A note on transitive union-closed families.

James Aaronson
Mathematical Institute
University of Oxford
United Kingdom
james.aaronson.maths@gmail.com

David Ellis
School of Mathematics
University of Bristol
United Kingdom
david.ellis@bristol.ac.uk

Imre Leader
Department of Pure Mathematics and Mathematical Statistics
University of Cambridge
United Kingdom
i.leader@dpmms.cam.ac.uk

Submitted: Oct 18, 2020; Accepted: Mar 18, 2021; Published: Apr 9, 2021
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract
We show that the Union-Closed Conjecture holds for the union-closed family generated by the cyclic translates of any fixed set.

Mathematics Subject Classifications: 05D05

1 Introduction

If X is a set, a family \mathcal{F} of subsets of X is said to be union-closed if the union of any two sets in \mathcal{F} is also in \mathcal{F}. The celebrated Union-Closed Conjecture (a conjecture of Frankl [2]) states that if X is a finite set and \mathcal{F} is a union-closed family of subsets of X (with $\mathcal{F} \neq \{\emptyset\}$), then there exists an element $x \in X$ such that x is contained in at least half of the sets in \mathcal{F}. Despite the efforts of many researchers over the last forty-five years, and a recent Polymath project [5] aimed at resolving it, this conjecture remains wide open. It has only been proved under very strong constraints on the ground-set X or the family \mathcal{F}; for example, Balla, Bollobás and Eccles [1] proved it in the case where $|\mathcal{F}| \geq \frac{2^{2|X|}}{3}$; more recently, Karpas [4] proved it in the case where $|\mathcal{F}| \geq (\frac{1}{2} - c)2^{|X|}$ for a small absolute constant $c > 0$; and it is also known to hold whenever $|X| \leq 12$ or $|\mathcal{F}| \leq 50$, from work of Vučković and Živković [8] and of Roberts and Simpson [7]. We note that Reimer [6] proved that the average size of a set in an arbitrary finite union-closed family \mathcal{F} is at least $\frac{1}{2}\log_2(|\mathcal{F}|)$; this yields (by averaging) a good approximation to the Union-Closed
Conjecture in the case where \(F \) is large, e.g. it implies that there is an element contained in at least an \(\Omega(1) \)-fraction of the sets in \(F \), in the case where \(|F| = 2^\Omega(n) \).

If \(X \) is a set and \(F \) is a family of subsets of \(X \), we say \(F \) is transitive if the automorphism group of \(F \) acts transitively on \(X \). (The automorphism group of \(F \) is the set of all permutations of \(X \) that preserve \(F \).) Informally, \(F \) is transitive if all points of \(X \) ‘look the same’ with respect to \(F \). Even the special case of the Union-Closed Conjecture for transitive families is wide open.

In this note, we prove the conjecture in the special case where \(X \) is \(\mathbb{Z}_n \), the cyclic group of order \(n \), and \(F \) is the (transitive) union-closed family consisting of all unions of cyclic translates of some fixed set. This is a question asked in the Polymath project [5].

Theorem 1. Let \(n \in \mathbb{N}, \) and let \(R \subseteq \mathbb{Z}_n \) with \(R \neq \emptyset \). Let \(F = \{A + R : A \subseteq \mathbb{Z}_n\} \) be the set of all unions of cyclic translates of \(R \). Then the average size of a set in \(F \) is at least \(n/2 \). In particular, the Union-Closed Conjecture holds for \(F \).

Our proof is surprisingly short. In fact, we establish the following slightly more general result.

Theorem 2. Let \((G, +)\) be a finite Abelian group, and let \(R \subseteq G \) with \(R \neq \emptyset \). Let \(F = \{A + R : A \subseteq G\} \) be the set of all unions of translates of \(R \). Then the average size of a set in \(F \) is at least \(|G|/2 \). In particular, the Union-Closed Conjecture holds for \(F \).

We note that the family \(F \) in the statement of Theorem 2 is clearly transitive and union-closed, since \(x \mapsto x + x_0 \) is an automorphism of \(F \) for any \(x_0 \in G \), and \((A_1 + R) \cup (A_2 + R) = (A_1 \cup A_2) + R \) for any \(A_1, A_2 \subseteq G \).

We remark that it is possible to deduce a slightly weaker form of Theorem 2 from a theorem of Johnson and Vaughan (Theorem 2.10 in [3]). In fact, the result of Johnson and Vaughan, after applying a quotienting argument, yields that there is an element of \(G \) contained in at least \((|F| - 1)/2\) of the sets in \(F \). (Since \(F \) may have odd size, for example when \(G \) is \(\mathbb{Z}_3 \) and \(R = \{0, 1\} \), this is not quite enough to deduce Theorem 2.)

We are indebted to Zachary Chase for bringing this paper of Johnson and Vaughan to our attention.

A short explanation of our notation and terminology is in order. As usual, if \(G \) is an Abelian group, and \(A, B \subseteq G \), we write \(A + B = \{a + b : a \in A, b \in B\} \) for the sumset of \(A \) and \(B \). Similarly, if \(a \in G \) and \(B \subseteq G \), we define \(a + B = \{a + b : b \in B\} \). For any \(x \in G \), we let \(-x\) denote the inverse of \(x \) in \(G \), and for any set \(A \subseteq G \), we let \(-A = \{-a : a \in A\} \). We say a subset \(A \subseteq G \) is symmetric if \(A = -A \). If \(X \) is a finite set, we write \(P(X) \) for the power-set of \(X \).

2 Proof of Theorem 2.

Before proving Theorem 2, we introduce some useful concepts and notation. Let \(G \) be a fixed, finite Abelian group, and let \(R \subseteq G \) be fixed. For any set \(A \subseteq G \), we define its \(R \)-neighbourhood to be

\[N_R(A) := A + R, \]

where \(R \) is a fixed subset of \(G \).
and its R-interior to be
\[\text{Int}_R(A) := \{ x \in G : x + R \subseteq A \}. \]

We note that, if R is symmetric and contains the identity element 0 of G, then the R-neighbourhood of any set A is precisely the graph-neighbourhood of A in the Cayley graph of G with generating-set $R \setminus \{0\}$, and similarly, the R-interior of A is precisely the graph-interior of A with respect to this Cayley graph.

Proof of Theorem 2. Let G be a fixed, finite Abelian group and let $R \subseteq G$ be a fixed, nonempty subset of G. Let
\[\mathcal{F} = \{ A + R : A \subseteq G \} \]
be the union-closed family consisting of all unions of translates of R.

We define a function $f : \mathcal{P}(G) \to \mathcal{P}(G)$ by
\[f(S) = -(G \setminus \text{Int}_R(S)) \quad \text{for all } S \subseteq G. \]

It is clear that for any set $S \subseteq G$, $|\text{Int}_R(S)| \leq |S|$, since for any element $r \in R$, the function $x \mapsto x + r$ is an injection from $\text{Int}_R(S)$ into S. Hence,
\[|S| + |f(S)| \geq |G| \quad \text{for all } S \subseteq G. \] (1)

Next, we observe that
\[f(S) = -(G \setminus S) + R \quad \text{for all } S \subseteq G. \] (2)

Indeed, for any $x \in G$, it holds that $x \in f(S)$ iff $-x \notin \text{Int}_R(S)$ iff $(-x + R) \cap (G \setminus S) \neq \emptyset$ iff $x \in -(G \setminus S) + R$. It follows that $f(\mathcal{P}(G)) \subseteq \mathcal{F}$.

Finally, we observe that the restriction $f|_\mathcal{F}$ is an injection. This might seem surprising at first glance, but it follows immediately from the fact that
\[N_R(\text{Int}_R(A + R)) = A + R \quad \text{for all } A \subseteq G. \] (3)

To see (3), let $S = A + R$ and observe that $N_R(\text{Int}_R(S)) \subseteq S$ holds by definition (in fact for any set S). On the other hand, if $S = A + R$, then we have $A \subseteq \text{Int}_R(S)$ and therefore $S = A + R \subseteq N_R(\text{Int}_R(S))$. Hence, $S = N_R(\text{Int}_R(S))$, as required.

Putting everything together, we see that $f|_\mathcal{F}$ is a bijection from \mathcal{F} to itself and satisfies
\[|S| + |f(S)| \geq |G| \quad \text{for all } S \in \mathcal{F}. \]

Therefore,
\[\frac{1}{|\mathcal{F}|} \sum_{S \in \mathcal{F}} |S| = \frac{1}{2|\mathcal{F}|} \sum_{S \in \mathcal{F}} (|S| + |f(S)|) \geq \frac{1}{2|\mathcal{F}|} \sum_{S \in \mathcal{F}} |G| = |G|/2, \]
proving the first part of the theorem. It follows that
\[\frac{1}{|G|} \sum_{x \in G} \left| \frac{\{ S \in \mathcal{F} : x \in S \}}{|\mathcal{F}|} \right| = \frac{1}{|G|} \frac{1}{|\mathcal{F}|} \sum_{S \in \mathcal{F}} |S| \geq 1/2, \]
so by averaging, there exists $x \in G$ such that at least half the sets in \mathcal{F} contain x, and so the Union-Closed Conjecture holds for \mathcal{F}. \square

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(2) (2021), #P2.3

3
References

