boxes in row i for all i. Call a Young diagram a border strip if it contains
no 2 × 2 subdiagram of boxes. Define a special ribbon diagram of shape µ ` n and type
λ = (λ1, . . . , λ`) ` n to be a Young diagram of shape µ subdivided into border strips
(ribbons) of sizes λ1, . . . , λ`, each of which contains a cell from the first row of µ. Given
a special ribbon diagram Q, define sgn(Q) to be −1 to the number of pairs of boxes in Q
which are horizontally adjacent and which belong to the same ribbon. It is known that
we have

K−1
λ,µ>

=
∑
Q

sgn(Q), (27)

where the sum is over all special ribbon diagrams Q of shape µ and type λ. (See [2, §2].)
For example, to expand s3111 in the elementary basis, we draw a Young diagram of shape
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3111 and fill it with special ribbon diagrams

(28)

of types 411, 42, 51, 6, respectively, to obtain s3111 = e411 − e42 − e51 + e6.
Special ribbon diagrams also relate column-strict P -tableaux of hook shape µ =

k1n−k ` n to column-strict P -tableaux of shape λ ` n majorizing µ>. To state this
relationship precisely, we first observe that subsets of [k − 1] correspond bijectively to
special ribbon diagrams of shape µ. Let D be a Young diagram of shape µ. For each
subset S ⊆ [k − 1], define Q(µ, S) to be the special ribbon diagram of shape µ whose
ribbons are the equivalence classes defined by

1. Di,1 ∼ Di+1,1 for i = 1, . . . , n− k,

2. D1,j ∼ D1,j+1 for all j ∈ S,

and define λ(µ, S) to be the type of Q(µ, S). For example, when µ = 313 = (3, 1, 1, 1) the
ribbon diagrams in (28) correspond to the subsets ∅, {2}, {1} {1, 2}, respectively. This
bijection leads to another.

Lemma 7. Fix hook partition µ = k1n−k and subset S ⊆ [k− 1], and define Q = Q(µ, S)
and λ = λ(µ, S) as above. There is a bijection between column-strict P -tableaux U of
shape µ satisfying U1,j >P U1,j+1 for all j ∈ S, and column-strict P -tableaux of shape λ>.

Proof. Let ϕ be the claimed bijection. Given a column-strict P -tableau U of shape µ
satisfying U1,j >P U1,j+1 for all j ∈ S, create P -tableau ϕ(U) as follows.

1. Let D be a Young diagram of shape λ>.

2. Label the ribbons of Q from left to right as 1, . . . , r, and let qi be the number of
boxes in ribbon i.

3. Superimpose Q onto U .

4. For i = 1, . . . , r, place the elements of U under ribbon i into the leftmost unused
column of D which contains exactly qi boxes, so that elements strictly increase in
the column from bottom to top.

The resulting P -tableau is clearly column-strict of shape λ>. To invert ϕ, suppose we are
given a column-strict P -tableau T of shape λ>.

1. Superimpose Q onto an empty tableau U of shape µ.

2. For i = 1, . . . , r, fill U by placing the elements from column i of T onto the leftmost
available ribbon of Q of length λ>i boxes, so that elements decrease from top to
bottom, and from left to right.
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By the definition of Q, the resulting P -tableau U has entries which satisfy the required
inequalities, and it is easy to see that ϕ(U) = T .

As an example of the above bijection, fix µ = 61, S = {1, 5} ⊆ {1, 2, 3, 4, 5}, and
consider the pair

P =

7
6

5

3

1

4

2

, U =
7
5 3 1 6 4 2

, (29)

where U is a column-strict P -tableau of shape µ which satisfies U1,i >P U1,i+1, for i = 1, 5.
Corresponding to S is the special ribbon diagram

Q = (30)

of shape µ and type 3211. Superimposing Q onto U and transforming ribbons into
columns, we obtain the column-strict P -tableau

ϕ(U) =
7
5 4
3 2 1 6

(31)

of shape 3211>= 421.
The above bijections allow for a new proof of Kaliszewski’s result [18, Prop. 4.3].

Proposition 8. For any n-element poset P and hook shape k1n−k ` n, the evaluation
χk1n−k(inc(P )) equals the number of standard P -tableaux of shape k1n−k.

Proof. Fix µ = k1n−k, let a(µ) be the number of standard P -tableaux of shape µ, and for
each subset S ⊆ [k−1], let b(µ, S) be the number of column-strict P -tableaux U of shape
µ which satisfy

U1,j >P U1,j+1 for all j ∈ S. (32)

By the principle of inclusion-exclusion, these numbers are related by

a(µ) =
∑

S⊆[k−1]

(−1)|S|b(µ, S). (33)

Each subset S ⊆ [k− 1] corresponds to a special ribbon diagram Q = Q(µ, S) of shape µ
as described before Lemma 7. The partition λ(µ, S) satisfies |S| = k − `(λ(µ, S)).

By Lemma 7, b(µ, S) is also the number of pairs (Q, T ) with Q a special ribbon diagram
of shape µ and type λ(µ, S), and T a column-strict P -tableau of shape λ>. Thus we may
rewrite (33) by summing over pairs (S, U) and (Q, T ) satisfying the above conditions,

a(µ) =
∑
(S,U)

(−1)|S| =
∑
(Q,T )

(−1)k−`(type(Q)).
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Now collect terms in the last sum which correspond to special ribbon diagrams sharing
the same partition type(Q) ` n. Summing first over λ ` n and then over special ribbon
diagrams Q of shape µ and type λ, we have that a(µ) is∑
λ`n

∑
Q

(−1)k−`(λ)(#column-strict P -tableaux of shape λ>) =
∑
λ`n

∑
Q

sgn(Q)ελ(inc(P )).

By (27) and (26), this is ∑
λ`n

K−1
λ,µ>

ελ(inc(P )) = χµ(inc(P )).

3.3 Induced trivial characters / monomial coefficients of ωXinc(P )

Given graph G = (V,E) define an orientation of G to be a directed graph O = (V,E ′)
obtained from G by replacing each undirected edge {i, j} ∈ E with exactly one of the
directed edges (i, j) or (j, i). Call O acyclic if it has no directed cycles. For example, a
graph and two of its orientations are

G =

1 2 4

3

5

, O1 =

1 2 4

3

5

, O2 =

1 2 4

3

5

.

O2 is acyclic; O1 is not.
By [30] we have for all graphs G that

ηn(G) = # acyclic orientations of G, (34)

and as a consequence (or by Proposition 8) we have for all posets P that

ηn(inc(P )) = #P -descent-free P -permutations. (35)

When P is a unit interval order labeled as in (16) we also have [8, Thm. 4.7]

ηλ(inc(P )) = #P -descent-free P -tableaux of shape λ. (36)

We will extend this result to all posets in Theorem 10 and will include combinatorial
interpretations related to P -excedance-free P -tableaux and acyclic orientations. To do so,
we consider some straightforward extensions of permutation statistics to P -permutations.

Let w be a P -permutation, and let excP (w) and aexcP (w) be the numbers of P -
excedances and P -antiexcedances in w,

excP (w) = #{i |wi >P i}, aexcP (w) = #{i |wi <P i}.

Let desP (w) and ascP (w) be the numbers of P -descents and P -ascents in w,

desP (w) = #{i |wi >P wi+1}, ascP (w) = #{i |wi <P wi+1}.
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Define the standard cycle notation of w ∈ Sn to be the cycle notation in which cycles
are listed in increasing order of their greatest elements, and these greatest elements are
listed first in each cycle. Let σ : Sn → Sn be the bijection [31, §1.3] defined by setting
σ(w) equal to the permutation whose one-line notation is obtained by erasing parentheses
from the standard cycle notation of w. For example, to compute σ(5243761), we write
5243761 in standard cycle notation as (2)(4, 3)(6)(7, 1, 5), since the greatest elements of
the cycles satisfy 2 < 4 < 6 < 7. Then we erase parentheses to obtain 2436715.

The following result is a strengthening of [31, Exercise 3.60c]. It first appeared with a
different proof in [34, Thm. 4.6].

Proposition 9. For any poset P , the statistics desP , ascP , excP , aexcP are equally dis-
tributed on the set of all P -permutations.

Proof. (desP ∼ ascP ) We have ascP (w) = desP (wn · · ·w1).
(excP ∼ aexcP ) We have aexcP (w) = excP (w−1).
(desP ∼ aexcP ) Assume first that P is naturally labeled (18). We claim that the map
σ satisfies desP (σ(w)) = aexcP (w). To see this, write w in standard cycle notation and
σ(w) in one-line notation as

w = (a1, a2, . . . , ai1)(ai1+1, ai1+2, . . . , ai2) · · · (aik−1+1, aik−1+2, . . . , aik = an),

σ(w) = a1, a2, . . . , ai1 , ai1+1, ai1+2, . . . , ai2 , . . . , aik−1+1, aik−1+2, . . . , aik = an.

Suppose that j is a P -descent of σ(w). By the natural labeling of P , we have aj > aj+1

and therefore aj can not appear last in its cycle in the standard cycle notation for w. Thus
we have aj >P aj+1 = w(aj) and position aj is a P -antiexcedance of w. Thus position
aj is a P -antiexcedance of w. Now suppose that j is not a P -descent of σ(w). Then in
the standard cycle notation for w we have either that aj, aj+1 appear consecutively in a
cycle and satisfy aj 6>P aj+1 = w(aj), or that aj appears last in its cycle and satisfies
aj 6 w(aj). By the natural labeling of P , this last inequality implies aj 6>P w(aj). Thus
in both cases position aj is not a P -antiexcedance of w.

Now assume that P is nonnaturally labeled, and let P ′ be a naturally labeled copy of
P . Then for some u ∈ Sn, the poset isomorphism P → P ′ is given by i 7→ ui, and the
bijection w 7→ uw from Sn to itself satisfies aexcP (w) = aexcP ′(uw).

Given a graph G on n vertices and an ordered set partition (I1, . . . , Ir) of [n] of type
λ ` n, call the sequence (GI1 , . . . , GIr) an ordered induced subgraph partition of G of type
λ. Let Iλ(G) be the set of such sequences, and define an acyclic orientation of an element
of Iλ(G) to be a sequence (O1, . . . , Or), where Oj is an acyclic orientation of GIj . For
example, consider the ordered set partition (234, 15) of type (3, 2). A graph G, its ordered
induced subgraph partition (G234, G15), and one acyclic orientation (O1, O2) of this are

G =

1 2 4

3

5

, (G234, G15) =

( 2 4

3

,

5

1

)
, (O1, O2) =

( 2 4

3

,

5

1

)
. (37)
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Theorem 10. For any poset P and partition λ = (λ1, . . . , λr) ` |P |, the number ηλ(inc(P ))
has the combinatorial interpretations

1. # P -descent-free P -tableaux of shape λ,

2. # P -excedance-free P -tableaux of shape λ,

3. # acyclic orientations of sequences (inc(PI1), . . . , inc(PIr)) ∈ Iλ(inc(P )).

Proof. Let λ = (λ1, . . . , λr). Since hλ = hλ1 · · ·hλr , Lemma 6 implies that induced trivial
characters satisfy

ηλ(inc(P )) =
∑

(I1,...,Ir)

ηλ1(inc(PI1)) · · · ηλr(inc(PIr)), (38)

where the sum is over all ordered set partitions of |P | of type λ. By (35), we have for all
n-element posets P that ηn(inc(P )) is the number of P -descent-free P -permutations. This
implies interpretation (1) of the theorem, and then Proposition 9 implies interpretation
(2).

Interpretation (3) follows from the known bijection between acyclic orientations of
inc(P ) and P -descent-free P -permutations. (See, e.g., [1, §4], [31, Exercise 3.60b].) Specif-
ically, given an acyclic orientation (O1, . . . , Or) of a sequence (inc(PI1), . . . , inc(PIr)) in
Iλ(inc(P )), create row-semistrict P -tableau U of shape λ as follows.

For i = 1, . . . , r, do

1. Initialize Ui to be the empty Young diagram of shape λi.

2. While Oi is not empty do

(a) Let j be the minimum element of the chain in P consisting of the source vertices
in Oi.

(b) Update Oi by removing j and its outgoing edges.

(c) Update Ui by placing j in its leftmost empty box.

Given a row-semistrict P -tableau U of shape λ, create an induced subgraph partition
of inc(P ) and an acyclic orientation (O1, . . . , Or) of it as follows.

For i = 1, . . . , r, do

1. Let the vertices of Oi be the set of elements in Ui.

2. For all pairs (j, k) of entries of Ui which are incomparable in P , if j precedes k in
Ui, then create a directed edge from j to k in Oi.

The special case of Theorem 10 (2) corresponding to P a unit interval order and λ = n
has an interpretation in terms of the Bruhat order on Sn.
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Corollary 11. Let P be a unit interval order on [n] labeled as in (16) and let w ∈ Sn be
the corresponding 312-avoiding permutation as in (17). Then we have

{v ∈ Sn | excP (v) = 0} = {v ∈ Sn | v 6 w}.

Proof. Define the matrix A = (ai,j) by

ai,j =

{
0 if i <P j

1 otherwise.

By [28, Lem. 5.3 (3)], the product a1,v1· · · an,vn is 1 if v 6 w and is 0 otherwise. But
a1,v1· · · an,vn = 1 if and only if i 6<P vi for i = 1, . . . , n, i.e., if and only if v is P -excedance
free.

3.4 Power sum traces / scaled power sum coefficients of ωXinc(P )

It is known that we have ψλ(inc(P )) > 0 for all P [30], and

ψλ(inc(P )) = # cyclically row-semistrict P -tableaux of shape λ

= # P -record-free, row-semistrict P -tableaux of shape λ
(39)

for all unit interval orders P labeled as in (16) [1, Thm. 4], [8, Thm. 4.7], [27, §7]. We
will extend these results to all posets in Theorem 13, and will include more combinatorial
interpretations involving inc(P ) and a related directed graph. Define ngr(P ) to be the
directed graph whose vertices are the elements of P and whose edges are the ordered pairs
{(i, j) ∈ P 2 | i 6>P j}, including loops (i, i) for all i ∈ P . For example, a poset P and
related directed graph ngr(P ) are

P =

4

1

5

2
3
, ngr(P ) =

3
1

2 4

5

. (40)

Given a directed graph D on n vertices and a partition λ = (λ1, . . . , λr) ` n, call a
sequence (H1, . . . , Hr) of vertex-disjoint subdigraphs of D a disjoint cyclic vertex cover
of D of type λ if Hj is isomorphic to the cycle graph Cλj for all j. For example, three
disjoint cyclic vertex covers of the graph ngr(P ) in (40) are

( 2

1
3
,

4

5

)
,

( 2

1
3
,

4
,

5
)
,

( 2

1
3
,

5
,

4
)
.

These have types 32 and 311. Observe that a collection of vertices does not completely
specify a cycle, as this example shows two different cycles on the vertices {1, 2, 3}.
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To prove our results, we will use the transition matrix which relates the elementary
and power sum bases of Λn. In particular,

pn =
∑
µ`n

(−1)n−`(µ)cµeµ, (41)

where cµ equals the number of subgraphs of the (labeled) cycle graph

Cn = ([n], E), E = {(i, i+ 1) | 1 6 i 6 n− 1} ∪ {(n, 1)},

whose connected components are paths on µ1, . . . , µk vertices. Clearly such subgraphs
correspond bijectively to subsets S ⊆ [n],

S ←→ Cn,S = ([n], ES) with ES = {(i, j) ∈ E | i ∈ S},

and we define µ(S) to be the weakly decreasing sequence of component cardinalities of
Cn,S. We will also use the set of P -permutations whose (cyclic) P -descent set contains S,

B(S) = {w ∈ Sn |wi >P wi+1 (or wi = wn >P w1) for all i ∈ S}. (42)

Lemma 12. For any n-element poset P and subset S ⊆ [n], the permutations in B(S)
correspond bijectively to column-strict P -tableaux of shape µ(S). In particular, we have
|B(S)| = εµ(S)(inc(P )).

Proof. Fix w ∈ B(S). For each maximal interval [i, j] (mod n) with i, . . . , j ∈ S, we have
the chain wi >P · · · >P wj+1; for i − 1, i 6∈ S, we have the one-element chain wi. Let
µ = µ(S) and insert the `(µ) = n − |S| chains into the columns of a Young diagram of
shape µ> to obtain a column-strict P -tableau. For chains of equal cardinalities, fill the
leftmost available column of the tableau with the leftmost available chain in w (considering
· · · >P wn >P w1 >P · · · to be the leftmost chain of all, if it exists). It is easy to see that
this map is invertible.

As an example of the above bijection, consider the poset, subset, and P -permutation

P =

7
6

5

3

1

4

2

, S = {1, 4, 5, 7}, w = 5316427, (43)

with w ∈ B({1, 4, 5, 7}) because the cyclic P -descents of w include 1, 4, 5, 7:

w1 >P w2, w4 >P w5, w5 >P w6, w7 >P w1.

Combining these P -descents to form chains (and collecting leftover 1-chains), we have

w7 >P w1 >P w2 = 753, w3 = 1, w4 >P w5 >P w6 = 642,
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which we can insert in order of weakly decreasing cardinality into a column-strict P -
tableau of shape 331>= 322

7 6
5 4
3 2 1

,

where we have broken the tie between 3-element chains by inserting the leftmost chain
(the one containing w1) first.

Now we may interpret ψλ(inc(P )) as follows.

Theorem 13. For any poset P and partition λ = (λ1, . . . , λr) ` |P |, the number ψλ(inc(P ))
has the combinatorial interpretations

1. # cyclically row-semistrict P -tableaux of shape λ,

2. # P -record-free, row-semistrict P -tableaux of shape λ,

3. # disjoint cyclic vertex covers of ngr(P ) of type λ,

4. # acyclic orientations (O1, . . . , Or) of sequences (inc(PI1), . . . , inc(PIr)) ∈ Iλ(inc(P ))
in which each oriented component Oi has exactly one source.

Proof. Since pλ = pλ1· · · pλr , Lemma 6 implies that power sum traces satisfy

ψλ(inc(P )) =
∑

(I1,...,Ir)

ψλ1(inc(PI1)) · · ·ψλr(inc(PIr)), (44)

where the sum is over all ordered set partitions of |P | of type λ.

(1) We claim that for any n-element poset P , ψn(inc(P )) is the number of cyclically row-
semistrict P -permutations (P -descent-free w1 · · ·wn with wn 6>P w1). To see this, let a
be the number of such P -permutations and define B(S) as in (42). By the principle of
inclusion/exclusion and Lemma 12, the cardinalities a and |B(S)| are related by

a =
∑
S⊆[n]

(−1)|S||B(S)| =
∑
S⊆[n]

(−1)|n−`(µ(S))|εµ(S)(inc(P )).

By (41) the number of distinct subsets T ⊆ [n] satisfying µ(T ) = µ(S) is cµ(S). Therefore
we have

a =
∑
µ`n

(−1)n−`(µ)cµε
µ(inc(P )) = ψn(inc(P )),

as desired.

(2) Stanley [30, Thm. 3.3] showed that φn(P ) = ψn(P ) equals the number of acyclic
orientations of inc(P ) having exactly one sink. Reversing all edges in such an orientation
and applying the bijection at the end of the proof of Theorem 10, we have that ψn(P )
equals the number of P -record-free P -descent-free P -permutations. Then by (44) we have
the desired result.
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(3) Let U be a cyclically row-semistrict P -tableau of shape λ. Each pair of horizontally
adjacent entries (Ui,j, Ui,j+1) (or (Ui,λi , Ui,1)) in U corresponds to an edge in ngr(P ), and
the row Ui corresponds to a cycle. Removing all other edges from ngr(P ) and listing
the cycles in order of their corresponding rows of U , we obtain the desired disjoint cyclic
vertex cover.

(4) As described above, ψn(P ) equals the number of acyclic orientations of inc(P ) having
exactly one source. Now (44) gives the desired result.

3.5 Monomial traces / elementary coefficients of Xinc(P )

While φλ(inc(P )) is negative for some posets P , Stembridge and Stanley conjectured [33,
Conj. 5.5] that for (3 + 1)-free posets P we have

φλ(inc(P )) > 0. (45)

By [15, Thm. 5.1], this conjecture is equivalent to the assertion that (45) holds when P is
a unit interval order. Using this fact, we may state special cases of the conjecture which
are known to be true. In particular, the following conditions on λ and/or P imply (45).

1. P 3-free [15, Thm. 5.3], [30, Cor. 3.6].

2. P a 4-free unit interval order [6, Thm. 1.8].

3. λ a rectangular partition, i.e., λ1 = λ2 = · · · = k, and P (3 + 1)-free [36, Thm. 2.8].

4. P a unit interval order with a (λ1 + 1)-element antichain [8, Thm. 3.7, Prop. 10.1].

5. P a unit interval order with component sizes of inc(P ) not refining λ [8, Prop. 10.2].

6. λ1 6 2 and P (3 + 1)-free [8, Thm. 10.3].

7. P defined on [n] by i <P j if i+ 1 < j (as integers) [5, p. 242], [30, Prop. 5.3].

8. P defined on [n] by i <P j if i+ 2 < j (as integers) [12].

9. P defined on [n] by i <P j if i+ n− 3 < j (as integers) [27].

Conditions (4) and (5) above more specifically imply that we have φλ(inc(P )) = 0. An-
other related result concerns sums of monomial traces [30, Thm. 3.3].

Proposition 14. For all graphs G on n vertices we have∑
λ`n
`(λ)=k

φλ(G) = # acyclic orientations of G having k sources,

and for all n-element posets P we have∑
λ`n
`(λ)=k

φλ(inc(P )) = # P -descent-free P -permutations w with k P -records.
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Since φ1n = εn and φn = ψn, it is tempting to conjecture a formula for φλ(inc(P )) which
combines column-strictness of Equation (21) with one of the conditions of Theorem 13.
Two obvious combinations do not in general give correct formulas. For example, the
following poset P and monomial trace evaluations

P =

5

3

1

4

2
,

φ5(inc(P )) = 5, φ41(inc(P )) = 3,

φ32(inc(P )) = 7, φ221(inc(P )) = 1,

φ311(inc(P )) = φ2111(inc(P )) = φ11111(inc(P )) = 0

are not consistent with the number of standard, cyclically row-semistrict P -tableaux of
shape 32

4 5
1 3 2 ,

4 5
2 1 3 ,

5 4
2 1 3 ,

5 4
3 2 1 ,

or the number of standard, P -record-free P -tableaux of shape 32

4 5
1 2 3 ,

5 4
1 2 3 ,

4 5
2 1 3 ,

5 4
2 1 3 ,

5 4
3 2 1 .

The author has found that for n 6 5, the sets of analogous tableaux for n-element
posets have cardinalities no greater than the true values of φλ(inc(P )). This suggests the
following question.

Question 15. Do we have for all unit interval orders P and all partitions λ ` |P |, that
φλ(inc(P )) is greater than or equal to

1. the number of standard, cyclically row-semistrict P -tableaux of shape λ?

2. the number of standard, P -record-free P -tableaux of shape λ?

3.6 Fundamental expansion of Xinc(P )

We remark that for any graph G, there are known combinatorial interpretations for the
coefficients arising in the fundamental expansions of XG and ωXG. These are easiest to
express in the special case that G is the incomparability graph of an n-element poset P .
Writing

Xinc(P ) =
∑

S⊆[n−1]

ξS(inc(P ))Fn,[n−1]rS,

ωXinc(P ) =
∑

S⊆[n−1]

ξS(inc(P ))Fn,S,

we have that ξS(inc(P )) is the number of P -permutations with P -descent set S [7, Cor. 2].
For combinatorial interpretations corresponding to an arbitrary graph G, see [7, Cor. 1].
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3.7 Trace identities

Symmetric function identities, Lemma 6, and the combinatorial interpretations stated
in Equation (21) – Theorem 13 lead to some identities relating P -permutations to pairs
of subposet permutations. For instance, the first identity in the following result implies
that the number of ways to create a row-semistrict P -permutation and circle one element
equals the number of P -permutations w1 · · ·wn with w1 · · ·wi a cyclically row-semistrict
PJ -permutation for some i-element set J ⊆ [n] (0 < i 6 n), and wi+1 · · ·wn a row-
semistrict PJ -permutation.

Corollary 16. Let G be a graph on n vertices. We have

nηn(G) =
n∑
i=1

∑
J⊆[n]
|J |=i

ψi(GJ)ηn−i(GJ),

nεn(G) =
n∑
i=1

∑
J⊆[n]
|J |=i

(−1)i−1ψi(GJ)εn−i(GJ),

n∑
i=0

∑
J⊆[n]
|J |=i

(−1)iεi(GJ)ηn−i(GJ) = 0.

Proof. Applying Lemma 6 (2) to the symmetric function identities

nhn =
n∑
i=1

pihn−i, nen =
n∑
i=1

(−1)i−1pien−i,
n∑
i=0

eihn−i = 0,

we obtain the claimed graph identities.

4 Applications to total nonnegativity

Nonnegative expansions of chromatic symmetric functions in the standard bases are closely
related to functions of totally nonnegative matrices. We will make this relationship precise
in Corollary 23.

Call a real n×n matrix A = (ai,j) totally nonnegative if for each pair (I, J) of subsets
of [n], the square submatrix AI,J := (ai,j)i∈I,j∈J satisfies det(AI,J) > 0. Such matri-
ces are closely related to directed graphs called planar networks. Define a (nonnegative
weighted) planar network of order n to be a directed, planar, acyclic digraph D = (V,E)
which can be embedded in a disc so that 2n distinguished vertices labeled clockwise as
s1, . . . , sn, tn, . . . , t1 lie on the boundary of the disc, with a nonnegative real weight cu,v
assigned to each edge (u, v) ∈ E. We may assume that s1, . . . , sn, called sources, have
indegree 0 and that tn, . . . , t1, called sinks, have outdegree 0. To every source-to-sink
path, we associate a weight equal to the product of weights of its edges, and we define
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the path matrix A = A(D) = (ai,j)i,j∈[n] by setting ai,j equal to the sum of weights of all
paths from si to tj. For example, we have the following planar network D of order 3, in
which unlabeled edges have weight 1, and its path matrix A.

D =

s3

s2

s1

v3

v2

v1

v4

t3

t2

t1

2

3 4

5

6

7

, A =

1 11 8
3 38 34
0 5 16

. (46)

A result often attributed to Lindström [21] but proved earlier by Karlin and McGre-
gor [19] asserts the total nonnegativity of such a matrix.

Theorem 17. The path matrix A of a nonnegative weighted planar network D of order
n is totally nonnegative. Moreover, the nonnegative number det(A) equals∑

π

wgt(π),

where the sum is over all families π = (π1, . . . , πn) of pairwise nonintersecting paths in
D, with πi a path from si to ti for i = 1, . . . , n, and where

wgt(π) := wgt(π1) · · ·wgt(πn). (47)

Since each submatrix of a totally nonnegative matrix is itself totally nonnegative, this
result gives a combinatorial interpretation of the nonnegative numbers det(AI,J) as well:
det(AI,J) is the sum of weights of all nonintersecting path families in D from sources
indexed by I to sinks indexed by J (assuming |I| = |J |). For example, in (46), we have
det(A) = 30, and the one nonintersecting path family in D from {s1, s2, s3} to {t1, t2, t3}
has weight (1 · 1)(1 · 5 · 1)(1 · 6) = 30. Also, we have det(A13,23) = 136 and the three
nonintersecting path families from {s1, s3} to {t2, t3} have weights (1·7)(1·5·2), (1·7)(1·6),
and (1 · 4 · 1)(1 · 6), which sum to 136.

The converse of Theorem 17 is true as well. That is, path matrices are essentially the
only examples of totally nonnegative matrices [4], [11], [23], [37].

Theorem 18. For each n × n totally nonnegative matrix A, there exists a nonnegative
weighted planar network D of order n whose path matrix is A.

Generalizing the determinant are matrix functions Immθ : Matn×n(C) → C called
immanants and parametrized by linear functionals θ : C[Sn]→ C. Define

Immθ(A) =
∑
w∈Sn

θ(w)a1,w1 · · · an,wn .
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In the language of Section 2, we have det(A) = Immεn(A). For some functions θ, the
number Immθ(A) is nonnegative for all totally nonnegative matrices A and has a nice
combinatorial interpretation in terms of families of paths in D. We say that a path family
π = (π1, . . . , πn) in a planar network D has type w = w1 · · ·wn ∈ Sn if for i = 1, . . . , n,
the path πi begins at the source si and terminates at the sink twi . Define the sets

Pw(D) = {π in D | type(π) = w},

P(D) =
⋃
w∈Sn

Pw(D).

Each path family π = (π1, . . . , πn) ∈ Pw(D) forms a poset P = P (π) defined by πi <P πj
if i < j (as integers) and πi does not intersect πj. For example, the planar network D in
(46) has two path families of type 132. These and their posets are

π3

π2

π1

, P (π) =

π3

π1

π2
,

ρ3

ρ2

ρ1

, P (ρ) =

ρ2

ρ1

ρ3

, (48)

so P132(D) = {π, ρ}.
Observe that if path families π, σ in D consist of the same multiset K of edges of D,

then they satisfy wgt(π) = wgt(σ). Call such a multiset K a bijective skeleton, and define
wgt(K) to be the product of its edge weights, with multiplicities. Define the sets

Π(K) = {π ∈ P(D) | edge multiset of π is K},
Πw(K) = {π ∈ Π(K) | type(π) = w},

and the Z[Sn]-element

z(K) =
∑

π∈Π(K)

type(π).

For example, let bijective skeleton K be the multiset of edges of D (46) covered the path
family ρ in (48), and let σ be the unique path family of type 123 covering K. Then we
have

K =
(2)

,

σ3

σ2

σ1

,

with (2) marking the edge in K having multiplicity 2. We also have

Π132(K) = {ρ}, Π123(K) = {σ}, Π(K) = {ρ, σ},
wgt(K) = wgt(ρ) = wgt(σ) = 50, z(K) = 132 + 123 = C̃132(1).

It is known that for any bijective skeleton K, z(K) equals a product of Kazhdan-Lusztig

basis elements C̃w(1) ∈ Z[Sn] indexed by 312-avoiding permutations, and that for any
totally nonnegative matrix A, the numbers Immθ(A) and θ(z(K)) are closely related.
(See, e.g., [35, Thm. 2.1].)
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Proposition 19. Let A be the path matrix of a weighted planar network D. Then for
any linear functional θ : C[Sn]→ C, we have

Immθ(A) =
∑
K

wgt(K)θ(z(K)),

where the sum is over all bijective skeletons K in D.

Proof. By the definition of path matrix, we can interpret each product of matrix entries
appearing in Immθ(A) as

a1,w1 · · · an,wn =
∑
K

∑
π∈Πw(K)

wgt(π) =
∑
K

wgt(K)|Πw(K)|.

Multiplying each product by θ(w), summing over w ∈ Sn, and using the linearity of θ,
we may thus express Immθ(A) as∑

w∈Sn

θ(w)
∑
K

wgt(K)|Πw(K)| =
∑
K

wgt(K)
∑
w∈Sn

θ(w)|Πw(K)|

=
∑
K

wgt(K) θ
(∑
w∈Sn

|Πw(K)|w
)

=
∑
K

wgt(K) θ
( ∑
π∈Π(K)

type(w)
)
.

Sometimes a combinatorial interpretation for Immθ(A) comes from careful considera-
tion of θ(z(K)); other times it comes from a simple expression for Immθ(A), such as the
Littlewood-Merris-Watkins identities [22, §6.5], [25, §1],

Immελ(A) =
∑

(I1,...,Ir)

det(AI1,I1) · · · det(AIr,Ir), (49)

Immηλ(A) =
∑

(I1,...,Ir)

per(AI1,I1) · · · per(AIr,Ir), (50)

where the sums are over ordered set partitions of [n] of type λ = (λ1, . . . , λr).

4.1 Induced sign character immanants

Combinatorial interpretations for the immanants Immελ(A) follow easily from Theorem 17
and (49).

Theorem 20. Let planar network D have path matrix A. Then we have

Immελ(A) =
∑
K

wgt(K)
∑

π∈Πe(K)

ελ(inc(P (π))). (51)

the electronic journal of combinatorics 28(2) (2021), #P2.19 25



Proof. By Theorem 17 and the comment immediately following it, the term of (49) cor-
resonding to a fixed ordered set partition (I1, . . . , Ir) is equal to the sum of weights of
path families π = (π1, . . . , πn) of type e in which for j = 1, . . . , r, paths indexed by Ij are
pairwise nonintersecting. This partitioned path family naturally forms a column-strict
tableau U = U(π, I1, . . . , Ir) of shape λ>, if we place paths indexed by Ij into column j.
We may therefore write the right-hand-side of (49) as∑

K

wgt(K)
∑

π∈Πe(K)

#{(I1, . . . , Ir) |U(π, I1, . . . , Ir) is column-strict of shape λ>}

=
∑
K

wgt(K)
∑

π∈Πe(K)

# column-strict P (π)-tableaux of shape λ>

=
∑
K

wgt(K)
∑

π∈Πe(K)

ελ(inc(P (π))).

Combining Proposition 19 with Theorem 20, we find that the inner sum of (51) is
ελ(z(K)) and we generalize this fact as follows.

Corollary 21. Let K be a bijective skeleton in a planar network D. Then for all traces
θ : C[Sn]→ C, we have

θ(z(K)) =
∑

π∈Πe(K)

θ(inc(P (π))).

Proof. Weight the planar network D by algebraically independent real numbers and let
A be its path matrix. By Proposition 19, we have

Immεµ(A) =
∑
K

wgt(K)εµ(z(K)), (52)

where the sum is over all bijective skeletons K in D. Since the edge weights of D are
algebraically independent, we may compare this expression to the right-hand-side of (51)
to obtain

εµ(z(K)) =
∑

π∈Πe(K)

εµ(inc(P (π))).

Expanding θ in the induced sign character basis {εµ |µ ` n}, we obtain the desired
result.

Proposition 19 and Corollary 21 show that for θ ∈ Tn we may compute Immθ(A) by
considering a planar network D having path matrix A, each path family π of type e in
D, and the corresponding chromatic symmetric function Xinc(P (π)).

Corollary 22. For D a planar network having path matrix A, we have

Immθ(A) =
∑
K

wgt(K)
∑

π∈Πe(K)

θ(inc(P (π)), (53)

where K varies over all bijective skeletons in D.
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Thus if θ ∈ Tn satisfies θ(inc(P )) > 0 for all posets P , then it also satisfies Immθ(A) >
0 for all totally nonnegative matrices A. For the convenience of the reader we summarize
this and other known implications as follows.

Corollary 23. For θ ∈ Tn, the statements

1. θ(C̃w(1)) > 0 for all permutations w ∈ Sn,

2. θ(C̃w(1)(1) · · · C̃w(k)(1)) > 0 for all sequences (w(1), . . . , w(k)) of maximal elements of
parabolic subgroups of Sn,

3. θ(inc(P )) > 0 for all posets P ,

4. Immθ(A) > 0 for all totally nonnegative matrices A,

5. θ(inc(P )) > 0 for all unit interval orders P ,

6. θ(inc(P )) > 0 for all (3 + 1)-free posets P ,

7. θ(C̃w(1)) > 0 for all 312-avoiding permutations w ∈ Sn,

8. θ(C̃w(1)) > 0 for all 3412-avoiding, 4231-avoiding permutations w ∈ Sn

satisfy the implications (1) ⇒ (2) ⇒ (4) ⇒ (5) ⇔ (6) ⇔ (7) ⇔ (8), and (3) ⇒ (4).

Proof. ((1)⇒ (2)⇒ (4)) Suppose that (4) is false, i.e., that for some totally nonnegative
matrix A we have Immθ(A) < 0. By Theorem 18, A is the path matrix of a planar
network D. Then Proposition 19 implies that some bijective skeleton K of D satisfies
θ(z(K)) < 0. It is straightforward to show that z(K) equals a (positive rational multiple

of a) product of Kazhdan-Lusztig basis elements of the form C̃w(1)(1) · · · C̃w(k)(1) in which
each permutation w(i) is a maximal element of a parabolic subgroup of Sn. (See, e.g., [9,
Cor. 5.3].) Thus (2) is false. This product in turn equals a nonnegative linear combination

of Kazhdan-Lusztig basis elements. (See [16, Appendix].) Thus θ(C̃w(1)) < 0 for some
w ∈ Sn and (1) is false.
((4)⇒ (5)) For every unit interval order P , there exists a planar network D(P ) with path
matrix A satisfying θ(inc(P )) = Immθ(A) [8, Prop. 3.8, Thm. 4.1, Cor. 7.5].
((5)⇔ (6)) Each unit interval order is (3+1)-free. Conversely, for each (3+1)-free poset
P , we have by [15, Thm. 5.3] that Xinc(P ) belongs to the cone generated by chromatic
symmetric functions of unit interval orders.
((5) ⇒ (8)) By [28, Thm. 3.5, Lem. 5.3] and [8, Thm. 7.4], we have that for each 3412-
avoiding, 4231-avoiding permutation w ∈ Sn there exists a unit interval order P = P (w)

satisfying θ(inc(P (w)) = θ(C̃w(1)) for all θ ∈ Tn.
((8)⇒ (7)⇒ (5)) Each 312-avoiding permutation also avoids the patterns 3412 and 4231.
The bijection (17) to unit interval orders and Proposition 5 give the last implication.
((3)⇒ (4)) Follows from (53).
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Another consequence of Theorem 20 is an analog of Lemma 6 (2) for matrices. (See
also [36, Prop. 2.4].)

Corollary 24. For θ1 ∈ Tk, θ2 ∈ Tn−k, θ = θ1 ⊗ θ2

xSn
Sk×Sn−k ∈ Tn, we have

Immθ(A) =
∑
J⊆[n]

Immθ1(AJ,J)Immθ2(AJ,J).

Proof. Similar to proof of Lemma 6 (2).

4.2 Irreducible character immanants

While no combinatorial interpretation is known for Immχλ(A), Stembridge [35, Cor. 3.3]
proved the following.

Theorem 25. For λ ` n and an n× n totally nonnegative matrix A, we have

Immχλ(A) > 0.

Problem 26. Combinatorially interpret the numbers Immχλ(A) in Theorem 25.

We do have a combinatorial interpretation in the special case that λ is a hook shape.

Theorem 27. For A the path matrix of planar network D of order n and k 6 n, we have

Imm
χk1n−k (A) =

∑
π∈Pe(D)

wgt(π) (# standard P (π)-tableaux of shape k1n−k). (54)

In particular, when k = n, we obtain (55).

Proof. Let λ = k1n−k. By Proposition 19, Corollary 21, and Proposition 8, we have

Immχλ(A) =
∑
K

wgt(K)χλ(z(K))

=
∑
K

wgt(K)
∑

π∈Πe(K)

χλ(P (π))

=
∑
K

wgt(K)
∑

π∈Πe(K)

# standard P (π)-tableaux of shape λ,

where K varies over all bijective skeletons in D. This is equal to the claimed expression.

The case k = n (55) can also be deduced from Stanley’s interpretation [30, Thm. 3.3]
of χn(inc(P )) as the number of acyclic orientations of inc(P ), using the bijection at the
end of the proof of Theorem 10.

Returning to Corollary 23, we see that for all λ ` n, Haiman’s result [16, Lem. 1.1]

that χλq (C̃w(q)) ∈ N[q] for all w ∈ Sn implies Stembridge’s result [36, Cor. 3.3] that
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Immχλ(A) > 0 for all A totally nonnegative, which in turn implies Gasharov’s result [14]
that χλ(inc(P )) > 0 for all (3+1)-free posets P . The failure of the inequality χλ(inc(P )) >
0 to hold for all posets P and the equation (53) suggest that one might solve Problem 26
by explaining why for each bijective skeleton K in a planar network, we have∑

π∈Πe(K)

χλ(inc(P (π)) > 0, equivalently,
∑

π∈Πe(K)

Xinc(P (π)) is Schur-positive,

even when some of the posets {P (π) |π ∈ Πe(K)} are not (3 + 1)-free.

4.3 The permanent and induced trivial characters

An obvious consequence of Proposition 19 is a combinatorial interpretation of the perma-
nent of a totally nonnegative matrix.

Observation 28. Let totally nonnegative matrix A be the path matrix of planar network
D. Then we have

per(A) =
∑

π∈P(D)

wgt(π),

where wgt(π) is defined as in (47).

Two more combinatorial interpretations make use of the partial orders {P (π) |π ∈
Pe(D)}. We have shown in Theorem 27 and will show in Theorem 30 that

per(A) =
∑

π∈Pe(D)

wgt(π) (#P (π)-descent-free permutations of π) (55)

=
∑

π∈Pe(D)

wgt(π) (#P (π)-excedance-free permutations of π). (56)

Unfortunately we do not know how to obtain bijective proofs of these facts directly from
Observation 28.

Problem 29. Given a planar network D of order n, state an explicit bijection between
path families in D of arbitrary type, and P -descent-free P (π)-permutations, where π in
D has type e, or P -excedance-free P (π)-permutations, where π in D has type e,

P(D)
1−1←→

⋃
π∈Pe(D)

{U a P (π)-permutation | desP (π)(U) = 0},

P(D)
1−1←→

⋃
π∈Pe(D)

{U a P (π)-permutation | excP (π)(U) = 0}.

On the other hand, Theorem 27 and Proposition 9 easily prove (56).

Theorem 30. Let A be the path matrix of planar network D of order n, Then we have

per(A) =
∑

π∈Pe(D)

wgt(π)(# P (π)-excedance-free permutations of π).

the electronic journal of combinatorics 28(2) (2021), #P2.19 29



Proof. Theorem 27 implies (55), and Proposition 9 then implies (56).

Now we have three combinatorial interpretations of induced trivial character im-
manants. To state these, we define more generalizations of Young tableaux. Given a
path family π = (π1, . . . , πn) ∈ P(D) for some planar network D, define a π-tableau of
shape λ to be a filling of a Young diagram with π1, . . . , πn. For each π-tableau U , define
L(U) and R(U) to be the Young tableaux whose integer entries are the source indices
and sink indices, respectively, of the corresponding paths in U . Call the π-tableau U left
row-strict if entries of L(U) increase from left to right in each row, and call it row-closed
if R(Ui) is a rearrangement of L(Ui) for each i. For example, consider the planar network
D and path family π ∈ P(D),

D =

s5 t5
s4 t4
s3 t3
s2 t2
s1 t1

,

π5

π4

π3

π2

π1

. (57)

In order for a π-tableau to be row-closed and left row-strict, the paths π1, π2, π3 must
appear in order of increasing indices in the same row, as must π4, π5. All five paths
must appear in order of increasing indices if they appear in a single row. There is one
such π-tableau of shape 5 and one of shape 32. Together with their left and right Young
tableaux, these are

U= π1 π2 π3 π4 π5 , L(U)= 1 2 3 4 5 , R(U)= 2 3 1 5 4 ,

V =
π4 π5

π1 π2 π3
, L(V )=

4 5
1 2 3

, R(V )=
5 4
2 3 1

.

Theorem 31. Let A be the path matrix of planar network D of order n. Then for λ ` n,
the evaluation Immηλ(A) has the combinatorial interpretations∑

π∈P(D)

wgt(π) (#row-closed, left row-strict π-tableaux of shape λ), (58)

∑
π∈Pe(D)

wgt(π) (#descent-free P (π)-tableaux of shape λ), (59)

∑
π∈Pe(D)

wgt(π) (#excedance-free P (π)-tableaux of shape λ). (60)

Proof. Express Immηλ(A) as in (50). By Observation 28, the term in this sum corre-
sponding to a fixed ordered set partition (I1, . . . , Ir) is equal to the sum of weights of
path families π = (π1, . . . , πn) in which for j = 1, . . . , r, paths indexed by Ij have sink
indices also belonging to Ij. Each such partitioned path family π naturally forms a left
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row-strict, row-closed π-tableau U = U(π, I1, . . . , Ir) of shape λ, if we place paths indexed
by Ij into row j, with path indices increasing from left to right. We may therefore express
Immηλ(A) as∑
K

wgt(K)
∑

π∈Π(K)

#{(I1, . . . , Ir) |U(π, I1, . . . , Ir) is row-closed, left row-strict of shape λ},

i.e., as (58). Alternatively, by Theorems 27 and 30, the term in (50) corresponding to a
fixed ordered set partition (I1, . . . , Ir) is equal to∑

K

wgt(K)
∑

π∈Πe(K)

#{(U1, . . . , Ur) |Uj a descent-free permutation of (πi)i∈Ij}

=
∑
K

wgt(K)
∑

π∈Πe(K)

#{(U1, . . . , Ur) |Uj an excedance-free permutation of (πi)i∈Ij}.

Thus Immηλ(A) is also equal to (59) and (60).

4.4 Power sum immanants

Like the induced trivial character immanants {Immηλ(A) |λ ` n}, the power sum im-
manants {Immψλ(A) |λ ` n} have some combinatorial interpretations which are closely
related to chromatic symmetric function coefficients, and others which are related to path
families in a planar network. Call a π-tableau U of shape λ cylindrical if in each row
Ui = Ui,1 · · ·Ui,λi , we have R(Ui,1 · · ·Ui,λi) = L(Ui,2 · · ·Ui,λiUi,1), i.e., each path begins
where the preceding path in its row terminates. For example, let π be the path family in
(57). There are six cylindrical π-tableaux, all of shape 32:

π4 π5

π1 π2 π3
,

π5 π4

π1 π2 π3
,

π4 π5

π2 π3 π1
,

π5 π4

π2 π3 π1
,

π4 π5

π3 π1 π2
,

π5 π4

π3 π1 π2
.

Theorem 32. Let A be the path matrix of planar network D of order n. Then for λ ` n,
the evaluation Immψλ(A) has the combinatorial interpretations∑

π∈Pe(D)

wgt(π) (#cyclically row-semistrict P (π)-tableaux of shape λ), (61)

∑
π∈Pe(D)

wgt(π) (#P (π)-record-free row-semistrict P (π)-tableaux of shape λ), (62)

∑
π∈P(D)

wgt(π) (#cylindrical π-tableaux of shape λ). (63)

Proof. By Proposition 19 and Corollary 21, we have

Immψλ(A) =
∑
K

wgt(K)ψλ(z(K)) =
∑
K

wgt(K)
∑

π∈Πe(K)

ψλ(inc(P (π))).

the electronic journal of combinatorics 28(2) (2021), #P2.19 31



Thus by Proposition 13 we have the interpretations (61) and (62). By (6), we have

Immψλ(A) = zλ
∑
w∈Sn

ctype(w)=λ

a1,w1 · · · an,wn .

The interpretation (63) now follows from the definition of path matrix.

4.5 Monomial immanants

By Corollary 23, the fact that we do not know φλ(inc(P )) to be nonnegative for unit
interval orders P ([33, Conj. 5.5]) implies that we do not know monomial immanants to
evaluate nonnegatively on totally nonnegative matrices. We have the following conjecture
of Stembridge [36, Conj. 2.1].

Conjecture 33. For λ ` n and A totally nonnegative we have Immφλ(A) > 0.

This is the strongest possible conjecture for inequalities of the form Immθ(A) > 0
with θ ∈ Tn, since Immθ(A) > 0 for all totally nonnegative A ∈ Matn×n(R) only if θ is
a nonnegative linear combination of {φλ |λ ` n} [36, Prop. 2.3]. Stembridge proved two
special cases of Conjecture 33 [36, Thms. 2.7 – 2.8].

Proposition 34. Let A be the path matrix of a planar network D of order n.

1. If λ = 21n−2 then Immφλ(A) > 0.

2. If λ is the rectangular shape rk then

Immφλ(A) =
∑
K

wgt(π)
∑

π∈Π(K)

# column-strict, cylindrical π-tableaux of shape rk.

(64)

Since φ1n = εn and φn = ψn, one might hope that the formula (64) for Immφλ(A),
which combines aspects of Theorem 17 and Theorem 32, might hold for arbitrary λ ` n.
Unfortunately, it does not. The planar network D in (57) has path matrix

A =


1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 1 1 1 1

 ,
which satisfies

Immφ5(A) = 5, Immφ41(A) = 3, Immφ32(A) = 7, Immφ221(A) = 1,

Immφ311(A) = Immφ2111(A) = Immφ11111(A) = 0.

Each of these monomial immanant evaluations, except for Immφ32(A), is consistent with
the combinatorial interpretation given in (64). On the other hand, the path family π
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in (57) is the unique path family covering D which can be placed into a column-strict
cylindrical path tableau of shape 32. There are only four such tableaux:

π4 π5

π1 π2 π3
,

π5 π4

π1 π2 π3
,

π5 π4

π2 π3 π1
,

π4 π5

π3 π1 π2
.

The author has found that for n 6 5, the sets of analogous tableaux for certain planar
networks have cardinalities no greater than the true values of Immφλ(A), where A is the
path matrix of the planar network. Specifically, these planar networks, called descending
star networks in [8, §3], correspond bijectively to unit interval orders. This suggests the
following question.

Question 35. Let P be a unit interval order on n elements, and let D = D(P ) be the
corresponding descending star network as defined in [8, §3]. Do we have for all λ ` n that

φλ(inc(P )) > #
⋃

π∈P(D)

{U |U a column-strict, cylindrical π-tableau of shape λ}?

As stated in Corollary 23, Stembridge’s Conjecture 33 is a special case of Haiman’s
conjecture [16, Conj. 2.1] that φλq (C̃w(q)) ∈ N[q] for all w. Furthermore, Haiman’s conjec-
ture would imply the equivalence of seven of the eight statements of Corollary 23.

Observation 36. If φλq (C̃w(q)) ∈ N[q] for all w, then statements (1), (2), (4), . . . , (8) of
Corollary 23 are all equivalent to the containment θ ∈ spanN{φλ |λ ` n}.

Proof. Assume that φλq (C̃w(q)) ∈ N[q] for all w. Consider θ ∈ Tn and expand it in the
monomial trace basis as θ =

∑
λ aλφ

λ. If aλ > 0 for all λ, then by our assumption we
have

θ(C̃w(1)) =
∑
λ

aλφ
λ(C̃w(1)) > 0,

and statement (1) of Corollary 23 is true. Now suppose that aµ < 0 for some µ ` n and
let wµ be the maximal element of the Young subgroup Sµ. Then by (10) [16, Prop. 4.1]

and our assumption we have that θ(C̃wµ(1)) < 0. Since wµ avoids the patterns 3412 and
4231, statement (8) of the Corollary is false.

4.6 Immanant identities

Analogous to Corollary 16 are three identities which follow from Corollary 24. The third
of these is known as Muir’s identity.
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Corollary 37. Let A be an n× n matrix. We have

n per(A) =
n∑
i=1

∑
J
|J |=i

Immψi(AJ,J)per(AJ,J),

n det(A) =
n∑
i=1

(−1)i−1
∑
J
|J |=i

Immψi(AJ,J) det(AJ,J),

n∑
i=0

(−1)i
∑
J
|J |=i

det(AJ,J)per(AJ,J) = 0,

where the sums are over ordered set partitions of type (i, n− i).

Proof. Similar to proof of Corollary 16.

5 Applications to chromatic quasisymmetric functions

Shareshian and Wachs [26] defined a quasisymmetric extensionXG,q of Stanley’s chromatic
symmetric function XG (11). Let G = (V,E) be a simple directed graph on vertices
labeled 1, . . . , n. Given a proper coloring κ : V → {1, 2, . . . , } of G, define invG(κ) to
be the number of pairs (i, j) ∈ E with i < j and κ(i) > κ(j). For any composition
α = (α1, . . . , α`) � n, define

c(G,α, q) =
∑
κ

type(κ)=α

qinvG(κ),

and let
Mα =

∑
i1<···<i`

xα1
i1
· · ·xα`i`

be the monomial quasisymmetric function indexed by α. Then we have the definition

XG,q =
∑
κ

qinvG(κ)xκ(1) · · ·xκ(n) =
∑
α�n

c(G,α, q)Mα, (65)

where the first sum is over all proper colorings of G. It is easy to see that we have
XG,1 = XG.

In the special case that XG,q is symmetric, Proposition 3 implies that there is an
element g ∈ Q(q) ⊗ Hn(q) satisyfing ελq (g) = c(G,α, q) for every rearrangement α of λ.
Thus for all θq ∈ Tn,q we may define

θq(G) := θq(g) (66)
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to obtain a q-extension

XG,q =
∑
λ`n

ελq (G)mλ =
∑
λ`n

ηλq (G)fλ =
∑
λ`n

(−1)n−`(λ)ψλq (G)

zλ
pλ =

∑
λ`n

χλ
>

q (G)sλ

=
∑
λ`n

φλq (G)eλ =
∑
λ`n

γλq (G)hλ

(67)

of (13) and a similar q-extension of (14) for ωXG,q.
Shareshian and Wachs showed that when P is a unit interval order labeled as in (16),

the function Xinc(P ),q is in fact symmetric. By [8, Cor. 7.5], the coefficients

ελq (inc(P )), ηλq (inc(P )), χλq (inc(P )), ψλq (inc(P )), φλq (inc(P )), γλq (inc(P ))

in each standard expansion of Xinc(P ),q are given by θq(inc(P )) = θq(C̃w(q)) for the 312-
avoiding permutation w related to P as in (17). For interpretations of some of these coef-
ficients, see [8, §5–10], [27, §5–7]. Shareshian and Wachs conjectured [26, Conj. 5.1] non-
negativity of the elementary coefficients of Xinc(P ),q. This extends the Stanley-Stembridge
conjecture [33, Conj. 5.5] that φλ(inc(P )) > 0, and is equivalent to a special case of

Haiman’s conjecture [16, Conj. 2.1] that φλq (C̃w(q)) ∈ N[q] for all w. (For progress on this
conjecture, see [10], [17] and references there.)

Conjecture 38. For P a unit interval order labeled as in (16), we have φλq (inc(P )) ∈ N[q].

Since
∑

λ`n φ
λ
q = ηnq , the sum

∑
λ`n φ

λ
q (inc(P )) = ηnq (inc(P )) satisfies two identities

which extend (34) when P is a unit interval order labeled as in (16).

1. Given an acyclic orientation O, define inv(O) to be the number of oriented edges
(j, i) with j > i. We have ∑

λ`n

φλq (inc(P )) =
∑
O

qinv(O), (68)

where the sum on the right is over all acyclic orientations O of inc(P ) [26, Thm. 5.3].

2. Given a P -permutation U , define

invP (U) = #{(i, j) | j > i (as integers), j 6>P i, and j appears to the left of i in U}.

We have ∑
λ`n

φλq (inc(P )) =
∑
U

qinvP (U), (69)

where the sum is over all P -descent-free P -permutations U [26, Thm. 6.3].

It is possible to extend Theorem 10 (2) to obtain a similar formula for excedance-free
P -permutations as well. Given a P -tableau U , define

inv(U) = #{(i, j) | j > i (as integers), and j appears to the left of i in U}.
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Proposition 39. Let P be an n-element unit interval order, labeled as in (16) and cor-
responding by (17) to the 312-avoiding permutation w ∈ Sn. Then we have∑

λ`n

φλq (inc(P )) =
∑
v6w

q`(v) =
∑
U

qinv(U), (70)

where U in the final sum varies over all P -excedance-free P -permutations.

Proof. By [8, Cor. 7.5] and (4) we have∑
λ`n

φλq (inc(P )) = ηnq (inc(P )) = ηnq (C̃w(q)) = ηnq

(∑
v6w

Tv

)
.

Since ηnq (Tv) = q`(v), we have the first equality in (70). To see the second equality, let
U = v1 · · · vn be a P -permutation. Then U appears in the third sum of (70) if and only if
excP (U) = 0. By Corollary 11, this condition is equivalent to v 6 w, and clearly we have
`(v) = inv(U).

Combining Proposition 39 with (68) and (69), we obtain equidistribution results for the
three variations of inversion statistics. Unfortunately, the map w 7→ σ(w−1) from Subsec-
tion 3.3, which satisfies excP (w) = desP (σ(w−1)) does not satisfy inv(w) = invP (σ(w−1)).
(Neither does the map in [34, Rmk. 4.7] mentioned before Proposition 9.) Furthermore,
the statistic pairs (excP , inv) and (desP , invP ) cannot be equidistributed on Sn, since inv
and invP are not equidistributed on Sn. This suggests the following problem for unit
interval orders P , labeled as in (16).

Problem 40. Find a bijection ϕ from descent-free P -permutations to excedance-free
P -permutations which satisfies invP (U) = inv(ϕ(U)).

Just as Proposition 14 refines (34) and (35), Shareshian and Wachs [26, Thm. 5.3]
refined (68), (69) as follows.

Proposition 41. For all unit interval orders P labeled as in (16), we have that∑
λ`n
`(λ)=k

φλq (inc(P )) =
∑
U

qinvP (U) =
∑
O

qinv(O),

where the second and third sum are over descent-free P -permutations U having k P -
records, and acyclic orientations O of inc(P ) having k sources.

It would be interesting to similarly refine Proposition 39.

Problem 42. Let P be an n-element unit interval order labeled as in (16), and let w(P )
be the corresponding 312-avoiding permutation as in (17). Find functions δ1, δ2 so that∑

λ`n
`(λ)=k

φλq (inc(P )) =
∑
v6w

δ1(v,w)=k

q`(v) =
∑

excP (U)=0
δ2(U)=k

qinv(U),

where U in the final sum is a P -permutation.
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Finally, it would be interesting to combinatorially settle the Shareshian-Wachs con-
jecture [26, Conj. 5.1] that φλq (inc(P )) ∈ N[q] as follows.

Problem 43. For each n-element unit interval order P labeled as in (16), and each par-
tition λ ` n, define subsets S1(λ), S2(λ), S3(λ), S4(λ) of acyclic orientations of inc(P ), P -
descent-free P -permutations, {v ∈ Sn | v 6 w(P )}, and P -excedance free P -permutations,
respectively, so that

φλq (inc(P )) =
∑

O∈S1(λ)

qinv(O) =
∑

U∈S2(λ)

qinvP (U) =
∑

v∈S3(λ)

q`(v) =
∑

U∈S4(λ)

qinv(U).
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