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Abstract

We use the crystal isomorphisms of the Fock space to describe two maps on
partitions and multipartitions which naturally appear in the crystal basis theory for
quantum groups in affine type A and in the representation theory of Hecke algebras
of type G(l, l, n).

Mathematics Subject Classifications: 20C08,05E10,17B37

1 Introduction

One of the first problems in the study of the representation theory of a finite group is to
find a classification of its simple modules. The difficulty of this problem depends widely
on the characteristic of the field of the representations. In the case of the symmetric group
Sn and in characteristic 0, it is known from the works of Frobenius in the beginning of
the twentieth century that the irreducible representations are naturally labelled by the
partitions of n. As a consequence, several fundamental questions around this theory are
closely related to the combinatorics of partitions. For example, the dimensions of an
irreducible representation is given by the number of standard tableaux with shape the
diagram of the partition.

In positive characteristic p > 0, the difficulty comes from the fact that the representa-
tion theory can be non semisimple. In this case, we know how to classify the irreducible
representations: they are naturally labeled by the set of p-regular partitions but their
structures are far from being completely understood (for example we do not even know
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what are their dimensions). One way to attack this problem is to attach to the symmet-
ric group, its Iwahori-Hecke algebra, which may be seen as a deformation of the group
algebra. The representation theory of this algebra is indeed closely connected with the
representation theory of the symmetric group, in particular in positive characteristic, and
also to various other algebraic objects, such as the finite reductive groups, Cherednik
algebras etc (see [2].)

The symmetric groups are particular cases of finite Coxeter groups, which are them-
selves particular cases of complex reflection groups. A complex reflection group is a finite
group of complex matrices generated by “pseudo-reflections”. Their classification is due
to Shephard and Todd. If W is an irreducible complex reflection group then either it
belongs to an infinite series which is denoted by G(l, p, n) and which depends on three
parameters or it is in a list of 34 exceptional groups. Important works in the last decades
have suggested that theses groups play a crucial role in Representation theory. In this
paper, we will consider the complex reflection groups of type G(l, 1, n), sometimes called
“generalized symmetric groups”, and G(l, l, n). The aim is to study the analogues of the
p-regular partitions for these algebras and the relations between them. In positive charac-
teristic, since the works of Lascoux, Leclerc, Thibon and Ariki in the 90’s, it is known that
the representation theory of the Hecke algebras of these groups is closely related to the
crystal basis theory for quantum groups. In particular, the construction of a remarkable
combinatorial graph (the crystal graph in affine type A) leads to a classification of the
simple modules of the Hecke algebra of type G(l, 1, n) (also known as Ariki-Koike alge-
bra) in the modular case by certain combinatorial objects called Uglov l-partitions. These
classes of l-tuples of partitions may be seen as generalizations of the p-regular partitions
(they coincide when l = 1). These algebras include the cases of Hecke algebras of type
A - that is of the symmetric group - and B - that is of the hyperoctohedral group (see
[1, 2]).

A lot of information on the representation theory of Hecke algebras of type D (which
is a deformation of the Weyl group of type D) or, more generally, of type G(l, l, n) can be
obtained from the G(l, 1, n) case. In fact, these latter algebras can be seen as subalgebras
of Hecke algebras of type G(l, 1, n) and, by using a classical technics in group theory,
namely the Clifford Theory, it is possible to produce all the simple modules by studying the
restriction of the simple modules of the Hecke algebras of type G(l, 1, n). This problem has
been studied in various papers using different approaches (see [4, 5, 3] and the references
therein). The one developed in [4] and [6] in particular involves the existence of two
combinatorial maps which are defined using the crystal graphs that we have already
mentioned:

• The first map associates to each Uglov l-partition labelling a vertex of the crystal
graph, another Uglov l-partition.

• The second one associates to each e-regular partition a certain Uglov l-partition.

The existence of such maps is non trivial and based on the structure of the associated
crystal graphs. Moreover, their descriptions are only recursive on the size of the parti-
tions/multipartitions involved. The relevance of these maps is that they allow to describe
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the restrictions of the simple modules of the Hecke algebras of type G(l, 1, n) to the Hecke
algebras of type G(l, l, n).

The aim of this note is to recover, generalize and make explicit these results. The
main tools of the proof are the crystal isomorphisms defined and described in [9]. Using
them, the proofs become purely combinatorial and quite elementary. They also permits
to explain how the approaches developed in [4] and in [3] are related.

aim of this note is to recover, generalize and make explicit these results. The main tools
of the proof are the crystal isomorphisms defined and described in [9]. Using them, the
proofs become purely combinatorial and quite elementary. They also permits to explain
how the approaches developed in [4] and in [3] are related.

2 Crystals

In this part, we quickly recall some basic combinatorial notions, then we focus on the
definition and on important properties of the crystals for Fock spaces. In all this section,
we set l ∈ Z>0 and e ∈ Z>1.

2.1 Generalities on Fock spaces and crystals

A partition is by definition a nonincreasing sequence λ = (λ1, . . . , λm) of nonnegative
integers. If

∑
16i6m λi = n, we say that λ is a partition of n. For j = 1, . . . , l, let λj be

a partition of nj ∈ Z>0 then we say that the l-tuple λ := (λ1, . . . , λl) is an l-partition of
n if

∑
16j6l nj = n. We denote by Πl(n) the set of l-partitions of rank n. The empty

l-partition is by definition the unique partition of 0 and it is denoted by ∅ := (∅, . . . , ∅).
When l = 1, the 1-partitions are identified with the partitions in an obvious way.

Let s = (s1, . . . , sl) ∈ Zl (we say that s is a multicharge). Let q be an indeterminate.
The Q(q)-vector space generated by all the l-partitions:

Fq :=
⊕
n∈Z>0

⊕
λ∈Πl(n)

Q(q)λ

is called the Fock space. Let Uq(ŝle) be the quantum group of affine type A
(1)
e−1. This is

an associative Q(q)-algebra with generators ei, fi, ti, t
−1
i (for i = 0, . . . , e − 1) and ∂ and

relations given in [2, §6.1]. We denote by U ′q(ŝle) the subalgebra generated by ei, fi, ti, t
−1
i

(for i = 0, . . . , e− 1). For i = 0, . . . , e− 1, we denote by Λi the fundamental weights and
the simple roots are given by:

αi = −Λi−1 + 2Λi − Λi+1,

where the indices are taken modulo e. There is an action of U ′q(ŝle) on the Fock space. This
action depends on the choice of s and the module generated by the empty multipartition
is an irreducible highest weight module with highest weight Λs1 + · · · + Λsl . We do not
need the precise definition of this action and we refer to [2, Ch. 6] for details.
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To each λ ∈ Πl(n) is associated its Young tableau:

[λ] = {(a, b, c) | a > 1, c ∈ {0, . . . , l − 1}, 1 6 b 6 λca}.

We define the content of a node γ = (a, b, c) ∈ [λ] as follows:

cont(γ) = b− a+ sc,

and the residue res(γ) is by definition the content of the node taken modulo e. We will
say that γ is an i+ eZ-node of λ when res(γ) ≡ i+ eZ (we will sometimes simply called
it an i-node). Finally, We say that γ is removable when γ = (a, b, c) ∈ [λ] and [λ]\{γ} is
the Young diagram of an l-partition. Similarly, γ is addable when γ = (a, b, c) /∈ [λ] and
[λ] ∪ {γ} is the Young diagram of an l-partition.

Let γ, γ′ be two removable or addable i-nodes of λ. We denote

γ ≺s γ
′ def⇐⇒

{
either b− a+ sc < b′ − a′ + sc′ ,
or b− a+ sc = b′ − a′ + sc′ and c > c′.

For λ an l-partition and i ∈ Z/eZ, we can consider its set of addable and removable

i-nodes. Let w
(e,s)
i (λ) be the word obtained first by writing the addable and removable

i-nodes of λ in increasing order with respect to ≺s, next by encoding each addable i-node
by the letter A and each removable i-node by the letter R. Write w̃

(e,s
i (λ) = ApRq for the

word derived from w
(e,s)
i (λ) by deleting as many of the factors RA as possible. In the

following, we will sometimes write w̃i(λ) and wi(λ) instead of w̃
(e,s)
i (λ) and w

(e,s)
i (λ) if

there is no possible confusion.
If p > 0, let γ be the rightmost addable i-node in w̃i. The node γ is called the good

addable i-node. If r > 0, the leftmost removable i-node in w̃i is called the good removable
i-node.

Example 1. For l = 2, s = (0, 1) and e = 3. Let us consider the 2-partition λ :=
((4), (2, 1)) of 7. We write its Young tableau and the residues of the nodes in the associated
boxes: (

0 1 2 0 ,
1 2
0

)
We have w̃0(λ) = RAR and thus (1, 4, 1) is a good removable 0-node for λ. We have
w̃2(λ) = AAR and thus (2, 1, 1) is a good addable 2-node for λ and (1, 2, 2) is a good
removable 2-node for it.

We denote by Ge,s the crystal of the Fock space computed using the Kashiwara oper-

ators ẽe,si and f̃ e,si . Again, we refer to [2] for details. This is the graph with

• vertices : the l-partitions λ `l n with n ∈ Z>0.

• arrows: λ
i→ µ if and only if f̃ e,si λ = µ (or equivalently ẽe,si µ = λ). This means

that µ is obtained by adding to λ the good addable i-node, or equivalently, λ is
obtained from µ by removing the good removable i-node.
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Example 2. For l = 3, e = 2 and s = (0, 0, 1) the graph below is the subgraph of Ge,s
containing the empty 3-partition and with the 3-partitions with rank less or equal than 4.

(∅, ∅, ∅)

(1, ∅, ∅) (∅, ∅, 1)

(2, ∅, ∅) (1, 1, ∅) (∅, ∅, 2)

(3, ∅, ∅) (2, ∅, 1) (2, 1, ∅) (1, ∅, 2) (∅, ∅, 3)

(4, ∅, ∅) (3, 1, ∅) (2, ∅, 2)(2.1, ∅, 1)(2, 2, ∅) (1, 1, 2) (1, ∅, 3) (∅, ∅, 4)
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Let Φe,s(n) be the set of l-partitions of rank n in the connected component of Ge,s
containing the empty l-partition. This is called the set of Uglov l-partitions. Hence, by
definition, an Uglov l-partition is defined by adding successively good nodes to the empty
l-partition (with arbitrary residues). It strongly depends on the choice of s. Assume that
s is such that 0 < sj − si < e for all 0 < i < j 6 l then the set Φe,s(n) is known as the set
of FLOTW l-partitions and it has a nice non recursive description (see [2, §6.3.2]). We
have λ = (λ1, . . . , λl) ∈ Φs,e(n) if and only if:

1. For all j = 1, . . . , l − 1 and i ∈ Z>0, we have:

λji > λj+1
i+sj+1−sj .

2. For all i ∈ Z>0, we have:
λli > λ1

i+e+s1−sl .

3. For all k ∈ Z>0, the set

{λji − i+ sj + eZ | i ∈ Z>0, λ
j
i = k, j = 1, . . . , l},

is a proper subset of Z/eZ.

In general, we do not have such a nice description of the set of Uglov l-partitions.

Example 3. In the case where l = 1, the set Φe,(0)(n) is the set of e-regular partitions of
n, that is, the set of partitions of rank n such that no non zero parts are repeated e or
more times.

Example 4. Following Example 2, we have

Φ2,(0,0,1)(4) = {(4, ∅, ∅), (3, 1, ∅), (2, ∅, 2), (2.1, ∅, 1), (2, 2, ∅), (1, 1, 2), (1, ∅, 3), (∅, ∅, 4)}
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2.2 Crystal isomorphisms

In this part, we recall the definition of certain crystal isomorphisms studied in [9]. These
maps will be intensively used in the next sections.

Let Ŝl be the (extended) affine symmetric group. This is defined as follows. We denote
by Pl := Zl the Z-module with standard basis {yi | i = 1, . . . , l}. For i = 1, . . . , l − 1,

we denote by σi the transposition (i, i + 1) of Sl. Then Ŝl can be seen as the semi-
direct product Pl o Sl where the relations are given by σiyj = yjσi for j 6= i, i + 1 and
σiyiσi = yi+1 for i = 1, . . . , l − 1 and j = 1, . . . , l. This group acts on Zl by setting for
any s = (s1, . . . , sl) ∈ Zl:

σc.s = (s1, . . . , sc−1, sc+1, sc, sc+2, . . . , sl) for c = 1, . . . , l − 1 and
yi.s = (s1, s2, . . . , si + e, . . . , sl) for i = 1, . . . , l.

A fundamental domain for this action is given by

Ael :=
{

(s1, . . . , sl) ∈ Zl | 0 6 s1 6 · · · 6 sl < e
}
.

Note that we thus have a description of Φs,e(n) when s is in this domain by §2.1. Let

τ := ylσl−1 . . . σ1 then we see that Ŝl is generated by τ and σi for i = 1, . . . , l − 1. In
addition, we have:

τ.s = (s2, . . . , sl, s1 + e).

Assume that s ∈ Zl and s′ ∈ Zl are in the same orbit modulo Ŝl. As explained in [2,
§6.2.17], the crystal graph theory allows to construct a combinatorial bijection between
the two sets of Uglov l-partitions Φs,e(n) and Φs′,e(n). Let λ ∈ Φs,e(n) then there exists
a sequence (i1, . . . , in) ∈ (Z/eZ)n such that:

f̃ e,si1 . . . f̃ e,sin ∅ = λ

Then there exists µ ∈ Φs′,e(n) such that

f̃ e,s
′

i1
. . . f̃ e,s

′

in
∅ = µ

We set Ψe
s→s′(λ) := µ (it does not depends on the choice of the sequence (i1, . . . , in)).

This defines a bijection
Ψe

s→s′ : Φs,e(n)→ Φs′,e(n).

A combinatorial description of this map is given in [9]. Let us quickly explain how it

works. There exists w ∈ Ŝl such that s′ = w.s. Then, w is a product of τ and σi’s
(i = 1, . . . , l − 1). Thus Ψe

s→s′ is a composition of maps of the form Ψe
v→τ.v and Ψe

v→σi.v
with v ∈ Zl make explicit by induction.

• For all λ = (λ1, . . . , λl) ∈ Φe,v(n), we have

Ψe
v→τ.v(λ) = (λ2, . . . , λl, λ1).
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• For all λ = (λ1, . . . , λl) ∈ Φe,v(n), we have

Ψe
v→σi.v(λ) = (λ1, . . . , λi−1, λ̃i+1, λ̃i, λi+2, . . . , λl),

where (λ̃i+1, λ̃i) is obtained from (λi, λi+1) via a simple purely combinatorial process
described in [9, th. 5.4.2] (in terms of Lusztig symbols) or in [8, §5.3] (in terms of
Young tableaux).

Assume that s = (s1, . . . , sl) satisfies si− sj > n− 1− e for all i < j then we say that
s is very dominant. If both s and s′ are very dominant (comparing to n) and in the same
orbit then Ψe

s→s′ restricted to Φs,e(n) is the identity and the set Φs,e(n) is known as the
set of Kleshchev l-partitions (see [2, Ex. 6.2.16]).

If s ∈ Zl, one way to compute the set Φs,e(n) of Uglov l-partitions consists in finding

w ∈ Ŝl such that s′ = w.s ∈ Ael . We can then use the description of the set Φs′,e(n) in
§2.1 and then apply the isomorphism Ψe

s′→s.

Example 5. For l = 3, e = 2 and s = (2, 0, 3) the graph below is the subgraph of Ge,s
containing the empty 3-partition.
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(2, ∅, ∅) (1, 1, ∅) (∅, ∅, 2)

(3, ∅, ∅) (2, ∅, 1) (2, 1, ∅) (1, ∅, 2) (∅, ∅, 3)

(4, ∅, ∅) (3, 1, ∅) (3, ∅, 1)(2.1, ∅, 1)(2, 1, 1) (1, ∅, 2.1)(1, ∅, 3) (∅, ∅, 4)
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Looking at example 2, we see that Ψ2
(0,0,1)→(2,0,3) is the identity for the Uglov 3-

partitions of ranks 6 3, and we have

Ψ2
(0,0,1)→(2,0,3)(2, ∅, 2) = (3, ∅, 1),Ψ2

(0,0,1)→(2,0,3)(2, 2, ∅) = (2, 1, 1),

Ψ2
(0,0,1)→(2,0,3)(1, 1, 2) = (1, ∅, 2.1)

and Ψ3
(0,0,1)→(2,0,3) is the identity for the others Uglov 3-partitions of ranks 4. This for-

mula can be also obtained without looking at the crystal. Indeed, we have (2, 0, 3) =
(σ1τ)2(0, 0, 1) and thus

Ψ2
(0,0,1)→(2,0,3) = Ψ2

(0,0,1)→τ(0,0,1) ◦Ψ2
τ(0,0,1)→σ1τ(0,0,1)

◦Ψ3
σ1τ(0,0,1)→τσ1τ(0,0,1)

◦Ψ2
τσ1τ(0,0,1)◦σ1τσ1τ(0,0,1)

and one can use the combinatorial description of the isomorphisms.
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3 Two maps on crystals

The above results will allow us to recover and give precisions on two results on crystals in
affine type A thanks to quite elementary proofs. These two results concern a particular
choice of multicharge which naturally appears in the context of Hecke algebras, as we will
see in the next part. In this section, we thus assume that l divides e and that s ∈ Zl is in
the orbit of the multicharge (0, e/l, . . . , (l − 1)e/l) modulo Ŝl.

3.1 Hu’s map

The first result that we want ro recover is in fact a direct generalization of a result by Hu
[4, Theorem 3.6]. We propose here an elementary proof of this result using our crystal
isomorphisms and we will also give a general method to explicitly compute the l-partitions
that this results allows to define. Part of this result (Lemma 7 below) is in fact contained
in the PhD thesis of the author [7] and used in [5].

Proposition 6 (Hu). Assume that λ ∈ Φe,s(n). Then there exists a sequence (i1, . . . , in) ∈
(Z/eZ)n such that:

f̃ e,si1 . . . f̃ e,sin ∅ = λ.

Then for any such sequence, there exists µ ∈ Φe,s(n) such that

f̃ e,si1+e/l . . . f̃
e,s
in+e/l∅ = µ

To prove this proposition, we will proceed in two steps, we first prove the proposition
for a particular choice of multicharge which is in Ael , and then make use of the crystal
isomorphisms we have already defined.

Lemma 7. Let s = (0, e/l, . . . , (l − 1)e/l) Assume that λ = (λ1, . . . , λl) ∈ Φe,s(n) and
that we have a sequence (i1, . . . , in) ∈ (Z/eZ)n such that:

f̃ e,si1 . . . f̃ e,sin ∅ = λ.

Then we have that µ := (λl, λ1, . . . , λl−1) ∈ Φe,s(n) and we have

f̃ e,si1+e/l . . . f̃
e,s
in+e/l∅ = µ.

Proof. We argue by induction on n. The lemma is clear for the empty l-partition. Assume
now that n > 0. Let λ ∈ Φe,s(n) and assume that we have a sequence (i1, . . . , in) ∈
(Z/eZ)n such that

f̃ e,si1 . . . f̃ e,sin ∅ = λ.

Set λ′ := f̃ e,si2 . . . f̃ e,sin ∅ then λ′ = (λ′1, . . . , λ′l) is in Φe,s(n − 1) and by induction, µ′ :=

(λ′l, λ′1, . . . , λ′l−1) is in Φe,s(n− 1) and we have µ′ = f̃ e,si2+e/l . . . f̃
e,s
in+e/l∅.

Now, by hypothesis, we have that γ = [λ]/[λ′] is a good addable i1-node for λ′ (and
(e, s)). Set (a, b, c) := γ. Then γ′ := [µ]/[µ′] is an addable node for µ′. We have
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γ′ = (a, b, c + 1) (where the 3rd component is understood modulo l) and, by our choice
of multicharge, it is a i1 + e/l-node. We want to show that this is a good addable node
for µ′.

Assume that γ1 = (a1, b1, c1) is a i1-addable or removable node for λ′. Then γ′1 :=
(a1, b1, c1 + 1) is an addable or removable node for µ′ (and it is removable, resp. addable,
if and only if γ1 is). We have that

cont(γ′1) =

{
cont(γ1) + e/l if c1 6= l,

cont(γ1) + e/l − e if c1 = l.

Thus, we have γ1 ≺e,s γ if and only if γ′1 ≺e,s γ′.
Reciprocally, if γ′1 = (a1, b1, c1) is a in + e/l-addable or removable node for µ′. Then

γ1 := (a1, b1, c1 − 1) is an addable or removable for i1-node for λ′ (and it is removable,
resp. addable, if and only if γ′1 is). We have that γ1 ≺e,s γ if and only if γ′1 ≺e,s γ′. Thus

we have w
(e,s)
i1

(λ′) = w
(e,s)
i1+e/l(µ

′).

This discussion implies that γ′ is good addable i1 + e/l-node for µ′ and thus that

f̃ e,si1+e/l . . . f̃
e,s
in+e/l∅ = µ,

as required.

We can now give a proof of Proposition 6. Assume that s ∈ Zl is in the orbit of
(0, e/l, . . . , (l − 1)e/l) modulo Ŝl. Let λ ∈ Φe,s(n) and consider a sequence (i1, . . . , in) ∈
(Z/eZ)n such that:

f̃ e,si1 . . . f̃ e,sin ∅ = λ.

Set s′ := (0, e/l, . . . , (l − 1)e/l), then by definition, we have

f̃ e,s
′

i1
. . . f̃ e,s

′

in
∅ = Ψe

s→s′(λ).

We can thus use Lemma 7 to deduce that there exists µ′ ∈ Φe,s′(n) such that

f̃ e,s
′

i1+e/l . . . f̃
e,s′

in+e/l∅ = µ′,

and using again our crystal isomorphism, we get that:

f̃ e,si1+e/l . . . f̃
e,s
in+e/l∅ = Ψe

s′→s(µ
′),

so the result follows. Note in addition that the l-partition µ′ may be explicitly described
thanks to the description of the crystal isomorphism without the computation of the
crystal itself.

Example 8. Take l = 2 and assume that e = 4. We set s = (0, 10) which is in the orbit
of s′ = (0, 2) ∈ A4

2. We take λ = (1.1, 5.1) ∈ Φ4
(0,10)(8). Note that the multicharge is very

dominant for 2-partitions of rank 8 so (1.1, 5.1) is a Kleshchev bipartition. If we want to
find the bipartition µ of Proposition 6, we first need to find the bipartition λ′ ∈ Φ4

(0,2)(8)

such that Ψ4
s→s′(λ) = λ′. Using our description of the isomorphisms, we get λ′ = (2.1, 5).

We then have µ = Ψ4
s′→s(5, 2.1) = (4, 3.1).
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3.2 The map ιsk

We keep the hypothesis that s is in the orbit of the multicharge (0, e/l, . . . , (l − 1)e/l)

modulo Ŝl. We now consider another map defined using the crystal. As explained in [6],
its existence follows from [10] in the case where l = 2. Here we will give a general version
which can be seen in [5] and we will again give a different easy proof using our crystal
isomorphism. We will also make things more explicit.

Proposition 9. Let k be an integer dividing l. Set v := (0, e/l, . . . , e(k − 1)/l) ∈ Zk.
There exists a unique map

ιsk : Φke/l,v(n)→ Φe,s(ln/k)

well-defined as follows. For all λ ∈ Φke/l,v(n), there exists (i1, . . . , in) ∈ Zn such that

f̃
ke/l,v
i1

. . . f̃
ke/l,v
in

∅ = λ,

(the indices are understood modulo ke/l.) Then for all such sequences, we have:

f̃ e,si1 f̃
e,s
i1+ke/l . . . f̃

e,s
i1+e−ke/l︸ ︷︷ ︸

l/k

. . . f̃ e,sin f̃
e,s
in+ke/l . . . f̃

e,s
in+e−ke/l︸ ︷︷ ︸

l/k

∅ = ιsk(λ)

(the indices are understood modulo e.)

In the same spirit as the last result, our strategy consists in proving the result when
s is in the fundamental domain Ael .

Lemma 10. Let k be an integer dividing l. Set s = (0, e/l, . . . , (l − 1)e/l) and v :=
(0, e/l, . . . , e(k − 1)/l) ∈ Zk. There exists a unique map

ιsk : Φke/l,v(n)→ Φe,s(ln/k)

well-defined as follows. For all λ ∈ Φke/l,v(n), there exists (i1, . . . , in) ∈ Zn such that

f̃
ke/l,v
i1

. . . f̃
ke/l,v
in

∅ = λ

Then for all such sequences, we have:

f̃e,si1 f̃
e,s
i1+ke/l . . . f̃

e,s
i1+e−ke/l︸ ︷︷ ︸

l/k

. . . f̃e,sin f̃
e,s
in+ke/l . . . f̃

e,s
in+e−ke/l︸ ︷︷ ︸

l/k

∅ = (λ1, . . . , λk︸ ︷︷ ︸
l/k

, λ1, . . . , λk︸ ︷︷ ︸
l/k

, . . . , λ1, . . . , λk︸ ︷︷ ︸
l/k

).

Proof. We again argue by induction on n ∈ Z>0. The lemma is clear for the empty
l-partition. Assume now that n > 0. Let λ ∈ Φke/l,v(n) and assume that we have a
sequence (i1, . . . , in) ∈ Zn such that

f̃
ke/l,v
i1

. . . f̃
ke/l,v
in

.∅ = λ
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Set λ′ := f̃
ke/l,v
i2

. . . f̃
ke/l,v
in

.∅. By induction, we have:

f̃e,si1 f̃
e,s
i1+ke/l

. . . f̃e,si1+e−ke/l︸ ︷︷ ︸
l/k

. . . f̃e,sin f̃
e,s
in+ke/l

. . . f̃e,sin+e−ke/l︸ ︷︷ ︸
l/k

.∅ = (λ′
1
, . . . , λ′

k
, λ′

1
, . . . , λ′

k
, . . . , λ′

1
, . . . , λ′

k
).

Denote
λ[0] := (λ′

1
, . . . , λ′

k
, λ′

1
, . . . , λ′

k
, . . . , λ′

1
, . . . , λ′

k
).

Set γ = [λ]/[λ′] and let (a, b, c) := γ. This is a good addable i1 + (ke/l)Z-node for λ′.
We have by definition b−a+(c−1)e/l ≡ i1+(ke/l)Z. So there exists j ∈ {0, 1, . . . , l/k−1}
such that b−a+(c−1)e/l = i1−j(ke/l)+eZ. We thus have b−a+(c−1+(j−1)k)e/l =
i1 − (ke/l) + eZ. Let us denote γj := (a, b, c + (j − 1)k) (where the 3rd component is
understood modulo l). We have that the residue of γj is i1− (ke/l) + eZ for λ[0] and the
multicharge s.

Now assume that η = (a′, b′, c′) is an addable or a removable i1− (ke/l) + eZ-node for
λ, different from γ. As above, there exists j′ ∈ {1, . . . , l} such that ηj′ := (a′, b′, j′ − 1) is
an addable or removable i1 − ke/l + eZ-node for λ[0] (and removable if and only if η is).

In addition, by our definition of ≺., we have η ≺v γ if and only is ηj′ ≺s γj. Recipro-
cally, all the i1 − ke/l + eZ-nodes are obtained in this way.

This discussion implies that γj is a good addable i1 − ke/l-node for λ[0] because γ is
a good one for λ. We denote by λ[1] the l-partition obtained from this one by adding γj
to λ[0]. We thus have λ[1] = f̃ e,si1+e−ke/lλ

′ 6= 0.

Let us now consider γ2 := (a, b, (c − 1 + (j − 2)k)) (where the 3rd component is
understood modulo e). It is an addable i1 + (l − 2)e/l + eZ-node for λ[1] and by exactly
the same argument as above, we see that this is a good addable node. Let λ[2] be the

l-partition obtained by adding this node to λ[1]. We obtain f̃ e,si1+e−2ke/lf̃
e,s
i1+e−ke/lλ

′ = λ[2].

Continuing in this way we deduce f̃ e,si1 . . . f̃ e,si1+(l−2)e/lf̃
e,s
i1+(l−1)e/lλ

′ = λ, as required.

One can now give a general proof of the proposition. Assume that s ∈ Zl is in the orbit
of (0, e/l, . . . , (l − 1)e/l), that λ ∈ Φe,s(n) and that we have a sequence (i1, . . . , in) ∈ Zn
such that

f̃
ke/l,v
i1

. . . f̃
ke/l,v
in

∅ = λ.

Then, by the above lemma, if we set s′ = (0, e/l, . . . , (l − 1)e/l), we have

f̃e,s
′

i1
f̃e,s

′

i1+ke/l . . . f̃
e,s′

i1+e−ke/l︸ ︷︷ ︸
l/k

. . . f̃e,s
′

in
f̃e,s

′

in+ke/l . . . f̃
e,s′

in+e−ke/l︸ ︷︷ ︸
l/k

∅ = (λ1, . . . , λk, λ1, . . . , λk, . . . , λ1, . . . , λk)

and thus one can conclude that

f̃e,si1 f̃
e,s
i1+ke/l

. . . f̃e,si1+e−ke/l︸ ︷︷ ︸
l/k

. . . f̃e,sin f̃
e,s
in+ke/l

. . . f̃e,sin+e−ke/l︸ ︷︷ ︸
l/k

∅ = Ψe
s′→s(λ

1, . . . , λk, λ1, . . . , λk, . . . , λ1, . . . , λk).

which proves the theorem and also gives an explict way to compute the l-partition
involved.
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Example 11. We take l = 2 and e = 4. We set k = 1. Let λ = (4.3.1), this is a e/2-

regular partition and thus in Φ2,(0)(8). By Lemma 10, we have ι
(0,2)
1 (4.3.1) = (4.3.1, 4.3.1).

Then we obtain for example ι
(0,22)
1 (4.3.1) = Ψ4

(0,2)→(0,22)(4.3.1, 4.3.1) = (3.2.1, 4.3.2.1).

4 Hecke algebras of type G(p, p, n)

In this part, we apply the results above to recover and generalize some of the results of
[4] and [6] and give precisions on them. We will freely use the results in [3].

4.1 Definition

Let η ∈ C×. Assume that n > 2. Let s = (s1, . . . , sl) ∈ Zl and let η ∈ C×. The
cyclotomic Hecke algebra Hn(s) of type G(l, 1, n) (also known as Ariki-Koike algebra) is
the C-algebra with a presentation by:

• generators : T̃0, T1, . . . , Tn−1,

• relations :
(T̃0 − ηs1) . . . (T̃0 − ηsl) = 0

(Ti − η)(Ti + 1) = 0 (1 6 i 6 n− 1)
(T0T1)2 = (T1T0)2

TiTi+1Ti = Ti+1TiTi+1 (1 6 i < n)
TiTj = TjTi (j > i+ 2).

The cyclotomic Hecke algebra H′n of type G(l, l, n) is the C-algebra with a presentation
by :

• generators : T0, T1, . . . , Tn−1,

• relations :

(Ti − η)(Ti + 1) = 0 for 0 6 i 6 n− 1,

TiTi+1Ti = Ti+1TiTi+1 for 1 6 i 6 n− 2,

T0T2T0 = T2T0T2,

(T1T0T2)2 = (T2T1T0)2,

T0Tj = TjT0 for j > 2,

TiTj = TjTi for i > 0 et j > i+ 1,

T0T1T0T1 . . .︸ ︷︷ ︸
l terms

= T1T0T1T0 . . .︸ ︷︷ ︸
l terms

.

From now, we assume that η is a primitive root of order e > 1. Let s ∈ Zl be in the orbit
of (0, e/l, . . . , (l − 1)e/l) then the subalgebra of Hn := Hn(s) generated by

{T0 := T̃0

−1
T1T̃0, T1, . . . , Tn−1}
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is isomorphic to H′n. Moreover Hn is Z/lZ-graded with respect to H′n with gradation

Hn =
l−1⊕
j=0

T̃0

j
H′n.

As a consequence, one may use Clifford Theory to obtain results for the representation
theory of H′n from the one of Hn. To do this, we first need to recall some known results
on the representation theory of Hn

4.2 Simple Hn-modules

The classification of the simple Hn-modules that we need comes from the theory of basic
sets. A complete review of this can be found in [2] but we quickly recall what we need here.
One can define a certain set of finite-dimensional Hn-modules which are parametrized by
the set of l-partitions, they are called Specht modules

{Sλ | λ ∈ Πl(n)}.

These modules are non simple (nor semisimple) in general but we have associated compo-
sition series. Let us denote by [Sλ : M ] the multiplicity of M ∈ Irr(Hn) in a composition
series for Sλ (this is well-defined by the Jordan-Hölder theorem). Then the matrix defined
by:

D := ([Sλ : M ])λ∈Πl(n),M∈Irr(Hn)

controls a part of the representation theory of Hn.This is called the decomposition matrix.
We here follow [2, Ch.5, Ch.6]. Then one can define a pre-order �s on the set of l-

partitions which depends on the choice of s. We don’t give the definition of this pre-order
here, all we need to know is the following theorem (see [2, §6.7]).

Theorem 12. Under the above hypotheses, for all M ∈ Irr(Hn),

1. there exists λM ∈ Φs,e(n) such that [SλM : M ] = 1,

2. for all µ `l n, if [Sµ : M ] 6= 0 then µ�m λM .

The map M 7→ λM is injective. As a consequence, if for all M ∈ Irr(Hn) we denote
DλM

s,e := M , we have:
Irr(Hn) = {Dµ

s,e | µ ∈ Φs,e(n)}.

It is thus important to note that this theorem does not give one way to label the simple
modules of the algebra Hn but in fact several ones: one for each choice of an element in
the orbit of s modulo Ŝl. It is now natural to ask how all these parametrizations are
connected. It turns out that the crystal isomorphisms make the links between them.

Proposition 13 ([8]). Let s ∈ Zl and s′ ∈ Zl be two multicharges in the same orbit then

for all λ ∈ Φs,e(n), we have Dλ
s,e = D

Ψe
s→s′ (λ)

s′,e .
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4.3 Restriction of simple Hn-modules

We here set s = (0, e/l, . . . , (l− 1)e/l). There is a natural action of the cyclic group Z/lZ
on Πl(n) generated by the following map:

(λ1, λ2, . . . , λl) 7→ (λl, λ1, . . . , λl−1).

For λ ∈ Πl(n) we denote by λ̃ the associated equivalence class. Let

r := r(λ) =
l

Cardinality of λ̃
.

The following theorem is proved in [3].

Theorem 14. Let λ ∈ Φs,e(n) then we have that Res(Dλ
s,e) is a direct sum of r(λ) simple

H′n-modules.

It is also possible to show that if λ and µ are in the same equivalence class then
Res(Dλ

s,e) and Res(Dµ
s,e) are isomorphic. In addition, the simple modules appearing in the

restriction of the Dλ
s,e’s determined the equivalence class of λ. As a consequence, one can

obtain a classification of the simple Hn-modules knowing the numbers r(λ). Applying
Proposition 13 yields:

Proposition 15. Let s′ ∈ Zl in the same class as s = (0, e/l, . . . , (l − 1)e/l). Let λ ∈
Φs′,e(n) then we have that Res(Dλ

s′,e) is a direct sum of r(Ψe
s→,s(λ)) simple H′n-modules.

The above proposition gives thus an explicit way to find the number of simple modules
in the restriction of the simpleHn-modules without refering to the notion of crystal and for
all the known parametrization of the simples. This thus includes the usual parametrization
by the set of Kleshchev l-partitions using our isomorphisms.

Proposition 16. Let s′ ∈ Zl in the same class as s = (0, e/l, . . . , (l − 1)e/l). Let λ ∈
Φs′,e(n) then Res(Dλ

s′,e) splits into a sum of x simple modules if and only if λ ∈ Im(ιs
′

l/x)

and λ /∈ Im(ιs
′

l/s) for s > x.

Proof. Take first s′ = s. We have that r(λ) = x if and only if we have that λ is of the
form

(λ1, . . . , λk, λ1, . . . , λk, . . . , λ1, . . . , λk)

with k = l/x. Then Lemma 10 shows that this is equivalent to claim that λ ∈ Im(ιsx) and
the result follows.

Now, if s′ ∈ Zl in the same class as s = (0, e/l, . . . , (l−1)e/l), then for all λ ∈ Φs,e(n),

we have Dλ
s,e = D

Ψe
s→s′ (λ)

s′,e and one can conclude noticing that

λ ∈ Im(ιsl/x) ⇐⇒ Ψe
s′→s(λ) ∈ Im(ιs

′

l/x).

by the definition of the maps and the properties of crystal isomorphisms.
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Example 17. Take l = 4 and e = 4. Let s = (0, 1, 2, 3). Then we have λ :=
(3.1, 2, 3.1, 2) ∈ Φe,s(16). Then we have that r(λ) = 2, this implies that Res(Dλ

s,e) splits
in two simple H′n-modules. Note that we have λ = ιs2(3.1, 2). Set s = (0, 13, 26, 39), this
multicharge is very dominant and in the same orbit as s. One can compute Ψe

s→s′(λ)
and we obtain λ′ = (2.1, 1, 3.2, 2.1). So we have that Res(Dλ′

s′,e) splits in two simple
H′n-modules.

4.4 The case l = 2

We assume in this part that l = 2 and that e is even. Then one can apply the results
above. In particular, for all s in the orbit of (0, e/2) modulo Ŝ2 and λ ∈ Φe,s(n), the
H′n-module Res(Dλ

s,e) splits into one or two simple modules.
The aim is to study the set of Uglov bipartitions λ ∈ Φe,s(n) such that Res(Dλ

s,e) splits
into a sum of two simple modules. Such bipartitions will be called divided bipartitions
for the multicharge s. This notion strongly depends on s. In the case where s = (0, e/2),
by the results above, these bipartitions correspond exactly to the bipartitions of the form
(λ, λ) in Φe,s(n). This is exactly the set of bipartitions (λ, λ) where λ is an e/2-regular
partition of n/2 by §2.1.

Proposition 18. Let N ∈ Z>0. We have that (λ1, λ2) is a divided bipartition for s =
(0, e/2 +Ne) if and only if we have

Ψe
(0,e/2+Ne)→(Ne,e/2)(λ

1, λ2) = (λ2, λ1)

Proof. Let s = (0, e/2 + Ne). Assume that (λ1, λ2) is a divided bipartition and let
(i1, . . . , in) ∈ (Z/eZ)n be such that

f̃ e,si1 . . . f̃ e,sin ∅ = λ.

Then we also have
f̃ e,si1+e/2 . . . f̃

e,s
in+e/2∅ = λ.

Now we have that s′ := τ.s = (e/2 +Ne, e) and by §2.2, we obtain:

f̃ e,s
′

i1
. . . f̃ e,s

′

in
∅ = (λ2, λ1).

Then we also have
f̃ e,s

′

i1+e/2 . . . f̃
e,s′

in+e/2∅ = (λ2, λ1).

But now note that s = (Ne, e/2) = s′ − (e/2, e/2) so it is clear that we obtain :

f̃
e,(Ne,e/2)
i1−e/2 . . . f̃

e,(Ne,e/2)
in−e/2 ∅ = (λ2, λ1),

and this implies that Ψe
(0,e/2+Ne)→(Ne,e/2)(λ

1, λ2) = (λ2, λ1). Reciprocally, assume that

Ψe
(0,e/2+Ne)→(Ne,e/2)(λ

1, λ2) = (λ2, λ1).
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Assume that (i1, . . . , in) ∈ (Z/eZ)n is such that

f̃ e,si1 . . . f̃ e,sin ∅ = (λ1, λ2).

Then we have:
f̃
e,(Ne,e/2)
i1

. . . f̃
e,(Ne,e/2)
in

∅ = (λ2, λ1).

We have τ.(Ne, e/2) = (e/2, Ne+ e), and thus

f̃
e,(e/2,Ne+e)
i1

. . . f̃
e,(e/2,Ne+e)
in

∅ = (λ1, λ2).

As (0, e/2 +Ne) = (e/2, Ne+ e)− (e/2, e/2), we obtain

f̃
e,(0,e/2+Ne)
i1+e/2 . . . f̃

e,(0,e/2+Ne)
in+e/2 ∅ = (λ1, λ2),

which implies that (λ1, λ2) is a divided partition (for (0, e/2 +Ne)).
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