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Abstract

In the model of randomly perturbed graphs we consider the union of a determin-
istic graph Gα with minimum degree αn and the binomial random graph G(n, p).
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This model was introduced by Bohman, Frieze, and Martin and for Hamilton cycles
their result bridges the gap between Dirac’s theorem and the results by Pósa and Ko-
rshunov on the threshold in G(n, p). In this note we extend this result in Gα∪G(n, p)
to sparser graphs with α = o(1). More precisely, for any ε > 0 and α : N 7→ (0, 1)
we show that a.a.s. Gα ∪ G(n, β/n) is Hamiltonian, where β = −(6 + ε) log(α). If
α > 0 is a fixed constant this gives the aforementioned result by Bohman, Frieze,
and Martin and if α = O(1/n) the random part G(n, p) is sufficient for a Hamil-
ton cycle. We also discuss embeddings of bounded degree trees and other spanning
structures in this model, which lead to interesting questions on almost spanning
embeddings into G(n, p).

Mathematics Subject Classifications: 05C35, 05C80

1 Introduction and results

For α ∈ (0, 1) we let Gα be an n-vertex graph with minimum degree δ(Gα) > αn. A
famous result by Dirac [15] says that if α > 1/2 and n > 3, then Gα contains a Hamilton
cycle, i.e. a spanning cycle through all vertices of Gα. This motivated the more general
questions of determining the smallest α such that Gα contains a given spanning structure.
For example, there are results for trees [29], factors [22], powers of Hamilton cycles [27, 28],
and general bounded degree graphs [12]. This is a problem for deterministic graphs that
belongs to the area of extremal graph theory.

We can consider similar questions for random graphs, in particular, for the binomial
random graph model G(n, p), which is the probability space over n-vertex graphs with
each edge being present with probability p independent of all the others. Analogous to
the smallest α we are looking for a function p̂ = p̂(n) : N 7→ (0, 1) such that if p = ω(p̂)
the probability that G(n, p) contains some spanning subgraph tends to 1 as n tends to
infinity and for p = o(p̂) it tends to 0. We call this p̂ the threshold function for the
respective property (an easy sufficient criteria for its existence can be found in [8]) and
if the first/second statement holds we say that G(n, p) has/does not have this property
asymptotically almost surely (a.a.s.). One often says that G(n, p) undergoes a phase
transition at p̂. For the Hamilton cycle problem Pósa [39] and Korshunov [31] proved
independently that p̂ = log n/n gives the threshold. Similar as above there was a tremen-
dous amount of research on determining the thresholds for various spanning structures,
e.g. for matchings [17], trees [32, 36], factors [24], powers of Hamilton cycles [35, 37], and
general bounded degree graphs [1, 18, 19, 40]. An extensive survey by Böttcher can be
found in [9].

Motivated by the smoothed analysis of algorithms [41], both these worlds were com-
bined by Bohman, Frieze, and Martin [7]. For any fixed α > 0, they defined the model of
randomly perturbed graphs as the union Gα∪G(n, p). They showed that 1/n is the thresh-
old for a Hamilton cycle, meaning that there is a graph Gα such that with p = o(1/n)
there a.a.s. is no Hamilton cycle in Gα ∪ G(n, p) and for any Gα and p = ω(1/n) there
a.a.s. is a Hamilton cycle in Gα ∪G(n, p). It is important to note that in G(n, p), p = 1/n
is also the threshold for an almost spanning cycle, this is for any ε > 0 a cycle on at
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least (1 − ε)n vertices. It should be further remarked that if p = o(log n/n) there are
a.a.s. isolated vertices in G(n, p) and the purpose of Gα is to compensate for this and to
help in turning the almost spanning cycle into a Hamilton cycle.

This first result on randomly perturbed graphs [7] sparked a lot of subsequent re-
search on the thresholds of spanning structures in this randomly perturbed graphs model,
e.g. trees [10, 25, 34], factors [4], powers of Hamilton cycles [5, 11], and general bounded
degree graphs [11]. As for a Hamilton cycle there is often a log-factor difference to the
thresholds in G(n, p) alone, which is there for local reasons similar to isolated vertices. In
most of these cases a Gα, that is responsible for the lower bound, is the complete imbal-
anced bipartite graph Kαn,(1−α)n. In this model there are also results with lower bounds
on α [6, 16, 23, 38] and for Ramsey-type problems [13, 14].

1.1 Hamiltonicity in randomly perturbed sparse graphs

The aim of this note is to investigate a new direction. Instead of fixing an α ∈ (0, 1) in
advance we allow α to tend to zero with n. This extends the range of Gα to sparse graphs
and we want to determine the threshold probability in Gα ∪ G(n, p). For example, with
α = 1/ log n we have a sparse deterministic graph Gα with minimum degree n/ log n. Then
p = ω(1/n) does not suffice in general, but it is sufficient to take Gα∪G(n,Θ(log log n)/n)
to a.a.s. guarantee a Hamilton cycle. More generally, we can prove the following.

Theorem 1. Let α = α(n) : N 7→ (0, 1) and β = β(α) = −(6 + o(1)) log(α). Then
a.a.s. Gα ∪G(n, β/n) is Hamiltonian.

This extends the result of Bohman, Frieze, and Martin [7] for constant α > 0. For
even n a direct consequence of this theorem is the existence of a perfect matching in the
same graph. To prove Theorem 1 we use a result by Frieze [21] to find a very long path
in G(n, p) alone and then use the switching technique developed in [11] to turn this into
a Hamilton cycle. As it turns out, our method allows to prove the existence of a perfect
matching with a slightly lower edge probability.

Theorem 2. Let α = α(n) : N 7→ (0, 1) and β = β(α) = −(4 + o(1)) log(α). Then
a.a.s. Gα ∪G(n, β/n) contains a perfect matching.

To see that in both theorems β is optimal up to the constant factor, consider Gα =
Kαn,(1−α)n and note that there cannot be a perfect matching, if we have more than αn
isolated vertices on the (1−α)n side. The number of isolated vertices in G(n, β/n) roughly
is n(1− β/n)n−1 ∼= n exp(−β), which is larger than αn if β = o(− log(α)).

For proving results in the randomly perturbed graphs model good almost spanning
results are essential. Typically, by almost spanning one means that for any ε > 0 we
can embed the respective structure on at least (1 − ε)n vertices. For paths and cycles
in G(n,C/n) this can, for example, be done using expansion properties and the DFS-
algorithm [33]. These almost spanning results are much easier than the spanning coun-
terpart, because there is always a linear size set of available vertices. But for the proof
of Theorem 1 this is not sufficient, because if α = o(1) we will not be able to take care of
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a linear sized leftover. Instead we exploit that we have G(n, β/n) and use the following
result showing that we can find a long cycle consisting of all but sublinearly many vertices.

Lemma 3 (Frieze [21]). Let 0 < β = β(n) 6 log n. Then G(n, β/n) a.a.s. contains a
cycle of length at least

(1− (1− o(1)) β exp (−β))n.

This is optimal, because this is asymptotically the size of the 2-core (maximal subgraph
with minimum degree 2) of G(n, p) [20, Lemma 2.16]. A similar result holds for large
matchings.

Lemma 4 (Frieze [21]). Let 0 < β = β(n) 6 log n. Then G(n, β/n) a.a.s. contains a
matching consisting of at least (1− (1− o(1)) exp (−β))n vertices.

Again this is optimal, because the number of isolated vertices is a.a.s. (1 + o(1))e−βn
[20, Theorem 3.1]. Observe, that also a bipartite variant of this lemma holds, which can
be proved by removing small degree vertices and employing Halls theorem.

Lemma 5. Let 0 < β = β(n) 6 log n. Then the bipartite binomial random graph
G(n, n, β/n) a.a.s. contains a matching consisting of at least (1− (1− o(1)) exp (−β))n
edges.

1.2 Bounded degree trees in randomly perturbed sparse graphs

After Hamilton cycles and perfect matchings, the next natural candidates are n-vertex
trees with maximum degree bounded by a constant ∆. In G(n, p) the threshold log n/n
was determined in a breakthrough result by Montgomery [36], in Gα it is enough to have
a fixed α > 1/2 [26], and in Gα∪G(n, p) with constant α > 0 the threshold is 1/n [34]. To
obtain a result similar to Theorem 1 for bounded degree trees using our approach we need
an almost spanning result similar to Lemma 3. With a similar approach as for Theorem 1
and 2 we obtain the following modular statement.

Theorem 6. Let ∆ > 2 be an integer and suppose that α, β, ε : N 7→ [0, 1] are such that
4(∆ + 1)ε < α∆+1 and a.a.s. G(n, β/n) contains a given tree with maximum degree ∆ on
(1− ε)n vertices. Then any tree with maximum degree ∆ on n vertices is a.a.s. contained
in the union Gα ∪G(n, β/n).

Next we discuss the almost spanning results that we can obtain in the relevant regime.
Improving on a result of Alon, Krivelevich, and Sudakov [2], Balogh, Csaba, Pei, and
Samotij [3] proved that for ∆ > 2 there exists a C > 0 such that for ε > 0 a.a.s. G(n, β/n)
contains any tree with maximum degree ∆ on at most (1 − ε)n vertices provided that
β > C

ε
log 1

ε
. For the proof they only require that the graph satisfies certain expander

properties. This can be extended to the range where ε → 0 and ω(1) = β 6 log n and
following along the lines of their argument we get the following.

Lemma 7. For ∆ > 2 there exists a C > 0 such that for any 0 < β = β(n) 6 log n and
ε = ε(n) > 0 with β > C

ε
log 1

ε
the following holds. G(n, β/n) a.a.s. contains any bounded

degree tree on at most (1− ε)n vertices.
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Then together with Theorem 6 we obtain the following.

Corollary 8. For ∆ > 2 there exists a C > 0 such that for α = α(n) : N 7→ (0, 1)
and β = β(α) = Cα−(∆+1) log 1

α
the following holds. Any n-vertex tree T with maximum

degree ∆ is a.a.s. contained in Gα ∪G(n, β/n).

The proof for the dense case in [34] uses regularity and it is unlikely to give anything
better in the sparse regime. As remarked in [2] the condition on the almost spanning
embedding in G(n, β/n) could possibly be improved to β > log C

ε
, then covering almost

all non-isolated vertices. More precisely this asks for the following.

Question 9. For every integer ∆ there exists C > 0 such that with 0 < β = β(n) 6 log n
the following holds. Is any given tree with maximum degree ∆ on

(1− C exp(−β))n

vertices a.a.s. contained in G(n, β/n)?

With Theorem 6 this would then give that already β = −(∆ + 1) log(Cα) suffices,
which would be optimal up to the constant factors. We want to briefly argue why it is
possible to answer this question for large families of trees and what the difficulties are.
For simplicity we only discuss the case β = log log n and note that by Lemma 7 above we
can embed trees on roughly (1− 1/ log log n)n vertices. A very helpful result for handling
trees by Krivelevich [32] states that for any integer n, k > 2, a tree on n vertices either
has at least n/4k leaves or a collection of at least n/4k bare paths (internal vertices of the
path have degree 2 in the tree) of length k. If there are at least n/(4 log log n) leaves, we
can embed the tree obtained after removing the leaves. Then we can use a fresh random
graph and Lemma 5 to find a matching for all the leaves, completing the embedding of
the tree.

On the other hand, if there are at least n log log n/(4 log n) bare paths of length
log n/ log log n, it is possible to embed all but n/ log n of these paths, which are all but
n/ log log n vertices. Then one has to connect the remaining paths, again using ideas
from [36]. In between both cases it is not clear what should be done, because we might
have n/ log n leaves and n/(4 log log n) bare paths of length log log n. The length of the
paths are too short to connect them and the leaves are too few for the above argument.
Answering this questions and thereby improving the result of Alon, Krivelevich, and Su-
dakov [2] is a challenging open problem.

1.3 Other spanning structures

As mentioned above, embeddings of spanning structures in Gα, G(n, p), and Gα ∪G(n, p)
for fixed α > 0 have also been studied for other graphs such as powers of Hamilton cycles,
factors, and general bounded degree graphs. In most of these cases almost spanning
embeddings (e.g. Ferber, Luh, and Nguyen [18]) can be generalised such that previous
proofs can be extended to the regime α = o(1) with β = α−1/C , similar to what we do
in Corollary 8. Further improvements seem to be hard, because better almost spanning
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results are similar in difficulty to spanning results in G(n, p) alone. We want to discuss
this on one basic example, the triangle factor, which is the disjoint union of n/3 triangles.

In Gα we need α > 2/3, in G(n, p) the threshold is n−2/3 log1/3 n, and in Gα ∪G(n, p)
with a fixed α > 0 it is n−2/3. Note that the log-term in G(n, p) is needed to ensure
that every vertex is contained in a triangle, which is essential for a triangle factor. Using
Janson’s inequality [20, Theorem 21.12] it is not hard to prove the almost spanning result
for a triangle factor on at least (1−ε)n vertices with p = ω(n−2/3). This can be generalised
to G(n, βn−2/3) giving a.a.s. a triangle factor on at least (1−C/β)n vertices. Again, this
can only give something with β = α−1/C in Gα ∪G(n, βn−2/3) and to improve this we ask
the following.

Question 10. Let 0 < β = β(n) 6 log1/3 n. Does G(n, βn−2/3) a.a.s. contain a triangle
factor on at least (

1− (1− o(1)) exp(−β3)
)
n

vertices?

Observe, that this is a.a.s. the number of vertices of G(n, βn−2/3) that are not contained
in a triangle. Similar questions for other factors or more general structures would be of
interest. It took a long time until Johannson, Kahn, and Vu [24] determined the threshold
for the triangle factor. This conjecture seems to be of similar difficulty, whereas for our
purposes it would already be great to obtain a triangle factor on at least (1−C exp(−β3))n
vertices for some C > 1.

For the remainder of this note we prove Theorem 1 and 6 in Section 2 and 3 respectively.

2 Hamiltonicity

We will prove the following proposition that will be sufficient to prove the theorem together
with known results on Hamilton cycles in G(n, p).

Proposition 11. Let α = α(n) : N 7→ (0, 1) such that α = ω(n−1/6), and let β = β(α) =
−(6 + o(1)) log(α). Then a.a.s. Gα ∪G(n, β/n) is Hamiltonian.

Proof of Theorem 1

Let α, β > 0 such that β = −(6+o(1)) log(α). If α = O(n−1/6), we have β > (1+o(1)) log n
and we can infer that a.a.s. there is a Hamilton cycle in G(n, β/n) (this follows from an
improvement on the result concerning the threshold for Hamiltonicity [30]). On the other
hand, if α = ω(n−1/6), then we apply Proposition 11 to a.a.s. get the Hamilton cycle.

Proof of Proposition 11

To prove the proposition we apply the following strategy. We first find a long path in
G(n, p) alone. Then, by considering the union with Gα, we obtain a reservoir structure
for each vertex that allows us to extend the length of the path iteratively. Finally, we
will also be able to close this path to a cycle on all vertices. W.l.o.g. we can assume that
α < 1/10.
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p1 p2 p3 . . . pj−1 pj pj+1 . . . p`

v

p1 p2 p3 . . . pj−1 pjpj+1 . . . p`v

Figure 1: The top shows a path P = p1, . . . , p` and the left-over vertex v. Black
edges belong to the random graph, orange edges can be found in Gα. The bottom
shows the situation after absorbing v using that pj ∈ ~B(p`, v).

Finding a long path

Let P = p1, . . . , p` be the longest path that we can find in G1 = G(n, (β − 1)/n) and
let V ′ = {v1, . . . , vk} = V (G1) \ {p1, . . . , p`} be the left-over. Then, by Lemma 3, we get
a.a.s. that

k = |V ′| = n− ` 6 (1− o(1)) β exp (1− β)n. (1)

Next, let P ′ be a collection of vertices of P , where we take every other vertex, excluding
the last, that is

P ′ = {pi : i ≡ 0 (mod 2)} \ {p`} (2)

In the following, we will work on P ′ instead of all of P , ensuring that certain absorbing
structures do not overlap.

Absorbing the left-over

We now consider the union Gα ∪ G1. The following absorbing structure is the key to the
argument.

Definition 12. For any vertices u, v ∈ V (Gα ∪ G1) let

~B(u, v) = {x ∈ NGα(u) ∩ P ′ | NP (x) ⊆ NGα(v)} . (3)

If for some v ∈ V ′ there is an pj ∈ ~B(p`, v) we can proceed as follows (see Figure 1).
By definition we have pj−1, pj+1 ∈ NGα(v) and pj ∈ NGα(p`) ∩ P . Then pj can be replaced
by v in the path P and can now be appended to the path P at p`. So we get the path
P̃ = p1, . . . , pj−1, v, pj+1, . . . , p`, pj, where P̃ ⊂ P ∪ Gα.

To iterate this argument we show that a.a.s. for any pair of vertices u and v, the set
~B(u, v) is large enough.

Claim 13. We have a.a.s.
∣∣∣ ~B(u, v)

∣∣∣ > α3n/4 for any u, v ∈ V (Gα ∪ G1).
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Proof. Let u, v be arbitrary vertices in V = V (Gα ∪ G1). The set ~B(u, v) is uniformly
distributed over P ′, because G(n, (β−1)/n) is sampled independently of the deterministic
graph Gα. Then by definition

E
[∣∣∣ ~B(u, v)

∣∣∣] > 9

10
α3 |P ′| > 2

5
α3 (1− (1− o(1)) β exp (1− β))n > α3n/3. (4)

An immediate consequence of ~B(u, v) being uniformly settled over G(n, (β − 1)/n) is∣∣∣ ~B(u, v)
∣∣∣ ∼ Bin(|P ′| , α3). It follows from (4) and the Chernoff bound that there is a

sufficiently small, but constant, δ > 0 s.t.

Pr
(∣∣∣ ~B(u, v)

∣∣∣ < α3n/4
)
6 Pr

(∣∣∣ ~B(u, v)
∣∣∣ < (1− δ)E

[∣∣∣ ~B(u, v)
∣∣∣])

6 exp
(
−δ2/8α3n

)
< exp

(
−
√
n
)
.

(5)

The lemma follows from a union bound over all
(
n
2

)
choices for u, v and (5).

We now have everything at hand to absorb all but two of the left-over vertices v ∈ V ′
onto a path of length n− 2. We do this inductively using Algorithm 1.

Algorithm 1: Absorbs all but two vertices of the left-over set V ′ onto a path.

Input : Path P = p1 . . . p`, set of left-over vertices V ′ = {v1, . . . , vk}.
Output: Path P̃ in P ∪ Gα on n− 2 vertices.

Define `1 = `, P1 = P with P1 = u1
1 . . . u

1
`1

;

Define for any u, v the set B1(u, v) = ~B(u, v);
Define V ′1 = V ′;
for i = 1 to k − 2 do

Choose uij ∈ Bi(u
i
`i
, vi) and absorb vi onto Pi;

Denote by Pi+1 = ui1 . . . u
i
j−1viu

i
j+1 · · ·ui`iu

i
j = ui+1

1 . . . ui+1
`i+1 the resulting

path;
Update `i+1 = `i + 1, V ′i+1 = V ′i \ {vi};
Set Bi+1(u, v) = Bi(u, v) \

{
uij
}

for any u, v;

end

P̃ = Pk;

Let P̃ , Bi(·, ·) be defined as in Algorithm 1. In order to see that the algorithm termi-
nates with P̃ = Pk it suffices to prove, that Bi(u, v) is not empty for any u, v ∈ V and

i = 1 . . . k. By definition of P ′ in (2) we have | ~B(u, v) \ Bi(u, v)| 6 i and using Claim 13
and (1) we get

|Bi(u, v)| > α3n/8, (6)

whenever β exp (1− β) < α3/8. As this holds by definition of β = −(6 + o(1)) log(α) and
with α < 1/10, we get that (6) holds for all u, v ∈ V and any i = 1, . . . , k.
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Closing the cycle

We have found a path P̃ = p1, . . . , pn−2 and we are left with two vertices vk−1, vk that are
not on the path. It is possible to close the Hamilton cycle by absorbing vk−1 and vk if
there is an edge between A := Bk(p1, vk−1) and B := Bk(pn−2, vk). Indeed, we then have
w.l.o.g. i < j such that pi ∈ A, pj ∈ B, and there is an edge pipj. By definition of A and
B we can then obtain the Hamilton cycle

pi, p1, . . . , pi−1, vk−1, pi+1, . . . , pj−1, vk, pj+1, . . . , pn−2, pj.

It remains to prove that we have an edge between A and B. For this we reveal
G2 = G(n, 1/n). As |A|, |B| > α3n/8 by (6) we get

E [eG2 (A,B)] >
1

n
·
(
α3n

16

)2

= ω(1),

as α = ω(n−1/6). Together with Chernoff’s inequality this implies that a.a.s. eG2 (A,B) >
0. As the union of G1 and G2 can be coupled as a subgraph of G(n, β/n) this implies that
a.a.s. there is a Hamilton cycle in Gα∪G(n, p) and finishes the proof of Proposition 11.

Observe, that when running the same proof for Theorem 2 we can obtain the better
constant by adapting the definition of the ~B(u, v) to the setup of perfect matchings and

then proving that a.a.s. | ~B(u, v)| > α2n/4. We spare the details here.

3 Bounded degree trees

Theorem 6 is modular, which turns almost spanning embeddings in the random graph
into spanning embeddings in the union Gα ∪ G(n, β/n). The proof is very similar to the
proof for Hamilton cycles and we will spare some details.

Proof of Theorem 6

Let Gα be given and G = G(n, β/n). Let T be an arbitrary tree on n vertices with
maximum degree ∆. Denote by Tε the tree obtained from T by the following construction.

1. Set T0 = T .

2. In every step i, check whether Ti has at most (1− ε)n vertices.

• If this is the case, set Tε = Ti and finish the process.

• Otherwise, create Ti+1 by deleting one leaf of Ti.

We denote by L the left-over, that are the vertices removed during construction of Tε.
Then

|V (Tε)| 6 (1− ε)n, |L| 6 εn+ 1, and V (T ) = V (Tε) ∪ L.
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Next we let T be an independent subset of the vertices of Tε such that the vertices in T
do not have neighbours outside of Tε with respect to T . Observe, that there exists such
a T such that |T | > (1−∆ε)n

∆+1
.

By assumption we a.a.s. have an embedding T ′ε of Tε into G and we denote by T ′ the
image of T under this embedding. We adapt Definition 12 and define for any two vertices
u, v

~B(u, v) =
{
x ∈ NGα(u) ∩ T ′ | NT ′

ε
(x) ⊂ NGα(v)

}
.

As before, if we want to embed a vertex w that is a neighbour of an already embedded
vertex u in Tε and v is an available vertex we can do it if ~B(u, v) is non-empty. More

precisely, with x ∈ ~B(u, v), we can embed the vertex embedded onto x to v, embed w to
x, and obtain a valid embedding of Tε with an additional neighbour of u. Analogous to
Claim 13 we get the following.

Claim 14. We have a.a.s.
∣∣∣ ~B(u, v)

∣∣∣ > α∆+1n
4(∆+1)

for any u, v ∈ V (Gα ∪ G).

Therefore, similar to Algorithm 1, we can iteratively append leaves to Tε to obtain
an embedding of T into Gα ∪ G. As in every step we lose at most one vertex from each
~B(u, v) this works as long as

|L| 6 εn+ 1 <
∣∣∣ ~B(u, v)

∣∣∣ ,
which holds by Claim 14 and the assumption on ε and α.
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rial theory and its applications 2 (1970), 601–623.

[23] Jie Han, Patrick Morris, and Andrew Treglown, Tilings in randomly perturbed graphs:
Bridging the gap between Hajnal-Szemerédi and Johansson-Kahn-Vu, Random Struc-
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