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Abstract

We prove some new rank selection theorems for balanced simplicial complexes.
Specifically, we prove that if a balanced simplicial complex satisfies Serre’s condition
(S`) then so do all of its rank selected subcomplexes. We also provide a formula
for the depth of a balanced simplicial complex in terms of reduced homologies of
its rank selected subcomplexes. By passing to a barycentric subdivision, our results
give information about Serre’s condition and the depth of any simplicial complex.
Our results extend rank selection theorems for depth proved by Stanley, Munkres,
and Hibi.

Mathematics Subject Classifications: 05E45, 05E40, 13F55

1 Introduction

Let k be a field, A = k[x1, . . . , xn], and I a square-free monomial ideal in A. The
Stanley-Reisner correspondence associates to R := A/I a simplicial complex ∆ whose
topological and combinatorial properties capture the algebraic structure of R. Exploiting
this correspondence has been an active line of investigation over the past few decades. Due
to their combinatorial characterization ([Rei76, Theorem 1]), Stanley-Reisner rings that
are Cohen-Macaulay have received particular attention. However, the Cohen-Macaulay
property is quite strong in this setting, and so there has been a focus in recent years
on considering weaker algebraic properties such as Serre’s condition (S`) or bounds on
depthR which still have interesting combinatorial ramifications. For instance, even (S2)
forces ∆ to be pure, and (S`) implies the h-vector of R is nonnegative up to the `th
spot ([MT09]); see [PSFTY14] for a survey of related results. The main purpose of this
paper is to consider Serre’s condition and the depth of Stanley-Reisner rings by studying
balanced simplicial complexes.
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A balanced simplicial complex ∆ is a simplicial complex of dimension d− 1, together
with an ordered partition π = (V1, . . . , Vd) of the vertex set of ∆ such that |F ∩ Vi| 6 1
for every F ∈ ∆ and every i. To put it another way, the vertices of ∆ are colored so that
no face of ∆ has more than one vertex of a given color. The motivating example of a
balanced simplicial complex is the order complex O(P ) of a finite poset P , whose vertex
set is P and whose faces consist of all chains in P ; we partition the vertices of O(P )
by their height in P . When P is the face poset of a simplicial complex ∆ (excluding
the empty face), O(P ) is nothing but the barycentric subdivision of ∆, and it’s well
known that its geometric realization is homeomorphic to that of ∆. Thus we can study
topological characteristics of any simplicial complex via the combinatorial structure of a
balanced simplicial complex. In particular, we may study homological properties such as
the Cohen-Macaulay property and Serre’s condition (S`), and numerical invariants such
as depth in this manner.

Let (∆, π) be a balanced simplicial complex of dimension d− 1 with ordered partition
π = (V1, . . . , Vd), and let k[∆] denote its Stanley-Reisner ring over the field k. If S ⊆ [d],
we let ∆S be the subcomplex of ∆ induced on

⋃
i∈S Vi, and we refer to ∆S as the S-rank

selected subcomplex of ∆. It’s often convenient to think about the ranks we remove
rather than those we retain, and so we also set ∆̃S := ∆[d]−S. If S = {i} is a singleton, we

abuse notation and write ∆i or ∆̃i, as appropriate. The so-called rank selection theorems
of Stanley ([Sta79]) and Munkres ([Mun84]) show that homological properties often pass
from ∆ to ∆S. Specifically, we have the following:

Theorem 1 ([Sta79]). Let (∆, π) be a balanced simplicial complex. If k[∆] is Cohen-
Macaulay, then k[∆S] is Cohen-Macaulay for any S ⊆ [d].

Theorem 2 ([Mun84]). Let (∆, π) be a balanced simplicial complex. Then, for any i ∈ [d],

depth k[∆̃i] > depth k[∆]− 1.

As Serre’s condition (S`) generalizes the Cohen-Macaulay property, it is natural to
consider if there is any extension of Theorem 1 to (S`). We prove this is indeed the case.

Theorem A. Let (∆, π) be a balanced simplicial complex of dimension d − 1. If k[∆]
satisfies Serre’s condition (S`), then k[∆S] satisfies (S`) for any S ⊆ [d].

If P is a finite poset, we let P>j be the subposet consisting of the elements of P with
height greater than j. In the case ∆ = O(P ) for a finite poset P , O(P>j) is the subcomplex
of ∆ with the bottom j+ 1 ranks removed. For this case, we have the following refinment
of Theorem A.

Theorem B. Let P be a finite poset.

1. If k[O(P )] satisfies (S`), then H̃i−1(O(P>j); k) = 0 whenever i+j < d and 0 6 i < `.

2. If P is the face poset of a simplicial complex ∆ and H̃i−1(O(P>j); k) = 0 whenever
i+ j < d and 0 6 i 6 `, then k[O(P )], and thus k[∆], satisfies (S`).
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Thereom B shows, if ∆ is a simplicial complex and P its face poset, that the reduced
homologies H̃i−1(O(P>j); k) pin the largest ` for which ∆ satisfies (S`) to two possible
values. It’s natural to ask whether one can fully characterize (S`) in this way i.e., whether
the converse of (1) or (2) hold. We provide examples (Examples 38 and 39) that show
this is not the case. These examples provide a counterpoint to the work of [DDD+19],

which shows that the H̃i−1(O(P>j); k) do detect the depth of k[∆], and, in particular, can
determine whether ∆ is Cohen-Macaulay.

In general, equality need not hold in Theorem 2; depth ∆̃i can be any value between
dim ∆̃i and depth k[∆] − 1. However, we prove that one can often find a rank so that
equality is achieved.

Proposition C. Let (∆, π) be a balanced simplicial complex of dimension d − 1, with

ordered partition π = (V1, . . . , Vd). If H̃depth k[∆]−1(∆) = 0, then there is an i ∈ [d] such

that depth k[∆̃i] = depth k[∆]− 1.

Using Proposition C, we provide a formula for depth k[∆] for any balanced simplicial
complex ∆ (see Theorem 26).

Finally, the aformentioned results suggest a more concrete relationship between the
reduced homologies of links in ∆ and the H̃i−1(O(P>j); k). For this relationship we provide
the following formula for sums of reduced Euler characteristics of links. Our formula is
analogous to those of [HN02, Section 2 Lemma 1 (i)] and [Swa05, Proposition 2.3].

Theorem D. Suppose ∆ is pure and let P be the face poset of ∆. Write χ for Euler
characteristic and χ̃ for reduced Euler characteristic. Then∑

T∈∆
|T |=j

χ̃(lk∆(T )) = χ(O(P>j))− χ(O(P>j−1)).

We now describe the structure of our paper. In Section 2, we set notation and pro-
vide the algebraic and combinatorial background we appeal to throughout the paper. In
Section 3, we prove Theorems A and B (see Theorems 16, 17 and 18). Section 4 contains
a proof of Proposition C (Proposition 24) as well as a formula for depth k[∆] (Theorem
26). In Section 5, we prove Theorem D (Theorem 30) and provide an application to
Gorenstein∗ complexes. The last section discusses open problems related to this work and
provides examples indicating the sharpness of our results.

2 Background and Notation

In this section we set notation and provide necessary background. Once and for all,
fix the base field k. We let H̃i denote ith simplicial or singular homology, whichever is
appropriate, always taken with respect to the field k. We use χ for Euler characteristic
and χ̃ for reduced Euler characteristic.

Given a simplicial complex ∆, we write k[∆] for its Stanley-Reisner ring over k. We
write V (∆) for the vertex set of ∆, but, if ∆ is clear from context, we generally write
V for V (∆) and n for |V |; we set A := k[x1, . . . , xn]. We write fi(∆) for the number of
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i-dimensional faces of ∆, and hi(∆) for the ith entry of the h-vector of ∆; so hi(∆) =∑i
j=0(−1)i−j

(
d−j
i−j

)
fj−1(∆). We let ||∆|| denote the geometric realization of ∆. We call

∆(k) := {σ ∈ ∆ : dim σ 6 k} the k-skeleton of ∆.
Given a subset T ⊆ V (∆), we use ∆|T := {σ ∈ ∆ | σ ⊆ T} for the induced subcomplex

of ∆ on T . We may then define the star, the anti-star, and the link of T , respectively, as
follows:

st∆ T := {G ∈ ∆ | T ∪G ∈ ∆}
ast∆ T := {G ∈ ∆ | T ∩G = ∅} = ∆|V−T
lk∆ T := {G ∈ ∆ | T ∪G ∈ ∆ and T ∩G = ∅} = st∆ T ∩ ast∆ T

We note that st∆ T and lk∆ T are the void complex ∅ exactly when T /∈ ∆, and lk∆(T )
is the irrelevant complex {∅} exactly when T is a facet of ∆. On the other hand, ast∆(T )
is nonempty as long as long as T 6= V . Of import, st∆(T ) is a cone over lk∆(T ) for any
T ∈ ∆, and in particular is acyclic. When T = {v}, we abuse notation and write st∆(v),
ast∆(v), and lk∆(v).

Definition 3. We say that J ⊆ V (∆) is an independent set for ∆ if {a, b} /∈ ∆ for any
a, b ∈ J with a 6= b. Motivated by [Hib91], we say that J ⊆ V (∆) is an excellent set for
∆ if J is an independent set for ∆ and J ∩ F 6= ∅ for every facet F ∈ ∆. When ∆ is
clear from context, we simply say that J is an independent set or that J is an excellent
set, as appropriate.

The main computational tools of this paper are two exact sequences recorded in the
following propositions:

Proposition 4 ([DDD+19, Lemma 4.2]). Suppose b is a non-isolated vertex of ∆. Then
there is a Mayer-Vietoris exact sequence of the form

· · · → H̃i(∆)→ H̃i−1(lk∆(b))→ H̃i−1(ast∆(b))→ H̃i−1(∆)→ · · · .

Proposition 5 ([DDD+19, Proof of Lemma 4.3]). Suppose {x} ( J ( V and J is an
independent set. Set J ′ = J − {x}. Then there is a Mayer-Vietoris exact sequence of the
form

· · · → H̃i(∆)→ H̃i−1(ast∆(J))→ H̃i−1(ast∆(J ′))⊕ H̃i−1(ast∆(x))→ H̃i−1(∆)→ · · · .

We also consider algebraic properties of k[∆]; one can see [BH93] as a reference for
this subject. We use dim k[∆] for the Krull dimension of the ring k[∆]; so dim ∆ =
dim k[∆] − 1. We write d for dim k[∆] when ∆ is clear from context. By depth k[∆] we
mean the depth of the k-algebra k[∆]; for a combinatorial characterization of depth, see
Proposition 7. We say ∆ is Cohen-Macaulay whenever k[∆] is Cohen-Macaulay, that is,
if depth k[∆] = dim k[∆]. Recall the following:

the electronic journal of combinatorics 28(2) (2021), #P2.28 4



Definition 6. A commutative Noetherian ring R satisfies Serre’s Condition, (S`), if, for
all p ∈ SpecR, depthRp > min{`, dimRp}.

We say ∆ satisfies (S`) if k[∆] does. Every simplicial complex satisfies (S1), and a
simplicial complex satisfies (Sd) if and only if it is Cohen-Macaulay.

The following is an immediate consequence of Hochster’s formula ([BH93, Theorem
5.3.8]) and gives a useful characterization of depth for Stanley-Reisner rings in terms of
reduced homologies of links:

Proposition 7. Let ∆ be a simplicial complex. Then depth k[∆] > t if and only if

H̃i−1(lk∆(T )) = 0 for all T ∈ ∆ with i+ |T | < t.

The corresponding result for (S`) can be found in [Ter07]:

Proposition 8 ([Ter07]). Let ∆ be a simplicial complex of dimension d − 1. Then ∆

satisfies (S`) for ` > 2 if and only if H̃i−1(lk∆(T )) = 0 whenever i+ |T | < d and 0 6 i < `.
In particular, (S`) complexes are pure if ` > 2.

One can obtain similar characterizations for other algebraic properties of k[∆]. Define
coreV (∆) := {v ∈ V (∆) | st∆(v) 6= ∆} and set core ∆ := ∆|coreV (∆). We say that ∆ is
Gorenstein if the ring k[∆] is Gorenstein; if, in addition, core ∆ = ∆, we say that ∆ is
Gorenstein∗. One has the following, see [BH93, Theorem 5.6.1]:

Theorem 9. A simplicial complex ∆ is Gorenstein∗ if and only if

H̃i−1(lk∆(T )) ∼=

{
k if i = d− |T |
0 if i 6= d− |T |

Now, let P be a finite poset. If p ∈ P , we let ht(p) denote the length of a longest
chain p1 ≺ p2 ≺ · · · ≺ pi = p and let htP := max{ht p | p ∈ P}. We denote by P>j the
poset obtained by restricting to elements p ∈ P so that ht p > j. The order complex of
P , denoted O(P ), is the simplicial complex on P consisting of all chains of elements in P .
Let F(∆) denote the face poset of ∆. We set [∆]>j := O(F(∆)>j). We note that when
j = 0, [∆]>0 is the barycentric subdivision of ∆. The following is well known (see [Gib10,
Corollary 5.7], for example):

Lemma 10. The realization ||∆|| is homeomorphic to ||[∆]>0||. In particular, H̃i(∆) ∼=
H̃i([∆]>0) for all i.

We let ρ : ∆−{∅} → V ([∆]>0) be the map which sends T to itself viewed as a vertex
of [∆]>0.

There are several advantages of working with [∆]>k. For instance, we have the follow-
ing result of [DDD+19]:

Lemma 11. Let T ∈ ∆. Then [lk∆(T )]>0
∼= lk[∆]>|T |−1

(ρ(T )) as simplicial complexes. In

particular, H̃i(lk∆(T )) ∼= H̃i(lk[∆]>|T |−1
(ρ(T ))) for each i.

the electronic journal of combinatorics 28(2) (2021), #P2.28 5



Definition 12. A balanced simplicial complex is a pair (∆, π) satisfying:

1. ∆ is d− 1 dimensional simplicial complex on a vertex set V .

2. π = (V1, . . . , Vd) is an ordered partition of V .

3. For every facet F ∈ ∆ and every i ∈ [d], |F ∩ Vi| 6 1.

Balanced simplicial complexes were introduced by Stanley in [Sta79]. One can find
more information on balanced simplicial complexes in [BFS87, BGS82, Gar80]; [Sta96]
gives a more modern treatment of the subject. An important property of balanced sim-
plicial complexes is that each Vi is an independent set for ∆, and, if ∆ is pure, the Vi are
excellent sets for ∆. If (∆, π) is a balanced simplicial complex with π = (V1, . . . , Vd), and if
S ⊆ [d], we define the S-rank selected subcomplex of ∆ to be the complex ∆S := ∆|⋃

i∈S Vi
;

for notational convenience, we also set ∆̃S = ∆[d]−S. If (∆, π) is a balanced simplicial
complex, we often suppress the ordered partition π and simply refer to ∆ as a balanced
simplicial complex; in this case we always write π = (V1, . . . , Vd) for the corresponding
ordered partition.

Now, let P be a finite poset. If we set Vi := {p | ht(p) = i} and π = (V1, . . . , VhtP ),
then (O(P ), π) is a balanced simplicial complex. In particular, this means [∆]>j is always
a balanced simplicial complex for any j.

Finally, we recall the higher nerve complexes of [DDD+19]:

Definition 13. Let {A1, A2, . . . , Ar} be the collection of facets of ∆. The simplicial
complex

Ni(∆) := {F ⊆ [r] : |
⋂
j∈F

Aj| > i}

is called the ith Nerve Complex of ∆. We refer to the Ni(∆) as the higher Nerve Complexes
of ∆. We note that N0(∆) = 2[r] and N1(∆) is the classical nerve complex of ∆.

Higher nerve complexes capture important homological information about ∆. For
our purposes, the important properties of higher nerve complexes can be summarized as
follows:

Theorem 14 ([DDD+19, Theorems 1.3 and 2.8]). Let ∆ be a simplicial complex of di-
mension d− 1. Then

1 ) H̃i−1(Nj+1(∆)) = 0 for i+ j > d and 1 6 j 6 d.

2 ) depth k[∆] = inf{i+ j : H̃i−1(Nj+1(∆)) = 0}.

3 ) For i > 0,

fi(∆) =
d−1∑
j=i

(
j

i

)
χ(Nj+1(∆)).

4 ) H̃i([∆]>k) ∼= H̃i(Nk+1(∆)) for any i and any k.
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3 Rank Selection Theorems for Serre’s Condition

In this section we prove some general statements and use them to derive Theorems A and
B. Throughout this section we let ∆ be a simplicial complex of dimension d − 1 on the
vertex set V .

Lemma 15. Suppose J ⊆ V is excellent and that ∆ satisfies (S`). Set ∆̃ := ast∆(J).

Then ∆̃ satisfies (S`).

Proof. We proceed by induction on `. The claim is clear when ` = 1, since every simplicial
complex satisfies (S1). So, suppose we know the result for all 1 6 j 6 ` and suppose ∆

satisfies (S`+1). The inductive hypothesis gives us that ∆̃ satisfies (S`), and we will show

∆̃ satisfies S`+1; the Lemma will then follow from induction.
By Proposition 8, we have that H̃i−1(lk∆(T )) = 0 whenever i+ |T | < d and 0 6 i 6 `,

and that H̃i−1(lk∆̃(T )) = 0 whenever i + |T | < d− 1 and 0 6 i < `. We need only show

that H̃`−1(lk∆̃(T )) = 0 for all T ∈ ∆̃ with `+ |T | < d− 1.

Pick T ∈ ∆̃ such that `+ |T | < d− 1. Let σ ⊇ T be a facet of ∆. Since J is excellent,
there is a b ∈ J ∩σ, and thus {b}∪T ∈ ∆. Since b /∈ T , this means b ∈ lk∆(T ). Note that
T ∪ {b} cannot be a facet of ∆, since this would mean |T |+ 1 = d, whilst `+ |T | < d− 1.
Set S = J ∩ V (lk∆(T )); then we have lk∆̃(T ) = astlk∆(T )(S). By Proposition 4, we have,
for any b ∈ S, the exact sequence:

H̃`(astlk∆(T )(b))
i∗b−→ H̃`(lk∆(T ))→ H̃`−1(lklk∆(T )(b))→ H̃`−1(astlk∆(T )(b))→ H̃`−1(lk∆(T ))

where i∗b is the induced map coming from the inclusion ib : astlk∆(T )(b) ↪→ lk∆(T ). Since

lklk∆(T )(b) = lk∆(T ∪ {b}) and since ` + |T | < d − 1, we have H̃`−1(lklk∆(T )(b)) = 0.

Since H̃`−1(lk∆(T )) = 0, we obtain H̃`−1(astlk∆(T )(b)) = 0 and that i∗b is surjective, from
exactness.

Now, since J is an independent set in ∆, S is an independent set in lk∆(T ). We claim

that H̃`−1(astlk∆(T )(I)) = 0 for any ∅ ( I ⊆ S. To see this, we induct on |I|. Note that
the claim is true when |I| = 1, from above. Now suppose the claim is true for every I
with |I| = k, and suppose we are given an I with |I| = k + 1. Write I = L ∪ {a} so that
|L| = k. By Proposition 5 we have the exact sequence

H̃`(astlk∆(T )(a))⊕ H̃`(astlk∆(T )(L)) H̃`(lk∆(T ))

H̃`−1(astlk∆(T )(I)) H̃`−1(astlk∆(T )(a))⊕ H̃`−1(astlk∆(T )(L))

i∗a − k∗

where k∗ is the induced map coming from the inclusion k : astlk∆(T )(L) ↪→ lk∆(T ).

By the inductive hypothesis, we have that H̃`−1(astlk∆(T )(a)) ⊕ H̃`−1(astlk∆(T )(L)) =
0. As we saw previously, i∗a is surjective so that i∗a − k∗ is as well. Thus we obtain

H̃`−1(astlk∆(T )(I)) = 0 from exactness. Induction then gives us that H̃`−1(astlk∆(T )(S)) =

H̃`−1(lk∆̃(T )) = 0, and thus ∆̃ satisfies (S`+1).

the electronic journal of combinatorics 28(2) (2021), #P2.28 7



Theorems A and B (1) now follow as quick consequences of Lemma 15:

Theorem 16. Let ∆ be a balanced simplicial complex. If ∆ satisfies (S`), then ∆S satisfies
(S`) for any S ⊆ [d].

Proof. There is nothing to prove when ` = 1. When ` > 2, ∆ is pure, and the result
follows by applying Lemma 15 inductively on each i ∈ [d]− S.

Theorem 17. If P is a finite poset satisfying (S`), then H̃i−1(O(P>j)) = 0 whenever
i + j < d and 0 6 i < `. In particular, if ∆ is a simplicial complex satisfying (S`), then

H̃i−1([∆]>j) = 0 whenever i+ j < d and 0 6 i < `.

Proof. Suppose P is (S`). By Theorem 16, O(P>j) satisfies (S`) for each 0 6 j 6 d − 1.

In particular, H̃i−1(O(P>j)) = 0 for i < d − j and 0 6 i < `. It only remains to remark
that if ∆ is a simplicial complex satisfying (S`), then, since ||∆|| ∼= ||[∆]>0|| and since
(S`) is a topological property ([Yan11, Theorem 4.4 (d)]), [∆]>0 satisfies (S`).

Remarkably, Theorem 17 admits a partial converse (Theorem B (2)) when P is the
face poset of a simplicial complex.

Theorem 18. If H̃i−1([∆]>j) = 0 whenever i + j < d and 0 6 i 6 `, then ∆ satisfies
(S`).

Proof. We induct on `, using a similar approach to that of Lemma 15. There is nothing
to prove when ` = 1 and we may assume ` 6 d. Suppose we know the result for `
and suppose H̃i−1([∆]>j) = 0 whenever i + j < d and 0 6 i 6 ` + 1. From induction
hypothesis, we have that ∆ satisfies (S`). Note that we assumed, in particular, that

H̃0([∆]>j) = 0 whenever j < d − 1. Thus, no facet of ∆ can have cardinality less

than or equal to d − 1, i.e., ∆ is pure. Since ∆ is (S`), we have H̃i−1(lk∆(T )) = 0

whenever i + |T | < d and 0 6 i < `, and we need only show that H̃`−1(lk∆(T )) = 0
whenever |T | < d − `. To see this, we proceed by induction on |T |. When |T | = 0, we

have H̃`−1(lk(T )) = H̃`−1(∆) = H̃`−1([∆]>0) = 0. Suppose H̃`−1(lk(T )) = 0 whenever
j = |T | < d− `, and consider T ∈ ∆ with j + 1 = |T | < d− `.

Letting S = {ρ(T ) | T ∈ ∆, |T | = j + 1} and writing S = I ∪ {ρ(T )}, we have, by
Proposition 5, the exact sequence

H̃`−1([∆]>j+1) H̃`−1(ast[∆]>j
(ρ(T )))⊕ H̃`−1(ast[∆]>j

(I)) H̃`−1([∆]>j)
.

Since H̃`−1([∆]>j+1) = 0 = H̃`−1([∆]>j), it follows from the exact sequence above that

H̃`−1(ast[∆]>j
(ρ(T )))⊕ H̃`−1(ast[∆]>j

(I)) = 0. In particular, H̃`−1(ast[∆]>j
(ρ(T ))) = 0.

As ∆ is pure, T is not a facet, and so ρ(T ) is a non-isolated vertex of [∆]>j. By
Proposition 4, we have the exact sequence

H̃`([∆]>j)→ H̃`−1(lk[∆]>j
(ρ(T )))→ H̃`−1(ast[∆]>j

(ρ(T )))→ H̃`−1([∆]>j)
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Since H̃`−1(ast[∆]>j
(ρ(T ))) = 0 = H̃`([∆]>j), we have H̃`−1(lk[∆]>j

(ρ(T ))) = 0 =

H̃`−1(lk(T )), by Proposition 7. Thus, ∆ satisfies (S`+1), and the result follows from
induction.

Remark 19. When ` = 2, the conclusion of Theorem 17 is equivalent to H̃0([∆]>d−2) = 0,
since for a pure complex connectivity of [∆]>j implies connectivity of [∆]>j−1.

Remark 20. Since, by Theorem 14 (4), H̃i−1([∆]>j) ∼= H̃i−1(Nj+1(∆)) for any i and j,
Theorems 17 and 18 also serve as a version of Theorem 14 (2) for (S`), and in fact recover
the Cohen-Macaulay case of Theorem 14 (2).

Remark 21. Theorems 17 and 18 show that the reduced homologies of the [∆]>j pin the
largest ` for which ∆ satisfies (S`) to two possible consecutive values. As Examples 38
and 39 show, the reduced homologies of the [∆]>j alone cannot determine which of these
values ` actually is. We would be quite interested to know what information can be used
in tandem with the H̃i−1([∆]>j) to determine this value; see Question 41.

We conclude this section with an example illustrating the application of the results
from this section.

Example 22. Consider the complex ∆ with facets:

{3, 4, 5, 6}, {4, 5, 6, 7}, {3, 5, 6, 7}, {2, 5, 6, 7}, {1, 3, 6, 7}, {2, 4, 5, 7},
{2, 3, 4, 7}, {2, 3, 6, 7}, {1, 3, 4, 7}, {1, 3, 4, 6}, {2, 3, 4, 5}

We organize the dimensions of the H̃i−1([∆]>j) into the following table:

H̃0 H̃1 H̃2 H̃3

[∆]>0 0 0 1 0
[∆]>1 0 0 1 0
[∆]>2 0 9 0 0
[∆]>3 10 0 0 0

Theorem 18 implies that ∆ satisfies (S2), and Theorem 17 implies that ∆ does not
satisfy (S4), i.e., that ∆ is not Cohen-Macaulay. However, neither of these Theorems can
determine whether ∆ satisfies (S3); one can check that this ∆ does not satisfy (S3). In fact,
lk∆(T ) is acyclic when |T | = 1 except when T = {3} or T = {4} which each have exactly

one nonzero reduced homology: H̃1(lk∆({4})) ∼= H̃2(lk∆({3}) ∼= k. Comparing these to
the table above suggests a more general relationship between reduced homologies of links
and the H̃i−1([∆]>j). This relationship is the main subject of the next section. In fact,
one can find examples having a table, as above, that is identical to that of ∆, but which do
satisfy (S3) (See Examples 38 and 39 for a version of this behavior in smaller dimension).
For instance, one can generate such an example by replacing the facet {2, 3, 4, 5} of ∆

with {2, 3, 4, 6}. What makes this behavior possible is that the H̃i−1([∆]>j) only relate
to homologies of links in general through Euler characteristic (see Theorem 30), so there

is a loss of information in this relationship. In particular, the H̃i−1([∆]>j) cannot detect
whether the vertex links are all acyclic, or whether, as with this example, link homologies
are in appropriate degrees to sum to zero in the formula of Theorem 30.
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4 Depth of Rank Selected Subcomplexes

In this section, we explore the behavior of depth when passing to rank selected subcom-
plexes. In particular, we prove Proposition C and use it to provide a formula for the
depth of any balanced simplicial complex in Theorem 26. Throughout this section we let
∆ be a simplicial complex of dimension d− 1 on the vertex set V .

The following lemma follows from [Hib91, Proposition 2.8] and a slightly weaker version
can be found in [Mun84, Theorem 6.4]:

Lemma 23. Suppose J ⊆ V is an independent set. Set ∆̃ = ast∆(J). Then depth ∆̃ >
depth ∆− 1.

We first provide a variation on this lemma:

Lemma 24. Let depth ∆ = ` and suppose H̃`−1(∆) = 0. Choose T ∈ ∆ of minimal

cardinality such that H̃`−|T |−1(lk∆(T )) 6= 0 (that such a T exists follows from Proposition
7). Let J ⊆ V be an independent set and suppose T = T ′ ∪ {b} with b ∈ J . Set

∆̃ = ast∆(J). Then H̃`−|T ′|−2(lk∆̃(T ′)) 6= 0. In particular, depth ∆̃ = `− 1.

Proof. If T is a facet of ∆, then we have that |T | = ` by minimality, and, as lk∆(T ) =

lklk∆(T ′)(b), that {b} is a facet of lk∆(T ′). By our minimality hypothesis, H̃0(lk∆(T ′)) = 0.
It follows that lk∆(T ′) is a simplex with facet {b}, and so lk∆̃(T ′) = astlk∆(T ′)(b) = {∅}.
Thus T ′ is a facet of ∆̃, and so H̃`−1−|T ′|−1(lk∆̃(T ′)) = H̃−1(lk∆̃(T ′)) 6= 0.

Otherwise, if T is not a facet of ∆, set S = J ∩ V (lk∆(T ′)) and note that lk∆̃(T ′) =
astlk∆(T ′)(S). Lemma 4 gives the following exact sequence

H̃`−|T |(lk∆(T ′))→ H̃`−|T |−1(lklk∆(T ′)(b))→ H̃`−|T |−1(astlk∆(T ′)(b))→ H̃`−|T |−1(lk∆(T ′)).

By minimality of |T | and Proposition 7, we have H̃`−|T |(lk∆(T ′)) = H̃`−|T |−1(lk∆(T ′)) =

0. Thus, H̃`−|T |−1(lklk∆(T ′)(b)) ∼= H̃`−|T |−1(astlk∆(T ′)(b)). But, lklk∆(T ′)(b) = lk∆(T ′∪{b}) =

lk∆(T ), and so, in particular, H̃`−|T |−1(astlk∆(T ′)(b)) 6= 0.
But now, [DDD+19, Lemma 4.3] gives that

H̃i−|T |−1(astlk∆(T ′)(S)) ∼=
⊕
x∈S

H̃i−|T |−1(astlk∆(T ′)(x)),

and in particular that lk∆̃(T ′) is nonzero. That depth ∆̃ = `−1 now follows from Lemma
23 and Proposition 7.

Proposition 25. Let ∆ be a balanced simplicial complex with depth ∆ = `. Suppose
H̃`−1(∆) = 0. Then there exists an i such that depth ast∆(Vi) = `− 1.

Proof. This follows immediately from Lemma 24.

With these results in hand, we now provide a formula for depth ∆.
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Theorem 26. Suppose ∆ is a balanced simplicial complex with ordered partition π =
(V1, . . . , Vd). Then

depth ∆ = min{i+ |S| | H̃i−1(∆̃S) 6= 0}

where the minimum is taken over all i and all S ⊆ [d].

Proof. That
depth ∆ 6 min{i+ |S| | H̃i−1(∆̃S) 6= 0}

follows at once from Lemma 23, so we need only concern ourselves with the reverse
inequality. We proceed by induction on depth ∆, noting that the claim is clear when
depth ∆ = 0, that is, when ∆ = {∅}. Suppose depth ∆ = `. The claim is clear if

H̃`−1(∆) 6= 0, so we may suppose this is not the case. By Proposition 25, there is an i
with depth ast∆(Vi) = `−1. From the inductive hypothesis, we have `−1 = min{i+ |S| |
H̃i−1(ast∆(Vi)[d]−S)}. In particular, there is an S ⊆ [d − 1] with H̃`−|S|−2(ast∆(Vi)) =

H̃`−|S∪{i}|−1(∆̃|S∪{i}|) 6= 0, and the result follows.

Corollary 27. Let P be a finite poset. For any S ⊆ {1, . . . , htP}, let P̃S denote the poset
obtained by restricting P to elements whose height is not in S. Then

depthO(P ) = min{i+ |S| | H̃i−1(O(P̃S)) 6= 0}.

In particular, for any simplicial complex ∆, we can compute depth k[∆] by taking P
to be the face poset of ∆.

5 Euler Characteristics of Links and Truncated Posets

Motivated by the previous sections, this section focuses on exploring a more general
relationship between the reduced homology groups H̃i−1([∆]>j) and reduced homologies
of links in ∆. This relationship in made concrete in Theorem D, to which we now shift
our attention. Throughout this section we continue to let ∆ be a simplicial complex of
dimension d− 1 and we set Fk = {T ∈ ∆, |T | = k}.

Lemma 28. Suppose ∆ is pure. Then∑
T∈Fk

fi−1(lk∆(T )) =

(
i+ k

k

)
fi+k−1(∆).

Proof. Note that

(
i+ k

k

)
is the number of (k−1)-dimensional faces contained in each (i+

k−1)-dimensional face. Thus the right hand side counts each (i+k−1)-dimensional face
exactly once for each of its subfaces of dimension k− 1. On the other hand, fi−1(lk∆(T ))
counts each (i + k − 1)-dimensional face containing T . Thus on the left hand side, each
(i+ k− 1)-dimensional face is also counted exactly once for each (k− 1)-dimensional face
it contains, and so the sides are equal.
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As in [HN02, Section 2 Lemma 1 (i)] and [Swa05, Proposition 2.3], one can combine

this with Theorem 1.3 (3) to obtain a formula for
∑
T∈∆
|T |=k

hi(lk∆(T )) in terms of Euler

characteristics of higher nerves. We follow a similar approach to obtain a particularly

simple formula for
∑
T∈∆
|T |=k

χ̃(lk∆(T )). To do this we need the following identity:

Lemma 29. For any positive integer k and any nonnegative integer j, we have

j∑
i=0

(−1)i+1

(
i+ k

k

)(
j

i+ k − 1

)
=


−1 j = k − 1

1 j = k

0 j 6= k, k − 1

.

Proof. By Pascal’s identity, we have that

j∑
i=0

(−1)i+1

(
i+ k

k

)(
j

i+ k − 1

)
equals

j−k+1∑
i=0

(−1)i+1

(
i+ k − 1

k − 1

)(
j

i+ k − 1

)
+

j−k+1∑
i=0

(−1)i+1

(
i+ k − 1

k

)(
j

i+ k − 1

)
Applying the subset of a subset identity to both terms, this equals

j−k+1∑
i=0

(−1)i+1

(
j

k − 1

)(
j − k + 1

i

)
+

j−k+1∑
i=0

(−1)i+1

(
j

k

)(
j − k
i− 1

)

= −
(

j

k − 1

) j−k+1∑
i=0

(−1)i
(
j − k + 1

i

)
−
(
j

k

) j−k+1∑
i=0

(−1)i
(
j − k
i− 1

)

= −
(

j

k − 1

) j−k+1∑
i=0

(−1)i
(
j − k + 1

i

)
+

(
j

k

) j−k∑
i=0

(−1)i
(
j − k
i

)
.

The first term is 0 unless j = k − 1 and the second is 0 unless j = k. We easily check
that the sum is −1 when j = k − 1 and 1 when j = k, giving the result.

We are now ready to prove Theorem D.

Theorem 30. Suppose ∆ is pure. Then∑
T∈∆
|T |=k

χ̃(lk∆(T )) = χ([∆]>k)− χ([∆]>k−1)

Proof. The claim is clear if k = 0, since [∆]>0 is the barycentric subdivision of ∆, and
since [∆]>−1 is a cone. So we suppose k > 1.
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We have∑
T∈Fk

χ̃(lk∆(T ))

=
d−k∑
i=0

∑
T∈Fk

(−1)i+1fi−1(lk∆(T ))

=
d−k∑
i=0

(−1)i+1

(
i+ k

k

)
fi+k−1(∆)

=
d−k∑
i=0

d−1∑
j=i+k−1

(−1)i+1

(
i+ k

k

)(
j

i+ k − 1

)
χ(Nj+1(∆)) (By Theorem 2.11 3))

=
d−1∑
j=0

j∑
i=0

(−1)i+1

(
i+ k

k

)(
j

i+ k − 1

)
χ(Nj+1(∆))

= χ(Nk+1(∆))− χ(Nk(∆)) (By Lemma 29).

The result then follows from Theorem 14 (4).

Note that, as long as k 6= d,
∑
T∈Fk

χ̃(lk∆(T )) = χ([∆]>k) − χ([∆]>k−1) = χ̃([∆]>k) −

χ̃([∆]>k−1).

Remark 31. Examples 22, 38, and 39 demonstrate the sharpness of Theorem 30.

Corollary 32. Suppose ∆ is pure. Then

i∑
k=j

∑
T∈Fk

χ̃(lk∆(T )) = χ([∆]>i)− χ([∆]>j−1).

In particular,
i∑

k=0

∑
T∈Fk

χ̃(lk∆(T )) = χ([∆]>i).

As an application, we provide a result analogous to those of sections 3 and 4 for
Gorenstein∗ complexes.

Corollary 33. Suppose ∆ is Gorenstein∗. Then

dimk H̃i−1([∆]>j) =

{
dimk H̃j−1(∆(j−1)) if i = d− j
0 if i 6= d− j.

The converse holds if lk∆(T ) is not acyclic for each T ∈ ∆.
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Proof. By Theorem 14 (4), H̃i−1([∆]>j) ∼= H̃i−1(Nj+1(∆)) for any i and j. Thus, by
Theorems 14 (1) and 9, both conditions imply ∆ is Cohen-Macaulay, in particular, that
∆(j−1) is Cohen-Macaulay for every j ([Fr90, Theorem 8]). In this case, we have

dimk H̃j−1(∆(j−1)) = (−1)jχ̃(∆(j−1)) =

j∑
k=0

(−1)j−kfk−1(∆).

Suppose ∆ is Gorenstein∗. Then, by Theorem 9

H̃i−1(lk∆(T )) ∼=

{
k if i = d− j
0 if i 6= d− j

.

Likewise, since ∆ is Cohen-Macaulay, we have H̃i−1([∆]>j) = 0 unless i = d − j by
Theorem 14. We thus have

(−1)d−j−1 dimk H̃d−j−1([∆]>j) = χ([∆]>j)

=

j∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) (By Corollary 32)

=

j∑
k=0

∑
T∈Fk

(−1)d−k−1

=

j∑
k=0

(−1)d−k−1fk−1(∆)

= (−1)d−j−1

j∑
k=0

(−1)j−kfk−1(∆)

= (−1)d−j−1 dimk H̃j−1(∆(j−1))

and the claim follows.
Now suppose lk∆(T ) is non-acyclic for each T ∈ ∆ and that

dimk H̃i−1([∆]>j) =


j∑

k=0

(−1)j−kfk−1(∆) if i = d− j

0 if i 6= d− j.

Since ∆ is Cohen-Macaulay, H̃i−1(lk∆(T )) = 0 unless i = d−|T |. Now we induct on |T |
to show that H̃d−|T |−1(lk∆(T )) ∼= k for each T . When T = ∅ we have dim H̃d−1(lk∆ T ) =

dim H̃d−1(∆) ∼= dim H̃d−1([∆]>0) = f−1(∆) = 1. Now suppose H̃d−|T |−1(lk∆(T )) ∼= k
whenever |T | < j. Then

j∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) = χ̃([∆]>j)
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= (−1)d−j−1 dimk H̃d−j−1(Nj+1(∆)) =

j∑
k=0

(−1)d−k−1fk−1(∆)

Similarly,
j−1∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) =

j−1∑
k=0

(−1)d−k−1fk−1(∆),

and thus∑
T∈Fj

χ̃(lk∆(T )) =
∑
T∈Fj

(−1)d−j−1 dimk H̃d−j−1(lk∆(T )) = (−1)d−j−1fj−1(∆).

Then ∑
T∈Fj

dimk H̃d−j−1(lk∆(T )) = fj−1(∆),

but, since lk∆(T ) is not acyclic for each T , we must have dimk H̃d−j−1(lk∆(T )) = 1 for
each T ∈ Fj, by the pigeonhole principle. The result now follows from induction.

Remark 34. We claim the result of Corollary 33 is analogous to those of Sections 3
and 4, but this is perhaps not obvious. To see this, note that dimk H̃i−1(∆(j−1)) =

dimk H̃i−1(P op
>d−j) where P is the face poset of ∆ and P op is its opposite poset. In essence,

our result says that, when ∆ is Gorenstein∗, removing j ranks from the bottom of P gives
the same homologies as removing d− j ranks from the top, though these homologies are
in different degrees.

6 Open Problems and Examples

In this section we provide examples illustrating the sharpness of the results from previous
sections, and we discuss some related open questions. We begin by considering more
general notions of independent and excellent sets. Through this section we continue to
let ∆ be a simplicial complex of dimension d − 1. We say that A ⊆ ∆ is independent if
σ∪ τ /∈ ∆ for all σ, τ ∈ A with σ 6= τ . We say that A is excellent if, additionally, for every
facet F of ∆, F ⊇ σ for some (necessarily unique) σ ∈ A. Note that J = {v1, . . . , vm} ⊆ V
is independent (resp. excellent) if and only if {{v1}, . . . , {vm}} is an independent (resp.
excellent) subset of ∆. If A ⊆ ∆ is independent, we set

∆A := ∆− {σ ∈ ∆ | σ ⊇ τ for some τ ∈ A}.

If A = {{v1}, . . . , {vm}} where J = {v1, . . . , vm} ⊆ V is independent, then ∆A = ast∆(J).
Essentially the same argument as [Hib91, Proposition 2.8] shows the following extension
of Lemma 24:

Proposition 35. Suppose A ⊆ ∆ is independent. Then depth ∆A > depth ∆− 1.

We conjecture a similar extension of Lemma 15.
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Conjecture 36. Suppose A ⊆ ∆ is excellent. If ∆ satisfies (S`), then ∆A satisfies (S`).

Remark 37. If A is independent and ` > 2, the conclusion can only hold if A is excellent,
since (S2) complexes are pure. Similar to Proposition 35, one can modify the argument
of [Hib91, Proposition 2.8] to show that ∆A satisfies (S`−1) whenever ∆ satisfies (S`) and
A is excellent. However, as in the proof of Theorem 17, one often needs to cut away
excellent subsets inductively, and, for this purpose, (S`−1) is not generally good enough;
in particular, we cannot conclude anything when ∆ only satisfies (S2). A positive answer
to this conjecture would allow one to extend Theorem A to balanced complexes of a more
general type, along the lines of [Hib91, Section 3].

The following examples show the converses of Theorems 17 and 18 do not hold, even
for face posets of simplicial complexes:

Example 38. Consider the complex ∆1 with facets:

{4, 5, 6}, {1, 5, 6}, {1, 3, 5}, {2, 3, 6}, {2, 5, 6}, {2, 4, 6}.

This complex is not (S2) but has H̃i−1([∆1]>j) = 0 for all i, j with i+j < d and 0 6 i < 2.

Example 39. Consider the complex ∆2 with facets:

{4, 5, 6}, {3, 5, 6}, {2, 3, 5}, {2, 3, 4}, {1, 3, 4}, {2, 4, 6}.

This complex is (S2) but H̃1([∆2]>0) is non-trivial.

In fact, H̃i−1([∆1]>j) ∼= H̃i−1([∆2]>j) for every i and every j. Since ∆2 is (S2) and ∆1

is not, this shows that (S2) cannot be determined in general by reduced homologies of the
[∆]>j. Further, Example 39 is Buchsbaum while Example 38 is not, so Buchsbaum cannot
be determined either. In a similar fashion, the following example shows that Gorenstein
cannot be detected in general.

Example 40. Let Γ1 be the complex with facets

{2, 3, 4}, {1, 3, 4}, {1, 2, 5}, {2, 3, 5}, {1, 2, 4}, {1, 3, 5}

and Γ2 the complex with facets

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}.

Then [Γ1]>j and [Γ2]>j have isomorphic homologies for each j, but Γ1 is Gorenstein whilst
Γ2 is not (it is not even 2-Cohen-Macaulay).

The above discussion leads us to ask the following general question:

Question 41. In addition to the reduced homologies of the [∆]>j, what information does
one need to determine if a simplicial complex satisfies conditions such as (S`), Buchsbaum,
or Gorenstein?
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