Square-free graphs with no induced fork

Maria Chudnovsky*
Department of Mathematics Princeton University
Princeton, NJ 08544, U.S.A.
mchudnov@math.princeton.edu

Shenwei Huang ${ }^{\dagger}$
College of Computer Science
Nankai University
Tianjin 300350, China
shenweihuang@nankai.edu.cn

T. Karthick ${ }^{\ddagger}$
Computer Science Unit
Indian Statistical Institute, Chennai Centre
Chennai 600029, India
karthick@isichennai.res.in

Jenny Kaufmann ${ }^{\S}$
Department of Mathematics Harvard University
Cambridge, MA 02138, U.S.A.
jkaufmann@math.harvard.edu

Submitted: Nov 17, 2019; Accepted: Apr 14, 2021; Published: May 7, 2021
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The claw is the graph $K_{1,3}$, and the fork is the graph obtained from the claw $K_{1,3}$ by subdividing one of its edges once. In this paper, we prove a structure theorem for the class of (claw, C_{4})-free graphs that are not quasi-line graphs, and a structure theorem for the class of (fork, C_{4})-free graphs that uses the class of (claw, C_{4})-free graphs as a basic class. Finally, we show that every (fork, C_{4})-free graph G satisfies $\chi(G) \leqslant\left\lceil\frac{3 \omega(G)}{2}\right\rceil$ via these structure theorems with some additional work on coloring basic classes.

Mathematics Subject Classifications: 05C88, 05C89

[^0]
1 Introduction

All graphs in this work are finite and simple. For a positive integer n, K_{n} will denote the complete graph on n vertices, and P_{n} will denote the path on n vertices. For integers $n>2, C_{n}$ will denote the cycle on n vertices; the graph C_{4} is called a square. For positive integers $m, n, K_{m, n}$ will denote the complete bipartite graph with classes of size m and n. The claw is the graph $K_{1,3}$, and the fork is the tree obtained from the claw $K_{1,3}$ by subdividing one of its edges once. A clique (stable set or an independent set) is a set of vertices that are pairwise adjacent (nonadjacent). The clique number $\omega(G)$ (independence number $\alpha(G)$) of a graph G is the size of a largest clique (stable set) in G. A triad is a stable set of size 3. A k-vertex coloring of a graph G is a function $\phi: V(G) \rightarrow\{1,2, \ldots, k\}$ such that for any adjacent vertices v and w, we have $\phi(v) \neq \phi(w)$. A vertex coloring of a graph G is a k-vertex coloring of G for some k. The chromatic number of G, denoted by $\chi(G)$, is the minimum number k such that G admits a k-vertex coloring. A graph is $\left(G_{1}, G_{2}, \ldots, G_{k}\right)$-free if it does not contain any graph in $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ as an induced subgraph.

Clearly, for every graph G, we have $\chi(G) \geqslant \omega(G)$. In 1955, Mycielski constructed an infinite sequence of graphs G_{n} with $\omega\left(G_{n}\right)=2$ and $\chi(G)=n$ for every n [9]. Thus, in general, there is no function of $\omega(G)$ that gives an upper bound for $\chi(G)$; however, there do exist such upper bounding functions for some restricted classes of graphs. To be precise, if \mathcal{G} is a class of graphs, and there exists a function f (called χ-binding function) such that $\chi(G) \leqslant f(\omega(G))$ for all $G \in \mathcal{G}$, then we say that \mathcal{G} is χ-bounded; and is linearly χ bounded if f is linear. The field of χ-boundedness is primarily concerned with determining which forbidden induced subgraphs $G_{1}, G_{2}, \ldots, G_{k}$ give χ-bounded classes, and finding the smallest χ-binding functions for these classes. It is known that if none of $G_{1}, G_{2}, \ldots, G_{k}$ is acyclic, then the class of $\left(G_{1}, G_{2}, \ldots, G_{k}\right)$-free graphs is not χ-bounded [11]. Gyárfás [6] and Sumner [12] both independently conjectured that for every tree T, the class of T-free graphs is χ-bounded. Gyárfás [6] showed that the class of $K_{1, t}$-free graphs is χ bounded and its smallest χ-binding function f satisfies $\frac{R(t, \omega+1)-1}{t-1} \leqslant f(\omega) \leqslant R(t, \omega)$, where $R(m, n)$ denotes the classical Ramsey number. A famous result of Kim [8] shows that the Ramsey number $R(3, t)$ has order of magnitude $O\left(t^{2} / \log t\right)$. Thus for any claw-free graph G, we have $\chi(G) \leqslant O\left(\omega(G)^{2} / \log \omega(G)\right)$. Further, it is known that there exists no linear χ-binding function for the class of claw-free graphs; see [11]. More precisely, for the class of claw-free graphs the smallest χ-binding function f satisfies $f(\omega) \in O\left(\omega^{2} / \log \omega\right)$. The first author and Seymour [4] studied the structure of claw-free graphs in detail, and they obtained the tight χ-bound for claw-free graphs containing a triad [5]. That is, if G is connected and claw-free with $\alpha(G) \geqslant 3$, then $\chi(G) \leqslant 2 \omega(G)$.

The class of fork-free graphs generalizes the class of claw-free graphs. The class of fork-free graphs is comparatively less studied. Kierstead and Penrice showed that forkfree graphs are χ-bounded [7]. However, the best χ-binding function for fork-free graphs is not known, and an interesting question of Randerath and Schiermeyer [11] asks for the existence of a polynomial χ-binding function for the class of fork-free graphs. Randerath, in his thesis, obtained tight χ-bounds for several subclasses of fork-free graphs [10]. Here
we are interested in linearly χ-bounded fork-free graphs. Recently the first author with Cook and Seymour [2] studied the structure of (fork, anti-fork)-free graphs and showed a linear χ-binding function for this class of graphs. Since the class of $\left(3 K_{1}, 2 K_{2}\right)$-free graphs does not admit a linear χ-binding function [1], if \mathcal{G} is a linearly χ-bounded class of (fork, $H)$-free graphs with $|V(H)|=4$, then $H \in\left\{P_{4}, C_{4}, K_{4}, K_{4}-e \overline{K_{1,3}}\right.$, paw $\}$. When $H=P_{4}$, then every (fork, P_{4})-free graph G is again P_{4}-free, and it is well known that every such G satisfies $\chi(G)=\omega(G)$; when $H \in\left\{K_{4}, K_{4}-e\right.$, paw $\}$, it follows from the results of [10] that every (fork, H)-free graph G satisfies $\chi(G) \leqslant \omega(G)+1$, and from a result of [2] that every (fork, $\overline{K_{1,3}}$-free graph G satisfies $\chi(G) \leqslant 2 \omega(G)$. Thus the problem of obtaining a (best) linear χ-binding function for the class of (fork, C_{4})-free graphs is open.

In this paper, we show that every (fork, C_{4})-free graph G satisfies $\chi(G) \leqslant\left\lceil\frac{3 \omega(G)}{2}\right\rceil$. To do this, we need to achieve three major steps:

- First, we obtain a structure theorem for the class of (fork, C_{4})-free graphs that uses the class of (claw, C_{4})-free graphs as a basic class (Section 3).
- Next, we prove a new structure theorem for the class of (claw, C_{4})-free graphs that are not quasi-line graphs (Section 4).
- Finally, we prove our $\left\lceil\frac{3 \omega}{2}\right\rceil$-bound for the chromatic number via these structure theorems with additional work on coloring basic classes (Section 5).

2 Notation and terminology

Given a vertex $v \in V(G)$, we say the neighborhood of $v, N_{G}(v)$, is the set of neighbors of v; the non-neighborhood of $v, M_{G}(v)$, is the set of non-neighbors of v; and the degree of $v, d_{G}(v)=\left|N_{G}(v)\right|$; we may write $N(v), M(v)$ and $d(v)$ when the relevant graph is unambiguous. We write $N[v]$ to denote the set $N(v) \cup\{v\}$, and $M[v]$ to denote the set $M(v) \cup\{v\}$. If $S \subseteq V(G)$, then $N(S)$ is the set $\cup_{v \in S} N(v) \backslash S$, and $M(S)$ is the set $\cup_{v \in S} M(v) \backslash S$.

Given $S \subseteq V(G)$, we define $\alpha(S)$ to be $\alpha(G[S])$. A vertex v in G is important if for all $w \in V(G), \alpha(N(v)) \geqslant \alpha(N(w))$. A vertex v in G is a root of a claw if v has neighbors a, b, c in G such that $\{v, a, b, c\}$ induces a claw in G. A vertex v in a graph G is good if $d_{G}(v) \leqslant\left\lceil\frac{3 \omega(G)}{2}\right\rceil-1$.

Given disjoint vertex sets S, T, we say that S is complete to T if every vertex in S is adjacent to every vertex in T; we say S is anticomplete to T if every vertex in S is nonadjacent to every vertex in T; and we say S is mixed on T if S is not complete or anticomplete to T. When $S=\{v\}$ is a single vertex, we can instead say that v is complete to, anticomplete to, or mixed on T. A vertex v is called universal if it is complete to $V(G) \backslash\{v\}$. A vertex set S in G is homogeneous if $1<|S|<|V(G)|$ and for every $v \notin S$, v is complete to S or anticomplete to S. A homogeneous clique is a homogeneous set that is a clique. A clique cutset is a clique S in G such that $G[V(G) \backslash S]$ has more components than G.

We say that disjoint vertex sets Y, Z are matched (antimatched) if each vertex in Y has a unique neighbor (non-neighbor) in Z and vice versa. Note that if Y and Z are matched or antimatched, then $|Y|=|Z|$.

A graph H is called a thin candelabrum (with base Z) if its vertices can be partitioned into nontrivial disjoint sets Y, Z such that Y is a stable set, Z is a clique, and Y and Z are matched. Candelabra, which were introduced by Chudnovsky, Cook, and Seymour in [2], are a generalization of thin candelabra. In this work we deal only with thin candelabra, and henceforth use "candelabrum" to mean "thin candelabrum." One can add a candelabrum to a graph G via the following procedure: Let H be a candelabrum with base Z. Take the disjoint union of G and H, then add edges to make Z complete to $V(G)$. We refer to this construction procedure as candling the graph G. We say that a graph G is candled if it can be constructed by candling some induced subgraph $G_{0} \subseteq G$.

An anticandelabrum with base Z is the complement of a candelabrum with base Z. We say that a graph G is anticandled if \bar{G} is candled. We will refer to the analogous construction procedure as anticandling. Anticandling can also be thought of as adding an anticandelabrum H with base Z to a graph, so that Z is anticomplete to the graph and $V(H) \backslash Z$ is complete to the graph.

A graph G is a quasi-line graph if for every vertex v, the set of neighbors of v can be expressed as the union of two cliques.

Figure 1: Icosahedron
The icosahedron is the unique planar graph with twelve vertices all of degree five; see Figure 1.

A blowup of a graph H is any graph G such that $V(G)$ can be partitioned into $|V(H)|$ (not necessarily non-empty) cliques $Q_{v}, v \in V(H)$, such that Q_{u} is complete to Q_{v} if $u v \in E(H)$, and Q_{u} is anticomplete to Q_{v} if $u v \notin E(H)$.

We say that a graph G is a crown (see Figure 2) if $V(G)$ can be partitioned into eleven sets Q_{1}, \ldots, Q_{10} and M such that the following hold.

- Each Q_{i} is a clique.

Figure 2: Schematic representation of a crown. Each circle represents a set. Each Q_{i} is a clique. A line between two sets means that the two sets are complete to each other, a dotted line between the two sets means that the edges between the two sets are arbitrary, and the absence of a line between two sets means that the two sets are anticomplete to each other.

- For $i \in\{1,2, \ldots, 7\}, Q_{i}$ is complete to $Q_{i+1} ; Q_{1} \cup Q_{2}$ is complete to $Q_{8} ; Q_{4}$ is complete to $Q_{6} ; Q_{9}$ is complete to $Q_{2} \cup Q_{3} \cup Q_{7} \cup Q_{8} \cup Q_{10} ; Q_{10}$ is complete to $Q_{3} \cup Q_{4} \cup Q_{6} \cup Q_{7}$; the set of edges between Q_{1} and Q_{5} is arbitrary; and there are no other edges between Q_{j} and Q_{k}, where $j, k \in\{1,2, \ldots, 10\}$ and $j \neq k$.
- The set M is anticomplete to $\left(\cup_{i=1}^{10} Q_{i}\right) \backslash\left(Q_{1} \cup Q_{5}\right)$, and the set of edges between $Q_{1} \cup Q_{5}$ and M is arbitrary.

3 Structure of (fork, C_{4})-free graphs

In this section, we obtain a structure theorem for the class of (fork, C_{4})-free graphs that uses the class of (claw, C_{4})-free graphs as a basic class.

Theorem 1. Let G be a (fork, C_{4})-free graph. Then at least one of the following hold:

- G is not connected.
- G contains a universal vertex.
- G contains a homogeneous clique.
- G is candled or anticandled.
- G is claw-free.

Proof. Let G be a (fork, C_{4})-free graph. Suppose that G is a connected graph which has no universal vertex, no homogeneous clique, and that G contains a claw. We show that G is either candled or anticandled. Let $v \in V(G)$ be an important vertex. Then since G is not claw-free, there is some claw rooted at v. Let $L(v) \subseteq N(v)$ be the leaves of claws
rooted at v and let Q denote the set $N(v) \backslash L(v)$. So if S is a maximum stable set in $N(v)$, then $S \subseteq L(v)$. Since v is not a universal vertex, $M(v)$ is not empty. Then we have the following:
(1) $L(v)$ is anticomplete to $M(v)$.

Proof of (1): Suppose $x \in M(v)$ has a neighbor a in a triad $\{a, b, c\} \subseteq L(v)$. Since $\{v, a, x, b\}$ and $\{v, a, x, c\}$ do not induce $C_{4} \mathrm{~S}, x$ is not adjacent to b or c. But then $\{x, a, v, b, c\}$ induces a fork, a contradiction. So (1) holds. \diamond

Let $Q_{1}(v)$ be the maximal subset of Q that is anticomplete to $M(v)$, and let $Q_{2}(v):=$ $N(M(v)) \cap Q=Q \backslash Q_{1}(v)$.
(2) If $t \in Q$ is complete to $L(v)$, then $t \in Q_{1}(v)$.

Proof of (2): Suppose $t \in Q$ is complete to $L(v)$. If t has a neighbor $x \in M(v)$, then, by (1), $\alpha(N(t))>\alpha(N(v))$, a contradiction to the fact that v is an important vertex. So (2) holds. \diamond
(3) $Q_{2}(v)$ is a clique, and $Q_{1}(v)$ is complete to $Q_{2}(v)$.

Proof of (3): Suppose to the contrary that there are nonadjacent vertices $t \in Q_{2}(v)$ and $t^{\prime} \in Q_{1}(v) \cup Q_{2}(v)$. Let $x \in M(v)$ be a neighbor of t. Then since $\left\{v, t, x, t^{\prime}\right\}$ does not induce a C_{4}, t^{\prime} is not adjacent to x. By (2), t has a non-neighbor $a \in L(v)$. By (1), a is not adjacent to x. Then since $\left\{x, t, v, t^{\prime}, a\right\}$ does not induce a fork, t^{\prime} is adjacent to a. Let $b, c \in L(v)$ be such that $\{v, a, b, c\}$ induces a claw. Again by (1), x is anticomplete to $\{b, c\}$. Now since $t, t^{\prime} \notin L(v)$, we see that t and t^{\prime} are each adjacent to at least two vertices in $\{a, b, c\}$. Thus t is adjacent to b and c, and we may assume that t^{\prime} is adjacent to b. Then since $\left\{t, b, t^{\prime}, c\right\}$ does not induce a C_{4}, t^{\prime} is not adjacent to c. But then $\left\{t^{\prime}, b, t, c, x\right\}$ induces a fork, a contradiction. So (3) holds. \diamond
(4) Q is a clique.

Proof of (4): By (3), it is enough to show that $Q_{1}(v)$ is a clique. Suppose to the contrary that there are nonadjacent vertices in $Q_{1}(v)$, say t and t^{\prime}. Since $M(v) \neq \varnothing$ and since G is connected, there exists a vertex $x \in M(v)$ which has a neighbor $w \in Q_{2}(v)$. By (3), w is complete to $\left\{t, t^{\prime}\right\}$, and by the definition of $Q_{1}(v), x$ is anticomplete to $\left\{t, t^{\prime}\right\}$. By (2), whas a non-neighbor $a \in L(v)$. Then by (1), x is not adjacent to a. Now since $\left\{a, t, t^{\prime}, w, x\right\}$ does not induce a fork and $\left\{a, t, w, t^{\prime}\right\}$ does not induce a C_{4}, we see that a is anticomplete to $\left\{t, t^{\prime}\right\}$. But then $\left\{v, a, t, t^{\prime}\right\}$ induces a claw, contradicting $t, t^{\prime} \notin L(v)$. So (4) holds. \diamond
(5) If C is a connected component of $M(v)$, every $t \in N(v)$ is complete or anticomplete to C. In particular, C is a homogeneous set or a singleton.
Proof of (5): Suppose not. Then since G is connected, we may assume that there are adjacent vertices $x, y \in V(C)$, and there exists a vertex $t \in N(v)$ which is adjacent to x and not adjacent to y. By (1) and by our definition of $Q_{1}(v), t \notin L(v) \cup Q_{1}(v)$. So $t \in Q_{2}(v)$. Then since $t \notin L(v), t$ is adjacent to at least two vertices in any given triad $\{a, b, c\} \subseteq L(v)$; we may assume $a, b \in N(t)$. Then $\{y, x, t, a, b\}$ induces a fork, a contradiction. So (5) holds. \diamond
(6) If C is a connected component of $M(v)$, then $V(C)$ is a clique.

Proof of (6): Since G is connected, there is some $t \in N(V(C))$. As in (5), $t \in Q_{2}(v)$. So, by (2), t has a non-neighbor $a \in L(v)$. Now if there are nonadjacent vertices x and y in $V(C)$, then, by (5), we see that $\{a, v, t, x, y\}$ induces a fork. So any two vertices in $V(C)$ are adjacent, and hence $V(C)$ is a clique. \diamond
(7) $M(v)$ is a stable set.

Proof of (7): Since G has no homogeneous cliques, the proof of (7) follows from (5) and (6). \diamond
(8) Each vertex in $Q_{2}(v)$ has at most one neighbor in $M(v)$.

Proof of (8): Suppose to the contrary that $t \in Q_{2}(v)$ has two neighbors in C, say x and y. Then by (7), x and y are not adjacent. Since $t \in Q_{2}(v)$, by (2), t has a non-neighbor $a \in L(v)$. But then $\{a, v, t, x, y\}$ induces a fork, a contradiction. So (8) holds. \diamond
(9) Every vertex in Q has a non-neighbor in $L(v)$.

Proof of (9): Suppose to the contrary that there exists a vertex $t \in Q$ which is complete to $L(v)$. Then by (2), $t \in Q_{1}(v)$. But then by (4), and by the definition of $Q_{1}(v),\{v, t\}$ is a homogeneous clique in G, a contradiction to our assumption that G has no homogeneous cliques. So (9) holds. \diamond

We now prove the theorem in two cases. Suppose that $|M(v)|>1$. Then we have the following.

Claim 2. Any $a \in L(v)$ is either complete to $Q_{2}(v)$ or anticomplete to $Q_{2}(v)$.
Proof of Claim 2: Suppose to the contrary that there exists a vertex $a \in L(v)$ which is mixed on $Q_{2}(v)$. Then by using (3), there are adjacent vertices t and t^{\prime} in $Q_{2}(v)$ such that a is adjacent to t and a is not adjacent to t^{\prime}. Let $x \in M(v)$ be a neighbor of t and let $x^{\prime} \in M(v)$ be a neighbor of t^{\prime}. If $x \neq x^{\prime}$, then by using (7) and (8), we see that $\left\{x^{\prime}, t^{\prime}, t, x, a\right\}$ induces a fork. So we may assume that $x=x^{\prime}$. Then since $|M(v)|>1$, there exists a vertex $y \in M(v)$ (which is distinct from x and x^{\prime}), and so there exists a vertex $t^{\prime \prime} \in Q_{2}(v)$ which is adjacent to y. Then by using (7), (8) and (3), we see that either $\left\{x, t^{\prime}, t^{\prime \prime}, y, a\right\}$ or $\left\{y, t^{\prime \prime}, t, x, a\right\}$ induces a fork, a contradiction. \diamond

By Claim 2, we partition $L(v)$ into two sets as follows: Let $L_{1}(v)$ denote the set $\left\{a \in L(v) \mid a\right.$ is complete to $\left.Q_{2}(v)\right\}$ and let $L_{0}(v)$ denote the set $L(v) \backslash L_{1}(v):=\{a \in$ $L(v) \mid a$ is anticomplete to $\left.Q_{2}(v)\right\}$. Then by (9), $L_{0}(v) \neq \varnothing$. Fix a vertex $x \in M(v)$, and let $t \in Q_{2}(v)$ be a neighbor of x. Then we have the following.

Claim 3. $L_{0}(v)$ is anticomplete to $L_{1}(v)$.
Proof of Claim 3: Suppose to the contrary that there are adjacent vertices $c \in L_{1}(v)$ and $d \in L_{0}(v)$. Then by definitions of $L_{0}(v)$ and $L_{1}(v)$, we have c is adjacent to t, and d is not adjacent to t. Let $\{a, b\} \subset L(v)$ be such that $\{a, b, c\}$ is a triad in $L(v)$. Since $t \notin L(v)$, we may assume that t is adjacent to a. By (1), x is anticomplete to $\{a, b, c, d\}$. Then since
$\{a, t, c, d\}$ does not induce a C_{4}, a is not adjacent to d. But then $\{d, c, t, x, a\}$ induces a fork, a contradiction. \diamond
Claim 4. $L_{0}(v)$ is a clique.
Proof of Claim 4: If there are nonadjacent vertices a and b in $L_{0}(v)$, then $\{x, t, v, a, b\}$ induces a fork, a contradiction. \diamond

Consider a maximum stable set $S \subseteq N(v)$; then $S \subseteq L(v)$. We have $\left|S \cap L_{0}(v)\right|=1$, because $L_{0}(v)$ is a clique component of $L(v)$ (by Claim 3 and Claim 4). So $\left|S \cap L_{1}(v)\right|=$ $|S|-1$. A maximum stable set in $N(t)$ is $\left(S \cap L_{1}(v)\right) \cup\{x\}$, which has size $|S|=\alpha(N(v))$. Therefore, $\alpha(N(t))=\alpha(N(v))$, so t is also an important vertex. So $M(t)$ is a stable set, by (7). Since $L_{0}(v)$ is a nonempty component of $M(t)$, it is a singleton, say $L_{0}(v):=\{l\}$. Then we have the following claim.
Claim 5. $L_{0}(v)=\{l\}$ is anticomplete to $Q_{1}(v)$.
Proof of Claim 5: Suppose that there exists a vertex $q \in Q_{1}(v)$ which is adjacent to l. Then by (3), t and q are adjacent, and by the definition of $L_{0}(v), l$ and t are not adjacent. Now by (9), q has a non-neighbor, say $a \in L(v)$. Then $a \in L_{1}(v)$, and hence a is adjacent to t. Also by Claim 3 and (1), a is anticomplete to $\{l, x\}$. But then $\{l, q, t, x, a\}$ induces a fork, a contradiction. \diamond
Claim 6. No two vertices in $Q_{2}(v)$ share a common neighbor in $M(v)$.
Proof of Claim 6: Suppose that there are vertices t^{\prime} and $t^{\prime \prime}$ in $Q_{2}(v)$ which have a common neighbor $x^{\prime} \in M(v)$. Then by (4) and (8), since $\left\{t^{\prime}, t^{\prime \prime}\right\}$ is complete to ($\left.Q \backslash\left\{t^{\prime}, t^{\prime \prime}\right\}\right) \cup$ $L_{1}(v) \cup\left\{v, x^{\prime}\right\}$, and is anticomplete to $L_{0}(v) \cup\left(M(v) \backslash\left\{x^{\prime}\right\}\right),\left\{t^{\prime}, t^{\prime \prime}\right\}$ is a homogenous clique, a contradiction to our assumption that G has no homogenous cliques. \diamond

Now let Z denote the set $\{v\} \cup Q_{2}(v)$. Since $M\left(Q_{2}\right) \subseteq M(v) \cup\{l\}$, we have $M(Z)=$ $M(v) \cup\{l\}$. Then by (4), we see that Z is a clique. By (1) and (7), $M(Z)$ is a stable set which is anticomplete to $V(G) \backslash(Z \cup M(Z))$. By Claim 6 and (8), Z and $M(Z)$ are matched. Thus we conclude that G is candled.

So we may assume that every important vertex in G has exactly one non-neighbor. In this case, we claim that G is anticandled. Let $Y=Q_{2}(v) \cup\{v\}$. Then by (3), Y is a clique. Let m be the unique vertex in $M(v)$. Then there exists a vertex $t \in Q_{2}(v)$ such that t is adjacent to m. If S is a maximum stable set in $N(v)$, then by (1), $S \cup\{m\}$ is a stable set of size $\alpha(N(v))+1$. Since $t \notin L(v), t$ is adjacent to at least $|S|-1$ of the vertices in S, so $\alpha(N(t))=|S|=\alpha(N(v))$. So every vertex $t \in Q_{2}(v)$ is important and hence by assumption has a unique non-neighbor.

Since $\left\{t, t^{\prime}\right\}$ is not a homogeneous clique, for any $t, t^{\prime} \in Y$, they do not share a non-neighbor. Therefore, each vertex in $M(Y)$ has a distinct non-neighbor in Y, so in particular $M(Y)$ and Y are antimatched.

Consider distinct $m, m^{\prime} \in M(Y)$ with respective non-neighbors $t, t^{\prime} \in Y$. Then since $\left\{m^{\prime}, m, t, t^{\prime}\right\}$ does not induce a C_{4}, m and m^{\prime} are not adjacent. Thus $M(Y)$ is stable.

Suppose $m \in M(Y)$ has a neighbor u. Let $t \in Y$ be a non-neighbor of m; then since u is adjacent to the unique non-neighbor of t, we have by (1) that $u \in Q_{2}(t)$. Then u is
important, so by assumption u has a unique non-neighbor. Thus $u \notin L(v)$, since it is not part of a triad. Moreover, by (9), every vertex in $Q_{1}(v)$ has a non-neighbor in $L(v)$, so has at least two non-neighbors. Then $u \notin Q_{1}(v)$. Thus, $u \in Y$. So $M(Y)$ is anticomplete to $V(G) \backslash(Y \cup M(Y))$.

Hence we conclude that $Y \cup M(Y)$ induces an anticandelabrum with base $M(Y)$, with $G \backslash(Y \cup M(Y))$ complete to Y and anticomplete to $M(Y)$.

This completes the proof of the theorem.
Corollary 7. Let G be a connected (fork, C_{4})-free graph. Then G is claw-free or G has a universal vertex or G has a clique cutset.

Proof. Let G be a (fork, C_{4})-free graph. Suppose that G has no universal vertex, and no clique cutset. We show that G is claw-free. Suppose to the contrary that G contains a claw. Let $v \in V(G)$ be an important vertex. Let $L(v) \subseteq N(v)$ be the leaves of claws rooted at v and let Q denote the set $N(v) \backslash L(v)$. So if S is a maximum stable set in $N(v)$, then $S \subseteq L(v)$. Since v is not a universal vertex, $M(v)$ is not empty. Let Q_{1} be the maximal subset of Q that is anticomplete to $M(v)$, and let $Q_{2}:=N(M(v)) \cap Q=Q \backslash Q_{1}$. Then it follows from Theorem 1 (See item (3) and note that items (1)-(3) hold regardless of whether G has a homogeneous clique or not.) that Q_{2} is a clique. But then we see that Q_{2} is a clique cutset separating $\{v\}$ and $M(v)$ which is a contradiction. This completes the proof.

4 Structure of (claw, C_{4})-free graphs

In this section, we obtain a structure theorem for the class of (claw, C_{4})-free graphs that are not quasi-line graphs. A graph is chordal if it does not contain any induced cycle of length at least four.

Theorem 8. Let G be a connected (claw, C_{4})-free graph. Then at least one of the following hold:

- G has a clique cutset.
- G has a good vertex.
- G is a quasi-line graph.
- G is a blowup of the icosahedron graph.
- G is a crown with $\left|M \cup Q_{1} \cup Q_{5}\right|<|V(G)|$.

Proof. Let G be a connected (claw, C_{4})-free graph. We may assume that G has no clique cutset. Let $v \in V(G)$. First suppose that $G[N(v)]$ is chordal. Then since G is claw-free, $G[N(v)]$ is a chordal graph with no triad. Since the complement graph of a chordal graph with no triad is a bipartite graph, we see that $N(v)$ can be expressed as the union of two cliques. Since v is arbitrary, G is a quasi-line graph. So we may assume that $G[N(v)]$ is not chordal and hence $G[N(v)]$ contains an induced C_{k} for some $k \geqslant 5$. Since $\alpha\left(C_{k}\right) \geqslant 3$
for $k \geqslant 6$, and since G is (claw, C_{4})-free, we have $k=5$. That is, $G[N(v)]$ contains an induced C_{5}, say $C:=v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{1}$. Let T denote the set $\{x \in V(G) \backslash V(C) \mid$ $N(x) \cap V(C)=V(C)\}$, let R denote the set $\{x \in V(G) \backslash V(C) \mid N(x) \cap V(C)=\varnothing\}$, and for each $i \in\{1,2, \ldots, 5\}, i \bmod 5$, let:

$$
\begin{aligned}
& A_{i}:=\left\{x \in V(G) \backslash V(C) \mid N(x) \cap V(C)=\left\{v_{i}, v_{i+1}\right\}\right\}, \\
& B_{i}:=\left\{x \in V(G) \backslash V(C) \mid N(x) \cap V(C)=\left\{v_{i-1}, v_{i}, v_{i+1}\right\}\right\} \cup\left\{v_{i}\right\} .
\end{aligned}
$$

Let $A:=A_{1} \cup \cdots \cup A_{5}$ and $B:=B_{1} \cup \cdots \cup B_{5}$. Note that $v \in T$, and so $T \neq \varnothing$. Then the following properties hold for each $i \in\{1,2, \ldots, 5\}, i \bmod 5$:
(1) $V(G)=A \cup B \cup T \cup R$.

Proof of (1): Suppose that there is a vertex $x \in V(G) \backslash(A \cup B \cup T \cup R)$. Then for some i, either $N(x) \cap V(C)=\left\{v_{i}\right\}$ or $\left\{v_{i-1}, v_{i+1}\right\} \subseteq N(x) \cap V(C)$ with $v_{i} \notin N(x)$. But then $\left\{v_{i}, v_{i-1}, x, v_{i+1}\right\}$ induces either a claw or a $C_{4} . \diamond$
(2) A_{i} and $B_{i} \cup T$ are cliques.

Proof of (2): Let $i=1$ and suppose that there are nonadjacent vertices x and y in one of the listed sets. If $x, y \in A_{1}$, then $\left\{v_{1}, x, y, v_{5}\right\}$ induces a claw, and if $x, y \in B_{1} \cup T$, then $\left\{x, v_{5}, y, v_{2}\right\}$ induces a $C_{4} . \diamond$
(3) A_{i} is anticomplete to T.

Proof of (3): If there are adjacent vertices $a \in A_{i}$ and $t \in T$, then $\left\{t, v_{i-1}, v_{i+2}, a\right\}$ induces a claw. \diamond
(4) A_{i} is complete to $A_{i-1} \cup A_{i+1} \cup B_{i} \cup B_{i+1}$.

Proof of (4): By symmetry, it suffices to show that A_{i} is complete to $A_{i+1} \cup B_{i+1}$. Suppose that there are nonadjacent vertices $x \in A_{i}$ and $y \in A_{i+1} \cup B_{i+1}$. If $y \in A_{i+1}$, then $\{x, y\}$ is anticomplete to v (by (3)), and then $\left\{v_{i+1}, v, x, y\right\}$ induces a claw. So $y \in B_{i+1}$. Then $\left\{v_{i}, v_{i-1}, x, y\right\}$ induces a claw. \diamond
(5) A_{i} is anticomplete to $A_{i+2} \cup A_{i-2} \cup B_{i+2} \cup B_{i-1} \cup B_{i-2}$.

Proof of (5): By symmetry, it suffices to show that A_{i} is anticomplete to $A_{i+2} \cup B_{i+2} \cup$ B_{i-2}. Suppose that there are adjacent vertices $x \in A_{i}$ and $y \in A_{i+2} \cup B_{i+2} \cup B_{i-2}$. If $y \in A_{i+2} \cup B_{i-2}$, then $\left\{x, v_{i+1}, v_{i+2}, y\right\}$ induces a C_{4}. So $y \in B_{i+2}$. Now since x is not adjacent to v (by (3)), and y is adjacent to v (by (2)), we see that $\left\{x, v_{i}, v, y\right\}$ induces a $C_{4} . \diamond$
(6) B_{i} is complete to $B_{i+1} \cup B_{i-1}$.

Proof of (6): By symmetry, it suffices to show that B_{i} is complete to B_{i+1}. If there are nonadjacent vertices $x \in B_{i}$ and $y \in B_{i+1}$, then $\{x, y\}$ is complete to v (by (2)), and then $\left\{v, v_{i-2}, x, y\right\}$ induces a claw. \diamond
(7) B_{i} is anticomplete to $B_{i+2} \cup B_{i-2}$.

Proof of (7): If there are adjacent vertices $x \in B_{i}$ and $y \in B_{i+2} \cup B_{i-2}$, then either $\left\{x, v_{i-1}, v_{i-2}, y\right\}$ or $\left\{x, v_{i+1}, v_{i+2}, y\right\}$ induces a C_{4}. \diamond
(8) If $r \in R$, then $N(r) \cap(B \cup T)=\varnothing$.

Proof of (8): If there is a vertex $x \in N(r) \cap(B \cup T)$, then for some $i,\left\{v_{i-1}, v_{i+1}\right\} \subset$ $N(x) \cap V(C)$, and then $\left\{x, v_{i-1}, v_{i+1}, r\right\}$ induces a claw. \diamond
(9) Any $r \in R$ which has a neighbor in A_{i} is complete to $A_{i+1} \cup A_{i-1}$.

Proof of (9): Let $r \in R$ be such that r has a neighbor $a \in A_{i}$. If r is not adjacent to a vertex $b \in A_{i+1} \cup A_{i-1}$, then since a is adjacent to b (by (4)), we see that either $\left\{a, r, v_{i}, b\right\}$ or $\left\{a, r, v_{i+1}, b\right\}$ induces a claw. \diamond
(10) If A_{i} and A_{i+1} are not empty, for some i, then any $r \in R$ which has a neighbor in $A_{i} \cup A_{i+1} \cup A_{i-1}$ is complete to $A_{i} \cup A_{i+1} \cup A_{i-1}$.
Proof of (10): This follows from (4) and (9). \diamond
If R is empty, then by above properties we see that G is a blowup of the icosahedron graph, where we set $Q_{1}:=B_{1}, Q_{8}:=B_{2}, Q_{9}:=B_{3}, Q_{5}:=B_{4}, Q_{6}:=B_{5}, Q_{7}:=T$, $Q_{2}:=A_{1}, Q_{3}:=A_{2}, Q_{4}:=A_{3}, Q_{11}:=A_{4}$ and $Q_{12}:=A_{5}$.

So we may assume that $R \neq \varnothing$. Then by (8), $A \neq \varnothing$. Since G has no clique cutset, using (4) and (10), we may assume that there exists an index i such that A_{i} and A_{i+2} are not empty, say $i=1$. Now if $A_{2} \neq \varnothing$, then by (10) and since G is claw-free, any $r \in R$ is complete to A. Moreover, since G is C_{4}-free, R is a clique. So again G is a blowup of the icosahedron graph, where we set $Q_{1}:=B_{1}, Q_{8}:=B_{2}, Q_{9}:=B_{3}, Q_{5}:=B_{4}, Q_{6}:=B_{5}$, $Q_{7}:=T, Q_{2}:=A_{1}, Q_{3}:=A_{2}, Q_{4}:=A_{3}, Q_{11}:=A_{4}, Q_{12}:=A_{5}$ and $Q_{10}:=R$. So we may assume that $A_{2}=\varnothing$.

Next suppose that $A_{4} \cup A_{5}=\varnothing$. In this case, we show that one of the vertices v_{2} or v_{5} is good. Suppose not. Then since $T \cup B_{1} \cup B_{5}$ and $T \cup B_{4} \cup B_{5}$ are cliques, we see that $\left|B_{1}\right|>\frac{\omega(G)}{2}$ and $\left|B_{4}\right|>\frac{\omega(G)}{2}$. Since v_{2} is not a good vertex and since $A_{1} \cup B_{1} \cup B_{2}$ is a clique, we have $\left|T \cup B_{3}\right|>\frac{\omega(G)}{2}$. Then we see that $T \cup B_{3} \cup B_{4}$ is a clique of size $>\omega(G)$ which is a contradiction. Thus one of the vertices v_{2} or v_{5} is good.

So we may assume that $A_{5} \neq \varnothing$ and $A_{4}=\varnothing$. Let R^{\prime} be the set $\{r \in R \mid r$ has a neighbor in $\left.A_{1} \cup A_{5}\right\}$, and let $R^{\prime \prime}$ be the set $R \backslash R^{\prime}$. Then by (10), R^{\prime} is complete to $A_{1} \cup A_{5}$. Also if there are nonadjacent vertices $r_{1}, r_{2} \in R^{\prime}$, then for any $a \in A_{1}$, $\left\{r_{1}, r_{2}, v_{2}, a\right\}$ induces a claw, and so R^{\prime} is a clique. Now by above properties we see that G is a crown, where we set $Q_{10}:=B_{1}, Q_{7}:=B_{2}, Q_{8}:=B_{3}, Q_{2}:=B_{4}, Q_{3}:=B_{5}, Q_{9}:=T$, $Q_{6}:=A_{1}, Q_{1}:=A_{3}, Q_{4}:=A_{5}, Q_{5}:=R^{\prime}$ and $M:=R^{\prime \prime}$. Since $A_{5} \neq \varnothing$, it follows that $\left|M \cup Q_{1} \cup Q_{5}\right|<|V(G)|$.

This completes the proof of the theorem.

5 Coloring (claw/fork, C_{4})-free graphs

In this section, we show that every (fork, C_{4})-free graph satisfies $\chi(G) \leqslant\left\lceil\frac{3 \omega(G)}{2}\right\rceil$. We will use the following known result.

Theorem 9 ([3]). If G is a quasi-line graph, then $\chi(G) \leqslant\left\lceil\frac{3 \omega(G)}{2}\right\rceil$.
Let $[k]$ denote the set $\{1,2, \ldots, k\}$. A k-list assignment of a graph G is a function $L: V(G) \rightarrow 2^{[k]}$. The set $L(v)$, for a vertex v in G, is called the list of v. In the list k-coloring problem, we are given a graph G with a k-list assignment L and asked whether G has an L-coloring, i.e., a k-coloring of G such that every vertex is assigned a color from its list. We say that G is L-colorable if G has an L-coloring. We say that a graph F with list assignment L is L-degenerate if there exists a vertex ordering v_{1}, \ldots, v_{n} of $V(F)$ such that each v_{i} has at most $|L(v)|-1$ neighbors in $\left\{v_{1}, \ldots, v_{i-1}\right\}$ for $1 \leqslant i \leqslant n$. Clearly, if a graph is L-degenerate, then it is L-colorable.

Lemma 10. Suppose that G is a crown and $k \geqslant 1$ be an integer. If $\phi: M \cup Q_{1} \cup Q_{5} \rightarrow S$ with $|S|=\left\lceil\frac{3 k}{2}\right\rceil$ is a vertex coloring of $G\left[M \cup Q_{1} \cup Q_{5}\right]$ and $\omega(G-M) \leqslant k$, then $\chi(G) \leqslant$ $\left\lceil\frac{3 k}{2}\right\rceil$.

Proof. We prove the lemma by induction on k. If $k=1$, then any non-trivial component of G is an induced subgraph of $G\left[M \cup Q_{1} \cup Q_{5}\right]$ and the lemma holds. We now assume that $k \geqslant 2$ and the lemma holds for any positive integer smaller than k. Let $H=$ $G-\left(M \cup Q_{1} \cup Q_{5}\right)$. Note that, for each $i \in\{1,2, \ldots 10\} \backslash\{1,5\}$, any two vertices in Q_{i} have the same degree in H. Let L be the list assignment of H such that

$$
L(v)= \begin{cases}S \backslash \phi\left(Q_{1}\right) & \text { if } v \in Q_{2} \cup Q_{8} \\ S \backslash \phi\left(Q_{5}\right) & \text { if } v \in Q_{4} \cup Q_{6}, \\ S & \text { if } v \in Q_{3} \cup Q_{7} \cup Q_{9} \cup Q_{10}\end{cases}
$$

Note that if H is L-colorable, then $\chi(G) \leqslant\left\lceil\frac{3 k}{2}\right\rceil$. Since $\left|Q_{1}\right|+\left|Q_{2}\right|+\left|Q_{8}\right| \leqslant \omega(G-M) \leqslant k$, it follows that for any $v \in Q_{2} \cup Q_{8},|L(v)|=|S|-\left|Q_{1}\right|=\left\lceil\frac{3 k}{2}\right\rceil-\left|Q_{1}\right| \geqslant\left|Q_{2}\right|+\left|Q_{8}\right|+\left\lceil\frac{k}{2}\right\rceil$. Similarly, for any $v \in Q_{4} \cup Q_{6},|L(v)| \geqslant\left|Q_{4}\right|+\left|Q_{6}\right|+\left\lceil\frac{k}{2}\right\rceil$. Next, we claim that:

We may assume that: $Q_{9} \neq \varnothing$. Likewise, $Q_{10} \neq \varnothing$.
Proof of (1): Suppose that $Q_{9}=\varnothing$. Since $\left|Q_{2}\right|+\left|Q_{8}\right| \leqslant k$, one of Q_{2} and Q_{8} has size at most $\frac{k}{2}$, say Q_{2} by symmetry. Then for any $v \in Q_{3}$, it follows that $d_{H}(v)=$ $\left|Q_{3} \cup Q_{4} \cup Q_{10}\right|-1+\left|Q_{2}\right| \leqslant(k-1)+\left|Q_{2}\right| \leqslant \frac{3 k}{2}-1$. If $\left|Q_{8}\right| \leqslant \frac{k}{2}$, then $d_{H}(v) \leqslant \frac{3 k}{2}-1$ for any $v \in Q_{7}$. This implies that H is L-degenerate with the ordering of the vertices $Q_{2}, Q_{4}, Q_{6}, Q_{8}, Q_{10}, Q_{3}, Q_{7}$. (It does not matter which vertex comes first in Q_{i}.) So $\left|Q_{8}\right|>\frac{k}{2}$. This implies that $\left|Q_{7}\right|<\frac{k}{2}$. Then for any $v \in Q_{8}$, it follows that $d_{H}(v)=$ $\left|Q_{2}\right|+\left|Q_{8}\right|-1+\left|Q_{7}\right|<\left|Q_{2}\right|+\left|Q_{8}\right|-1+\frac{k}{2}<|L(v)|$. So H is L-degenerate with the ordering $Q_{2}, Q_{4}, Q_{6}, Q_{10}, Q_{7}, Q_{8}, Q_{3}$. This proves (1). \diamond

Next:

$$
\begin{equation*}
\text { We may assume that } Q_{3} \neq \varnothing \text {. Likewise, } Q_{7} \neq \varnothing \text {. } \tag{2}
\end{equation*}
$$

Proof of (2): Suppose $Q_{3}=\varnothing$. If $\left|Q_{7} \cup Q_{9}\right| \leqslant \frac{k}{2}$, then for any $v \in Q_{2} \cup Q_{8}$, it follows that $d_{H}(v) \leqslant\left|Q_{2}\right|+\left|Q_{8}\right|-1+\frac{k}{2}<|L(v)|$. Then H is L-degenerate with the ordering $Q_{4}, Q_{6}, Q_{10}, Q_{7}, Q_{9}, Q_{8}, Q_{2}$. So we assume that $\left|Q_{7} \cup Q_{9}\right|>\frac{k}{2}$. By symmetry, $\left|Q_{7} \cup Q_{10}\right|>$ $\frac{k}{2}$. This implies that each of $Q_{6}, Q_{8}, Q_{9}, Q_{10}$ has size less than $\frac{k}{2}$. Since $Q_{3}=\varnothing$, for any $v \in Q_{2}, d_{H}(v)=\left|Q_{2}\right|+\left|Q_{8}\right|+\left|Q_{9}\right|-1 \leqslant\left|Q_{2}\right|+\left|Q_{8}\right|+\frac{k}{2}-1<|L(v)|$. By symmetry, for any $v \in Q_{4}, d_{H}(v)<|L(v)|$. Moreover, each vertex in $Q_{9} \cup Q_{10}$ has degree at most $\frac{3 k}{2}-1$ in $H-\left(Q_{2} \cup Q_{4}\right)$. So H is L-degenerate with the ordering $Q_{8}, Q_{6}, Q_{7}, Q_{10}, Q_{9}, Q_{4}, Q_{2}$. This proves (2). \diamond

Moreover:
We may assume that $Q_{2} \neq \varnothing$. Likewise, Q_{4}, Q_{6}, Q_{8} are nonempty.
Proof of (3): Suppose $Q_{2}=\varnothing$. If $\left|Q_{9}\right| \leqslant \frac{k}{2}$, then for any $v \in Q_{3}$ it follows that $d_{H}(v) \leqslant$ $\frac{3 k}{2}-1$. Then as in the proof of (2), $H-Q_{3}$ is L-degenerate and thus H is L-degenerate. So $\left|Q_{9}\right|>\frac{k}{2}$. This implies that $\left|Q_{i} \cup Q_{10}\right|<\frac{k}{2}$ for $i \in\{3,7\}$. This implies that, for any $v \in Q_{4} \cup Q_{6}, d_{H}(v)<\left|Q_{4}\right|+\left|Q_{6}\right|-1+\frac{k}{2}<|L(v)|$. So H is L-degenerate with the ordering $Q_{8}, Q_{7}, Q_{9}, Q_{10}, Q_{3}, Q_{4}, Q_{6}$. This proves (3). \diamond

By (1), (2) and (3), we conclude that for each $i \in\{1,2, \ldots, 10\} \backslash\{1,5\}, Q_{i}$ contains at least one vertex, say q_{i}. In particular, this implies that $k \geqslant 3,\left|\phi\left(Q_{1}\right)\right| \leqslant k-2$ and $\left|\phi\left(Q_{5}\right)\right| \leqslant k-2$. Next we claim that:

There are three distinct colors $c_{1}, c_{2}, c_{3} \in S$ such that $c_{1} \notin \phi\left(Q_{1}\right), c_{2} \notin$ $\phi\left(Q_{5}\right)$, either $Q_{1}=\varnothing$ or $\left|\left\{c_{2}, c_{3}\right\} \cap \phi\left(Q_{1}\right)\right| \geqslant 1$, and either $Q_{5}=\varnothing$ or $\left|\left\{c_{1}, c_{3}\right\} \cap \phi\left(Q_{5}\right)\right| \geqslant 1$.

Proof of (4): Since $\left|\phi\left(Q_{1}\right)\right| \leqslant k-2$ and $|S|=\left\lceil\frac{3 k}{2}\right\rceil$, there are at least $\left\lceil\frac{3 k}{2}\right\rceil-k+2 \geqslant 4$ colors in S that are not in $\phi\left(Q_{1}\right)$. Similarly, there are at least 4 colors in S that are not in $\phi\left(Q_{5}\right)$.

First suppose that $\phi\left(Q_{1}\right) \cap \phi\left(Q_{5}\right) \neq \varnothing$. Let $c_{3} \in \phi\left(Q_{1}\right) \cap \phi\left(Q_{5}\right)$. Now we choose a color $c_{1} \in S \backslash \phi\left(Q_{1}\right)$, and then a color $c_{2} \in S \backslash \phi\left(Q_{5}\right)$ with $c_{2} \neq c_{1}$. Clearly, c_{1}, c_{2} and c_{3} are the desired colors. So we may assume that $\phi\left(Q_{1}\right) \cap \phi\left(Q_{5}\right)=\varnothing$.

If $Q_{1}=Q_{5}=\varnothing$, then any three colors $c_{1}, c_{2}, c_{3} \in S$ are the desired colors. If $Q_{1}=\varnothing$ and $Q_{5} \neq \varnothing$, then we choose $c_{3} \in \phi\left(Q_{5}\right)$, and then choose a color $c_{2} \in S \backslash \phi\left(Q_{5}\right)$, and finally choose a color $c_{1} \in S \backslash\left\{c_{2}, c_{3}\right\}$. Clearly, c_{1}, c_{2} and c_{3} are desired colors. If $Q_{1} \neq \varnothing$ and $Q_{5}=\varnothing$, we can choose the three colors in a similar way. Finally, we assume that $Q_{1}, Q_{5} \neq \varnothing$. Then it is possible to pick a color $c_{3} \in \phi\left(Q_{1}\right)$ and a color $c_{1} \in \phi\left(Q_{5}\right)$. Since $\phi\left(Q_{1}\right) \cap \phi\left(Q_{5}\right)=\varnothing$, it follows that $c_{1} \neq c_{3}$ and $c_{1} \notin \phi\left(Q_{1}\right)$. Moreover, $\left|\left\{c_{2}, c_{3}\right\} \cap \phi\left(Q_{1}\right)\right| \geqslant 1$ and $\left|\left\{c_{1}, c_{3}\right\} \cap \phi\left(Q_{5}\right)\right| \geqslant 1$ by the choice of c_{1} and c_{3}. Since there are at least 4 colors in S that are not in $\phi\left(Q_{5}\right)$, we can choose such a color $c_{2} \notin\left\{c_{1}, c_{3}\right\}$.

Thus, in all the cases, we have found the required colors, and the proof of (4) is complete. \diamond

Now for each $j \in\{1,2,3\}$, let $T_{j}=\left\{x \in M \cup Q_{1} \cup Q_{5} \mid \phi(x)=c_{j}\right\}$. Let $I_{1}:=$ $T_{1} \cup\left\{q_{2}, q_{10}\right\}, I_{2}:=T_{2} \cup\left\{q_{6}, q_{9}\right\}$, and $I_{3}:=T_{3} \cup\left\{q_{3}, q_{7}\right\}$. It follows from (4) that I_{1}, I_{2} and I_{3} are three pairwise disjoint independent sets. Moreover, ϕ restricted to $\left(M \cup Q_{1} \cup\right.$ $\left.Q_{5}\right) \backslash\left(T_{1} \cup T_{2} \cup T_{3}\right)$ maps to $S \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$ with

$$
\left|S \backslash\left\{c_{1}, c_{2}, c_{3}\right\}\right|=|S|-3=\left\lceil\frac{3 k}{2}\right\rceil-3=\left\lceil\frac{3(k-2)}{2}\right\rceil .
$$

Let $G^{\prime}=G-\left(I_{1} \cup I_{2} \cup I_{3}\right)$, and $M^{\prime}=M-\left(T_{1} \cup T_{2} \cup T_{3}\right)$. By (4), it follows that $G^{\prime}-M^{\prime}$ is obtained from $G-M$ by deleting $\left\{q_{2}, q_{3}, q_{6}, q_{7}, q_{9}, q_{10}\right\}$ and at least one vertex in Q_{j} if $Q_{j} \neq \varnothing$ for each $j \in\{1,5\}$. Therefore,

$$
\omega\left(G^{\prime}-M^{\prime}\right) \leqslant \omega(G-M)-2 \leqslant k-2 .
$$

Now by the inductive hypothesis,

$$
\chi(G) \leqslant \chi\left(G^{\prime}\right)+3 \leqslant\left\lceil\frac{3(k-2)}{2}\right\rceil+3=\left\lceil\frac{3 k}{2}\right\rceil .
$$

This proves Lemma 10.
Lemma 11. Let G be a blowup of the icosahedron. Then $\chi(G) \leqslant\left\lceil\frac{3 \omega(G)}{2}\right\rceil$.
Proof. Let I be the icosahedron graph with vertex labels as in Figure 1. Let G be a blowup of the icosahedron I. We prove the lemma by induction on $|V(G)|$. Let $\omega=\omega(G)$. We may assume that $\omega \geqslant 2$. Let Q_{i} be the clique corresponding to the vertex $i \in V(I)$. Let X be a subset of $V(G)$ obtained by taking $\min \left\{1,\left|Q_{i}\right|\right\}$ vertices from Q_{i} for each $i \in\{1,2, \ldots, 12\}$. Clearly, $G[X]$ is an induced subgraph of the icosahedron, and so $\chi(G[X]) \leqslant 4$. First suppose that $\omega(G-X) \geqslant \omega-2$. Then there are two indices $i, j \in\{1,2, \ldots, 12\}$ such that $Q_{i} \cup Q_{j}$ is a clique of size ω. Since the icosahedron is edgetransitive, we may assume that $i=10$ and $j=11$. Since $Q_{4} \cup Q_{10} \cup Q_{11}$ and $Q_{10} \cup Q_{11} \cup Q_{12}$ are cliques, we conclude that Q_{4} and Q_{12} are empty. Then we see that G is a crown (with $M=\varnothing$, and Q_{10} and Q_{11} being Q_{1} and Q_{5} in the definition of the crown), and the lemma follows from Lemma 10. So suppose that $\omega(G-X) \leqslant \omega-3$. Then by induction, we have $\chi(G-X) \leqslant\left\lceil\frac{3 \omega(G-X)}{2}\right\rceil \leqslant\left\lceil\frac{3(\omega-3)}{2}\right\rceil=\left\lceil\frac{3 \omega}{2}-\frac{9}{2}\right\rceil$. Since $\chi(G) \leqslant \chi(G-X)+\chi(G[X])$, we have $\chi(G) \leqslant\left\lceil\frac{3 \omega}{2}\right\rceil$. This proves Lemma 11 .

Theorem 12. Let G be a (claw, C_{4})-free graph. Then $\chi(G) \leqslant\left\lceil\frac{3 \omega(G)}{2}\right\rceil$.
Proof. Let G be a (claw, C_{4})-free graph. By Theorem 9, we may assume that G is not a quasi-line graph. We prove the theorem by induction on $|V(G)|$, and we apply Theorem 8.

If G has a clique cutset K, let A, B be a partition of $V(G) \backslash K$ such that both A, B are non-empty, and A is anticomplete to B. Clearly $\chi(G)=\max \{\chi(G[K \cup A]), \chi(G[K \cup B])\}$, so the desired result follows from the induction hypothesis on $G[K \cup A]$ and $G[K \cup B]$.

If G has a good vertex u, then by induction, $\chi(G-\{u\}) \leqslant\left\lceil\frac{3 \omega(G-\{u\})}{2}\right\rceil$. Now consider any $\chi(G-\{u\})$-coloring of $G-\{u\}$ and extend it to a $\left\lceil\frac{3 \omega(G)}{2}\right\rceil$-coloring of G, using for u a (possibly new) color that does not appear in its neighborhood.

If G is a blowup of the icosahedron graph, then the theorem follows from Lemma 11.
Finally, suppose that G is a crown with $\left|M \cup Q_{1} \cup Q_{5}\right|<|V(G)|$. By the inductive hypothesis, let $\phi: M \cup Q_{1} \cup Q_{5} \rightarrow S$ with $|S|=\left\lceil\frac{3 \omega(G)}{2}\right\rceil$ be a vertex coloring of $G[M \cup$ $\left.Q_{1} \cup Q_{5}\right]$. It then follows from Lemma 10 that $\chi(G) \leqslant\left\lceil\frac{3 \omega(G)}{2}\right\rceil$.

Theorem 13. Let G be a (fork, C_{4})-free graph. Then $\chi(G) \leqslant\left\lceil\frac{3 \omega(G)}{2}\right\rceil$.
Proof. Let G be any (fork, C_{4})-free graph. We prove the theorem by induction on $|V(G)|$.
If G has a universal vertex u, then $\omega(G)=\omega(G-\{u\})+1$, and by the induction hypothesis, we have $\chi(G)=\chi(G-\{u\})+1 \leqslant\left\lceil\frac{3 \omega(G-\{u\})}{2}\right\rceil+1$, which implies $\chi(G) \leqslant$ $\left\lceil\frac{3 \omega(G)}{2}\right\rceil$.

If G has a clique cutset K, let A, B be a partition of $V(G) \backslash K$ such that both A, B are non-empty, and A is anticomplete to B. Clearly $\chi(G)=\max \{\chi(G[K \cup A]), \chi(G[K \cup B])\}$, so the desired result follows from the induction hypothesis on $G[K \cup A]$ and $G[K \cup B]$.

Finally, if G has no universal vertex and no clique cutset, then the result follows from Corollary 7 and Theorem 12.

We remark that we do not have any example of a (claw/fork, C_{4})-free graph G such that $\chi(G)=\left\lceil\frac{3}{2} \omega(G)\right\rceil$ except C_{5}. However, for an integer $m \geqslant 1$, consider the blowup G of the icosahedron graph I where $\left|Q_{v}\right|=m$, for each vertex v in I. Then clearly $\omega(G)=3 m$, and since $\alpha(G)=3$, we have $\chi(G) \geqslant \frac{|V(G)|}{\alpha(G)}=\frac{12 m}{3}=4 m=\frac{4 \omega(G)}{3}$.

Acknowledgements

We thank all reviewers for their careful reading of the manuscript and detailed comments that significantly improved the presentation of the paper.

References

[1] C. Brause, B. Randerath, I. Schiermeyer and E. Vumar. On the chromatic number of $2 K_{2}$-free graphs. Discrete Applied Mathematics 253 (2019) 14-24.
[2] M. Chudnovsky, L. Cook and P. Seymour. Excluding the fork and antifork. Discrete Mathematics 343 (2020) 111786.
[3] M. Chudnovsky and A. Ovetsky. Colouring quasi-line graphs. Journal of Graph Theory 54(1) (2007) 41-50.
[4] M. Chudnovsky and P. Seymour. The structure of claw-free graphs. Proceedings of the British Combinatorial Conference 327 (2005) 153-171.
[5] M. Chudnovsky and P. Seymour. Claw-free graphs VI. colouring. Journal of Combinatorial Theory, Series B 100(6) (2010) 560-572.
[6] A. Gyárfás. Problems from the world surrounding perfect graphs. ZastosowaniaMatematyki Applicationes Mathematicae 19 (1987) 413-441.
[7] H. A. Kierstead and S. G. Penrice. Radius two trees specify χ-bounded classes. Journal of Graph Theory 18(2) (1994) 119-129.
[8] J. H. Kim. The Ramsey number $R(3, t)$ has order of magnitude $O\left(t^{2} / \log t\right)$. Random Structures and Algorithms 7 (1995) 173-207.
[9] J. Mycielski. Sur le coloriage des graphes. Colloquim Mathematics (1955) 161-162.
[10] B. Randerath. The Vizing bound for the chromatic number based on forbidden pairs. PhD thesis, RWTH Aachen, Shaker Verlag, 1993.
[11] B. Randerath and I. Schiermeyer. Vertex colouring and forbidden subgraphs - a survey. Graphs and Combinatorics 20 (2004) 1-40.
[12] D. P. Sumner. Subtrees of a graph and the chromatic number. In The theory and applications of graphs (Kalamazoo, Mich., 1980), pages 557-576. Wiley, New York, 1981.

[^0]: *This research is supported by NSF grant DMS-1763817. This material is based upon work supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office under grant number W911NF-16-1-0404.
 ${ }^{\dagger}$ The corresponding author. This research is supported by the National Natural Science Foundation of China (11801284) and Natural Science Foundation of Tianjin (20JCYBJC01190).
 ${ }^{\ddagger}$ This research is partially supported by DST-SERB, Government of India under MATRICS scheme (MTR/2018/000288).
 ${ }^{\S}$ This work was performed when the author was at Princeton University.

