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Abstract

In 2019, Czabarka, Dankelmann and Székely showed that for every undirected
graph of order n, the minimum degree threshold for diameter two orientability is
n
2+Θ(lnn). In this paper, we consider bipartite graphs and give a sufficient condition
in terms of the minimum degree for such graphs to have oriented diameter three.
We in particular prove that for balanced bipartite graphs of order n, the minimum
degree threshold for diameter three orientability is n

4 + Θ(lnn).

Mathematics Subject Classifications: 05C12, 05C20

1 Introduction

We will use the notation from [1]. All graphs and digraphs considered here have no
loops or parallel edges/arcs. Let G = (V,E) be an undirected graph with vertex set
V = V (G) and edge set E = E(G). The order (size) of G is the number of vertices
(edges) in G. We write e(G) for the size of G. Let NG(v) be the subset of vertices
incident with v, and the degree of v is dG(v) = |NG(v)|. We denote by δ(G) and ∆(G) the
minimum and maximum degrees of the vertices of G. Let D = (V,A) denote a digraph,
where V = V (D) is its vertex set and A = A(D) its arc set. For an arc (u, v) ∈ A(D),
the vertex u is its tail and the second vertex v is its head. For a vertex v in D, the
out-neighbourhood (in-neighbourhood, respectively) of v is the vertex set N+

D (v) = {u ∈
V −v : vu ∈ A} (N−D (v) = {u ∈ V −v : uv ∈ A}, respectively). The out-degree (in-degree,
respectively) of v is d+D(v) = |N+

D (v)| (d−D(v) = |N−D (v)|, respectively).
A path of length ` of G is a list v0,v1,. . .,v` of distinct vertices such that (vi, vi+1) ∈

E(G) for 0 6 i 6 ` − 1. An undirected graph is connected, if it contains an (u, v)-path
for every pair u, v of its vertices. For digraphs, a directed path of length ` of D is a list
v0,v1,. . .,v` of distinct vertices such that (vi, vi+1) ∈ A(D) for 0 6 i 6 ` − 1. Such a
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directed path of length ` is called directed `-path. A digraph D is strong if and only if for
any u, v ∈ V (D), there is a directed path from u to v.

In an undirected graph G, the distance from u to v is the number of edges in a shortest
path from u to v. We denote the distance from u to v by dist(u, v). The diameter of
an undirected graph G is the maximum distance between two vertices. The definition for
digraphs is analogous. We write diam(G) and diam(D) for the diameter of an undirected
graph G and a digraph D, respectively.

A bridge is an edge of a connected graph whose removal renders the graph discon-
nected. We call an undirected graph bridgeless, if it is connected and contains no bridge.
An orientation D of an undirected graph G is a digraph on the same vertex set V (G)
obtained by assigning every edge of G an orientation. An orientation D of G is strong, if

every two vertices in D are mutually reachable in D. The oriented diameter
−−−→
diam(G) of

G is the minimum diameter among all strong orientations of G.
A well-known result, due to Robbins [15], states that every bridgeless graph has a

strong orientation. This theorem was inspired by an application in traffic control, to
make traffic flow more efficient by use of one-way streets, to be precise. It is natural to
seek an orientation whose diameter is as small as possible.

As early as 1978, Chvátal and Thomassen [4] proved that there exists a function f
such that every bridgeless graph of diameter d has an oriented diameter at most f(d).
Furthermore, they proved that f(2) = 6 and 1

2
d2 + d 6 f(d) 6 2d2 + 2d, the lower bound

is acquired by constructing a family of graphs, while their construction is not correct
for odd d. Recently, Kwok, Liu and West [12] fixed the construction for odd d and also
showed that 9 6 f(3) 6 11.

Since then, several upper bounds on
−−−→
diam(G) in terms of certain graph invariants such

as the domination number [8, 11], the maximum degree [7] and the minimum degree [2, 18]
have been given. For a survey on the numerous further results on the oriented diameter
published over the past decades, see, e.g., Koh and Tay [10].

For any bridgeless graph G, it is obvious that
−−−→
diam(G) > 2. As expected, complete

graphs are extremal graphs except for one singular case.

Theorem 1. (Plesnik [14], Boesch and Tindell [3], Maurer [13]) For n > 3,

−−−→
diam(Kn) =

{
2, if n 6= 4,

3, if n = 4.

Šoltés [17], and independently Gutin [9] obtained a comprehensive result on complete
bipartite graphs.

Theorem 2. (Šoltés [17], Gutin [9]) For q > p > 2,

−−−→
diam(Kp,q) =


3, if q 6

(
p

bp
2
c

)
,

4, if q >

(
p

bp
2
c

)
.
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In 2018, Dankelmann, Guo and Surmacs [7] considered the oriented diameter of a
bridgeless graph G of order n in terms of the maximum degree. They proved the upper

bound
−−−→
diam(G) 6 n −∆(G) + 3. Moreover, they constructed an infinite family of undi-

rected graphs whose oriented diameter is equal to this upper bound. Furthermore, they
showed that, if G is bipartite, the bound above can be improved:

Theorem 3. (Dankelmann, Guo and Surmacs [7]) Let G be a bridgeless bipartite graph
with partite sets X and Y , v ∈ Y . Then,

−−−→
diam(G) 6 2(|X| − dG(v)) + 7.

For a bridgeless balanced bipartite graph, that is, a bipartite graph whose partite sets
have the same cardinality, by Theorem 3, a straightforward result is the following:

Corollary 4. [7] Let G be a bridgeless balanced bipartite graph of order n and maximum
degree ∆(G). Then,

−−−→
diam(G) 6 n− 2∆(G) + 7.

Meanwhile, they constructed an infinite family of bridgeless balanced bipartite graphs
of order n whose oriented diameter reaches this upper bound.

In 2019, Czabarka, Dankelmann and Székely [6] proved the following theorem:

Theorem 5. (Czabarka, Dankelmann and Székely [6]) Let G be an undirected graph on
n vertices. If

δ(G) >
n

2
+

lnn

ln(4
3
)

=
1

2
n+ (3.476...) lnn,

then
−−−→
diam(G) = 2.

Furthermore, they constructed an infinite family of undirected graphs G of order n
with δ(G) > n

2
+ lnn

2 ln( 27
4
)

= 1
2
n+ (0.261...) lnn whose oriented diameter is more than two.

Motivated by the work cited above, we consider the oriented diameter of bipartite
graphs. Let κ > 1 be a positive integer and consider bipartite graphs with partite sets
X and Y , such that |Y | = κ|X| + γ and 0 6 γ < |X|. For large enough X, we give a
sufficient condition in terms of minimum degrees for vertices in X and Y , respectively, for
the diameter three orientability of the bipartite graph G. Furthermore, we construct an
infinite family of bipartite graphs with oriented diameter at least four, which have almost
as big minimum degrees in the partite sets as the bound in our sufficient condition.
Specialising our results for balanced bipartite graphs of order n, in which |X| = |Y | = n

2
,

the minimum degree threshold for diameter three orientability is n
4

+ Θ(lnn).
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2 Main results

We give a sufficient condition by means of a proof technique which is known as the
probabilistic method. Roughly speaking, this technique is based on an understanding of
how graphs behave on the average, i.e., whether there exists some desired property or
not. In a probability space (Ω, P ), any subset A of Ω is referred to as an event. Denote
by P [A] the probability of the event A.

Let G be a bipartite graph with partite sets X and Y , we denote δ(X) = min{dG(x) :
x ∈ X} and δ(Y ) = min{dG(y) : y ∈ Y }, respectively.

Theorem 6. Let κ > 1 be a positive integer and let G be a bipartite graph of order n
with partite sets X and Y which satisfies that |X| is sufficiently large and |Y | = κ|X|+γ,
where 0 6 γ < |X|. If

δ(X) >
|Y |
2

+
ln((κ+ 2)|Y |)

ln(8
7
)

and δ(Y ) >
|X|
2

+
ln((κ+ 2)|X|)

ln(8
7
)

,

then
−−−→
diam(G) = 3.

Proof. Define f : N → R, n 7→ ln((κ+2)n)

ln(
8
7
)

, p = |X|, and q = |Y |. It is clear that p + q = n

and p 6 q < (κ + 1)p. Assume that the minimum degree of vertex in X is at least
q/2 + f(q) and the minimum degree of vertex in Y is at least p/2 + f(p). Obviously, we
have f(q) > f(p), f(p) 6 p/2 and f(q) 6 q/2.

Since p is sufficiently large, so we have q 6
(
p
b p
2
c

)
. By Theorem 2,

−−−→
diam(G) >

−−−→
diam(Kp,q) = 3 since G is a subgraph of Kp,q, implying that if we select large enough

f(p) and f(q),
−−−→
diam(G) can be 3.

We orient every edge of E(G) randomly and independently with probability 1/2. Let
u, v be two vertices of V (G) and define the random variable Auv to be 1 if there is no
directed `-path from u to v, where ` 6 3, and 0 if there is such a directed path.

Let η denote the expected number of ordered pairs (u, v) where no directed path of
length at most 3 exists from u to v. Hence, we have η =

∑
u,v∈V (G),u6=v

P [Auv].

We deal with the directed paths by distinguishing the following two cases:
Case 1. u, v belong to the same partite set.
Subcase 1. u, v ∈ X.
Since G is bipartite, we have NG(u) ⊆ Y and NG(v) ⊆ Y . Then, by the inclusion-

exclusion formula, the following holds:

|NG(u) ∩NG(v)| = |NG(u)|+ |NG(v)| − |NG(u) ∪NG(v)| > 2f(q).

Hence, the expected value of Auv is P [Auv = 1] =
(
3
4

)|NG(u)∩NG(v)|
6
(
3
4

)2f(q)
.

Subcase 2. u, v ∈ Y .
Similarly, NG(u) ⊆ X and NG(v) ⊆ X, we have:

|NG(u) ∩NG(v)| = |NG(u)|+ |NG(v)| − |NG(u) ∪NG(v)| > 2f(p).
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Thus, we obtain that P [Auv = 1] =
(
3
4

)|NG(u)∩NG(v)|
6
(
3
4

)2f(p)
.

Case 2. u, v belong to different partite sets. Without loss of generality, we may
assume that u ∈ X and v ∈ Y .

Subcase 1. u, v are adjacent in G.
Obviously, NG(u) ⊆ Y . For each w ∈ NG(u), we have |NG(v) ∩NG(w)| > 2f(p). It is

clear that there exist at least 2f(p)− 1 edge-disjoint (u, v)-paths in G whose length is no

more than three. Thus, we obtain that P [Auv = 1] 6 1
2

(
7
8

)2f(p)−1
<
(
7
8

)2f(p)
.

Subcase 2. u, v are not adjacent in G.
Similar to Subcase 1, for each w ∈ NG(u) there exist at least 2f(p) edge-disjoint (u, v)-

paths in G whose length is no more than three. Hence, we have P [Auv = 1] 6
(
7
8

)2f(p)
.

Therefore, the following holds:∑
u,v∈V (G),u6=v

P [Auv] 6 2

(
p

2

)(
3

4

)2f(q)

+ 2

(
q

2

)(
3

4

)2f(p)

+ 2pq

(
7

8

)2f(p)

< p2
(

3

4

)2f(p)

+ q2
(

3

4

)2f(p)

+ 2pq

(
7

8

)2f(p)

< p2
(

7

8

)2f(p)

+ (κ+ 1)2p2
(

7

8

)2f(p)

+ 2(κ+ 1)p2
(

7

8

)2f(p)

= (κ+ 2)2p2
(

7

8

)2f(p)

= 1.

We obtain that η =
∑

u,v∈V (G),u6=v
P [Auv] < 1, which implies that there exists at least

one orientation with
−−−→
diam(G) 6 3. This completes the proof of theorem.

We now construct an infinite family of bipartite graphs Gt with large minimum degree

which satisfies
−−−→
diam(Gt) > 4.

Definition 7. Let X1, X2, X3, Y1, Y2, Y3, Y4 be disjoint vertex sets with |X2| = |Y2| = 3t,
|X1| = |X3| = |Y1| = |Y3| =

(
3t
t

)
and |Y4| = (κ − 1)(2

(
3t
t

)
+ 3t) + γ, where κ > 1 is a

positive integer and 0 6 γ < 2
(
3t
t

)
+3t. Moreover, let R→ uR and R→ vR (also, S → uS,

S → vS) be bijections from the 2t-element subsets of X2 to Y1 and resp., Y3 (also from
the 2t-element subsets of Y2 to X1 and resp., X3). The bipartite graph Gt is defined on
bipartite sets X = X1∪X2∪X3 and Y = Y1∪Y2∪Y3∪Y4 by adding all edges between Xi

and Yi ∪ Y4 for each i ∈ {1, 2, 3} and for each 2t-element subset R of X2 (and 2t-element
subset S of Y2) adding all edges from vertices of R to uR and vR (and from vertices of S
to uS and vS).

Theorem 8.
−−−→
diam(Gt) > 4.

Proof. Let Dt be an arbitrary strong orientation of Gt. Let y be a vertex of Y1. Obviously,
NGt(y) = (NGt(y) ∩ X1) ∪ (NGt(y) ∩ X2). Furthermore, |NGt(y) ∩ X2| = 2t. Hence, we
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have |N+
Dt

(y) ∩ X2| + |N−Dt
(y) ∩ X2| = 2t, which implies that either |N+

Dt
(y) ∩ X2| 6 t

or |N−Dt
(y) ∩ X2| 6 t. Without loss of generality, we may assume that |N+

Dt
(y) ∩ X2| 6

t. Since |X2| = 3t, then there exists a subset R of X2 with cardinality 2t such that
R ∩ (N+

Dt
(y) ∩ X2) = ∅. Set w = vR. Since y and w are different vertices in the same

partition class Y , and R∩ (N+
Dt

(y)∩X2) = ∅, dist(y, w) is an even number bigger than 2.
The statement follows.

Analogously, we denote δt(X) = min{dGt(x) : x ∈ X} and δt(Y ) = min{dGt(y) : y ∈
Y } in Gt.

Theorem 9. For sufficiently large t, we have

δt(X) >
(2κ− 1)|Y |

2κ
+

ln |Y |
2 ln 27

4

and δt(Y ) >
|X|
2

+
ln((κ+ 1)|X|)

2 ln 27
4

in Gt as defined in Definition 7.

Proof. Clearly, |X| = 2
(
3t
t

)
+ 3t and |Y | = κ(2

(
3t
t

)
+ 3t) + γ. Denote by nt = |V (Gt)|, we

have nt = (κ+ 1)(2
(
3t
t

)
+ 3t) + γ < (κ+ 2)(2

(
3t
t

)
+ 3t).

If u ∈ X1 ∪X3, then dGt(u) =
(
3t
t

)
+ 2t + (κ− 1)(2

(
3t
t

)
+ 3t) + γ. If v ∈ X2, we have

dGt(v) = 2
(
3t−1
2t−1

)
+ 3t + (κ − 1)(2

(
3t
t

)
+ 3t) + γ = 4

3

(
3t
t

)
+ 3t + (κ − 1)(2

(
3t
t

)
+ 3t) + γ. If

w ∈ Y1∪Y3, then dGt(w) =
(
3t
t

)
+2t. If x ∈ Y2, we have dGt(x) = 2

(
3t−1
2t−1

)
+3t = 4

3

(
3t
t

)
+3t.

If y ∈ Y4, then dGt(y) = 2
(
3t
t

)
+3t. Hence, we have δt(X) =

(
3t
t

)
+2t+(κ−1)(2

(
3t
t

)
+3t)+γ

and δt(Y ) =
(
3t
t

)
+ 2t. Moreover, it is clear that δt(X) > (2κ−1)|Y |

2κ
+ t

2
and δt(Y ) = |X|

2
+ t

2
.

By the Robbins’ formula [16], the following equality holds:(
3t

t

)
=

(3t)!

t!(2t)!
=

(
3t
e

)3t√
6πteα1(

t
e

)t√
2πteα2

(
2t
e

)2t√
4πteα3

=

√
3

2
√
πt

(
27

4

)t
eα1−α2−α3 ,

where 1
36t+1

< α1 <
1
36t

, 1
12t+1

< α2 <
1
12t

and 1
24t+1

< α3 <
1
24t

.

As 3t 6
(
3t
t

)
when t > 1, for c0 = 3(κ+2) > 0, we have nt < (κ+2)(2

(
3t
t

)
+3t) 6 c0

(
3t
t

)
.

Thus, we obtain that

nt 6 c0

(
3t

t

)
= c0

√
3

2
√
πt

(
27

4

)t
eα1−α2−α3 .

Similarly, for sufficiently large t, there exists some constant c1 > 0 satisfies that

nt < c1
1√
t

(
27

4

)t
.

Taking logarithms of both sides of the above inequality, a simple calculation gives us
that

t >
lnnt + 1

2
ln t− ln c1

ln 27
4

>
lnnt
ln 27

4

.

Thus, δt(X) > (2κ−1)|Y |
2κ

+ lnnt

2 ln 27
4

> (2κ−1)|Y |
2κ

+ ln |Y |
2 ln 27

4

and δt(Y ) > |X|
2

+ lnnt

2 ln 27
4

> |X|
2

+
ln((κ+1)|X|)

2 ln 27
4

, as desired.
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We now consider balanced bipartite graphs of order n, where n > 4 is even, and prove
a straightforward corollary.

Corollary 10. Let δn be the smallest value such that the oriented diameter of every
balanced bipartite graph of order n with minimum degree δn equals to three. Then

δn =
n

4
+ Θ(lnn).

Proof. Similar to the proof of Theorem 6, let κ = 1 and γ = 0, it is not difficult to

verify that if δ(G) > n
4

+ lnn
ln( 8

7
)

= 1
4
n + (7.488...) lnn, then

−−−→
diam(G) = 3. Let G∗ be

a bipartite graph obtained from Gt by deleting the vertex set Y4. Obviously, G∗ is a
balanced bipartite graph with partite sets X = X1 ∪ X2 ∪ X3 and Y = Y1 ∪ Y2 ∪ Y3,
where n = 4

(
3t
t

)
+ 6t. Analogously, for large t, we can acquire that

−−−→
diam(G∗) > 4 and

δ(G∗) > n
4

+ lnn
2 ln( 27

4
)

= 1
4
n+ (0.261...) lnn. Thus, the corollary follows.

3 Problem

Koh and Tay [10] conjectured that every undirected graph G of order n and size at least(
n
2

)
−n+5 has an orientation of diameter two. Recently, Cochran, Czabarka, Dankelmann

and Székely [5] proved this conjecture. Similarly, we consider a bipartite graph G of order
n and propose the following problem:

Problem 11. Let κ > 1 be a positive integer and let G be a bipartite graph of order n
with partite sets X and Y which satisfies with |Y | = κ|X|+ γ, where 0 6 γ < |X|. How
many edges e(G) do we need to ensure that such a bipartite graph with size at least e(G)
admits an orientation of diameter three?

Let G be a bipartite graph of order n with partite sets X and Y , where X =
{x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq}, q > p, containing all edges between X and

Y except {y1x1, y1x2, . . . , y1xp−2, y2xp}. Obviously, e(G) = pq − p + 1 and
−−−→
diam(G) > 4.

Hence, we obtain that the minimum size must be no less than pq − p + 2 to ensure that
the oriented diameter of such bipartite graph of order n equals three.
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[4] V. Chvátal and C. Thomassen. Distances in orientations of graphs. J. Comb. Theory
Ser. B, 24(1):61–75, 1978.
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