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Abstract

The claw is the graph K1,3, and the fork is the graph obtained from the claw K1,3

by subdividing one of its edges once. In this paper, we prove a structure theorem
for the class of (claw,C4)-free graphs that are not quasi-line graphs, and a structure
theorem for the class of (fork,C4)-free graphs that uses the class of (claw,C4)-free
graphs as a basic class. Finally, we show that every (fork,C4)-free graph G satisfies

χ(G) 6
⌈
3ω(G)

2

⌉
via these structure theorems with some additional work on coloring

basic classes.
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1 Introduction

All graphs in this work are finite and simple. For a positive integer n, Kn will denote
the complete graph on n vertices, and Pn will denote the path on n vertices. For integers
n > 2, Cn will denote the cycle on n vertices; the graph C4 is called a square. For positive
integers m,n, Km,n will denote the complete bipartite graph with classes of size m and
n. The claw is the graph K1,3, and the fork is the tree obtained from the claw K1,3 by
subdividing one of its edges once. A clique (stable set or an independent set) is a set of
vertices that are pairwise adjacent (nonadjacent). The clique number ω(G) (independence
number α(G)) of a graph G is the size of a largest clique (stable set) in G. A triad is a
stable set of size 3. A k-vertex coloring of a graph G is a function φ : V (G)→ {1, 2, . . . , k}
such that for any adjacent vertices v and w, we have φ(v) 6= φ(w). A vertex coloring of
a graph G is a k-vertex coloring of G for some k. The chromatic number of G, denoted
by χ(G), is the minimum number k such that G admits a k-vertex coloring. A graph is
(G1, G2, . . . , Gk)-free if it does not contain any graph in {G1, G2, . . . , Gk} as an induced
subgraph.

Clearly, for every graph G, we have χ(G) > ω(G). In 1955, Mycielski constructed an
infinite sequence of graphs Gn with ω(Gn) = 2 and χ(G) = n for every n [9]. Thus, in
general, there is no function of ω(G) that gives an upper bound for χ(G); however, there
do exist such upper bounding functions for some restricted classes of graphs. To be precise,
if G is a class of graphs, and there exists a function f (called χ-binding function) such
that χ(G) 6 f(ω(G)) for all G ∈ G, then we say that G is χ-bounded ; and is linearly χ-
bounded if f is linear. The field of χ-boundedness is primarily concerned with determining
which forbidden induced subgraphs G1, G2, . . . , Gk give χ-bounded classes, and finding the
smallest χ-binding functions for these classes. It is known that if none of G1, G2, . . . , Gk

is acyclic, then the class of (G1, G2, . . . , Gk)-free graphs is not χ-bounded [11]. Gyárfás
[6] and Sumner [12] both independently conjectured that for every tree T , the class of
T -free graphs is χ-bounded. Gyárfás [6] showed that the class of K1,t-free graphs is χ-

bounded and its smallest χ-binding function f satisfies R(t,ω+1)−1
t−1 6 f(ω) 6 R(t, ω), where

R(m,n) denotes the classical Ramsey number. A famous result of Kim [8] shows that the
Ramsey number R(3, t) has order of magnitude O(t2/ log t). Thus for any claw-free graph
G, we have χ(G) 6 O(ω(G)2/ logω(G)). Further, it is known that there exists no linear
χ-binding function for the class of claw-free graphs; see [11]. More precisely, for the class
of claw-free graphs the smallest χ-binding function f satisfies f(ω) ∈ O(ω2/ logω). The
first author and Seymour [4] studied the structure of claw-free graphs in detail, and they
obtained the tight χ-bound for claw-free graphs containing a triad [5]. That is, if G is
connected and claw-free with α(G) > 3, then χ(G) 6 2ω(G).

The class of fork-free graphs generalizes the class of claw-free graphs. The class of
fork-free graphs is comparatively less studied. Kierstead and Penrice showed that fork-
free graphs are χ-bounded [7]. However, the best χ-binding function for fork-free graphs
is not known, and an interesting question of Randerath and Schiermeyer [11] asks for the
existence of a polynomial χ-binding function for the class of fork-free graphs. Randerath,
in his thesis, obtained tight χ-bounds for several subclasses of fork-free graphs [10]. Here
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we are interested in linearly χ-bounded fork-free graphs. Recently the first author with
Cook and Seymour [2] studied the structure of (fork, anti-fork)-free graphs and showed a
linear χ-binding function for this class of graphs. Since the class of (3K1, 2K2)-free graphs
does not admit a linear χ-binding function [1], if G is a linearly χ-bounded class of (fork,
H)-free graphs with |V (H)| = 4, then H ∈ {P4, C4, K4, K4−e,K1,3, paw}. When H = P4,
then every (fork, P4)-free graph G is again P4-free, and it is well known that every such
G satisfies χ(G) = ω(G); when H ∈ {K4, K4 − e, paw}, it follows from the results of [10]
that every (fork, H)-free graph G satisfies χ(G) 6 ω(G) + 1, and from a result of [2] that
every (fork, K1,3)-free graph G satisfies χ(G) 6 2ω(G). Thus the problem of obtaining a
(best) linear χ-binding function for the class of (fork, C4)-free graphs is open.

In this paper, we show that every (fork,C4)-free graph G satisfies χ(G) 6
⌈
3ω(G)

2

⌉
. To

do this, we need to achieve three major steps:

• First, we obtain a structure theorem for the class of (fork,C4)-free graphs that uses
the class of (claw,C4)-free graphs as a basic class (Section 3).

• Next, we prove a new structure theorem for the class of (claw,C4)-free graphs that
are not quasi-line graphs (Section 4).

• Finally, we prove our
⌈
3ω
2

⌉
-bound for the chromatic number via these structure

theorems with additional work on coloring basic classes (Section 5).

2 Notation and terminology

Given a vertex v ∈ V (G), we say the neighborhood of v, NG(v), is the set of neighbors
of v; the non-neighborhood of v, MG(v), is the set of non-neighbors of v; and the degree
of v, dG(v) = |NG(v)|; we may write N(v), M(v) and d(v) when the relevant graph is
unambiguous. We write N [v] to denote the set N(v) ∪ {v}, and M [v] to denote the set
M(v) ∪ {v}. If S ⊆ V (G), then N(S) is the set ∪v∈SN(v) \ S, and M(S) is the set
∪v∈SM(v) \ S.

Given S ⊆ V (G), we define α(S) to be α(G[S]). A vertex v in G is important if for
all w ∈ V (G), α(N(v)) > α(N(w)). A vertex v in G is a root of a claw if v has neighbors
a, b, c in G such that {v, a, b, c} induces a claw in G. A vertex v in a graph G is good if

dG(v) 6
⌈
3ω(G)

2

⌉
− 1.

Given disjoint vertex sets S, T , we say that S is complete to T if every vertex in S
is adjacent to every vertex in T ; we say S is anticomplete to T if every vertex in S is
nonadjacent to every vertex in T ; and we say S is mixed on T if S is not complete or
anticomplete to T . When S = {v} is a single vertex, we can instead say that v is complete
to, anticomplete to, or mixed on T . A vertex v is called universal if it is complete to
V (G) \ {v}. A vertex set S in G is homogeneous if 1 < |S| < |V (G)| and for every v 6∈ S,
v is complete to S or anticomplete to S. A homogeneous clique is a homogeneous set that
is a clique. A clique cutset is a clique S in G such that G[V (G)\S] has more components
than G.
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We say that disjoint vertex sets Y, Z are matched (antimatched) if each vertex in Y
has a unique neighbor (non-neighbor) in Z and vice versa. Note that if Y and Z are
matched or antimatched, then |Y | = |Z|.

A graph H is called a thin candelabrum (with base Z) if its vertices can be partitioned
into nontrivial disjoint sets Y, Z such that Y is a stable set, Z is a clique, and Y and Z
are matched. Candelabra, which were introduced by Chudnovsky, Cook, and Seymour
in [2], are a generalization of thin candelabra. In this work we deal only with thin
candelabra, and henceforth use “candelabrum” to mean “thin candelabrum.” One can
add a candelabrum to a graph G via the following procedure: Let H be a candelabrum
with base Z. Take the disjoint union of G and H, then add edges to make Z complete to
V (G). We refer to this construction procedure as candling the graph G. We say that a
graph G is candled if it can be constructed by candling some induced subgraph G0 ⊆ G.

An anticandelabrum with base Z is the complement of a candelabrum with base Z.
We say that a graph G is anticandled if G is candled. We will refer to the analogous
construction procedure as anticandling. Anticandling can also be thought of as adding an
anticandelabrum H with base Z to a graph, so that Z is anticomplete to the graph and
V (H) \ Z is complete to the graph.

A graph G is a quasi-line graph if for every vertex v, the set of neighbors of v can be
expressed as the union of two cliques.

2

3

4

7

1

8

9
5

6

1011

12

Figure 1: Icosahedron

The icosahedron is the unique planar graph with twelve vertices all of degree five; see
Figure 1.

A blowup of a graph H is any graph G such that V (G) can be partitioned into |V (H)|
(not necessarily non-empty) cliques Qv, v ∈ V (H), such that Qu is complete to Qv if
uv ∈ E(H), and Qu is anticomplete to Qv if uv /∈ E(H).

We say that a graph G is a crown (see Figure 2) if V (G) can be partitioned into eleven
sets Q1, . . . , Q10 and M such that the following hold.

• Each Qi is a clique.
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M

Q2 Q3 Q4

Q6Q7Q8

Q9 Q10

...
...
...
...
. .............

. .. .. ... .. .. ... .. .. ..Q1 Q5

Figure 2: Schematic representation of a crown. Each circle represents a set. Each Qi is
a clique. A line between two sets means that the two sets are complete to each other, a
dotted line between the two sets means that the edges between the two sets are arbitrary,
and the absence of a line between two sets means that the two sets are anticomplete to
each other.

• For i ∈ {1, 2, . . . , 7}, Qi is complete to Qi+1; Q1 ∪ Q2 is complete to Q8; Q4 is
complete to Q6; Q9 is complete to Q2 ∪ Q3 ∪ Q7 ∪ Q8 ∪ Q10; Q10 is complete to
Q3 ∪Q4 ∪Q6 ∪Q7; the set of edges between Q1 and Q5 is arbitrary; and there are
no other edges between Qj and Qk, where j, k ∈ {1, 2, . . . , 10} and j 6= k.

• The set M is anticomplete to (∪10i=1Qi) \ (Q1 ∪ Q5), and the set of edges between
Q1 ∪Q5 and M is arbitrary.

3 Structure of (fork,C4)-free graphs

In this section, we obtain a structure theorem for the class of (fork,C4)-free graphs that
uses the class of (claw,C4)-free graphs as a basic class.

Theorem 1. Let G be a (fork, C4)-free graph. Then at least one of the following hold:

• G is not connected.

• G contains a universal vertex.

• G contains a homogeneous clique.

• G is candled or anticandled.

• G is claw-free.

Proof. Let G be a (fork,C4)-free graph. Suppose that G is a connected graph which has
no universal vertex, no homogeneous clique, and that G contains a claw. We show that
G is either candled or anticandled. Let v ∈ V (G) be an important vertex. Then since G
is not claw-free, there is some claw rooted at v. Let L(v) ⊆ N(v) be the leaves of claws
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rooted at v and let Q denote the set N(v) \ L(v). So if S is a maximum stable set in
N(v), then S ⊆ L(v). Since v is not a universal vertex, M(v) is not empty. Then we have
the following:

(1) L(v) is anticomplete to M(v).

Proof of (1): Suppose x ∈ M(v) has a neighbor a in a triad {a, b, c} ⊆ L(v). Since
{v, a, x, b} and {v, a, x, c} do not induce C4s, x is not adjacent to b or c. But then
{x, a, v, b, c} induces a fork, a contradiction. So (1) holds. ♦

Let Q1(v) be the maximal subset of Q that is anticomplete to M(v), and let Q2(v) :=
N(M(v)) ∩Q = Q \Q1(v).

(2) If t ∈ Q is complete to L(v), then t ∈ Q1(v).

Proof of (2): Suppose t ∈ Q is complete to L(v). If t has a neighbor x ∈M(v), then,
by (1), α(N(t)) > α(N(v)), a contradiction to the fact that v is an important vertex.
So (2) holds. ♦

(3) Q2(v) is a clique, and Q1(v) is complete to Q2(v).

Proof of (3): Suppose to the contrary that there are nonadjacent vertices t ∈ Q2(v)
and t′ ∈ Q1(v) ∪ Q2(v). Let x ∈ M(v) be a neighbor of t. Then since {v, t, x, t′}
does not induce a C4, t

′ is not adjacent to x. By (2), t has a non-neighbor a ∈ L(v).
By (1), a is not adjacent to x. Then since {x, t, v, t′, a} does not induce a fork, t′ is
adjacent to a. Let b, c ∈ L(v) be such that {v, a, b, c} induces a claw. Again by (1), x
is anticomplete to {b, c}. Now since t, t′ 6∈ L(v), we see that t and t′ are each adjacent
to at least two vertices in {a, b, c}. Thus t is adjacent to b and c, and we may assume
that t′ is adjacent to b. Then since {t, b, t′, c} does not induce a C4, t

′ is not adjacent
to c. But then {t′, b, t, c, x} induces a fork, a contradiction. So (3) holds. ♦

(4) Q is a clique.

Proof of (4): By (3), it is enough to show that Q1(v) is a clique. Suppose to the
contrary that there are nonadjacent vertices in Q1(v), say t and t′. Since M(v) 6= ∅
and since G is connected, there exists a vertex x ∈ M(v) which has a neighbor
w ∈ Q2(v). By (3), w is complete to {t, t′}, and by the definition of Q1(v), x is
anticomplete to {t, t′}. By (2), w has a non-neighbor a ∈ L(v). Then by (1), x is not
adjacent to a. Now since {a, t, t′, w, x} does not induce a fork and {a, t, w, t′} does
not induce a C4, we see that a is anticomplete to {t, t′}. But then {v, a, t, t′} induces
a claw, contradicting t, t′ 6∈ L(v). So (4) holds. ♦

(5) If C is a connected component of M(v), every t ∈ N(v) is complete or anticomplete
to C. In particular, C is a homogeneous set or a singleton.

Proof of (5): Suppose not. Then since G is connected, we may assume that there are
adjacent vertices x, y ∈ V (C), and there exists a vertex t ∈ N(v) which is adjacent
to x and not adjacent to y. By (1) and by our definition of Q1(v), t 6∈ L(v) ∪Q1(v).
So t ∈ Q2(v). Then since t 6∈ L(v), t is adjacent to at least two vertices in any given
triad {a, b, c} ⊆ L(v); we may assume a, b ∈ N(t). Then {y, x, t, a, b} induces a fork,
a contradiction. So (5) holds. ♦
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(6) If C is a connected component of M(v), then V (C) is a clique.

Proof of (6): Since G is connected, there is some t ∈ N(V (C)). As in (5), t ∈ Q2(v).
So, by (2), t has a non-neighbor a ∈ L(v). Now if there are nonadjacent vertices x
and y in V (C), then, by (5), we see that {a, v, t, x, y} induces a fork. So any two
vertices in V (C) are adjacent, and hence V (C) is a clique. ♦

(7) M(v) is a stable set.

Proof of (7): Since G has no homogeneous cliques, the proof of (7) follows from (5)
and (6). ♦

(8) Each vertex in Q2(v) has at most one neighbor in M(v).

Proof of (8): Suppose to the contrary that t ∈ Q2(v) has two neighbors in C, say
x and y. Then by (7), x and y are not adjacent. Since t ∈ Q2(v), by (2), t has a
non-neighbor a ∈ L(v). But then {a, v, t, x, y} induces a fork, a contradiction. So (8)
holds. ♦

(9) Every vertex in Q has a non-neighbor in L(v).

Proof of (9): Suppose to the contrary that there exists a vertex t ∈ Q which is
complete to L(v). Then by (2), t ∈ Q1(v). But then by (4), and by the definition of
Q1(v), {v, t} is a homogeneous clique in G, a contradiction to our assumption that G
has no homogeneous cliques. So (9) holds. ♦

We now prove the theorem in two cases. Suppose that |M(v)| > 1. Then we have the
following.

Claim 2. Any a ∈ L(v) is either complete to Q2(v) or anticomplete to Q2(v).

Proof of Claim 2: Suppose to the contrary that there exists a vertex a ∈ L(v) which is
mixed on Q2(v). Then by using (3), there are adjacent vertices t and t′ in Q2(v) such
that a is adjacent to t and a is not adjacent to t′. Let x ∈ M(v) be a neighbor of t
and let x′ ∈ M(v) be a neighbor of t′. If x 6= x′, then by using (7) and (8), we see that
{x′, t′, t, x, a} induces a fork. So we may assume that x = x′. Then since |M(v)| > 1,
there exists a vertex y ∈ M(v) (which is distinct from x and x′), and so there exists a
vertex t′′ ∈ Q2(v) which is adjacent to y. Then by using (7), (8) and (3), we see that
either {x, t′, t′′, y, a} or {y, t′′, t, x, a} induces a fork, a contradiction. ♦

By Claim 2, we partition L(v) into two sets as follows: Let L1(v) denote the set
{a ∈ L(v) | a is complete to Q2(v)} and let L0(v) denote the set L(v) \ L1(v) := {a ∈
L(v) | a is anticomplete to Q2(v)}. Then by (9), L0(v) 6= ∅. Fix a vertex x ∈M(v), and
let t ∈ Q2(v) be a neighbor of x. Then we have the following.

Claim 3. L0(v) is anticomplete to L1(v).

Proof of Claim 3: Suppose to the contrary that there are adjacent vertices c ∈ L1(v) and
d ∈ L0(v). Then by definitions of L0(v) and L1(v), we have c is adjacent to t, and d is not
adjacent to t. Let {a, b} ⊂ L(v) be such that {a, b, c} is a triad in L(v). Since t 6∈ L(v),
we may assume that t is adjacent to a. By (1), x is anticomplete to {a, b, c, d}. Then since
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{a, t, c, d} does not induce a C4, a is not adjacent to d. But then {d, c, t, x, a} induces a
fork, a contradiction. ♦

Claim 4. L0(v) is a clique.

Proof of Claim 4: If there are nonadjacent vertices a and b in L0(v), then {x, t, v, a, b}
induces a fork, a contradiction. ♦

Consider a maximum stable set S ⊆ N(v); then S ⊆ L(v). We have |S ∩ L0(v)| = 1,
because L0(v) is a clique component of L(v) (by Claim 3 and Claim 4). So |S ∩ L1(v)| =
|S|−1. A maximum stable set in N(t) is (S∩L1(v))∪{x}, which has size |S| = α(N(v)).
Therefore, α(N(t)) = α(N(v)), so t is also an important vertex. So M(t) is a stable set,
by (7). Since L0(v) is a nonempty component of M(t), it is a singleton, say L0(v) := {l}.
Then we have the following claim.

Claim 5. L0(v) = {l} is anticomplete to Q1(v).

Proof of Claim 5: Suppose that there exists a vertex q ∈ Q1(v) which is adjacent to l.
Then by (3), t and q are adjacent, and by the definition of L0(v), l and t are not adjacent.
Now by (9), q has a non-neighbor, say a ∈ L(v). Then a ∈ L1(v), and hence a is adjacent
to t. Also by Claim 3 and (1), a is anticomplete to {l, x}. But then {l, q, t, x, a} induces
a fork, a contradiction. ♦

Claim 6. No two vertices in Q2(v) share a common neighbor in M(v).

Proof of Claim 6: Suppose that there are vertices t′ and t′′ in Q2(v) which have a common
neighbor x′ ∈ M(v). Then by (4) and (8), since {t′, t′′} is complete to (Q \ {t′, t′′}) ∪
L1(v) ∪ {v, x′}, and is anticomplete to L0(v) ∪ (M(v) \ {x′}), {t′, t′′} is a homogenous
clique, a contradiction to our assumption that G has no homogenous cliques. ♦

Now let Z denote the set {v} ∪Q2(v). Since M(Q2) ⊆ M(v) ∪ {l}, we have M(Z) =
M(v) ∪ {l}. Then by (4), we see that Z is a clique. By (1) and (7), M(Z) is a stable
set which is anticomplete to V (G) \ (Z ∪M(Z)). By Claim 6 and (8), Z and M(Z) are
matched. Thus we conclude that G is candled.

So we may assume that every important vertex in G has exactly one non-neighbor.
In this case, we claim that G is anticandled. Let Y = Q2(v) ∪ {v}. Then by (3), Y is a
clique. Let m be the unique vertex in M(v). Then there exists a vertex t ∈ Q2(v) such
that t is adjacent to m. If S is a maximum stable set in N(v), then by (1), S ∪ {m} is
a stable set of size α(N(v)) + 1. Since t 6∈ L(v), t is adjacent to at least |S| − 1 of the
vertices in S, so α(N(t)) = |S| = α(N(v)). So every vertex t ∈ Q2(v) is important and
hence by assumption has a unique non-neighbor.

Since {t, t′} is not a homogeneous clique, for any t, t′ ∈ Y , they do not share a
non-neighbor. Therefore, each vertex in M(Y ) has a distinct non-neighbor in Y , so in
particular M(Y ) and Y are antimatched.

Consider distinct m,m′ ∈ M(Y ) with respective non-neighbors t, t′ ∈ Y . Then since
{m′,m, t, t′} does not induce a C4, m and m′ are not adjacent. Thus M(Y ) is stable.

Suppose m ∈ M(Y ) has a neighbor u. Let t ∈ Y be a non-neighbor of m; then since
u is adjacent to the unique non-neighbor of t, we have by (1) that u ∈ Q2(t). Then u is

the electronic journal of combinatorics 28(2) (2021), #P2.20 8



important, so by assumption u has a unique non-neighbor. Thus u 6∈ L(v), since it is not
part of a triad. Moreover, by (9), every vertex in Q1(v) has a non-neighbor in L(v), so
has at least two non-neighbors. Then u 6∈ Q1(v). Thus, u ∈ Y . So M(Y ) is anticomplete
to V (G) \ (Y ∪M(Y )).

Hence we conclude that Y ∪M(Y ) induces an anticandelabrum with base M(Y ), with
G \ (Y ∪M(Y )) complete to Y and anticomplete to M(Y ).

This completes the proof of the theorem.

Corollary 7. Let G be a connected (fork,C4)-free graph. Then G is claw-free or G has a
universal vertex or G has a clique cutset.

Proof. Let G be a (fork,C4)-free graph. Suppose that G has no universal vertex, and no
clique cutset. We show that G is claw-free. Suppose to the contrary that G contains a
claw. Let v ∈ V (G) be an important vertex. Let L(v) ⊆ N(v) be the leaves of claws
rooted at v and let Q denote the set N(v) \ L(v). So if S is a maximum stable set in
N(v), then S ⊆ L(v). Since v is not a universal vertex, M(v) is not empty. Let Q1 be the
maximal subset of Q that is anticomplete to M(v), and let Q2 := N(M(v))∩Q = Q\Q1.
Then it follows from Theorem 1 (See item (3) and note that items (1)–(3) hold regardless
of whether G has a homogeneous clique or not.) that Q2 is a clique. But then we see that
Q2 is a clique cutset separating {v} and M(v) which is a contradiction. This completes
the proof.

4 Structure of (claw,C4)-free graphs

In this section, we obtain a structure theorem for the class of (claw,C4)-free graphs that
are not quasi-line graphs. A graph is chordal if it does not contain any induced cycle of
length at least four.

Theorem 8. Let G be a connected (claw,C4)-free graph. Then at least one of the following
hold:

• G has a clique cutset.

• G has a good vertex.

• G is a quasi-line graph.

• G is a blowup of the icosahedron graph.

• G is a crown with |M ∪Q1 ∪Q5| < |V (G)|.

Proof. Let G be a connected (claw,C4)-free graph. We may assume that G has no clique
cutset. Let v ∈ V (G). First suppose that G[N(v)] is chordal. Then since G is claw-free,
G[N(v)] is a chordal graph with no triad. Since the complement graph of a chordal graph
with no triad is a bipartite graph, we see that N(v) can be expressed as the union of two
cliques. Since v is arbitrary, G is a quasi-line graph. So we may assume that G[N(v)] is
not chordal and hence G[N(v)] contains an induced Ck for some k > 5. Since α(Ck) > 3
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for k > 6, and since G is (claw,C4)-free, we have k = 5. That is, G[N(v)] contains
an induced C5, say C:= v1-v2-v3-v4-v5-v1. Let T denote the set {x ∈ V (G) \ V (C) |
N(x)∩ V (C) = V (C)}, let R denote the set {x ∈ V (G) \ V (C) | N(x)∩ V (C) = ∅}, and
for each i ∈ {1, 2, . . . , 5}, i mod 5, let:

Ai := {x ∈ V (G) \ V (C) | N(x) ∩ V (C) = {vi, vi+1}},
Bi := {x ∈ V (G) \ V (C) | N(x) ∩ V (C) = {vi−1, vi, vi+1}} ∪ {vi}.

Let A := A1 ∪ · · · ∪ A5 and B := B1 ∪ · · · ∪ B5. Note that v ∈ T , and so T 6= ∅. Then
the following properties hold for each i ∈ {1, 2, . . . , 5}, i mod 5:

(1) V (G) = A ∪B ∪ T ∪R.

Proof of (1): Suppose that there is a vertex x ∈ V (G) \ (A ∪ B ∪ T ∪ R). Then for
some i, either N(x) ∩ V (C) = {vi} or {vi−1, vi+1} ⊆ N(x) ∩ V (C) with vi /∈ N(x).
But then {vi, vi−1, x, vi+1} induces either a claw or a C4. ♦

(2) Ai and Bi ∪ T are cliques.

Proof of (2): Let i = 1 and suppose that there are nonadjacent vertices x and y in one
of the listed sets. If x, y ∈ A1, then {v1, x, y, v5} induces a claw, and if x, y ∈ B1 ∪ T ,
then {x, v5, y, v2} induces a C4. ♦

(3) Ai is anticomplete to T .

Proof of (3): If there are adjacent vertices a ∈ Ai and t ∈ T , then {t, vi−1, vi+2, a}
induces a claw. ♦

(4) Ai is complete to Ai−1 ∪ Ai+1 ∪Bi ∪Bi+1.

Proof of (4): By symmetry, it suffices to show that Ai is complete to Ai+1 ∪ Bi+1.
Suppose that there are nonadjacent vertices x ∈ Ai and y ∈ Ai+1 ∪Bi+1. If y ∈ Ai+1,
then {x, y} is anticomplete to v (by (3)), and then {vi+1, v, x, y} induces a claw. So
y ∈ Bi+1. Then {vi, vi−1, x, y} induces a claw. ♦

(5) Ai is anticomplete to Ai+2 ∪ Ai−2 ∪Bi+2 ∪Bi−1 ∪Bi−2.

Proof of (5): By symmetry, it suffices to show that Ai is anticomplete to Ai+2∪Bi+2∪
Bi−2. Suppose that there are adjacent vertices x ∈ Ai and y ∈ Ai+2 ∪Bi+2 ∪Bi−2. If
y ∈ Ai+2 ∪Bi−2, then {x, vi+1, vi+2, y} induces a C4. So y ∈ Bi+2. Now since x is not
adjacent to v (by (3)), and y is adjacent to v (by (2)), we see that {x, vi, v, y} induces
a C4. ♦

(6) Bi is complete to Bi+1 ∪Bi−1.

Proof of (6): By symmetry, it suffices to show that Bi is complete to Bi+1. If there
are nonadjacent vertices x ∈ Bi and y ∈ Bi+1, then {x, y} is complete to v (by (2)),
and then {v, vi−2, x, y} induces a claw. ♦
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(7) Bi is anticomplete to Bi+2 ∪Bi−2.

Proof of (7): If there are adjacent vertices x ∈ Bi and y ∈ Bi+2 ∪ Bi−2, then either
{x, vi−1, vi−2, y} or {x, vi+1, vi+2, y} induces a C4. ♦

(8) If r ∈ R, then N(r) ∩ (B ∪ T ) = ∅.

Proof of (8): If there is a vertex x ∈ N(r) ∩ (B ∪ T ), then for some i, {vi−1, vi+1} ⊂
N(x) ∩ V (C), and then {x, vi−1, vi+1, r} induces a claw. ♦

(9) Any r ∈ R which has a neighbor in Ai is complete to Ai+1 ∪ Ai−1.
Proof of (9): Let r ∈ R be such that r has a neighbor a ∈ Ai. If r is not adjacent
to a vertex b ∈ Ai+1 ∪ Ai−1, then since a is adjacent to b (by (4)), we see that either
{a, r, vi, b} or {a, r, vi+1, b} induces a claw. ♦

(10) If Ai and Ai+1 are not empty, for some i, then any r ∈ R which has a neighbor in
Ai ∪ Ai+1 ∪ Ai−1 is complete to Ai ∪ Ai+1 ∪ Ai−1.
Proof of (10): This follows from (4) and (9). ♦

If R is empty, then by above properties we see that G is a blowup of the icosahedron
graph, where we set Q1 := B1, Q8 := B2, Q9 := B3, Q5 := B4, Q6 := B5, Q7 := T ,
Q2 := A1, Q3 := A2, Q4 := A3, Q11 := A4 and Q12 := A5.

So we may assume that R 6= ∅. Then by (8), A 6= ∅. Since G has no clique cutset,
using (4) and (10), we may assume that there exists an index i such that Ai and Ai+2 are
not empty, say i = 1. Now if A2 6= ∅, then by (10) and since G is claw-free, any r ∈ R
is complete to A. Moreover, since G is C4-free, R is a clique. So again G is a blowup of
the icosahedron graph, where we set Q1 := B1, Q8 := B2, Q9 := B3, Q5 := B4, Q6 := B5,
Q7 := T , Q2 := A1, Q3 := A2, Q4 := A3, Q11 := A4, Q12 := A5 and Q10 := R. So we may
assume that A2 = ∅.

Next suppose that A4 ∪ A5 = ∅. In this case, we show that one of the vertices v2 or
v5 is good. Suppose not. Then since T ∪B1 ∪B5 and T ∪B4 ∪B5 are cliques, we see that
|B1| > ω(G)

2
and |B4| > ω(G)

2
. Since v2 is not a good vertex and since A1 ∪ B1 ∪ B2 is a

clique, we have |T ∪B3| > ω(G)
2

. Then we see that T ∪B3 ∪B4 is a clique of size > ω(G)
which is a contradiction. Thus one of the vertices v2 or v5 is good.

So we may assume that A5 6= ∅ and A4 = ∅. Let R′ be the set {r ∈ R | r has
a neighbor in A1 ∪ A5}, and let R′′ be the set R \ R′. Then by (10), R′ is complete
to A1 ∪ A5. Also if there are nonadjacent vertices r1, r2 ∈ R′, then for any a ∈ A1,
{r1, r2, v2, a} induces a claw, and so R′ is a clique. Now by above properties we see that
G is a crown, where we set Q10 := B1, Q7 := B2, Q8 := B3, Q2 := B4, Q3 := B5, Q9 := T ,
Q6 := A1, Q1 := A3, Q4 := A5, Q5 := R′ and M := R′′. Since A5 6= ∅, it follows that
|M ∪Q1 ∪Q5| < |V (G)|.

This completes the proof of the theorem.
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5 Coloring (claw/fork,C4)-free graphs

In this section, we show that every (fork,C4)-free graph satisfies χ(G) 6
⌈
3ω(G)

2

⌉
. We will

use the following known result.

Theorem 9 ([3]). If G is a quasi-line graph, then χ(G) 6
⌈
3ω(G)

2

⌉
.

Let [k] denote the set {1, 2, . . . , k}. A k-list assignment of a graph G is a function
L : V (G) → 2[k]. The set L(v), for a vertex v in G, is called the list of v. In the list
k-coloring problem, we are given a graph G with a k-list assignment L and asked whether
G has an L-coloring, i.e., a k-coloring of G such that every vertex is assigned a color from
its list. We say that G is L-colorable if G has an L-coloring. We say that a graph F with
list assignment L is L-degenerate if there exists a vertex ordering v1, . . . , vn of V (F ) such
that each vi has at most |L(v)| − 1 neighbors in {v1, . . . , vi−1} for 1 6 i 6 n. Clearly, if a
graph is L-degenerate, then it is L-colorable.

Lemma 10. Suppose that G is a crown and k > 1 be an integer. If φ : M ∪Q1 ∪Q5 → S
with |S| =

⌈
3k
2

⌉
is a vertex coloring of G[M ∪Q1 ∪Q5] and ω(G−M) 6 k, then χ(G) 6⌈

3k
2

⌉
.

Proof. We prove the lemma by induction on k. If k = 1, then any non-trivial component
of G is an induced subgraph of G[M ∪ Q1 ∪ Q5] and the lemma holds. We now assume
that k > 2 and the lemma holds for any positive integer smaller than k. Let H =
G− (M ∪Q1 ∪Q5). Note that, for each i ∈ {1, 2, . . . 10} \ {1, 5}, any two vertices in Qi

have the same degree in H. Let L be the list assignment of H such that

L(v) =


S \ φ(Q1) if v ∈ Q2 ∪Q8,

S \ φ(Q5) if v ∈ Q4 ∪Q6,

S if v ∈ Q3 ∪Q7 ∪Q9 ∪Q10.

Note that if H is L-colorable, then χ(G) 6
⌈
3k
2

⌉
. Since |Q1|+|Q2|+|Q8| 6 ω(G−M) 6 k,

it follows that for any v ∈ Q2 ∪Q8, |L(v)| = |S| − |Q1| =
⌈
3k
2

⌉
− |Q1| > |Q2|+ |Q8|+

⌈
k
2

⌉
.

Similarly, for any v ∈ Q4 ∪Q6, |L(v)| > |Q4|+ |Q6|+
⌈
k
2

⌉
. Next, we claim that:

We may assume that: Q9 6= ∅. Likewise, Q10 6= ∅. (1)

Proof of (1): Suppose that Q9 = ∅. Since |Q2| + |Q8| 6 k, one of Q2 and Q8 has
size at most k

2
, say Q2 by symmetry. Then for any v ∈ Q3, it follows that dH(v) =

|Q3 ∪ Q4 ∪ Q10| − 1 + |Q2| 6 (k − 1) + |Q2| 6 3k
2
− 1. If |Q8| 6 k

2
, then dH(v) 6 3k

2
− 1

for any v ∈ Q7. This implies that H is L-degenerate with the ordering of the vertices
Q2, Q4, Q6, Q8, Q10, Q3, Q7. (It does not matter which vertex comes first in Qi.) So
|Q8| > k

2
. This implies that |Q7| < k

2
. Then for any v ∈ Q8, it follows that dH(v) =

|Q2| + |Q8| − 1 + |Q7| < |Q2| + |Q8| − 1 + k
2
< |L(v)|. So H is L-degenerate with the

ordering Q2, Q4, Q6, Q10, Q7, Q8, Q3. This proves (1). ♦
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Next:
We may assume that Q3 6= ∅. Likewise, Q7 6= ∅. (2)

Proof of (2): Suppose Q3 = ∅. If |Q7 ∪ Q9| 6 k
2
, then for any v ∈ Q2 ∪ Q8, it follows

that dH(v) 6 |Q2| + |Q8| − 1 + k
2
< |L(v)|. Then H is L-degenerate with the ordering

Q4, Q6, Q10, Q7, Q9, Q8, Q2. So we assume that |Q7∪Q9| > k
2
. By symmetry, |Q7∪Q10| >

k
2
. This implies that each of Q6, Q8, Q9, Q10 has size less than k

2
. Since Q3 = ∅, for any

v ∈ Q2, dH(v) = |Q2|+ |Q8|+ |Q9| − 1 6 |Q2|+ |Q8|+ k
2
− 1 < |L(v)|. By symmetry, for

any v ∈ Q4, dH(v) < |L(v)|. Moreover, each vertex in Q9 ∪Q10 has degree at most 3k
2
− 1

in H − (Q2 ∪ Q4). So H is L-degenerate with the ordering Q8, Q6, Q7, Q10, Q9, Q4, Q2.
This proves (2). ♦

Moreover:

We may assume that Q2 6= ∅. Likewise, Q4, Q6, Q8 are nonempty. (3)

Proof of (3): Suppose Q2 = ∅. If |Q9| 6 k
2
, then for any v ∈ Q3 it follows that dH(v) 6

3k
2
− 1. Then as in the proof of (2), H −Q3 is L-degenerate and thus H is L-degenerate.

So |Q9| > k
2
. This implies that |Qi ∪ Q10| < k

2
for i ∈ {3, 7}. This implies that, for any

v ∈ Q4∪Q6, dH(v) < |Q4|+ |Q6|−1+ k
2
< |L(v)|. So H is L-degenerate with the ordering

Q8, Q7, Q9, Q10, Q3, Q4, Q6. This proves (3). ♦

By (1), (2) and (3), we conclude that for each i ∈ {1, 2, . . . , 10} \ {1, 5}, Qi contains
at least one vertex, say qi. In particular, this implies that k > 3, |φ(Q1)| 6 k − 2 and
|φ(Q5)| 6 k − 2. Next we claim that:

There are three distinct colors c1, c2, c3 ∈ S such that c1 /∈ φ(Q1), c2 /∈
φ(Q5), either Q1 = ∅ or |{c2, c3} ∩ φ(Q1)| > 1, and either Q5 = ∅ or
|{c1, c3} ∩ φ(Q5)| > 1.

(4)

Proof of (4): Since |φ(Q1)| 6 k − 2 and |S| =
⌈
3k
2

⌉
, there are at least

⌈
3k
2

⌉
− k + 2 > 4

colors in S that are not in φ(Q1). Similarly, there are at least 4 colors in S that are not
in φ(Q5).

First suppose that φ(Q1) ∩ φ(Q5) 6= ∅. Let c3 ∈ φ(Q1) ∩ φ(Q5). Now we choose a
color c1 ∈ S \ φ(Q1), and then a color c2 ∈ S \ φ(Q5) with c2 6= c1. Clearly, c1, c2 and c3
are the desired colors. So we may assume that φ(Q1) ∩ φ(Q5) = ∅.

If Q1 = Q5 = ∅, then any three colors c1, c2, c3 ∈ S are the desired colors. If Q1 = ∅
and Q5 6= ∅, then we choose c3 ∈ φ(Q5), and then choose a color c2 ∈ S \ φ(Q5), and
finally choose a color c1 ∈ S \ {c2, c3}. Clearly, c1, c2 and c3 are desired colors. If Q1 6= ∅
and Q5 = ∅, we can choose the three colors in a similar way. Finally, we assume that
Q1, Q5 6= ∅. Then it is possible to pick a color c3 ∈ φ(Q1) and a color c1 ∈ φ(Q5). Since
φ(Q1)∩φ(Q5) = ∅, it follows that c1 6= c3 and c1 /∈ φ(Q1). Moreover, |{c2, c3}∩φ(Q1)| > 1
and |{c1, c3} ∩ φ(Q5)| > 1 by the choice of c1 and c3. Since there are at least 4 colors in
S that are not in φ(Q5), we can choose such a color c2 /∈ {c1, c3}.

Thus, in all the cases, we have found the required colors, and the proof of (4) is
complete. ♦
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Now for each j ∈ {1, 2, 3}, let Tj = {x ∈ M ∪ Q1 ∪ Q5 | φ(x) = cj}. Let I1 :=
T1 ∪ {q2, q10}, I2 := T2 ∪ {q6, q9}, and I3 := T3 ∪ {q3, q7}. It follows from (4) that I1, I2
and I3 are three pairwise disjoint independent sets. Moreover, φ restricted to (M ∪Q1 ∪
Q5) \ (T1 ∪ T2 ∪ T3) maps to S \ {c1, c2, c3} with

|S \ {c1, c2, c3}| = |S| − 3 =

⌈
3k

2

⌉
− 3 =

⌈
3(k − 2)

2

⌉
.

Let G′ = G− (I1 ∪ I2 ∪ I3), and M ′ = M − (T1 ∪ T2 ∪ T3). By (4), it follows that G′−M ′

is obtained from G−M by deleting {q2, q3, q6, q7, q9, q10} and at least one vertex in Qj if
Qj 6= ∅ for each j ∈ {1, 5}. Therefore,

ω(G′ −M ′) 6 ω(G−M)− 2 6 k − 2.

Now by the inductive hypothesis,

χ(G) 6 χ(G′) + 3 6

⌈
3(k − 2)

2

⌉
+ 3 =

⌈
3k

2

⌉
.

This proves Lemma 10.

Lemma 11. Let G be a blowup of the icosahedron. Then χ(G) 6
⌈
3ω(G)

2

⌉
.

Proof. Let I be the icosahedron graph with vertex labels as in Figure 1. Let G be a blowup
of the icosahedron I. We prove the lemma by induction on |V (G)|. Let ω = ω(G). We
may assume that ω > 2. Let Qi be the clique corresponding to the vertex i ∈ V (I).
Let X be a subset of V (G) obtained by taking min{1, |Qi|} vertices from Qi for each
i ∈ {1, 2, . . . , 12}. Clearly, G[X] is an induced subgraph of the icosahedron, and so
χ(G[X]) 6 4. First suppose that ω(G − X) > ω − 2. Then there are two indices
i, j ∈ {1, 2, . . . , 12} such that Qi ∪Qj is a clique of size ω. Since the icosahedron is edge-
transitive, we may assume that i = 10 and j = 11. Since Q4∪Q10∪Q11 and Q10∪Q11∪Q12

are cliques, we conclude that Q4 and Q12 are empty. Then we see that G is a crown (with
M = ∅, and Q10 and Q11 being Q1 and Q5 in the definition of the crown), and the lemma
follows from Lemma 10. So suppose that ω(G−X) 6 ω− 3. Then by induction, we have

χ(G −X) 6
⌈
3ω(G−X)

2

⌉
6
⌈
3(ω−3)

2

⌉
=
⌈
3ω
2
− 9

2

⌉
. Since χ(G) 6 χ(G −X) + χ(G[X]), we

have χ(G) 6
⌈
3ω
2

⌉
. This proves Lemma 11.

Theorem 12. Let G be a (claw,C4)-free graph. Then χ(G) 6
⌈
3ω(G)

2

⌉
.

Proof. Let G be a (claw, C4)-free graph. By Theorem 9, we may assume that G is not a
quasi-line graph. We prove the theorem by induction on |V (G)|, and we apply Theorem 8.

If G has a clique cutset K, let A,B be a partition of V (G)\K such that both A,B are
non-empty, and A is anticomplete to B. Clearly χ(G) = max{χ(G[K∪A]), χ(G[K∪B])},
so the desired result follows from the induction hypothesis on G[K ∪ A] and G[K ∪B].
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If G has a good vertex u, then by induction, χ(G−{u}) 6
⌈
3ω(G−{u})

2

⌉
. Now consider

any χ(G− {u})-coloring of G− {u} and extend it to a
⌈
3ω(G)

2

⌉
-coloring of G, using for u

a (possibly new) color that does not appear in its neighborhood.
If G is a blowup of the icosahedron graph, then the theorem follows from Lemma 11.
Finally, suppose that G is a crown with |M ∪ Q1 ∪ Q5| < |V (G)|. By the inductive

hypothesis, let φ : M ∪ Q1 ∪ Q5 → S with |S| =
⌈
3ω(G)

2

⌉
be a vertex coloring of G[M ∪

Q1 ∪Q5]. It then follows from Lemma 10 that χ(G) 6
⌈
3ω(G)

2

⌉
.

Theorem 13. Let G be a (fork,C4)-free graph. Then χ(G) 6
⌈
3ω(G)

2

⌉
.

Proof. Let G be any (fork,C4)-free graph. We prove the theorem by induction on |V (G)|.
If G has a universal vertex u, then ω(G) = ω(G − {u}) + 1, and by the induction

hypothesis, we have χ(G) = χ(G − {u}) + 1 6
⌈
3ω(G−{u})

2

⌉
+ 1, which implies χ(G) 6⌈

3ω(G)
2

⌉
.

If G has a clique cutset K, let A,B be a partition of V (G)\K such that both A,B are
non-empty, and A is anticomplete to B. Clearly χ(G) = max{χ(G[K∪A]), χ(G[K∪B])},
so the desired result follows from the induction hypothesis on G[K ∪ A] and G[K ∪B].

Finally, if G has no universal vertex and no clique cutset, then the result follows from
Corollary 7 and Theorem 12.

We remark that we do not have any example of a (claw/fork,C4)-free graph G such
that χ(G) =

⌈
3
2
ω(G)

⌉
except C5. However, for an integer m > 1, consider the blowup G of

the icosahedron graph I where |Qv| = m, for each vertex v in I. Then clearly ω(G) = 3m,

and since α(G) = 3, we have χ(G) > |V (G)|
α(G)

= 12m
3

= 4m = 4ω(G)
3

.
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