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Abstract

We compute, mimicking the Lascoux-Schützenberger type A combinatorial pro-
cedure, left and right keys for a Kashiwara-Nakashima tableau in type C. These
symplectic keys have a similar role as the keys for semistandard Young tableaux.
More precisely, our symplectic keys give a tableau criterion for the Bruhat order
on the hyperoctahedral group and cosets, and describe Demazure atoms and char-
acters in type C. The right and the left symplectic keys are related through the
Lusztig involution. A type C Schützenberger evacuation is defined to realize that
involution.

Mathematics Subject Classifications: 05E05, 05E10, 17B37

1 Introduction

The irreducible characters of the general linear group GLn, over C, the Schur polynomials,
are combinatorially expressed as sums on semistandard Young tableaux with entries 6 n
[35]. When restricting to the symplectic group Sp2n, two different types of symplectic
tableaux have been proposed. King showed that the irreducible symplectic characters,
the symplectic Schur polynomials, can be seen as a sum on a family of tableaux that are
known as King tableaux [16], and De Concini has proposed the ones known as De Concini
tableaux [8]. Kashiwara and Nakashima [14] described symplectic tableaux, which are just
a variation of De Concini tableaux, with a crystal graph structure. That crystal structure
allows a plactic monoid compatible with insertion and sliding algorithms, and Robinson-
Schensted type correspondence, studied by Lecouvey in terms of crystal isomorphisms
[21, 22]. The generalization of the notion of plactic monoid for finite Cartan types was first
introduced by Littelmann using his path model [28]. Symplectic Kashiwara-Nakashima
tableaux are the ones that we work with, in the corresponding ambient plactic monoid. We
however note that very recently Lee has endowed King tableaux with a crystal structure
[25].
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Kashiwara [13] and Littelmann [27] have shown that Demazure characters [9], for
any Weyl group, can be lifted to certain subsets of the crystal Bλ for a given dominant
weight λ, a normal crystal with highest weight λ [7], called Demazure crystal. That
is, a Demazure character (also known as key polynomials) is the generating function of
the weights over a Demazure crystal. In type Cn, we consider Bλ to be the crystal of
Cn-Kashiwara-Nakashima tableaux of shape λ, and Demazure characters are indexed by
integer vectors in the orbit of the partition λ under the action of the Weyl group, the
hyperoctahedral group Bn. They are certain non symmetric Laurent polynomials, with
respect to the action of the Weyl group, which can be seen as partial symplectic characters,
i.e., sums of a certain portion of monomials in a symplectic Schur polynomial.

In type An−1, the Demazure crystals are certain subsets of the crystal Bλ, the crys-
tal of all semistandard Young tableaux of shape λ, with entries 6 n. Lascoux and
Schützenberger [20] identified the tableaux with nested columns as key tableaux, and
defined the right key map that sends tableaux to key tableaux. Their right key map gives
a decomposition of Bλ into non intersecting subsets U(v), each containing a unique key,
in bijection with the vectors v in the orbit of λ, under the action of the Weyl group, Sn

[20, Theorem 3.8]. They called standard bases the sum of monomial weights over U(v),
which, after Mason [29], are coined Demazure atoms. The decomposition describes what
tableaux contribute to the Demazure crystal Bv, as a union of Demazure atoms, over an
interval in the Bruhat order, on the classes modulo the stabilizer of λ. This order, induced

on the orbit of λ, gives Bv =
⊎

λ6u6v

U(u).

Our work has been motivated by the questions raised in a presentation by Azenhas
[4], in The 69th Séminaire Lotharingien de Combinatoire. In those questions, Azenhas
identified some type Cn Kashiwara-Nakashima tableaux as key tableaux, which match
our identification, but it lacks a construction of the right key map, thus lacking a proof of
the combinatorial description of type C Demazure characters. Note also that, during the
preparation of this paper, Jacon and Lecouvey informed us about their paper [12], where
they find the same key in type C, but their approach is different from ours.

Inspired by the Lascoux-Schützenberger’s construction of the left and right keys of
a semistandard Young tableau [20], we give a similar construction in type Cn. Our
construction of the left and right keys of a Kashiwara-Nakashima tableau, in type Cn, is
based on frank words in type C, that we introduce in Section 4, and Sheats symplectic jeu
de taquin. Our Theorem 52 is the type C analogue of [20, Theorem 3.8]. We also show, in
Section 5, that both keys, left and right, are related via the Schützenberger involution in
type C, or Lusztig involution, realized here in an explicit way, using symplectic insertion
or sliding operations.

In [26], using the model of alcove paths, Lenart defined an initial key and a final key, for
any Lie type, related via the Lusztig involution, which, in type C, have a similar behaviour
to the left and right keys defined here. There is a crystal isomorphism between the alcove
path model and the Kashiwara-Nakashima tableau model in types A and C [23, 24]. Since
right an left keys in type C are explicitly related through the Schützenberger involution
in type C, or Lusztig involution, the left and right key maps in types A and C coincide
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in the aforesaid approaches or models.
The paper is organized as follows. In Section 2, we discuss the Weyl group of type

C, the signed permutation group Bn, the Bruhat order on Bn and on its cosets, modulo
the stabilizer of λ, the Kashiwara-Nakashima tableaux and the symplectic key tableaux.
Those key tableaux are used in Proposition 23 to explicitly construct the minimal length
coset representatives. We recall some results from Bjorner and Brenti’s book [6] and
Proctor [30], that lead to a tableau criterion, in theorems 21 and 26, for the Bruhat order
on Bn and on its cosets, using the symplectic key tableaux. In Section 3, we recall the
Baker-Lecouvey insertion, the Sheats symplectic jeu de taquin and use them to discuss the
plactic and coplactic equivalences and the Robinson-Schensted type C correspondence.
These equivalences have a natural interpretation in the type Cn Kashiwara crystal, for
a Uq(sp2n)-module, in terms of connected components and crystal isomorphic connected
components. In Section 4, we extend the concept of frank word, in type A, to type C
and, with the help of symplectic jeu de taquin, we present, in Theorem 43, our right and
left key maps. Using the right key map, we describe the tableaux that contribute to a
Demazure atom and to a Demazure crystal, which is our main result, Theorem 52. In
Section 5, we develop a type C evacuation within the plactic monoid, an analogue of the
J-operation discussed by Schützenberger for semistandard Young tableaux in [32]. This is
an explicit realization of Lusztig involution using insertion and sliding operations in type
C. Proposition 64 shows that the evacuation of the right key of a Kashiwara-Nakashima
tableau is the left key of the evacuation of the same tableau.

Note: An extended abstract of part of this work was accepted in the conference FPSAC
2020 [31].

2 Weyl group of type C, Bruhat order and symplectic key
tableaux

Fix n ∈ N>0. Define the sets [n] = {1, . . . , n} and [±n] = {1, . . . , n, n, . . . , 1} where i is
just another way of writing −i. In the second set we will consider the following order of
its elements: 1 < · · · < n < n < · · · < 1 instead of the usual order.

Consider the group Bn, with generators si, 1 6 i 6 n, having the following presenta-
tion, regarding the relations among the generators,

Bn := 〈s1, . . . , sn |s2i = 1, 1 6 i 6 n; (sisi+1)
3 = 1, 1 6 i 6 n− 2; (sn−1sn)4 = 1;

(sisj)
2 = 1, 1 6 i < j 6 n, |i− j| > 1〉,

known as hyperoctahedral group or signed symmetric group. This group is a Coxeter
group and we consider the (strong) Bruhat order on its elements [6]. The elements of
Bn can be seen as odd bijective maps from [±n] to itself, i.e., for all σ ∈ Bn we have
σ(i) = −σ(−i), i ∈ [±n]. The subgroup with the generators s1, . . . , sn−1 is the symmetric
group Sn and its elements can be seen as bijections from [n] to itself. Both groups can
also be seen as groups of n × n matrices. The elements of the symmetric group can be
identified with the permutation matrices, and if we allow the non-zero entries to be either
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1 or −1, we have the elements of Bn. Hence Bn has 2nn! elements. The groups Sn and
Bn are the Weyl groups for the root systems of types An−1 and Cn, respectively.

Let σ ∈ Bn. We denote [a1 a2 . . . an], where ai = σ(i) for i ∈ [n], the window notation
of σ, and write σ = [a1 a2 . . . an]. The elements of Bn, or Sn, act on vectors in Zn on
the left. Given a vector v ∈ Zn, we have that si, with i ∈ [n − 1], acts on v swapping
the i-th and the (i + 1)-th entries, and sn acts on v, snv, changing the sign of the last
entry. Note that the window notation of σsi is obtained after applying si to the window
notation of σ, if we see it as a vector. Ignoring signs, σv = (vσ−1(1), . . . , vσ−1(n)), with
v = (v1, . . . , vn). The i-th letter of σv changes its sign if and only if i appears in σ. Hence
σv = (sgn(σ−1(1))v|σ−1(1)|, . . . , sgn(σ−1(n))v|σ−1(n)|), where sgn(x) = 1 if x is positive and
−1 if x is negative, for x ∈ [±n].

Example 1. Consider v = (1, 2, 3) ∈ Z3 and σ = [2 3 1] = [s1s3s2(1), s1s3s2(2), s1s3s2(3)]
= s1s3s2 ∈ B3. So

σ(1, 2, 3) = s1s3s2(1, 2, 3) = s1s3(1, 3, 2) = s1(1, 3, 2) = (3, 1, 2)

= (sgn(σ−1(1))v|σ−1(1)|, sgn(σ−1(2))v|σ−1(2)|, sgn(σ−1(3))v|σ−1(3)|)

= (1 · 3, 1 · 1,−1 · 2).

2.1 Bruhat order on Bn

The length of σ ∈ Bn, `(σ), is the least number of generators of Bn needed to go from
[1 2 . . . n], the identity map, to σ. Any expression of σ as a product of `(σ) generators
of Bn is called reduced. We say that two letters of the window notation of σ form an
inversion if the bigger letter appears first. The next proposition gives a way to compute
`(σ) that only requires to look at the window notation of σ. This is a variation of the
length formula presented on [6, Proposition 8.1.1], where the authors consider the usual
ordering of the alphabet [±n] and the generator that changes the sign of an entry of the
window notation acts on the first entry instead of the last one.

Proposition 2. Consider σ ∈ Bn. Then

`(σ) = #{inversions of σ}+
∑

i appears in σ

(n+ 1− i).

The (signed) permutation σ = [2 3 1] has two inversions: 2, 1 and 3, 1 and `(σ) = 3.

Remark 3.

• If i does not appear in the window presentation of σ, for all i ∈ [n], we may identify
σ, in one-line notation, with σ(1) . . . σ(n) ∈ Sn and `(σ) = #{inversions of σ} [6,
Proposition 1.5.2].

• We have that `(σsi) > `(σ) if i = n and σ(n) is positive, or, i 6= n and σ(i) < σ(i+1).

The Bruhat order on the set of the elements of Bn can be defined in the following way:
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Definition 4. [6] Let w = σ1 . . . σ`(w), where σi ∈ {s1, . . . , sn} are generators of Bn, and
u be two elements in Bn. Then u 6 w in the Bruhat order if

∃1 6 i1 < i2 · · · < i`(u) 6 `(w) such that u = σi1σi2 . . . σi`(u) .

By definition, if u 6 w then `(u) 6 `(w), but the reverse is not true. If σ(n) is positive
and i = n, or, σ(i) < σ(i+ 1) and i 6= n, we can also say that σsi > σ.

The combinatorics of crystal graphs in type C and the Bruhat order combinatorics
on Bn and cosets are strongly related. In subsections 2.3 and 2.4, we give a tableau
criterion for the Bruhat order on Bn and on cosets, respectively. For this aim, we recall
Kashiwara-Nakashima (KN) tableaux in type C and define symplectic key tableaux.

2.2 Kashiwara-Nakashima tableaux in type C

This subsection focuses on the notion of symplectic tableaux introduced by Kashiwara and
Nakashima to label the vertices of the type C crystal graphs [15], which are a variation
of the De Concini tableaux [8]. (See [33] for more details.)

A vector λ = (λ1, . . . , λn) ∈ Zn is a partition of |λ| =
n∑
i=1

λi if λ1 > λ2 > . . . > λn > 0.

The Young diagram of shape λ is an array of boxes, left justified, in which the i-th row,
from top to bottom, has λi boxes. We identify a partition with its Young diagram. For

example, the Young diagram of shape λ = (2, 2, 1) is .

Given µ and ν two partitions with ν 6 µ entrywise, we write ν ⊆ µ. The Young
diagram of shape µ/ν is obtained after removing the boxes of the Young diagram of ν from
the Young diagram of µ. For example, the Young diagram of shape µ/ν = (2, 2, 1)/(1, 0, 0)

is .

Definition 5. Let ν ⊆ µ be two partitions and A a completely ordered alphabet. A
semistandard skew tableau of shape µ/ν on the alphabet A is a filling of the diagram µ/ν
with letters from A, such that the entries are strictly increasing in each column and weakly
increasing in each row. When |ν| = 0 then we obtain a semistandard Young tableau of
shape µ.

Denote by SSY T (µ/ν,A) the set of all semistandard Young skew tableaux T of shape
µ/ν, with entries in A. When A = [n] we write SSY T (µ/ν, n).

When considering tableaux with entries in [±n], it is usual to have some extra condi-
tions besides being semistandard. We will use a family of tableaux known as Kashiwara-
Nakashima tableaux. From now on we consider tableaux on the alphabet [±n].

A column is a strictly increasing sequence of numbers in [±n] and it is usually displayed
vertically. A column is said to be admissible if the following one column condition (1CC)
holds for that column:
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Definition 6 (1CC). Let C be a column. The 1CC holds for C if for all pairs i and i in
C, where i is in the a-th row counting from the top of the column, and i in the b-th row
counting from the bottom, we have a+ b 6 i.

If a column C satisfies the 1CC then C has at most n letters.
If 1CC doesn’t hold for C we say that C breaks the 1CC at z, where z is the minimal

positive integer such that z and z exist in C and there are more than z numbers in C
with absolute value less or equal than z.

Example 7. The column
1
2
1

breaks the 1CC at 1.

The following definition states conditions to when C can be split :

Definition 8. Let C be a column and let I = {z1 > · · · > zr} be the set of unbarred
letters z such that the pair (z, z) occurs in C. The column C can be split when there
exists a set of r unbarred letters J = {t1 > · · · > tr} ⊆ [n] such that:

1. t1 is the greatest letter of [n] satisfying t1 < z1, t1 6∈ C, and t1 6∈ C,

2. for i = 2, . . . , r, we have that ti is the greatest letter of [n] satisfying ti <min(ti−1, zi),
ti 6∈ C, and ti 6∈ C.

The 1CC holds for a column C if and only if C can be split [33, Lemma 3.1]. If C can
be split then we define right column of C, rC, and the left column of C, `C, as follows:

1. rC is the column obtained by changing in C, zi into ti for each letter zi ∈ I and by
reordering if necessary,

2. `C is the column obtained by changing in C, zi into ti for each letter zi ∈ I and by
reordering if necessary.

If C is admissible then `C 6 C 6 rC by entrywise comparison. If C doesn’t have
symmetric entries, then C is admissible and `C = C = rC. In the next definition we give
conditions for a column C to be coadmissible.

Definition 9. We say that a column C is coadmissible if for every pair i and i on C,
where i is on the a-th row counting from the top of the column, and i on the b-th row
counting from the top, then b− a 6 n− i.

Note that, unlike in Definition 6, in the last definition b is counted from the top of the
column.

Given an admissible column C, consider the function Φ that sends C to the column of
the same size in which the unbarred entries are taken from `C and the barred entries are
taken from rC. The column Φ(C) is a coadmissible column and the algorithm to form
Φ(C) from C is reversible [21, Section 2.2]. In particular, every column on the alphabet
[n] is simultaneously admissible and coadmissible.
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Example 10. Let C =
2
3
3

be an admissible column. Then `C =
1
2
3

and rC =
2
3
1

.

So Φ(C) =
1
2
1

is coadmissible.

Let T be a skew tableau with all of its columns admissible. The split form of a skew
tableau T , spl(T ), is the skew tableau obtained after replacing each column C of T by
the two columns `C rC. The tableau spl(T ) has double the amount of columns of T .

Definition 11. A semistandard skew tableau T is a Kashiwara-Nakashima (KN) skew
tableau if its split form is a semistandard skew tableau. We define KN (µ/ν, n) to be
the set of all KN tableaux of shape µ/ν in the alphabet [±n]. When ν = 0 we obtain
KN (µ, n).

Example 12. The split of the tableau T =
2 2
3 3
3

is the tableau spl(T ) =
1 2 2 2
2 3 3 3
3 1

.

Hence T ∈ KN ((2, 2, 1), 3).

If T is a tableau without symmetric entries in any of its columns, i.e., for all i ∈ [n]
and for all columns C in T , i and i do not appear simultaneously in the entries of C,
then in order to check whether T is a KN tableau it is enough to check whether T is
semistandard in the alphabet [±n]. In particular SSY T (µ/ν, n) ⊆ KN (µ/ν, n).

The weight of a word w on the alphabet [±n] is defined to be the vector wt(w) ∈ Zn
where the entry i is obtained by adding the multiplicity of the letter i and subtracting
the multiplicity of the letter i, for i ∈ [n]. If T is a skew tableau, the column reading of
T , cr(T ), is the word read in T in the Japanese way, column reading top to bottom and
right to left. The length of w is the total number of letters in w. The weight of a KN
tableau T is the vector wtT := wt(cr(T )) = (t1 − t1, t2 − t2, . . . , tn − tn) ∈ Zn, where tα
is the number of α’s in T , with α ∈ [±n].

Example 13. Let T =
2 2
3 3
3

and n = 3. Then cr(T ) = 23 233 and

wt(T ) = wt(cr(T )) = (0, 2, 1).

In Section 3.2, we recall a way to go from a word in the alphabet [±n] to a KN tableau,
the Baker-Lecouvey insertion.

2.3 Key tableaux in type C and the Bruhat order on Bn

Definition 14. A key tableau in type Cn is a KN tableau in KN (λ, n), in which the set
of elements of each column is contained in the set of elements of the previous column and
the letters i and i do not appear simultaneously as entries, for any i ∈ [n].
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Example 15. The KN tableau T =
2 2
3 1
1

is a key tableau.

The set of key tableaux in type A is the subset of the key tableaux in type C consisting
of the tableaux having only positive entries, hence they are SSYT for the alphabet [n].

Every vector v of Zn is in the Bn-orbit of exactly one partition, λv, which is the one
obtained by sorting the absolute values of all entries of v. Given a partition λ ∈ Zn, the
Bn-orbit of λ is the set Bnλ := {σλ | σ ∈ Bn}. For instance, the vector v = (1, 3, 0, 3, 2)
is in the B5-orbit of λ = (3, 3, 2, 1, 0).

Proposition 16. Let λ be a partition and v ∈ Bnλ. There is exactly one key tableau
K(v) whose weight is v. In addition, the shape of the key tableau K(v) is λ. When v = λ,
K(λ) is the only KN tableau of weight and shape λ, also called Yamanouchi tableau of
shape λ.

Proof. Existence: Given v = (v1, . . . , vn) ∈ Zn there exists a key tableau K of weight v
by putting in the first |vi| columns the letter i if vi > 0 or i if vi 6 0, and then sorting the
columns properly. Clearly the columns of K are nested and it is a KN tableau without
symmetric entries, hence it is a key tableau. Also, its shape is λv = λ.

Uniqueness: Since the key tableaux don’t have symmetric entries then, for all i ∈ [n],
we have that in K the letter sgn(vi)i appears |vi| times in its entries. In order to the
columns of K be nested we have that these |vi| entries appear in the first |vi| columns,
hence we have determined exactly which letters appear in each column of K and now we
just have to order them correctly. So the key tableau K with weight v is unique. When
v = λ, K(λ) has only i’s in the row i, for i ∈ [n].

Example 17. Let v = (1, 3, 0, 3, 2). Then K(v) =

1 4 4
4 5 2
5 2
2

.

Hence there is a bijection between vectors in Bnλ and the key tableaux in type C
on the alphabet [±n] with shape λ, given by the map v 7→ K(v). If σ ∈ Bn we put
K(σ) := K(σ∆n), where ∆n = (n, n− 1, . . . , 1) is the staircase partition in Zn. One has
a natural bijection between Bn and the Bn-orbit of ∆n.

Proposition 18. If σ ∈ Bn has the letter α in the j-th position then α appears in the
first n+ 1− j columns of the corresponding key tableau, K(σ).

Proof. Put ∆ := ∆n. Remember that, ignoring signs, σ∆ = (∆σ−1(1), . . . ,∆σ−1(n)), with
∆ = (n, . . . , 1). The i-th letter of σ∆ has negative sign if and only if i appears in σ. If
α is positive, then in the position α of σ∆ will appear ∆j = n + 1 − j. If α is negative,
then in the position −α will appear ∆j = n+ 1− j.
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We now append 0 to the alphabet [±n], obtaining [±n] ∪ {0}, where n < 0 < n, and,
for all σ ∈ Bn, we put σ(0) := 0. Given an element σ ∈ Bn consider the map

[±n] ∪ {0} × [±n] ∪ {0} → N0

(i, j) 7→ |{a 6 i : σ(a) > j}| := σ[i, j].

This map, originally defined in [6], produces a table which is related to key tableaux
in type C. See example below:

Example 19. Let σ = [3 1 2 4]. Then σ(4, 3, 2, 1) = (3, 2, 4, 1) and

K(σ) =

2 2 3 3
4 3 1
3 1
1

The family of numbers σ[i, j] where (i, j) ∈ [±n] ∪ {0} × [±n] ∪ {0} originates the
following table, where i indexes the columns, left to right, and j indexes the rows, top to
bottom. We add a row of zeros at the bottom for convenience:

1 2 3 4 0 4 3 2 1
1 1 2 3 4 5 6 7 8 9
2 1 2 3 4 5 6 7 7 8
3 1 2 2 3 4 5 6 6 7
4 1 2 2 3 4 5 6 6 6
0 1 2 2 2 3 4 5 5 5
4 1 2 2 2 2 3 4 4 4
3 1 2 2 2 2 2 3 3 3
2 0 1 1 1 1 1 2 2 2
1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0

To go from the table to the key tableau note that, for i ∈ [n], the i-th column of the
table encodes the (n+ 1− i)-th column of the tableau, in the sense that if we look to the
the i-th column of the table, from bottom to top, if the entry of the table increases in one
unity then the index of the row associated to that entry exists in the (n+1− i)-th column
of the tableau. Knowing the entries in a column of a tableau, its ordering is unique. The
columns of the tableau constructed this way are nested because the indexes in which the
column i increases are σ(j), for j 6 i. So the tableau taken from the table is the key
tableau K(σ). It is also possible to construct the table from the key tableau and then we
only need the first n columns of the table.

We then have the following result:

Proposition 20. Consider σ, ρ ∈ Bn. K(σ) > K(ρ) entrywise if and only if σ[i, j] >
ρ[i, j], where i ∈ [n], and j ∈ [±n].
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In [6, Theorem 8.1.8] it is proved that, for σ, ρ ∈ Bn, σ 6 ρ in the Bruhat order if and
only if σ[i, j] 6 ρ[i, j] for all i, j ∈ [±n]. But the result in [6, Theorem 8.1.7] implies that
we only need to compare σ[i, j] and ρ[i, j] for i ∈ [n]. Henceforth, we have the following
criterion for the Bruhat order on Bn:

Theorem 21. Consider σ, ρ ∈ Bn. K(σ) > K(ρ) entrywise if and only if σ > ρ in the
Bruhat order.

Remark 22. In [6, Chapter 8.1] the authors use the same alphabet as here, but with the
usual ordering on the integers. So, to translate the results from there to here, it is needed
to apply the ordering isomorphism defined by: i 7→ n− i+ 1 if i ∈ [n]; i 7→ n + i + 1 if
i ∈ −[n]; 0 7→ 0. Using the usual ordering, the authors give a tableau criterion for the
Bruhat order in Exercise 6, pp. 287–288, which is effectively the transpose version of the
tableau criterion presented here. Also note that the generators used in [6, Chapter 8.1]
are the same used here, although with different indexation. Our generator si corresponds
to the generator sn−i in [6, Chapter 8.1], for all i ∈ [n].

2.4 The Bruhat order on cosets of Bn

Consider a partition λ ∈ Zn. Let Wλ = {ρ ∈ Bn | ρλ = λ} be the stabilizer of λ, under
the action of Bn. Since λ is a partition, Wλ is a subgroup of Bn generated by some of
the generators of Bn. Let J ⊆ [n] be the set of the indices of the generators of Wλ, i.e.
Wλ = 〈sj, j ∈ J〉, and J c the complement of this set in [n]. Let Bn/Wλ = {σWλ : σ ∈ Bn}
be the set of left cosets of Bn determined by the subgroup Wλ. Each coset σWλ returns a
unique vector v when acting on λ, and has a unique minimal length element σv, such that
v = σvλ. Reciprocally, given a vector v ∈ Bnλ, there is a unique minimal length element
σv ∈ Bn such that v = σvλ. We have then a bijection between the vectors in Bnλ and the
left cosets of Bn, determined by the subgroup Wλ, given by v 7→ σvWλ. The set J c detects
the minimal length coset representatives of Bn/Wλ: σ is a minimal coset representative
of Bn/Wλ if and only if all its reduced decompositions end with a generator si ∈ J c [6].
However key tableaux, K(v), v ∈ Bnλ, may be used to explicitly construct the minimal
length coset representatives of Bn/Wλ. Given a vector v ∈ Bnλ, we show that there is a
unique minimal length element σv ∈ Bn such that v = σvλ and we show how to obtain
σv explicitly. The next proposition is a generalization of what Lascoux does in [18] for
vectors in Nn (hence σv ∈ Sn).

Proposition 23. Let v ∈ Bnλ and T the tableau obtained after adding the column C =

1
2
...
n

to the left of K(v). The minimal length element σ ∈ Bn, modulo Wλ, is given by the

reading word of T where entries with the same absolute value are read just once.

Proof. Consider λ = (λ1, . . . , λn). Let ai be the multiplicity of i in λ, for 0 6 i 6 λ1. In

this proof we will write λ as (λ
aλ1
1 , (λ1 − 1)aλ1−1 , . . . , 1a1 , 0a0). Note that

λ1∑
i=0

ai = n.
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Let σ = [α1 . . . αn] ∈ Bn read from T . Let’s prove that αj appears λj times in K(v): If
j = 1 then α1 appears in all columns of K(v), because it was the first letter read and the
columns are nested. Hence it appears λ1 times. Also, the |α1|-th entry of λσ is sgn(α1)λ1
which is the weight of |α1| in K(v). For j > 1, proceeding inductively, we have that αj
appears in all columns of K(v) not fully occupied by αi, with i < j, hence it appears λj
times. Also, the |αj|-th entry of λσ is sgn(αj)λj, which is the weight of |αj| in K(v). This
makes sense even if λj = 0. So we have that σλ = v.

We only have to see that σ is the minimal length element of the set {ρ ∈ Bn | ρλ = v}.
The subset of elements Bn that applied to λ returns v is the coset σWλ. Looking at σ, this
allows us to swap αi and αj in σ if λi = λj and to change the sign of αi if λi = 0. Since
for each column the reading to obtain σ is ordered from the least to the biggest, we have
that between these elements of Bn, σ has minimal number of inversions and the letter αj
is unbarred if λj = 0 because αj will only be added to σ when reading the column C.
Hence, by Proposition 2, σ is the minimal length element of σWλ.

Given a partition λ ∈ Zn we identify each coset σWλ with its minimal length repre-
sentative σv, where v = σλ ∈ Bnλ. Under this identification, we now induce the Bruhat
order in the Bn-orbit of λ and in the coset space of Bn/Wλ.

Definition 24. Consider the vectors v, w ∈ Bnλ, where λ is a partition. We say that
v 6 w, in the Bruhat order, if σv 6 σw.

Let v ∈ Bnλ. If K := K(v) is the key tableau with weight v, consider the tableau K̃
obtained from K after erasing the minimal number of columns in order to have a tableau
with no duplicated columns. Let ṽ and λ̃ be the weight and the shape of K̃, respectively.
If K and K ′ are two key tableaux with shape λ, we have that K > K ′ (by entrywise

comparison) if and only if K̃ > K̃ ′. Note that to recover K from K̃ we just have to know

λ, and that K̃ = K(ṽ).
It is also possible to obtain ṽ from v without having to look to key tableaux. If i is

positive, i and i do not appear in v but i+ 1 or i+ 1 appears then change all appearances
of i + 1 and i+ 1 to i and i, respectively, and repeat this as many times as possible,
obtaining the vector ṽ. The set of the absolute values of its entries is a set of consecutive
integers starting either in 0 or 1. Hence the key tableau associated to it doesn’t have
repeated columns.

Due to Proposition 23 we have that σṽ = σv and ṽ = σṽλ̃v = σ̃vλv.

Example 25. Consider v = (1, 0, 3, 3, 5) ∈ B5(5, 3, 3, 1, 0). Hence K(v) =

1 4 4 5 5
4 5 5
5 3 3
3

has shape λ = (5, 3, 3, 1, 0), weight v and σv = [5 4 3 1 2]. Now note that ṽ = (1, 0, 2, 2, 3),

hence K(ṽ) =

1 4 5
4 5
5 3
3

= K̃(v) has shape (3, 2, 2, 1, 0) = λ̃ and σṽ = [5 4 3 1 2] = σv.
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Recall J and J c defined above. Note that the set J is the same for λ and λ̃. If i ∈ J c
and i = n then all entries of λ are different from 0, which implies K(v) (and K̃(v))
having columns of length n; if i ∈ J c and i < n then λi > λi+1, hence K(v) will have

exactly i rows with length greater then λi+1, hence K(v) (and K̃(v)) will have columns

of length i. Since K̃(v) doesn’t have repeated columns, J c have exactly the information

of what column lengths exist in K̃(v). Theorem 3BC of Proctor’s Ph.D. thesis [30] states
that given a partition λ there is a poset isomorphism between the poset formed by the
key tableaux of shape λ̃ (ordered by entrywise comparison) and the poset formed by the
Bruhat order in the vectors of the orbit Bnλ̃ = {σλ̃ : σ ∈ Bn}.

The following theorem gives a tableau criterion for the Bruhat order on vectors in the
same Bn-orbit and for the corresponding Bn-coset space.

Theorem 26. Let v, u ∈ Bnλ. Then σv 6 σu if and only if K(v) 6 K(u).

Proof. We have that

σv 6 σu
(1)⇔ v 6 u

(2)⇔ ṽ 6 ũ
(3)⇔ K(ṽ) 6 K(ũ)⇔ K̃(v) 6 K̃(u)

(4)⇔ K(v) 6 K(u),

where (1) holds by Definition 24. Note that in (2) we also need to record λ, because it is

needed in (4) to recover the shape of K(v) from the shape K̃(v). Finally the equivalence
(3) is an application of Theorem 3BC of Proctor’s Ph.D. thesis [30].

The following example illustrates Theorem 26.

Example 27. Here we have two vectors with the respective key tableaux, ordered by
entrywise comparison. The corresponding minimal coset representatives, calculated using
Proposition 23, preserve this order.

K(3, 3, 0, 0, 2) =
1 1 1
5 5 2
2 2

6 K(3, 2, 0, 3, 0) =
2 2 4
4 4 1
1 1

and σv = [12534] 6 σu =

[41235].

3 Crystal graphs in type C and symplectic plactic monoid

We recall two equivalence relations of words in the alphabet [±n], the type C Knuth
equivalence, or (symplectic) plactic equivalence, and the (symplectic) coplactic equiva-
lence. On the basis of these two equivalence relations is the Robinson-Schensted type C
correspondence, in which each word is uniquely parametrized by a KN tableau and an
oscillating tableau of the same final shape. This bijection has a natural interpretation in
terms of crystal connectivity and crystal isomorphic connected components in Kashiwara
theory of crystal graphs [7, 14, 21, 22]. For this aim and reader convenience, we begin to
recall the Sheats symplectic jeu de de taquin and Baker-Lecouvey insertion.
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3.1 Sheats symplectic jeu de taquin

The symplectic jeu de taquin [21, 33] is a procedure that allows us to change the shape
of a KN skew tableau and eventually rectify it.

To explain how the symplectic jeu de taquin behaves, we need to look to how it works
on 2-column KN skew tableaux. Let T be a 2-column KN skew tableau with splittable
columns C1 and C2 such that C1 has an empty cell.

Consider the tableau spl(T ) such that the columns `C1 and rC1 have an empty cell in
the same row as C1. Let α be the entry under the empty cell of rC1 and β to the entry
right of the empty cell of rC1.

If α 6 β or β does not exist, then the empty cell of T will change its position with
the cell beneath it. This is a vertical slide.

If the slide is not vertical, then it is horizontal. So we have α > β or α does not
exist. Let C ′1 and C ′2 be the columns after the slide. In this case we have two subcases,
depending on the sign of β:

1. If β is barred we are moving a barred letter from `C2 to rC1. Remember that `C2

has the same barred part as C2 and that rC1 has the same barred part as Φ(C1).
So, looking at T , we will have an horizontal slide of the empty cell, C ′2 = C2 \ {β}
and C ′1 = Φ−1(Φ(C1) ∪ {β}). In a sense, β went from C2 to Φ(C1).

2. If β is unbarred we have a similar story, but this time β will go from Φ(C2) to C1,
hence C ′1 = C1 ∪ {β} and C ′2 = Φ−1(Φ(C2) \ {β}). Although in this case it may
happen that C ′1 is no longer admissible. In this case, if the 1CC breaks at i, we
erase both i and i from the column and remove a cell from the bottom and from
the top column, and place all the remaining cells orderly.

Eventually the empty cell will be a cell such that α and β do not exist. In this case
we redefine the shape to not include this cell and the jeu de taquin ends. A box of the
diagram of shape λ such that boxes under it and to the right are not in that shape is
called an inner corner.

Given a KN skew tableau T of shape µ/ν, the rectification of T consists in playing the
jeu de taquin until we get a tableau of shape λ, for some partition λ. The rectification is
a dynamic process, in which the inner shape, and its inner corners, gets redefined after
each iteration of the jeu de taquin. The rectification is independent of the order in which
the inner corners are filled [21, Corollary 6.3.9].

Example 28. Consider the KN skew tableau T =
2
31
12

. We want to rectify it via

symplectic jeu taquin. We start by splitting and conclude that the first two slides are

vertical, obtaining
2211
3322
11

. Now we do an horizontal slide in which we take 1 from

the electronic journal of combinatorics 28(2) (2021), #P2.29 13



the second column of T and add it to the coadmissible column of the first column of T ,

obtaining the tableau
2 2
3 3
3

.

Remark 29. If the columns C1 and C2 do not have negative entries then the symplectic
jeu de taquin coincides with the jeu de taquin known for SSYT.

3.2 Baker-Lecouvey insertion

The Baker-Lecouvey insertion [5, 21] is a bumping algorithm that given a word in the
alphabet [±n] returns a KN tableau. Let w be a word in the alphabet [±n], we call P (w)
to the tableau obtained after inserting w. This insertion is similar to the usual column
insertion for SSYT. In fact both have the same behavior unless one the following three
cases happens:

Suppose that we are inserting the letter α in the column C of the KN tableau and

(I) y ∈ C is the smallest letter bigger or equal then α and y ∈ C, for some y ∈ [n]:
there is in C a maximal string of consecutive decreasing integers y, y − 1, . . . , u+ 1
starting in the entry y in the column C. Then the bump consists of replacing the
entry y with α and subtracting 1 to the entries y, y − 1, . . . , u + 1. The entry u is
then inserted in the next column to the right. This is known as the Type I special
bump.

(II) if α = x and x ∈ C, for some x ∈ [n]: there is a maximal string of consecutive
decreasing entries x, x+ 1, . . . , v − 1 starting in the entry x in C. Let β be the next
entry above v − 1. Then we have two subcases:

(a) If v 6 β 6 v + 1 then suppose δ is the smallest entry in C which is bigger
or equal than v. Then this bump consists of deleting the entry x, shifting the
entries x+ 1, . . . , v − 1 down one position, inserting v where v − 1 was, and
replacing δ with v. The entry δ is then bumped into the next column. This is
known as the Type IIa special bump.

(b) If β 6 v− 1 or β doesn’t exist then there is a maximal string (possibly empty)
of consecutive integers v − 1, . . . , u + 1 above the entry v − 1. The string is
not empty only when β = v − 1, or else the string is empty and u = v − 1.
The bump consists of deleting the entry x, shifting the entries x+ 1, . . . , u+ 1
down one position, and inserting an entry u where u+1 (or v − 1, if β 6= v−1)
was. The entry u is then bumped into the next column. This is known as the
Type IIb special bump.

(III) after adding α in the bottom of the column C, the 1CC breaks at i: then we will
slide out the cells that contain i and i via symplectic jeu de taquin.

In the case III of the Baker-Lecouvey insertion we will be removing a cell from the
tableau instead of adding. The length of cr(P (w)) might be less than the length of w and
the weight is preserved during Baker-Lecouvey insertion, wt(w) = wt(P (w)).
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Remark 30. The Baker-Lecouvey insertion is different from what we would have if we use
the SSYT column insertion. However, if the word w doesn’t have symmetric letters, then
the insertion works just like the column insertion for SSYT. Apart from this case, if we
were to use SSYT column insertion, the final tableau may not even be a KN tableau.
For instance, consider the word w = 211. The Baker-Lecouvey insertion of w creates

the sequence of tableaux 2
2
1

2 2
2

= P (211). The SSYT column insertion of w

results in the tableau 1 2
1

, which is not a KN tableau because the first column is not

admissible.

Example 31. Consider the word w = 23231. We now insert all five letters of w, obtaining

the following sequence of tableaux: 2
2
3

2
3
2

1 1
3
3

1 1 1
3
3

= P (w). Note that the

insertion of the fourth letter, 3, causes a type I special bump on the first column and the
insertion of the fifth letter, 1, causes a type IIb special bump on the second column.

Proposition 32. [21, Corollary 6.3.9] Let T ∈ KN (µ/ν, n). Then the tableau obtained
after rectifying T via symplectic jeu de taquin coincides with P (cr(T )). Moreover, the
insertion of w = w1 . . . wk, P (w), is the rectification of the tableau with diagonal shape
∆n/∆n−1 and column reading w.

In particular we have that if we insert cr(T ) we obtain T again. This implies that
during the insertion of cr(T ) the case III of the Baker-Lecouvey insertion cannot happen.
In Example 31, we may conclude that P (23231) = P (cr(P (23231))) = P (11133).

3.3 Robinson-Schensted type C correspondence, plactic and coplactic equiv-
alence

Let [±n]∗ be the free monoid on the alphabet [±n]. The Robinson-Schensted type C
correspondence [21, Theorem 5.2.2] is a combinatorial bijection between words w ∈ [±n]∗

and pairs (T,Q) where T is a KN tableau and Q is an oscillating tableau, a sequence of
Young diagrams that record, by order, the shapes of the tableaux obtained while inserting
w, whose final shape is the same as T . Every two consecutive shapes of the oscillating
tableau differ in exactly one cell and its length is the same of w. Since both the symplectic
jeu de taquin and the Baker-Lecouvey insertion are reversible [5, 21], we have that every
pair (T,Q), with the same final shape, is originated by exactly one word. The Robinson-
Schensted type C correspondence is the following map:

[±n]∗ →
⊔
λ

KN (λ, n)×O(λ, n) : w 7→ (P (w), Q(w))

where the union is over all partitions λ with at most n parts, and O(λ, n) is the set of
all oscillating tableaux with final shape λ and all shapes of the sequence have at most n
rows.
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Example 33. In Example 31, the word w = 23231 is associated to the pair 1 1 1
3
3

,

.

Given w1, w2 ∈ [±n]∗, the relation w1 ∼ w2 ⇔ P (w1) = P (w2) defines an equivalence
relation on [±n]∗ known as Knuth equivalence. The type C plactic monoid is the quotient
[±n]∗/ ∼ where each Knuth (plactic) class is uniquely identified with a KN tableau [19, 21].
The quotient [±n]∗/ ∼ can also be described as the quotient of [±n]∗ by the elementary
Knuth relations :

K1: γβα ∼ βγα, where γ < α 6 β and (β, γ) 6= (x, x) for all x ∈ [n].

K2: αβγ ∼ αγβ, where γ 6 α < β and (β, γ) 6= (x, x) for all x ∈ [n].

K3: y + 1y + 1β ∼ yyβ, where y < β < y and y ∈ [n− 1].

K4: βyy ∼ βy + 1y + 1, where y < β < y and y ∈ [n− 1].

K5: w ∼ w \ {z, z}, where w ∈ [±n]∗ and z ∈ [n] are such that w is a non-admissible
column that the 1CC breaks at z, and any proper factor of w is an admissible
column.

Remark 34. It can be proved that given a word w ∈ [±n]∗, any proper factor is admissible
if and only if any proper prefix of w is admissible. Thus, in order to be able to apply the
Knuth relation K5 to a subword w′ of w, we only need to check that all proper prefixes
of w′ are admissible, instead of all proper factors.

When Knuth relations are applied to subwords of a word, the weight is preserved while
the length may not. Knuth relations can be seen as jeu de taquin moves on words or a
diagonally shaped tableau, and each symplectic jeu de taquin slide preserves the Knuth
class of the reading word of a tableau [21, Theorem 6.3.8]. In Example 31 the words 23231

and 11133 are Knuth related: 11133
K2∼ 11313

K2∼ 11331
K3∼ 22331

K1∼ 23231.

3.4 Crystal graphs in type C and coplactic equivalence

Crystals were originally defined for quantum groups. Here we define them axiomatically
associated to a root system Φ and a weight lattice Λ [7]. Let V be an Euclidean space
with inner product 〈·, ·〉. Fix a root system Φ with simple roots {αi | i ∈ I} where I is
an indexing set and a weight lattice Λ ⊇ Z-span{αi | i ∈ I}. A Kashiwara crystal of type
Φ is a nonempty set B together with maps [7]:

ei, fi : B→ B t {0} εi, ϕi : B→ Z t {−∞} wt : B→ Λ

where i ∈ I and 0 /∈ B is an auxiliary element, satisfying the following conditions:

1. if a, b ∈ B then ei(a) = b⇔ fi(b) = a. In this case, we also have wt(b) = wt(a)+αi,
εi(b) = εi(a)− 1 and ϕi(b) = ϕi(a) + 1;
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2. for all a ∈ B, we have ϕi(a) = 〈wt(a), 2αi
〈αi,αi〉〉+ εi(a).

The crystals we deal with are the ones of a Uq(sp2n)-module. They are seminormal
[7], i.e., ϕi(a) = max{k ∈ Z > 0 | fki (a) 6= 0} and εi(a) = max{k ∈ Z > 0 | eki (a) 6= 0}.
An element u ∈ B such that ei(u) = 0 for all i ∈ I is called a highest weight element. A
lowest weight element is an element u ∈ B such that fi(u) = 0 for all i ∈ I. We associate

with B a coloured oriented graph with vertices in B and edges labeled by i ∈ I: b
i→ b′

iff b′ = fi(b), i ∈ I, b, b′ ∈ B. This is the crystal graph of B.
If B and C are two seminormal crystals associated to the same root system, the tensor

product B⊗ C is also a seminormal crystal. As a set, we will have the Cartesian product
B×C, where its elements are denoted by b⊗c, b ∈ B and c ∈ C, with wt(b⊗c) = wt(b)+

wt(c), fi(b⊗ c) =

{
fi(b)⊗ c if ϕi(c) 6 εi(b)

b⊗ fi(c) if ϕi(c) > εi(b)
, ei(b⊗ c) =

{
ei(b)⊗ c if ϕi(c) < εi(b)

b⊗ ei(c) if ϕi(c) > εi(b)
.

If B and C are finite, ϕi(b ⊗ c) = ϕi(b) + max(0, ϕi(c) − εi(b)) and εi(b ⊗ c) =
εi(b) + max(0, εi(b)− ϕi(c)).

In type Cn, we consider {ei}ni=1 the canonical basis of Rn. The root system is ΦC =
{±ei ± ej | i < j} ∪ {±2ei} and the simple roots are αi = ei − ei+1, if i ∈ [n − 1],
αn = 2en. The weight lattice Zn has dominant weights λ = (λ1 > · · · > λn > 0).

In type Cn, the standard crystal is seminormal and has the following crystal graph:

1
1−→ 2

2−→ · · · n−1−−→ n
n−→ n

n−1−−→ · · · 1−→ 1 with set B = [±n], wt( i ) = ei, wt( i ) = −ei.
The highest weight element is the word 1, and the highest weight e1. We denote the
crystal by Be1 .

The crystal Be1 is the crystal on the words of [±n]∗ of a sole letter. The tensor
product of crystals allows us to define the crystal Gn =

⊕
k>0

(Be1)⊗k of all words in [±n]∗,

where the vertex w1 ⊗ · · · ⊗ wk is identified with the word w1 . . . wk ∈ [±n]∗. The action
of the operators ei and fi is easily given by the signature rule [15, 21, 7]. We substitute
each letter wj by + if wj ∈ {i, i+ 1} or by − if wj ∈ {i+ 1, i}, and erase it in any other
case. Then successively erase any pair +− until all the remaining letters form a word that
looks like −a+b. Then ϕi(w) = b and εi(w) = a, ei acts on the letter associated to the
rightmost unbracketed − (i.e., not erased), whereas fi acts on the letter wj associated to

the leftmost unbracketed +, fi(wj) =


i+ 1 if wj = i and i 6= n

i if wj = i+ 1

n if wj = i and i = n

, and the other letters

of w are unchanged, and ei is the inverse map. If b = 0 then fi(w) = 0 and if a = 0 then
ei(w) = 0.

Example 35. Consider w = 231221 and i = 1. Using the signature rule we rewrite w as
+ + + − −. Now we erase pairs +− as many times as possible, obtaining only +, that
came from the first 2 in w.

Given that f1(2) = 1, we have that f1(w) = 131221. Also, since there are no − after
eliminating all +− pairs, we have that e1(w) = 0.
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The crystal Gn, as a graph, is the union of connected components where each com-
ponent has a unique highest weight word. Two connected components are isomorphic if
and only if they have the same highest weight [14]. Two words in [±n]∗ are said to be
crystal connected or coplactic equivalent if and only if they belong to the same connected
component of Gn. This means that both words are obtained from the same highest weight
word, through a sequence of crystal operators fi, or one is obtained from another by some
sequence of crystal operators fi and ej, i, j ∈ [n].

The connected components of Gn are the coplactic classes in the Robinson-Schensted
correspondence that identify words with the same oscillating tableau [21, Proposition
5.2.1]. Also, two words w1, w2 ∈ [±n]∗ are Knuth equivalent if and only if they occur in
the same place in two isomorphic connected components of Gn, that is, they are obtained
from two highest words with the same weight through a same sequence of crystal operators
[21]. Crystal operators are coplactic and commute with the jeu de taquin. The next
proposition identifies all highest weight words of Gn.

Proposition 36. Let w be a word in the alphabet [±n]. Then w is a highest weight word
if and only if the weight of all its prefixes (including itself) is a partition. In this case, one
has that P (w) = K(λ) the Yamanouchi tableau of shape λ, where λ is the weight of w.

Proof. Part “if”: We will prove the contrapositive of the statement. There is a i such that
ei(w) 6= 0. Let k be the position of the leftmost − of the signature rule of w, and consider
the prefix wk with the first k letters. Since the k-th letter of w had an unbracketed − in
the signature rule then the last letter of wk will also be an unbracketed −. Hence there
are more − than + in the signature rule of wk. Let tα be the number of α in wk. We have
that ti + ti+1 < ti+1 + ti ⇔ ti − ti < ti+1 − ti+1, hence the weight of wk is not a partition.

Part “only i”: We will once again prove the contrapositive of the statement. Let
wk be a prefix such that its weight is not a partition. Hence there is i ∈ [n] such that
ti − ti < ti+1 − ti+1 ⇔ ti + ti+1 < ti+1 + ti, hence for this i there will be more − than +
in the signature rule of wk. So in the first k letters of w there will be more − than +, so
there is an unbracketed − in w, hence ei(w) 6= 0. Note that the argument works even if
i = n. In this case we need to assume tn+1 = tn+i = 0.

It follows from [21, Proposition 3.2.6] that the insertion of the highest word w of weight
λ is K(λ).

Choose a word w ∈ [±n]∗ such that the shape of P (w) is λ. If we replace every word
of its coplactic class with its insertion tableau we obtain the crystal of tableaux Bλ that
has all KN tableaux of shape λ on the alphabet [±n]. The crystal Bλ does not depend
on the initial choice of word w, as long as P (w) has shape λ. [21, Theorem 6.3.8].

4 Right and Left Keys and Demazure atoms in type C

In this section, we define type C frank words on the alphabet [±n] and use them to
create the right and left key maps, that send KN tableaux to key tableaux in type C.
The main result of this section is the type C version [20, Theorem 3.8], due to Lascoux
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and Schützenberger, which, using the right key map, gives a combinatorial description of
Demazure atoms in type C.

4.1 Frank words in type C

Frank words were introduced in type A by Lascoux and Schützenberger in [20]. We start
by defining frank words in the alphabet [±n].

Given a ordered alphabet and a word on that alphabet, a column of the word is a
maximal factor whose letters are strictly increasing. Hence, we can decompose a word
into columns, and such decomposition is unique.

Definition 37. Let w be word on the alphabet [±n]. We say that w is a type C frank
word if the lengths of its columns form a multiset equal to the multiset formed by the
lengths of the columns of the tableau P (w).

Example 38. In Example 31 we have that P (23231) = P (11133) =
1 1 1
3
3

. Since

23231 and 11133 have one column of length 3 and two columns of length 1, they are frank
words.

Given a frank word w, the number of letters of w is the same as the number of cells
of P (w), hence the case 3 of the Baker-Lecouvey insertion doesn’t happen.

Proposition 39. Let w be frank word on the alphabet [±n]. All columns of w are admis-
sible.

Proof. Suppose that the statement is false. So there is a factor of w that is a non-
admissible column with all of its proper factors admissible. Hence we can apply the
Knuth relation K5, meaning that w is Knuth related to a smaller word w′. But in this
case, the number of letters of w′ is less then the number of cells of P (w) = P (w′), which
is a contradiction.

The following proposition is an extension of [10, Proposition 7] on SSYT to KN
tableaux.

Proposition 40. Let T be a KN tableau of shape λ. Let µ/ν be a skew diagram with
same number of columns of each length as T . Then there is a unique KN skew tableau S
with shape µ/ν that rectifies to T and cr(S) is a frank word.

Proof. If T is a Yamanouchi tableau K(λ) and S ∈ KN (µ/ν, n) rectifies to K(λ), then,
since S and K(λ) have the same number of cells, all entries of S are unbarred, hence S is
a semistandard skew tableau. So, it follows from [10, Proposition 7] that S exists and is
unique. If T is not a Yamanouchi tableau, note that T is crystal connected to K(λ) and
from [21, Theorem 6.3.8] we have that the symplectic jeu de taquin slides commutes with
the action of the crystal operators. Consider Y ′λ the only tableau on the skew-shape µ/ν
that rectifies to Yλ, which exists due to [10, Proposition 7]. Since S rectifies to T , which
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is crystal connected to K(λ), and Y ′λ rectifies to K(λ), S is crystal connected to Y ′λ and
the path has same sequence of colours as the one from T to K(λ). Hence S exists and is
uniquely defined.

Corollary 41. Let S be as in the previous proposition. The last column of S depends
only on the length of that column.

Proof. All other skew tableaux with given last column length can be found from a given
one by playing the symplectic jeu de taquin or its reverse in all columns except the last
one. Note that S has the same number of cells of the tableau obtained after rectifying,
hence we can’t lose cells when applying the symplectic jeu de taquin or its reverse.

Fixed a KN tableau T , consider the set of all possible last columns taken from skew
tableaux with same number of columns of each length as T . Corollary 41 implies that
this set has one element for each distinct column length of T . For every column C in this
set, consider the columns rC, its right column. The next proposition implies that this set
of right columns is nested, if we see each column as the set formed by its elements.

Proposition 42. Consider T a two-column KN skew tableau C1C2 with an empty cell in
the first column. Slide that cell once via symplectic jeu de taquin, obtaining a two-column
KN skew tableau C ′1C

′
2 with an empty cell. Then rC ′2 ⊆ rC2.

Proof. If the sliding was vertical then C ′2 = C2, hence rC ′2 = rC2. If the sliding was
horizontal, Let β be the number on the cell right of the empty cell on spl(T ). Recall Φ,
the function that takes an admissible column to the associated coadmissible column.

If β = b is unbarred then C ′2 = Φ−1(Φ(C2) \ {b}). In this case Φ(C ′2) = Φ(C2) \ {b},
hence rC2 and rC ′2 have the same barred part. Consider z1 < · · · < z` the unbarred
letters that appear on C2 and not on Φ(C2). When we take b from Φ(C2), if b ∈ Φ(C2)
our set of letters z1 < · · · < z` will lose an element, giving the inclusion of the unbarred
part of C ′2 in C2; if b 6∈ Φ(C2), then b ∈ C2 and in C ′2 the least zi > b may reduce to b,
and subsequent zj may reduce to zj−1. Hence we have the inclusion of the unbarred part
of C ′2 in C2.

If β = b is barred then C ′2 = C2\{b}. In this case rC2 and rC ′2 have the same unbarred
part. Consider t1 > · · · > t` the barred letters that appear on Φ(C2) and not on C2. When
we take b from C2, if b ∈ C2 our set of t1 > · · · > t` letters will lose an element, giving the
inclusion of the barred part of rC ′2 in rC2; if b 6∈ C2, then b ∈ Φ(C2) and in C ′2 the least
zi > b may reduce to b, and subsequent bigger zj’s may reduce to zj+1. Hence we have
the inclusion of the barred part of Φ(C ′2) in Φ(C2).

This proposition defines a map that sends a KN tableau to a key tableau in type C,
identified as the (symplectic) right key of a given KN tableau.

Theorem 43 (Right key map). Given a KN tableau T , we can replace each column with
a column of the same size taken from the right columns of the last columns of all skew
tableaux associated to it. We call this tableau the right key tableau of T and denote it by
K+(T ).
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Proof. The previous proposition implies that the columns of K+(T ) are nested and do
not have symmetric entries. So, it is indeed a KN key tableau.

Remark 44. Recall the set up of Proposition 40. If the shape of S, µ/ν, is such that every
two consecutive columns have at least one cell in the same row, then each column of S
is a column of the word cr(S), hence cr(S) is a frank word. Moreover, the columns of S
appear in reverse order in cr(S). Therefore, given a KN tableau T , the columns of K+(T )
can be also found as the right columns of the first columns of frank words associated to T .

If T is a SSYT then this right key map coincides with the one defined by Lascoux and
Schützenberger in [20].

Example 45. The tableau T =
1 3 1
3 3
3

gives rise to six KN skew tableaux with same

number of columns of each length as T , each one corresponding to a permutation of its
column lengths, and each one is associated to its column reading, which is a frank word.

1 3 1
3 3
3

3
3
1 3 1

3

2 2
3
1

1
3

2
1

2
3
3 1

2
1 2 1

3
3

3
31
122

The right key tableau associated to T has as columns r
3
3
1

, r 3
1

and r 1 . Hence

K+(T ) =
3 3 1
2 1
1

.

In the same spirit of the right key, we define the left key of a KN tableau. Just like in
Proposition 42, we can prove that the slides of the symplectic jeu de taquin are effectively
adding an entry to `C1, i.e. `C1 ⊆ `C ′1, hence the left columns of the first columns of all
skew tableaux with the same number of columns of each length as T will be nested.

So, if we replace each column of T with a column of the same size taken from the left
columns of the first columns of all skew tableaux associated to it we obtain the left key
K−(T ).

Example 46. In Example 45 we have that the left key of T =
1 3 1
3 3
3

has as columns

`
1
3
3

, ` 1
2

and ` 2 . Hence K−(T ) =
1 1 2
2 2
3

.
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4.2 Demazure crystals and right key tableaux

Let λ ∈ Zn be a partition and v ∈ Bnλ. We define U(v) = {T ∈ KN (λ, n) | K+(T ) =
K(v)} the set of KN tableaux of Bλ with right key K(v).

Given a subset X of Bλ, consider the operator Di on X, with i ∈ [n] defined by
DiX = {x ∈ Bλ | eki (x) ∈ X for some k > 0}[7]. If v = σλ where σ = si`(σ) . . . si1 ∈ Bn is
a reduced word, we define the Demazure crystal to be

Bv = Di`(σ) . . .Di1{K(λ)}. (1)

This definition is independent of the reduced word for σ [7, Theorem 13.5]. In par-
ticular, when σ is the longest element of Bn we recover Bλ. Also this definition is in-
dependent of the coset representative of σWλ, that is, Bσλ = Bσvλ. From [6, Propo-
sition 2.4.4], σ uniquely factorizes as σvσ

′ where σ′ ∈ Wλ and `(σ) = `(σv) + `(σ′).
From the signature rule, Subsection 3.4, if σ′ = sj`(σ′) . . . sj1 ∈ Wλ is a reduced word,

Bσ′λ = Bλ = Dj`(σ′)
. . .Dj1{K(λ)} = {K(λ)} and we may write in (1) Bσλ = Bv.

From [6, Proposition 2.5.1], if ρ 6 σ in Bn then ρu 6 σv where u = ρλ. Since e0i (x) = x,

if ρ 6 σ then Bρλ = Bρuλ ⊆ Bσvλ = Bv. Thus we define the Demazure atom crystal B̂v

to be
B̂v = B̂σλ := Bσvλ \

⋃
ρu<σv

Bρuλ = Bv \
⋃
u<v

Bu = Bv \
⋃

K(u)<K(v)

Bu, (2)

where the two rightmost identities follow from Theorem 26.

Lemma 47. Let σ = si be a generator of Bn and C an admissible column such that
fi(C) 6= 0. Then wt(rC) = wt(r(fi(C))) or wt(rC) = σ(wt(r(fi(C)))).

Proof. Let i = n. We can apply fi to C if and only n ∈ C and n 6∈ C. In this
case n ∈ rC and after applying fi we have n 6∈ C and n ∈ C, hence n ∈ rC. So
wt(rC) = sn(wt(r(fn(C)))).

Let i < n. We can apply fi to C, so we have 6 cases to study:

1. i ∈ C, i+ 1, i+ 1, i 6∈ C: In this case we have that i+ 1 ∈ fi(C), i, i+ 1, i 6∈ fi(C).
Note that i /∈ rC and i+ 1 /∈ r(fi(C)). If i+ 1 6∈ rC then i 6∈ r(fi(C)), hence fi
swaps the weight of i and i+ 1 from (1, 0) to (0, 1), respectively. If i+ 1 ∈ rC then
i ∈ r(fi(C)), hence fi swaps the weight of i and i+ 1 from (1,−1) to (−1, 1).

2. i, i+ 1 ∈ C, i+ 1, i 6∈ C: In this case we have that i+ 1, i+ 1 ∈ fi(C), i, i 6∈ fi(C).
Note that i, i+ 1 ∈ rC, i+1, , i 6∈ rC and that i+1, i ∈ r(fi(C)), i, i+ 1 6∈ r(fi(C)),
and all other appearances in rC are intact. Hence fi swaps the weight of i and i+ 1
from (1,−1) to (−1, 1).

3. i+ 1, i+ 1 ∈ C, i, i 6∈ C: In this case we have that i+ 1, i ∈ fi(C), i, i+ 1 6∈ fi(C).
Note that i+ 1, i ∈ rC, i, i+ 1 6∈ rC and that i+ 1, i ∈ r(fi(C)), i, i+ 1 6∈ r(fi(C)),
and all other appearances in rC are intact. Hence fi did nothing to weight of rC.
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4. i, i+ 1, i+ 1 ∈ C, i 6∈ C: In this case we have that i, i+ 1, i ∈ fi(C), i+ 1 6∈ fi(C).
Note that i, i+ 1 ∈ rC, i+ 1, i 6∈ rC and that i, i+ 1 ∈ r(fi(C)), i+ 1, i 6∈ r(fi(C)),
and all other appearances in rC are intact. Hence fi did nothing to weight of rC.

5. i, i+ 1, i ∈ C, i+ 1 6∈ C: In this case we have that i+ 1, i+ 1, i ∈ fi(C), i 6∈ fi(C).
Note that i, i+ 1 ∈ rC, i+ 1, i 6∈ rC and that i+ 1, i ∈ r(fi(C)), i, i+ 1 6∈ r(fi(C)),
and all other appearances in rC are intact. Hence fi swaps the weight of i and i+ 1
from (1,−1) to (−1, 1).

6. i+ 1 ∈ C, i, i+ 1, i 6∈ C: In this case we have that i ∈ fi(C), i, i+ 1, i+ 1 6∈ fi(C).
Note that i, i+1 6∈ rC and i+ 1 ∈ rC. If i ∈ rC then we have i, i+1 6∈ r(fi(C)) and
i+ 1, i ∈ r(fi(C)), so fi did nothing to weight of rC. If i 6∈ rC then i+ 1 6∈ r(fi(C))
and i ∈ r(fi(C)), hence fi swaps the weight of i and i+1 from (0,−1) to (−1, 0).

Remark 48. All the cases where the weight is preserved happen to have equal weight for
i or i+ 1 in rC or we are in a column C in which we can also apply ei. If the weights for
i and i + 1 in rC swap, then if rC the weight of i is bigger (in the usual ordering) then
the weight of i+ 1.

Hence we have the following corollaries:

Corollary 49. Let T be a KN tableau and i ∈ [n]. If K+(T ) = K(v), for some
v = (v1, . . . , vn) ∈ Zn, then K+(fi(T )) = K(v) or K+(fi(T )) = K(siv). Moreover,
K+((T )fi) = K(vsi) only if vi > vi+1 (in the usual ordering of real numbers) and
1 6 i < n, or, vi > 0 and i = n.

Proof. Consider a multiset of frank words F such that the multiset of length of their first
columns is the same of the multiset of lengths of columns of T .

If K+(fi(T )) = K+(T ) then we are done. Else there are two cases: 1 6 i < n and
i = n.

Consider 1 6 i < n. Since there is a change in the weight of the key tableau, we have
that in at least one first column of words in F weight of i is bigger or equal than the
weight of i + 1. These first columns form a nested set without symmetric entries, hence
in all first column of words in F weight of i is bigger or equal than the weight of i+ 1.

Let A be the subset of F such that the weight of i and i+ 1 in the right column of its
first column is different and does not swap when we apply fi to the frank word.

Consider (a, b) the sum of weights of i and i + 1, respectively, of all right columns of
first columns of words in A, and (c, d) defined analogously to F \ A.

The weights of i and i + 1 in K+(T ) is (a, b) + (c, d) = (a + c, b + d) and the weights
of i and i+ 1 in K+(fi(T )) is (a, b) + (d, c) = (a+ d, b+ c), and note that (a+ c, b+ d) ∈
B2(a+ d, b+ c), because fi doesn’t change any other weight (Lemma 47).

Since in all first columns of F weight of i is bigger or equal than the weight of i + 1,
a > 0 and b 6 0, and they are equal when A = ∅, so (a+ c, b+d) = s1(a+d, b+ c), hence
wt(K+(fi(T ))) = siv. Hence we assume a 6= b. If c = d we have wt(K+(fi(T ))) = v,
hence K+(fi(T )) = K(v) = K+(T ), which is a contradiction.
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This implies that (a + c, b + d) = σ(a + d, b + c) where σ = 12 or σ = 21. The first
case implies that a = −c−d

2
= b and the second case implies c = −a−b

2
= d, hence there are

not more possibilities for the weight of K+(fi(T )).
The case i = n is a simpler version of this one.

Corollary 50. Let σ = si be a generator of Bn and C an admissible column. Then
wt(rC) = wt(r(ei(C))) or wt(rC) = σ(wt(r(ei(C)))).

Proof. Let C ′ be ei(C). By Lemma 47 we have that wt(rC ′) = wt(r(fi(C
′))) or wt(C ′) =

σ(wt(r(fi(C
′)))), so we have that wt(ei(C)) = σ(wt(rC)) ⇔ σ(wt(ei(C))) = wt(rC) or

wt(r(ei(C))) = wt(rC).

Lemma 51. Let i ∈ [n] and C be an admissible column such that one of the following
happens

1. i < n and the weight of i in rC is less than the weight of i+ 1 in rC;

2. i = n and weight of i is negative in rC,

then we can apply ei to C (in the sense ei(C) 6= 0).

Proof. If i = n then −n appears on rC and n does not. Since n is the biggest unbarred
letter of the alphabet we have that −n also appears in C and n does not. Hence we can
apply en to C.

If i < n and the weight of i in rC is less than the weight of i+ 1 in rC then the weight
of both can be one of the following three options: (0, 1), (−1, 1), (−1, 0). Note that rC
does not have symmetric entries. So in the first two cases we have that i+ 1 exists in rC
and i does not, hence i + 1 exists in C and i does not, so we can apply ei to C. In the
last case, we have that i exists in rC and i+ 1 and i+ 1 does not. Hence we have that i
exists in C and i or i+ 1 does not, so we can apply ei to C.

The next theorem is the main theorem of this paper. It gives a description of a
Demazure crystal atom in type C using the right key map Theorem 43. Lascoux and
Schützenberger, in [20, Theorem 3.8], proved the type A version of this theorem, which
consists in considering the case when v ∈ Nn and, consequently, σv ∈ Sn. For inductive
reasoning, used in what follows, we recall the chain property on the set of minimal length
coset representatives modulo Wλ [6, Theorem 2.5.5].

Theorem 52. Let v ∈ Bnλ. Then U(v) = B̂v.

Proof. Let ρ be a minimal length coset representative modulo Wλ such that v = ρλ. We
will proceed by induction on `(ρ). If `(ρ) = 0 then ρ = id and v = λ. In this case we

have that B̂λ = {K(λ)} = U(λ).
Let ρ > 0. Consider σ = si a generator of Bn such that σρ > ρ and σρλ 6= ρλ = v, i.e.,

ρ−1σρ /∈ Wλ. Recall ei, εi, fi and φi from the definition of the crystal Bλ. If T ∈ B̂σρλ

then T is obtained after applying fi (maybe more than once) to a tableau in B̂ρλ, which by
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inductive hypothesis exists in U(v). By Corollary 49, if fi(T ) /∈ U(v) then fi(T ) ∈ U(σv).

So it is enough to prove that given a tableau T ∈ U(v) ∪ U(σv) then e
εi(T )
i (T ) ∈ U(v).

We have two different cases to consider: i = n and i < n.
If T ∈ U(σv) then, if i < n, there exists a frank word of T such that, if V1 is its first

column then rV1 has less weight for i than for i + 1 (less in the usual ordering of real
numbers); if i = n, there exists a frank word of T such that, if V1 is its first column then
rV1 has negative weight for i. Since we are in the column rV1, if i < n, i and i + 1 can
have weights (0, 1), (−1, 1) or (−1, 0) and if i = n then i has weight −1. Note that these
are the exact conditions of Lemma 51. In either case, due to Lemma 51, we can applying
ei enough times to the frank word associated until this no longer happens. This is true
because we only need to look to V1 to see if it changes after applying ei enough times to
the frank word. In the signature rule we have that successive applications of ei changes
the letters of a word from the end to the beginning, so, from the remark after Lemma 47,
the number of times that we need to apply ei, in order to conditions of Lemma 51 do not

hold for the first column, is εi(T ). So K+

(
e
ε(T )
i (T )

)
6= K(σv), hence, from Corollary 50,

we have that e
εi(T )
i (T ) ∈ U(v).

If T ∈ U(v) then e
εi(T )
i (T ) ∈ U(v) because if not, e

εi(T )
i (T ) will be in a Demazure

crystal associated to ρ′ ∈ Bn, with ρ′ < ρ such that σρ′ = ρ. This cannot happen because
in this case ρ′ = σρ < ρ, which is a contradiction.

4.3 Combinatorial description of type C Demazure characters and atoms

Given v ∈ Bnλ define the Demazure character (or key polynomial), κv, and the Demazure

atom in type C, κ̂v, as the generating functions of the KN tableau weights in Bv and B̂v,
respectively: κv =

∑
T∈Bσvλ

xwtT , κ̂v =
∑

T∈B̂σvλ

xwtT . Theorem 52 detects the KN tableaux

in Bλ contributing to the Demazure atom κ̂v, κ̂v =
∑

K+(T )=K(v)

T∈Bλ

xwtT .

Proposition 53. Given v ∈ Bnλ, one has κv =
∑
u6v

κ̂u.

Proof. It is enough to prove that Bv =
⋃
u6v

B̂u, because κv and κ̂u are the generating

functions of the tableau weights in Bv and B̂u, respectively. Since v = σλ, where σ := σv,
we can rewrite the identity as Bσλ =

⋃
ρ6σ

B̂ρλ.

We will proceed by induction on `(σ). If `(σ) = 0 then the result follows because

Bλ = B̂λ = {K(λ)}. From 2, B̂σλ = Bσλ \
⋃
ρ<σ

Bρλ, and by inductive hypothesis, we have

that Bρλ =
⋃
ρ′6ρ

B̂ρ′λ. Hence:

B̂σλ = Bσλ \
⋃
ρ<σ

Bρλ = Bσλ \
⋃
ρ<σ

⋃
ρ′6ρ

B̂ρ′λ = Bσλ \
⋃
ρ′<σ

B̂ρ′λ
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Proposition 53, the equivalence u 6 v ⇔ K(u) 6 K(v), and Theorem 52, allow to
detect the KN tableaux contributing to a key polynomial in type C:

κv =
∑
u6v

κ̂u =
∑
u6v

T∈U(u)

xwtT =
∑

K(u)6K(v)
T∈U(u)

xwtT =
∑

K+(T )6K(v)

xwtT .

Example 54. We start by looking to the crystal graph associated to the partition λ =
(2, 1):

1 1
21 2

2
1 1
2

1 2
2

1 2
2

2 2
2

2 2
1

2 2
2

2 2
1

2 2
1

1 2
2

1 1
2

1 1
2

2 1
2

2 1
1 2 1

1

The crystal is split into several parts. Each
one of those parts is a Demazure atom and
contains exactly one symplectic key tableau,
so we can identify each part with the weight
of that key tableau, which is a vector in
the B2-orbit of (2, 1). From Theorem 52 we
have that all tableaux in the same part have
the same right key.
One can check that, for example

U((1, 2)) =

{
1 2
2

, 1 2
2

}
= B̂λs1s2 .

Also,
B(1,2) = {T ∈Bλ | K+(T ) 6 K((1, 2))} ={

1 1
2

, 1 2
2

, 1 1
2

, 1 2
2

, 1 2
2

}
.

5 Realization of the Lusztig involution in types A and C

Let Bλ be the crystal with set KN (λ, n) (respectively SSY T (λ, n)).

Definition 55. The Lusztig involution L : Bλ → Bλ is the only involution such that for
all i ∈ I (I = [n− 1] in type An−1 and I = [n] in type Cn):

1. wt(L(x)) = ω0(wt(x)), where ω0 is the longest element of the Weyl group;

2. ei(Lx) = L(fi′(x)) and fi(Lx) = L(ei′(x)) where i′ is such that ω0(αi) = −αi′ and
αi is the i-th simple root;

3. εi(Lx) = ϕi′(x) and ϕi(Lx) = εi′(x).

For type A we have that ω0 is the reverse permutation and i′ = n − i, and for type
Cn we have ω0 = −Id and i′ = i, where Id is the identity map. In type Cn the involution
can be seen as flipping the crystal upside down.
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Definition 56. [7] Let C be a connected component in the type Cn crystal Gn. The dual
crystal C∨ is the crystal obtained from C after reversing the direction of all arrows. Also,
the if x ∈ C, then for its correspondent in C∨, x∨, we have wt(x) = −wt(x∨).

In type C, since i′ = i and ω0 = −Id, it follows from the definition that C and C∨,
as crystals in Gn, have the same highest weight. Therefore, they are isomorphic. In the
case of Bλ, with set KN (λ, n), the Lusztig involution is a realization of the dual crystal.
Hence the crystal Bλ with set KN (λ, n) is self-dual. We shall see other realizations of
the dual.

5.1 Evacuation algorithms

In type An−1, the Lusztig involution on the crystal with set SSY T (λ, n) is known as
Schützenberger involution or evacuation, Ev, and takes T ∈ SSY T (λ, n) to TEv ∈
SSY T (λ, n), whose weight is ω0(wtT ), where ω0 is the longest permutation of Sn, in the
Bruhat order. Note that ω0(wtT ) is the vector wtT in reverse order, i.e., ω0(v1, . . . , vn) =
(vn, . . . , v1). In type Cn we will work with KN tableaux instead of SSYTs. Consider
T ∈ KN (λ, n). In this case, TEv ∈ KN (λ, n) and wtT = −wtTEv = ωC0 (wtTEv), where
ωC0 is the longest permutation of Bn. The complement of a tableau or a word in types
An−1 or Cn consists in applying ω0 or ωC0 , respectively, to all its entries. In type An−1, it
sends i to n+1− i for all i ∈ [n], i.e., ω0(i) = n+1− i and in type Cn we have ω0(i) = −i.
Given a SSYT, there are several algorithms, due to Schützenberger, to obtain a SSYT
with the same shape whose weight is its reverse. We recall some versions of them for
which one is able to find analogues for KN tableaux.

Algorithm 57.

1. Define w = cr(T ).

2. Define w? the word obtained by complementing its letters and writing it backwards.

3. TEv := P (w?).

Example 58. In type A, the tableau T =
1 1 2 3
2 3 3
4

has reading w = 32313124. Then

w? = 13424232, and the column insertion of this word is TEv =
1 2 2 3
2 4 4
3

.

In type C, consider the KN tableau T =
1 3 1
3 3
3

. Then, w = cr(T ) = 133133 and

w? = 3313331. So now we insert w?, obtaining the following sequence of tableaux:

3
3
3

3
3
1

2 2
3
1

2 2
3 1
3

1 2 2
3 1
3

= P (w?).
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Algorithm 59.

1. Define T 0 := complement(π-rotate(T )).

2. TEv := rectification of T 0.

Example 60. In type A, consider the tableau T =
1 1 2 3
2 3 3
4

. After π-rotation and

complement we have the skew tableau T 0 =
1
322
4432

which, after rectification, gives

the tableau TEv =
1 2 2 3
2 4 4
3

.

In type C, consider the KN tableau T =
1 3 1
3 3
3

. Then, T0 =
3
33
131

. So now we

have to rectify this skew tableau obtaining TEv =
1 2 2
3 1
3

.

Given a KN (SSYT) tableau T , the algorithm characterize TEv as the unique KN
tableau Knuth equivalent to wt(T )? and coplactic equivalent do T .

In both Cartan types we have that algorithms 57 and 59 produce the same tableau
since the column reading of T 0 is w?, P (w?) = rect(T 0) = rect(w?), assuming that, in
type Cn, T 0 is admissible. This can be concluded using the following lemma.

Lemma 61. For type Cn, the split of a column C, (`C, rC) is the rotation and complement
of the split of the column C0 = complement(π-rotate(C)), (`C0, rC0).

Proof. Let’s say that (`C, rC) = A′A
BB′

where C = A
B

, `C = A′

B
and rC = A

B′
,

where A and A′ are the unbarred letters of the columns C and `C, respectively, and B
and rB are the barred letters of C and rC, respectively. Note that `C and C share the
barred part and C and rC share the unbarred part.

We have that C0 = B0

A0
and its split (`C0, rC0) = B0′B0

A0A0′
. Ignoring bars and

counting multiplicities, the letters that appear in C and C0 are the same. Hence B0′ has
the same letters as B′, but they appear unbarred, hence B0′ = B′0. The same happens
with A0′ and A′0. Now it is easy to see that (`C0, rC0) is obtained from (`C, rC) rotating
and complementing. In particular (rC)0 = `C0 and (`C)0 = rC0.

We now set the Cartan type to be C. Given a word w ∈ [±n]∗, we define the w? like
in the Algorithm 57 and show that the map ? preserves Knuth equivalence.

Theorem 62. Let v, w ∈ [±n]∗. Then v ∼ w if and only if v? ∼ w?.
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Proof. It is enough to consider v and w only one Knuth relation apart, because all other
cases are obtained by composing multiple Knuth relations. It is enough to consider each
transformation applied in one direction, since the other direction is the same case, after
swapping the roles of v and w.

K1 Consider v = vpγβαvs, with γ < α 6 β and (β, γ) 6= (x, x), where vp is a prefix of

v, vs is a suffix of v, and γβα are three consecutive letters of v. Then, v
K1∼ w =

vpβγαvs. Note that v? = v?sαβγv
?
p and w? = v?sαγβv

?
p, with (γ, β) 6= (x, x) and

β 6 α < γ. Hence v?
K2∼ w?, so they are Knuth related.

K2 Consider v = vpαβγvs, with γ 6 α < β and (β, γ) 6= (x, x), where vp is a prefix of

v, vs is a suffix of v, and αβγ are three consecutive letters of v. Then, v
K2∼ w =

vpαγβvs. Note that v? = v?sγβαv
?
p and w? = v?sβγαv

?
p, with (γ, β) 6= (x, x) and

β < α 6 γ. Hence v?
K1∼ w?, so they are Knuth related.

K3 Consider v = vp(y+1)y + 1βvs, with y < β < y, where vp is a prefix of v, vs is a suffix

of v, and (y + 1)y + 1β are three consecutive letters of v. Then, v
K3∼ w = vpyyβvs.

Note that v? = v?sβ(y + 1)y + 1v?p and w? = v?sβyyv
?
p, with y < β < y. Hence

v?
K4∼ w?, so they are Knuth related.

K4 Consider v = vpαxxvs, with x < α < x, where vp is a prefix of v, vs is a suffix of v,

and αxx are three consecutive letters of v. Then, v
K4∼ w = vpα(x+ 1)x+ 1vs. Note

that v? = v?sxxαv
?
p and w? = v?s(x + 1)x+ 1αv?p, with x < α < x. Hence v?

K3∼ w?,
so they are Knuth related.

K5 Consider w and {z, z} ∈ w such that w
K5∼ w \ {z, z}. It is clear to see that a

word v breaks the 1CC at z if and only if v? breaks the 1CC at z. So, if w is
non admissible and all its factors are admissible then the same will happen to w?,
because all of its factors are obtained after applying ? to a factor of w. So we have

that w?
K5∼ w? \ {z, z}.

Hence the word operator ? preserves Knuth equivalence.

Consider a KN tableau T with column reading w. The column reading of the tableau
obtained after applying Algorithm 57 to T is Knuth-related to w?, because both give the
same tableau if inserted. Since ? is an involution ((w?)? = w), if we apply the algorithm
again we will get a tableau whose column reading, by the last theorem, is Knuth equivalent
to (w?)? = w, hence we will have T again. So Algorithm 57 is an involution. Next we
conclude that algorithms 57 and 59 is a realization of the Lusztig involution for type C.

Theorem 63. Let w ∈ [±n]∗. The connected component of the crystal Gn that contains
the word w is isomorphic to the one that contains the word w?. Therefore P (w) and
P (w?) have the same shape and weights of opposite sign. Moreover, the two crystals are
dual of each other and the ? map is a realization of the dual crystal.
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Proof. Remember the crystal operators ei and fi from the definition of crystal. Note that
(fi(w))? = ei(w

?), because in the signature rule applied to w and w?, the distance of the
leftmost unbracketed + of w to the beginning of the word is equal to the distance of the
rightmost unbracketed − of w? to the end of this word. Hence, the letter that changes
when applying fi to w is the complement of the letter that changes when applying ei to
w?, and the letter obtained on their position after applying the crystal operators are also
complement of each other. Hence the crystal that contains the word w? is the dual to the
one that contains w. But the crystal that contains w is self-dual, hence the crystals that
contains any of the words are isomorphic. From [21, Theorem 3.2.8] P (w) and P (w?)
have the same shape.

5.2 Right and left keys and Lusztig involution

The next result shows that the right and left key maps defined for KN tableaux anticom-
mutes with the Lusztig involution. The evacuation of the right key of a tableau is the left
key of the evacuation of the same tableau.

Proposition 64. Let T be a KN tableau and Ev the type C Lusztig involution. Then

K+(T )Ev = K−(TEv).

Proof. Since the tableaux K+(T ) and K−(TEv) are key tableaux, they are completely
determined by their weights. Then we just need to prove that their weights are symmetric.

Fix a column C of K+(T ). There is a frank word w, Knuth related to cr(T ), such that
C is the right column of the first column of w. Let’s say the wk is the first column of w.
From Proposition 62, w? is Knuth related to cr(T )?, hence P (w?) = TEv. Also note that
the w? has the same number of columns of each length as w, hence it is a frank word,
and its last column is w?k. Note that Lemma 61 implies that if v is an admissible column,
then l(v?) = (rv)?. So we have that l(w?k) = (rwk)

? is a column of K−(TEv). Therefore,
for each column C of K+(T ) there is a column of K−(TEv) whose weight is ω0(wt(C)),
hence K+(T ) and K−(TEv) have symmetric weights.

6 Final Remarks

In [29], Mason showed that Demazure atoms are specializations of non-symmetric Macdon-
ald polynomials of type A with q = t = 0. This allowed to use the shapes of semi-skyline
augmented fillings, in the combinatorial formula of non-symmetric Macdonald polynomi-
als [11], which are in bijection with semi standard Young tableaux, to detect the right
keys. It would be interesting to obtain a similar object for a KN tableau in type C. For
example, semi-skyline augmented fillings have been instrumental to obtain a RSK type
bijective proof [3] for the Lascoux non-symmetric Cauchy identity in type A [18]. Such a
generalization of skyline fillings for type C could also lead to a combinatorial formula for
some specialization of nonsymmetric Macdonald polynomials in type C.

In [34], Willis presents a direct algorithm to compute right keys in type A. It would
be interesting to find something similar for type C.
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In type A, key polynomials can also be described in terms of Kohnert diagrams [1, 2,
17]. It would also be interesting to find an analogous description for type C.
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in Séminaire Lotharingien de Combinatoire 69, Strobl, 2012, https://www.mat.

univie.ac.at/~slc/.

[5] T. H. Baker, An insertion scheme for Cn crystals, in M. Kashiwara and T. Miwa,
eds., Physical Combinatorics, Birkhäuser, Boston, Vol. 191, 1–48, 2000.
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