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Abstract

The claw is the graph K 3, and the fork is the graph obtained from the claw K7 3
by subdividing one of its edges once. In this paper, we prove a structure theorem
for the class of (claw, Cy)-free graphs that are not quasi-line graphs, and a structure
theorem for the class of (fork, Cy)-free graphs that uses the class of (claw, Cy)-free
graphs as a basic class. Finally, we show that every (fork, Cy)-free graph G satisfies

X(G) < [gwéG)-‘ via these structure theorems with some additional work on coloring
basic classes.
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1 Introduction

All graphs in this work are finite and simple. For a positive integer n, K, will denote
the complete graph on n vertices, and P, will denote the path on n vertices. For integers
n > 2, C), will denote the cycle on n vertices; the graph C} is called a square. For positive
integers m,n, K, , will denote the complete bipartite graph with classes of size m and
n. The claw is the graph K 3, and the fork is the tree obtained from the claw K 3 by
subdividing one of its edges once. A clique (stable set or an independent set) is a set of
vertices that are pairwise adjacent (nonadjacent). The clique number w(G) (independence
number a(G)) of a graph G is the size of a largest clique (stable set) in G. A triad is a
stable set of size 3. A k-vertex coloring of a graph G is a function ¢ : V(G) — {1,2,...,k}
such that for any adjacent vertices v and w, we have ¢(v) # ¢(w). A vertex coloring of
a graph G is a k-vertex coloring of G for some k. The chromatic number of GG, denoted
by x(G), is the minimum number & such that G admits a k-vertex coloring. A graph is
(G1,Gs, ..., Gg)-free if it does not contain any graph in {Gq, G, ...,Gy} as an induced
subgraph.

Clearly, for every graph G, we have x(G) > w(G). In 1955, Mycielski constructed an
infinite sequence of graphs G,, with w(G,) = 2 and x(G) = n for every n [9]. Thus, in
general, there is no function of w(G) that gives an upper bound for x(G); however, there
do exist such upper bounding functions for some restricted classes of graphs. To be precise,
if G is a class of graphs, and there exists a function f (called x-binding function) such
that x(G) < f(w(G)) for all G € G, then we say that G is x-bounded; and is linearly x-
bounded if f is linear. The field of x-boundedness is primarily concerned with determining
which forbidden induced subgraphs G1, G, . .., Gy give xy-bounded classes, and finding the
smallest x-binding functions for these classes. It is known that if none of G, Gs, ..., Gy
is acyclic, then the class of (Gy, Ga, ..., Gg)-free graphs is not y-bounded [11]. Gyarfas
[6] and Sumner [12] both independently conjectured that for every tree T', the class of
T-free graphs is y-bounded. Gydrfas [6] showed that the class of K ,-free graphs is x-
bounded and its smallest y-binding function f satisfies R(t’%rll)_l < f(w) < R(t,w), where
R(m,n) denotes the classical Ramsey number. A famous result of Kim [8] shows that the
Ramsey number R(3,t) has order of magnitude O(t?/logt). Thus for any claw-free graph
G, we have x(G) < O(w(G)?/logw(G)). Further, it is known that there exists no linear
x-binding function for the class of claw-free graphs; see [11]. More precisely, for the class
of claw-free graphs the smallest y-binding function f satisfies f(w) € O(w?/logw). The
first author and Seymour [4] studied the structure of claw-free graphs in detail, and they
obtained the tight x-bound for claw-free graphs containing a triad [5]. That is, if G is
connected and claw-free with a(G) > 3, then x(G) < 2w(G).

The class of fork-free graphs generalizes the class of claw-free graphs. The class of
fork-free graphs is comparatively less studied. Kierstead and Penrice showed that fork-
free graphs are x-bounded [7]. However, the best x-binding function for fork-free graphs
is not known, and an interesting question of Randerath and Schiermeyer [11] asks for the
existence of a polynomial y-binding function for the class of fork-free graphs. Randerath,
in his thesis, obtained tight y-bounds for several subclasses of fork-free graphs [10]. Here
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we are interested in linearly y-bounded fork-free graphs. Recently the first author with
Cook and Seymour [2] studied the structure of (fork, anti-fork)-free graphs and showed a
linear x-binding function for this class of graphs. Since the class of (3K, 2K5)-free graphs
does not admit a linear y-binding function [1], if G is a linearly x-bounded class of (fork,
H)-free graphs with |V (H)| = 4, then H € {P;,Cy, K4, Ky —e, K1 3,paw}. When H = P,
then every (fork, P;)-free graph G is again Pj-free, and it is well known that every such
G satisfies x(G) = w(G); when H € {Ky, Ky — e, paw}, it follows from the results of [10]
that every (fork, H)-free graph G satisfies x(G) < w(G) + 1, and from a result of [2] that
every (fork, K, 3)-free graph G satisfies x(G) < 2w(G). Thus the problem of obtaining a
(best) linear y-binding function for the class of (fork, Cy)-free graphs is open.

In this paper, we show that every (fork, Cy)-free graph G satisfies x(G) < {%-‘ To

do this, we need to achieve three major steps:

e First, we obtain a structure theorem for the class of (fork, Cy)-free graphs that uses
the class of (claw, Cy)-free graphs as a basic class (Section 3).

e Next, we prove a new structure theorem for the class of (claw, Cy)-free graphs that
are not quasi-line graphs (Section 4).

e Finally, we prove our (%ﬂ -bound for the chromatic number via these structure
theorems with additional work on coloring basic classes (Section 5).

2 Notation and terminology

Given a vertex v € V(G), we say the neighborhood of v, Ng(v), is the set of neighbors
of v; the non-neighborhood of v, M (v), is the set of non-neighbors of v; and the degree
of v, dg(v) = |Ng(v)|; we may write N(v), M(v) and d(v) when the relevant graph is
unambiguous. We write N|[v] to denote the set N(v) U {v}, and Mv] to denote the set
M(w)U{v}. If S C V(G), then N(S) is the set U,esN(v) \ S, and M(S) is the set
UpesM (v) \ S.

Given S C V(G), we define a(S) to be a(G[S]). A vertex v in G is important if for
all w € V(G), a(N(v)) 2 a(N(w)). A vertex v in G is a root of a claw if v has neighbors
a,b,c in G such that {v,a,b,c} induces a claw in G. A vertex v in a graph G is good if

da(v) < Fw—gﬂ —1

Given disjoint vertex sets S,T, we say that S is complete to T if every vertex in S
is adjacent to every vertex in T'; we say S is anticomplete to T if every vertex in S is
nonadjacent to every vertex in T'; and we say S is mized on T if S is not complete or
anticomplete to T. When S = {v} is a single vertex, we can instead say that v is complete
to, anticomplete to, or mixed on T. A vertex v is called universal if it is complete to
V(G)\{v}. A vertex set S in G is homogeneous if 1 < |S| < |V(G)| and for every v & S,
v is complete to S or anticomplete to S. A homogeneous clique is a homogeneous set that
is a clique. A clique cutset is a clique S in G such that G[V(G) \ S] has more components

than G.
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We say that disjoint vertex sets Y, Z are matched (antimatched) if each vertex in Y
has a unique neighbor (non-neighbor) in Z and vice versa. Note that if Y and Z are
matched or antimatched, then |Y| = |Z|.

A graph H is called a thin candelabrum (with base Z) if its vertices can be partitioned
into nontrivial disjoint sets Y, Z such that Y is a stable set, Z is a clique, and Y and Z
are matched. Candelabra, which were introduced by Chudnovsky, Cook, and Seymour
in [2], are a generalization of thin candelabra. In this work we deal only with thin
candelabra, and henceforth use “candelabrum” to mean “thin candelabrum.” One can
add a candelabrum to a graph G via the following procedure: Let H be a candelabrum
with base Z. Take the disjoint union of G and H, then add edges to make Z complete to
V(G). We refer to this construction procedure as candling the graph G. We say that a
graph G is candled if it can be constructed by candling some induced subgraph Gy C G.

An anticandelabrum with base Z is the complement of a candelabrum with base Z.
We say that a graph G is anticandled if G is candled. We will refer to the analogous
construction procedure as anticandling. Anticandling can also be thought of as adding an
anticandelabrum H with base Z to a graph, so that Z is anticomplete to the graph and
V(H) \ Z is complete to the graph.

A graph G is a quasi-line graph if for every vertex v, the set of neighbors of v can be
expressed as the union of two cliques.

Figure 1: Icosahedron

The icosahedron is the unique planar graph with twelve vertices all of degree five; see
Figure 1.

A blowup of a graph H is any graph G such that V(G) can be partitioned into |V (H)|
(not necessarily non-empty) cliques Q,, v € V(H), such that @, is complete to @, if
wv € E(H), and @, is anticomplete to Q, if uv ¢ E(H).

We say that a graph G is a crown (see Figure 2) if V(G) can be partitioned into eleven
sets @1, ...,Q10 and M such that the following hold.

e Each ); is a clique.
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Figure 2: Schematic representation of a crown. Each circle represents a set. Each @Q); is
a clique. A line between two sets means that the two sets are complete to each other, a
dotted line between the two sets means that the edges between the two sets are arbitrary,
and the absence of a line between two sets means that the two sets are anticomplete to
each other.

e For i € {1,2,...,7}, Q; is complete to Q;11; @1 U Q2 is complete to Qg; Q4 is
complete to Qg; Q9 is complete to Q2 U Q3 U Q7 U Qs U Q19; Q19 is complete to
Q3 U Q4 U Qg U Qr; the set of edges between ()7 and ()5 is arbitrary; and there are
no other edges between @); and Qy, where j, k € {1,2,...,10} and j # k.

e The set M is anticomplete to (U;2,Q;) \ (Q1 U Qs), and the set of edges between
Q1 U Qs and M is arbitrary.

3 Structure of (fork, C,)-free graphs

In this section, we obtain a structure theorem for the class of (fork, Cy)-free graphs that
uses the class of (claw, Cy)-free graphs as a basic class.

Theorem 1. Let G be a (fork, Cy)-free graph. Then at least one of the following hold:

e (G is not connected.

e (G contains a universal verter.

e (G contains a homogeneous clique.

e (G is candled or anticandled.

o (7 is claw-free.
Proof. Let G be a (fork, Cy)-free graph. Suppose that G is a connected graph which has
no universal vertex, no homogeneous clique, and that G contains a claw. We show that

G is either candled or anticandled. Let v € V(G) be an important vertex. Then since G
is not claw-free, there is some claw rooted at v. Let L(v) C N(v) be the leaves of claws

ot
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rooted at v and let @) denote the set N(v) \ L(v). So if S is a maximum stable set in
N (v), then S C L(v). Since v is not a universal vertex, M (v) is not empty. Then we have
the following:

(1) L(v) is anticomplete to M (v).

Proof of (1): Suppose x € M(v) has a neighbor a in a triad {a,b,c} C L(v). Since
{v,a,z,b} and {v,a,x,c} do not induce Cys, = is not adjacent to b or c¢. But then
{z,a,v,b,c} induces a fork, a contradiction. So (1) holds. ¢

Let @Q1(v) be the maximal subset of ) that is anticomplete to M(v), and let Qy(v) :=
N(M(v))NQ=Q\ Qi(v).
(2) If t € @ is complete to L(v), then t € Q1(v).

Proof of (2): Suppose t € @ is complete to L(v). If t has a neighbor x € M (v), then,
by (1), a(N(t)) > a(N(v)), a contradiction to the fact that v is an important vertex.
So (2) holds. ¢

(3) Q2(v) is a clique, and @1 (v) is complete to Q2(v).

Proof of (3): Suppose to the contrary that there are nonadjacent vertices t € Q2(v)
and ¢ € Q1(v) U @Q2(v). Let x € M(v) be a neighbor of t. Then since {v,t,z,t'}
does not induce a Cy, t' is not adjacent to x. By (2), t has a non-neighbor a € L(v).
By (1), a is not adjacent to x. Then since {z,t,v,t',a} does not induce a fork, ¢ is
adjacent to a. Let b,c¢ € L(v) be such that {v,a,b,c} induces a claw. Again by (1), z
is anticomplete to {b, c¢}. Now since t,t’ & L(v), we see that ¢ and t' are each adjacent
to at least two vertices in {a, b, c}. Thus ¢ is adjacent to b and ¢, and we may assume
that ¢’ is adjacent to b. Then since {t,b,t’, c} does not induce a Cy, t’ is not adjacent
to ¢. But then {t',b,t, ¢, 2} induces a fork, a contradiction. So (3) holds. ¢

(4) @ is a clique.

Proof of (4): By (3), it is enough to show that Q;(v) is a clique. Suppose to the
contrary that there are nonadjacent vertices in Q1 (v), say ¢t and ¢'. Since M (v) # @
and since G is connected, there exists a vertex x € M(v) which has a neighbor
w € Q2(v). By (3), w is complete to {¢,#'}, and by the definition of @Q;(v), x is
anticomplete to {t,#'}. By (2), w has a non-neighbor a € L(v). Then by (1), z is not
adjacent to a. Now since {a,t,t',w,x} does not induce a fork and {a,t,w,t'} does

not induce a Cy, we see that a is anticomplete to {t,¢'}. But then {v,a,t,t'} induces
a claw, contradicting ¢,#' ¢ L(v). So (4) holds. ¢

(5) If C is a connected component of M (v), every t € N(v) is complete or anticomplete
to C. In particular, C' is a homogeneous set or a singleton.

Proof of (5): Suppose not. Then since G is connected, we may assume that there are
adjacent vertices z,y € V(C), and there exists a vertex ¢ € N(v) which is adjacent
to « and not adjacent to y. By (1) and by our definition of Q1 (v), t &€ L(v) U Q1(v).
So t € Q2(v). Then since t ¢ L(v), t is adjacent to at least two vertices in any given
triad {a, b, c} C L(v); we may assume a,b € N(t). Then {y,x,t,a,b} induces a fork,
a contradiction. So (5) holds. ¢
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(6) If C is a connected component of M (v), then V(C) is a clique.

Proof of (6): Since G is connected, there is some t € N(V(C)). Asin (5), t € Q2(v).
So, by (2), t has a non-neighbor a € L(v). Now if there are nonadjacent vertices x
and y in V(C), then, by (5), we see that {a,v,t,x,y} induces a fork. So any two
vertices in V(C) are adjacent, and hence V(C') is a clique. ¢

(7) M(v) is a stable set.

Proof of (7): Since G has no homogeneous cliques, the proof of (7) follows from (5)
and (6). ¢

(8) Each vertex in Q2(v) has at most one neighbor in M (v).

Proof of (8): Suppose to the contrary that ¢ € Q(v) has two neighbors in C, say
x and y. Then by (7), z and y are not adjacent. Since t € Q2(v), by (2), t has a
non-neighbor a € L(v). But then {a,v,t,z,y} induces a fork, a contradiction. So (8)
holds. ¢

(9) Every vertex in ) has a non-neighbor in L(v).

Proof of (9): Suppose to the contrary that there exists a vertex ¢ € () which is
complete to L(v). Then by (2), t € Q1(v). But then by (4), and by the definition of
Q1(v), {v,t} is a homogeneous clique in G, a contradiction to our assumption that G
has no homogeneous cliques. So (9) holds. ¢

We now prove the theorem in two cases. Suppose that |M(v)| > 1. Then we have the
following.

Claim 2. Any a € L(v) is either complete to Q2(v) or anticomplete to Qq(v).

Proof of Claim 2: Suppose to the contrary that there exists a vertex a € L(v) which is
mixed on ((v). Then by using (3), there are adjacent vertices ¢ and ¢’ in Q2(v) such
that a is adjacent to t and a is not adjacent to ¢. Let x € M(v) be a neighbor of ¢
and let ' € M(v) be a neighbor of #'. If z # z’, then by using (7) and (8), we see that
{z',t',t,x,a} induces a fork. So we may assume that x = 2’. Then since |M(v)| > 1,
there exists a vertex y € M(v) (which is distinct from = and '), and so there exists a
vertex ¢ € (Qa(v) which is adjacent to y. Then by using (7), (8) and (3), we see that
either {z, ' t",y,a} or {y,t" t,x,a} induces a fork, a contradiction. ¢

By Claim 2, we partition L(v) into two sets as follows: Let L;(v) denote the set
{a € L(v) | a is complete to Q(v)} and let Lo(v) denote the set L(v) \ Li(v) := {a €
L(v) | a is anticomplete to Q2(v)}. Then by (9), Lo(v) # &. Fix a vertex x € M(v), and
let ¢ € Q2(v) be a neighbor of z. Then we have the following.

Claim 3. Ly(v) is anticomplete to Ly(v).

Proof of Claim 3: Suppose to the contrary that there are adjacent vertices ¢ € Ly(v) and
d € Lo(v). Then by definitions of Ly(v) and L;(v), we have ¢ is adjacent to ¢, and d is not
adjacent to t. Let {a,b} C L(v) be such that {a,b,c} is a triad in L(v). Since t ¢ L(v),
we may assume that ¢ is adjacent to a. By (1), x is anticomplete to {a, b, ¢, d}. Then since
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{a,t,c,d} does not induce a Cy, a is not adjacent to d. But then {d,c,t,x,a} induces a
fork, a contradiction.

Claim 4. Ly(v) is a clique.

Proof of Claim 4: If there are nonadjacent vertices a and b in Lo(v), then {z,t,v,a,b}
induces a fork, a contradiction. ¢

Consider a maximum stable set S C N(v); then S C L(v). We have |S N Ly(v)| = 1,
because Ly(v) is a clique component of L(v) (by Claim 3 and Claim 4). So |[S N Ly(v)| =
|S|—1. A maximum stable set in N(t) is (SN Ly (v)) U{x}, which has size |S| = a(N(v)).
Therefore, a(N(t)) = a(N(v)), so t is also an important vertex. So M (t) is a stable set,
by (7). Since Lo(v) is a nonempty component of M(t), it is a singleton, say Lo(v) := {l}.
Then we have the following claim.

Claim 5. Ly(v) = {l} is anticomplete to Q1(v).

Proof of Claim 5: Suppose that there exists a vertex ¢ € (1(v) which is adjacent to [.
Then by (3), t and ¢ are adjacent, and by the definition of Lg(v), [ and ¢ are not adjacent.
Now by (9), ¢ has a non-neighbor, say a € L(v). Then a € Ly(v), and hence a is adjacent
to t. Also by Claim 3 and (1), a is anticomplete to {l,x}. But then {l,¢,¢,z,a} induces
a fork, a contradiction. {

Claim 6. No two vertices in Q2(v) share a common neighbor in M (v).

Proof of Claim 6: Suppose that there are vertices ¢ and ¢’ in QQ2(v) which have a common
neighbor =/ € M(v). Then by (4) and (8), since {t',t"} is complete to (Q \ {t,¢"}) U
Li(v) U {v,2'}, and is anticomplete to Lo(v) U (M(v) \ {z'}), {t/,t"} is a homogenous
clique, a contradiction to our assumption that G has no homogenous cliques.

Now let Z denote the set {v} U Qa(v). Since M(Q2) C M(v) U {l}, we have M (Z) =
M(v) U {l}. Then by (4), we see that Z is a clique. By (1) and (7), M(Z) is a stable
set which is anticomplete to V(G) \ (Z U M(Z)). By Claim 6 and (8), Z and M(Z) are
matched. Thus we conclude that G is candled.

So we may assume that every important vertex in GG has exactly one non-neighbor.
In this case, we claim that G is anticandled. Let Y = Q2(v) U {v}. Then by (3), YV is a
clique. Let m be the unique vertex in M (v). Then there exists a vertex t € Q2(v) such
that ¢ is adjacent to m. If S is a maximum stable set in N(v), then by (1), SU {m} is
a stable set of size (N (v)) + 1. Since t ¢ L(v), t is adjacent to at least |S| — 1 of the
vertices in S, so a(N(t)) = |S| = a(N(v)). So every vertex t € QQ(v) is important and
hence by assumption has a unique non-neighbor.

Since {t¢,t'} is not a homogeneous clique, for any ¢,¢ € Y, they do not share a
non-neighbor. Therefore, each vertex in M(Y') has a distinct non-neighbor in Y, so in
particular M (Y') and Y are antimatched.

Consider distinct m,m’ € M(Y') with respective non-neighbors ¢,¢" € Y. Then since
{m/,m,t,t'} does not induce a Cy, m and m’ are not adjacent. Thus M (Y) is stable.

Suppose m € M(Y') has a neighbor u. Let t € Y be a non-neighbor of m; then since
u is adjacent to the unique non-neighbor of ¢, we have by (1) that u € Q(t). Then wu is
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important, so by assumption u has a unique non-neighbor. Thus u ¢ L(v), since it is not
part of a triad. Moreover, by (9), every vertex in (J1(v) has a non-neighbor in L(v), so
has at least two non-neighbors. Then u € Q;(v). Thus, u € Y. So M(Y') is anticomplete
to V(G)\ (Y UM(Y)).

Hence we conclude that Y UM (Y") induces an anticandelabrum with base M (Y'), with
G\ (YUM(Y)) complete to Y and anticomplete to M(Y').

This completes the proof of the theorem. O

Corollary 7. Let G be a connected (fork, Cy)-free graph. Then G is claw-free or G has a
universal vertex or G has a clique cutset.

Proof. Let G be a (fork, Cy)-free graph. Suppose that G has no universal vertex, and no
clique cutset. We show that G is claw-free. Suppose to the contrary that G contains a
claw. Let v € V(G) be an important vertex. Let L(v) C N(v) be the leaves of claws
rooted at v and let @ denote the set N(v) \ L(v). So if S is a maximum stable set in
N(v), then S C L(v). Since v is not a universal vertex, M (v) is not empty. Let ()1 be the
maximal subset of @) that is anticomplete to M (v), and let Q3 := N(M(v))NQ = Q \ Q.
Then it follows from Theorem 1 (See item (3) and note that items (1)—(3) hold regardless
of whether G has a homogeneous clique or not.) that ) is a clique. But then we see that
Q- is a clique cutset separating {v} and M (v) which is a contradiction. This completes
the proof. n

4 Structure of (claw, Cy)-free graphs

In this section, we obtain a structure theorem for the class of (claw, Cy)-free graphs that
are not quasi-line graphs. A graph is chordal if it does not contain any induced cycle of
length at least four.

Theorem 8. Let G be a connected (claw, Cy )-free graph. Then at least one of the following
hold:

e (G has a clique cutset.

e GG has a good vertez.

o (G is a quasi-line graph.

G is a blowup of the icosahedron graph.
e G is a crown with |M U QU Q5| < |[V(G)|.

Proof. Let G be a connected (claw, Cy)-free graph. We may assume that G has no clique
cutset. Let v € V(G). First suppose that G[N(v)] is chordal. Then since G is claw-free,
G[N(v)] is a chordal graph with no triad. Since the complement graph of a chordal graph
with no triad is a bipartite graph, we see that N(v) can be expressed as the union of two
cliques. Since v is arbitrary, G is a quasi-line graph. So we may assume that G[N(v)] is
not chordal and hence G[N(v)]| contains an induced CYy for some k > 5. Since a(Cy) > 3
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for k > 6, and since G is (claw, Cy)-free, we have k = 5. That is, G[N(v)] contains
an induced Cj, say C:= v1-v9-v3-v4-v5-v;. Let T denote the set {z € V(G) \ V(C) |
N(z)nV(C)=V(C)}, let R denote the set {x € V(G)\V(C) | N(z)nV(C) =@}, and
for each 7 € {1,2,...,5}, i mod 5, let:

A; = {2z e V(G)\V(O) | N(z)NV(C) = {vi,vit1 }},
B, == {z€V(G)\V(C)|N@)NV(C) = {v,1, v, vis1}} U {v;}.

Let A:= A U---UA5and B := By U---U Bs5. Note that v € T, and so T' # @. Then
the following properties hold for each ¢ € {1,2,...,5}, i mod b5:

(1) V(G)=AUBUTUR.
Proof of (1): Suppose that there is a vertex x € V(G) \ (AU BUT U R). Then for
some 4, either N(z) NV (C) = {v;} or {v;_1,vi11} € N(x) NV (C) with v; ¢ N(z).
But then {v;,v;_1,x,v;41} induces either a claw or a Cy. ¢

(2) A; and B; UT are cliques.

Proof of (2): Let i = 1 and suppose that there are nonadjacent vertices z and y in one
of the listed sets. If x,y € Ay, then {vy,z,y,vs} induces a claw, and if x,y € B; UT,
then {x,vs,y,vo} induces a Cy. O

(3) A; is anticomplete to T'.

Proof of (3): If there are adjacent vertices a € A; and t € T, then {t,v;_1,v;10,a}
induces a claw. ¢

(4) Az is complete to Ai—l U Ai+1 U Bz U Bi+1'

Proof of (4): By symmetry, it suffices to show that A; is complete to A; 11 U B;y;.
Suppose that there are nonadjacent vertices v € A; and y € A; 1 UB;. 1. If y € A; 1,
then {z,y} is anticomplete to v (by (3)), and then {v;y1,v,z,y} induces a claw. So
y € Bi11. Then {v;,v;_1,z,y} induces a claw. ¢

(5) A; is anticomplete to Ao U A; o U Bjio U B; 1 U B;_s.

Proof of (5): By symmetry, it suffices to show that A; is anticomplete to A; oUB; o U
B;_5. Suppose that there are adjacent vertices x € A; and y € A;1 o U Biyo U B; 9. If
y € AjroUB;_o, then {x,v;11,v;12,y} induces a Cy. So y € Bjys. Now since z is not
adjacent to v (by (3)), and y is adjacent to v (by (2)), we see that {z,v;,v,y} induces
a 04. <>

(6) B is complete to By 1 U B;_;.

Proof of (6): By symmetry, it suffices to show that B; is complete to B;yq. If there
are nonadjacent vertices x € B; and y € B;;1, then {z,y} is complete to v (by (2)),
and then {v,v; o, x,y} induces a claw. ¢

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(2) (2021), #P2.20 10



(7) B; is anticomplete to B o U B;_s.

Proof of (7): If there are adjacent vertices x € B; and y € B;o U B;_5, then either
{z,v;_1,vi_0,y} or {x,v;11,Vi12,y} induces a Cy. O

(8) If r € R, then N(r)N(BUT) =

Proof of (8): If there is a vertex € N(r) N (B UT), then for some 4, {v;_1,v;41} C
N(z)NV(C), and then {z,v;_1,v;11,r} induces a claw. O

(9) Any r € R which has a neighbor in A; is complete to A;;1 U A; 1.

Proof of (9): Let r € R be such that r has a neighbor a € A;. If r is not adjacent
to a vertex b € A;11 U A;_1, then since a is adjacent to b (by (4)), we see that either
{a,r,v;,b} or {a,r,v;11,b} induces a claw. ¢

(10) If A; and Ay, are not empty, for some 4, then any » € R which has a neighbor in
Ai U Ai—l—l U Ai—l is complete to Az U Ai—i—l U Ai—l-

Proof of (10): This follows from (4) and (9). ¢

If R is empty, then by above properties we see that G is a blowup of the icosahedron
graph, where we set Ql = Bl, Qg = Bg, Qg = B37 Q5 = B4, QG = B5, Q7 = T,
Q2 = A1, Q3 1= Ay, Qq:= Az, Q11 := Ag and Q12 := As.

So we may assume that R # @. Then by (8), A # @. Since G has no clique cutset,
using (4) and (10), we may assume that there exists an index ¢ such that A; and A;,, are
not empty, say ¢ = 1. Now if Ay # &, then by (10) and since G is claw-free, any r € R
is complete to A. Moreover, since GG is Cy-free, R is a clique. So again G is a blowup of
the icosahedron graph, where we set Q)1 := By, Qs := Bg, Q9 := B3, Q5 := By, Q¢ := Bs,
Q7 =T, Q= Ay, Q3 := Ay, Q4 := A3, Q11 := Ay, Q12 := A5 and Q1o := R. So we may
assume that A, =

Next suppose that Ay U A5 = &. In this case, we show that one of the vertices vy or
V5 18 good Suppose not. Then since T'U By U By and T'U B4 U Bj are cliques, we see that
|By| > G) and |By| > £52. Since vy is not a good vertex and since A; U By U By is a

clique, we have |T'U Bs| > w(G . Then we see that T'U B3 U By is a clique of size > w(G)
which is a contradiction. Thus one of the vertices vy or v is good.

So we may assume that A; # @ and Ay = @. Let R be the set {r € R | r has
a neighbor in A; U A5}, and let R” be the set R\ R'. Then by (10), R’ is complete
to Ay U As. Also if there are nonadjacent vertices r,r7, € R, then for any a € Ay,
{ry,r2,v9,a} induces a claw, and so R’ is a clique. Now by above properties we see that
G is a crown, where we set Q1o := By, Q7 := Bs, Qg := B3, Q2 := By, Q3 := Bs, Qg :="T
Qo := Ay, Q1 := A3, Q4 := As, Q5 := R and M := R". Since A; # &, it follows that
IMUQ,UQs| < |V(G)|.

This completes the proof of the theorem. n

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(2) (2021), #P2.20 11



5 Coloring (claw/fork, C,)-free graphs

In this section, we show that every (fork, Cy)-free graph satisfies x(G) < F’wéa)-‘ . We will

use the following known result.

Theorem 9 ([3]). If G is a quasi-line graph, then x(G) < {%W

Let [k] denote the set {1,2,...,k}. A k-list assignment of a graph G is a function
L : V(G) — 2k The set L(v), for a vertex v in G, is called the list of v. In the list
k-coloring problem, we are given a graph G with a k-list assignment L and asked whether
G has an L-coloring, i.e., a k-coloring of GG such that every vertex is assigned a color from
its list. We say that G is L-colorable if G has an L-coloring. We say that a graph F' with
list assignment L is L-degenerate if there exists a vertex ordering vy, ..., v, of V(F') such
that each v; has at most |L(v)| — 1 neighbors in {v1,...,v;_1} for 1 < i < n. Clearly, if a
graph is L-degenerate, then it is L-colorable.

Lemma 10. Suppose that G is a crown and k > 1 be an integer. If ¢ : MUQ1UQ5 — S
with |S| = [%] is a vertex coloring of GIM U Q1 U Q5] and w(G — M) < k, then x(G) <
k

%]

Proof. We prove the lemma by induction on k. If £ = 1, then any non-trivial component
of G is an induced subgraph of G[M U Q; U Q5] and the lemma holds. We now assume
that £ > 2 and the lemma holds for any positive integer smaller than k. Let H =
G — (M UQ;UQs). Note that, for each ¢ € {1,2,...10} \ {1,5}, any two vertices in @Q;
have the same degree in H. Let L be the list assignment of H such that

S\ (@) ifveQUQs,
L(’U) =<5 \ ¢(Q5) ifve Q4 U Q6>
S if v e Q3UQ7UQyU Q.

Note that if H is L-colorable, then x(G) < [2]. Since |Q1]+|Q2|+|Qs] < w(G—M) < k,

it follows that for any v € Q2 UQs, |[L(v)| = [S] —|Q1] = [2] — Q1] = |Qa| +|Qs| + [£] .
Similarly, for any v € Q4 U Qg, |L(v)| = |Qu| + |Qs| + [£]. Next, we claim that:

We may assume that: Qg # @. Likewise, Q19 # <. (1)

Proof of (1): Suppose that Q9 = @. Since |Qs] + |Qs| < k, one of Q3 and Qg has
size at most %, say Q> by symmetry. Then for any v € Q3, it follows that dp(v) =
Q3 UQsUQuol =1+ Q2] < (k—1)+ Q2] <% — 1. If |Qs] < &, then dy(v) < % -1
for any v € @)7. This implies that H is L-degenerate with the ordering of the vertices
Q2, Q4, Qs, Qs, Qro, Q3,Q7. (It does not matter which vertex comes first in @;.) So
|Qs| > £. This implies that |Q7] < £. Then for any v € Qs, it follows that dp(v) =
Q2] + Qs — 1+ Q7| < Q2] +1Qs| — 1+ & < |L(v)|. So H is L-degenerate with the

Ordering Q27 Q47 Q67 QlO: Q7> QS? Q?)' This proves (1) <>
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Next:
We may assume that Q)3 # @. Likewise, Q7 # @. (2)

Proof of (2): Suppose Q3 = . If |Q7 U Qo| < £, then for any v € Q2 U Qs, it follows
that dy(v) < |Qo] + |Qs| — 14+ 5 < |L(v)|. Then H is L- degenerate with the ordering
Q4, Qs, Q10, Q7, Qg, Qg, Q2. So We assume that |Q7UQ9| > 5 By symmetry, |Q7 UQ10| >

. This implies that each of Qg, Qs, @9, Q1o has size less than 2. Since (3 = @, for any
ve Qz, du(v) = Qs +[Qs| + Qo] =1 < Q2] + Qs + 5 —1 < |L( )|- By symmetry, for
any v € Q4, dg(v) < |L(v)|. Moreover, each vertex in Qg U Q10 has degree at most % —
in H— (QyUQy4). So H is L-degenerate with the ordering Qg, Qg, Q7, Q10, Qg, Q4, Q2.
This proves (2). ¢

Moreover:

We may assume that (Q; # @. Likewise, (04, Qg, Qs are nonempty. (3)

Proof of (3): Suppose Q2 = @. If |Qq| < £, then for any v € Qs it follows that dy(v) <

— 1. Then as in the proof of (2), H — Q)3 is L-degenerate and thus H is L-degenerate.
So |Qg| > g This implies that |Q; U Q19| < % for i € {3,7}. This implies that, for any
v € QuUQs, dy(v) < |Qu|+1Qs| —1+% < |L(v)|. So H is L-degenerate with the ordering
Qs, Q7, Qo, Q1o, @3, Qu, Qs. This proves (3). ¢

By (1), (2) and (3), we conclude that for each ¢ € {1,2,...,10} \ {1,5}, @, contains
at least one vertex, say ¢;. In particular, this implies that & > 3, [¢(Q1)| < k — 2 and
|6(Q5)] < k — 2. Next we claim that:

There are three distinct colors c¢;,co,c3 € S such that ¢; € ¢(Q1), co &
o(Qs), either Q1 = @ or [{c,c3} Nd(Q1)] = 1, and either Q5 = @ or  (4)
[{c1, e} No(@s)] = 1

Proof of (4): Since |¢(Q1)| < k —2 and |S| = [3], there are at least [3] —k+2 >4
colors in S that are not in ¢(Q;). Similarly, there are at least 4 colors in S that are not
in ¢(Qs).

First suppose that ¢(Q1) N ¢(Qs) # D. Let ¢35 € ¢(Q1) N d(Q5). Now we choose a
color ¢; € S\ ¢(Q1), and then a color cs € S\ ¢(Q5) with ¢ # cl. Clearly, ¢q, ¢y and c3
are the desired colors. So we may assume that ¢(Q1) N@(Q5) =

If Q1 = Q5 = I, then any three colors ¢y, ¢y, c3 € S are the desnred colors. If Q1 = @
and Q5 # &, then we choose ¢3 € ¢(Qs5), and then choose a color ¢, € S\ ¢(Q5), and
finally choose a color ¢; € S\ {cz, c3}. Clearly, ¢1,co and ¢z are desired colors. If Q1 # @
and Q5 = I, we can choose the three colors in a similar way. Finally, we assume that
Q1,Q5 # . Then it is possible to pick a color ¢3 € ¢(Q1) and a color ¢; € ¢(Q5). Since
d(Q1)Nd(Qs) = @, it follows that ¢; # ¢3 and ¢; ¢ ¢(Q1). Moreover, |{ca, c3}NP(Q1)| = 1
and [{c1,c3} N@(Q5)| = 1 by the choice of ¢; and ¢3. Since there are at least 4 colors in
S that are not in ¢(Qs), we can choose such a color ¢z ¢ {c1, 3}

Thus, in all the cases, we have found the required colors, and the proof of (4) is
complete. ¢
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Now for each j € {1,2,3}, let T; = {r € MU Q,UQs5 | ¢(x) = ¢;}. Let I; =
T U{q, qo}, L2 :=To U {qs,q}, and I3 := T35 U {qs,q7}. It follows from (4) that I, I
and I3 are three pairwise disjoint independent sets. Moreover, ¢ restricted to (M U QU
Q5) \ (T1 UTy, UT3) maps to S\ {c1, ¢a, c3} with

3k

19\ {erenreal] = |5 — 3 = H 3 [

2

Let G/ =G -— (Il UIQ U.Zg), and M' = M — (Tl UT2 UTg) By (4)7 it follows that G/ — M’
is obtained from G' — M by deleting {¢2, ¢, g6, 7, @9, q10} and at least one vertex in @); if
Q; # @ for each j € {1,5}. Therefore,

wG@ -—M)<wG@-M)-2< k-2

Now by the inductive hypothesis,

X(G) < x(G") +3< [@w +3= {%W :

This proves Lemma 10. O]

Lemma 11. Let G be a blowup of the icosahedron. Then x(G) < {@-‘

Proof. Let I be the icosahedron graph with vertex labels as in Figure 1. Let GG be a blowup
of the icosahedron I. We prove the lemma by induction on |V(G)|. Let w = w(G). We
may assume that w > 2. Let @; be the clique corresponding to the vertex ¢ € V(I).
Let X be a subset of V(G) obtained by taking min{l,|Q;|} vertices from @, for each
i € {1,2,...,12}. Clearly, G[X] is an induced subgraph of the icosahedron, and so
X(G[X]) < 4. First suppose that w(G — X) > w — 2. Then there are two indices
i,j € {1,2,...,12} such that Q; U@, is a clique of size w. Since the icosahedron is edge-
transitive, we may assume that i = 10 and 7 = 11. Since Q,UQ10UQ11 and Q10UQ11UQ12
are cliques, we conclude that Q4 and Q)15 are empty. Then we see that G is a crown (with
M = @, and Q10 and ()11 being Q1 and ()5 in the definition of the crown), and the lemma
follows from Lemma 10. So suppose that w(G — X) < w — 3. Then by induction, we have

X(G—X) < {w—‘ < [@W = [2 — 2], Since x(G) < x(G — X) + x(G[X]), we

have x(G) < {37‘”] This proves Lemma 11. ]

Theorem 12. Let G be a (claw, Cy)-free graph. Then x(G) < [%-‘

Proof. Let G be a (claw, Cy)-free graph. By Theorem 9, we may assume that G is not a
quasi-line graph. We prove the theorem by induction on |V (G)|, and we apply Theorem 8.
If G has a clique cutset K, let A, B be a partition of V(G) \ K such that both A, B are
non-empty, and A is anticomplete to B. Clearly x(G) = max{x(G[KUA]), x(G[KUB])},
so the desired result follows from the induction hypothesis on G[K U A] and G[K U B].

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(2) (2021), #P2.20 14



If G has a good vertex u, then by induction, x(G —{u}) < {MW Now consider
any x(G — {u})-coloring of G — {u} and extend it to a [#W -coloring of G, using for u

a (possibly new) color that does not appear in its neighborhood.
If GG is a blowup of the icosahedron graph, then the theorem follows from Lemma 11.
Finally, suppose that G is a crown with |M U Q1 UQs| < |[V(G)|. By the inductive

hypothesis, let ¢ : M UQ; U Q5 — S with |S| = 2
Q1 U Qs]. It then follows from Lemma 10 that x(G) < [ (G)W O]

W be a vertex coloring of G[M U

Theorem 13. Let G be a (fork, Cy)-free graph. Then x(G) < {—BUJ;G)-‘-

Proof. Let G be any (fork, Cy)-free graph. We prove the theorem by induction on |V(G)].
If G has a universal vertex u, then w(G) = w(G — {u}) + 1, and by the induction

hypothesis, we have x(G) = x(G — {u}) + 1 < [w—‘ + 1, which implies x(G) <

3w(@)
— |-

If G has a clique cutset K, let A, B be a partition of V(G)\ K such that both A, B are
non-empty, and A is anticomplete to B. Clearly x(G) = max{x(G[KUA]), x(G[KUB])},
so the desired result follows from the induction hypothesis on G[K U A] and G[K U B].

Finally, if G has no universal vertex and no clique cutset, then the result follows from
Corollary 7 and Theorem 12. O]

We remark that we do not have any example of a (claw/fork, Cy)-free graph G such

that y(G) = {%w(Gﬂ except Cs5. However, for an integer m > 1, consider the blowup G of

the icosahedron graph I where |@Q,| = m, for each vertex v in I. Then clearly w(G) = 3m,

and since a(G) = 3, we have (G) > (G — 12m — gy — 2(0)
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