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Abstract

The Norton product is defined on each eigenspace of a distance regular graph by
the orthogonal projection of the entry-wise product. The resulting algebra, known as
the Norton algebra, is a commutative nonassociative algebra that is useful in group
theory due to its interesting automorphism group. We provide a formula for the
Norton product on each eigenspace of a Hamming graph using linear characters. We
construct a large subgroup of automorphisms of the Norton algebra of a Hamming
graph and completely describe the automorphism group in some cases. We also show
that the Norton product on each eigenspace of a Hamming graph is as nonassociative
as possible, except for some special cases in which it is either associative or equally
as nonassociative as the so-called double minus operation previously studied by
the author, Mickey, and Xu. Our results restrict to the hypercubes and extend to
the halved and/or folded cubes, the bilinear forms graphs, and more generally, all
Cayley graphs of finite abelian groups.

Mathematics Subject Classifications: 05A15, 05E30, 17D99

1 Introduction

Distance regular graphs have many nice algebraic and combinatorial properties and have
been extensively studied. For instance, (the adjacency matrix A of ) a distance regular
graph Γ = (X,E) with vertex set X and edge set E has d + 1 distinct eigenvalues
θ0 > θ1 > · · · > θd and the corresponding eigenspaces V0, V1, . . . , Vd form a direct sum
decomposition of the vector space RX := {f : X → R} ∼= R|X|, where d is the diameter
of Γ. Furthermore, there is a general method to obtain the eigenvalues and eigenspaces
of a distance regular graph; see, for example, Brouwer, Cohen and Neumaier [3, §4.1].
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One can define an interesting product on each eigenspace Vi of a distance regular
graph Γ by doing the entry-wise product of two eigenvectors in Vi and projecting the
resulting vector back to Vi. The gives an algebra, known as the Norton algebra, which
is commutative but not necessarily associative. It was studied in group theory due to
its interesting automorphism group [6, 27]. In fact, this idea dates back to Norton’s
construction of algebras admitting 3-transposition groups with connections to the monster
simple group discovered by Griess [12].

When Γ belongs to certain important families of distance regular graphs (i.e., the
Johnson graphs, Grassmann graphs, dual polar graphs, and hypercube graphs), Levstein,
Maldonado and Penazzi [18, 22] constructed the eigenspaces from a filtration of vector
spaces corresponding to a graded lattice associated with Γ, and derived an explicit formula
for the Norton product on the eigenspace of V1. Recently Terwilliger [29] obtained a more
general formula for Q-polynomial distance-regular graphs. But for i > 2 the Norton
algebra structure on Vi has not been determined.

In this paper we focus on the Hamming graph H(n, e), whose vertex set X consists
of all words of length n on the alphabet {0, 1, . . . , e − 1} and whose edge set E consists
of all unordered pairs of vertices differing in exactly one position. As an important
family of distance regular graphs, the Hamming graphs are useful in multiple branches of
mathematics and computer science. Their eigenvalues are well known [3, §9.2] and their
eigenspaces have been investigated from various perspectives. For example, Valyuzhenich
and Vorob’ev [31] studied the minimum cardinality of the support of an eigenvector of a
Hamming graph, and for certain Hamming graphs with special parameters, Sander [25]
constructed bases for their eigenspaces using vectors over {0, 1,−1}.

If we allow extension of scalars to the complex field C, there is a nice complex eigenbasis
of the Hamming graph H(n, e) consisting of all linear characters of its vertex set X = Zne
viewed as a group, and a real eigenbasis can be obtained by taking the real and imaginary
parts of these characters. In fact, this is valid for any Cayley graph of a finite abelian
group; see, for example, Lovász [20, Exercise 11.8] and DeVos–Goddyn–Mohar–Šámal [11].
It will be an interesting problem to determine whether an eigenbasis over Z (or even over
{0, 1,−1}) can be obtained.

As an application of the linear character approach, we provide a formula for the Norton
product on each eigenspace Vi of the Hamming graph H(n, e), and use this formula to
study the automorphism group Aut(Vi) of the Norton algebra Vi. It is known that the
automorphisms of the Hamming graph H(n, e) form a group isomorphic to the wreath
product Se o Sn [3, Theorem 9.2.1]. We show that Aut(V1) ∼= Se o Sn by constructing
all idempotents in V1, but Aut(Vi) could be much smaller or bigger than this group is
i 6= 1. In general, we construct a large subgroup of Aut(Vi), which is related to the wreath
product of the semidirect product Ze o Z×e of the group Ze and its multiplicative group
Z×e with the symmetric group Sn. A complete description of Aut(Vi) for i > 2 will be a
problem for future study.

We also determine the extent to which the Norton product on Vi is nonassociative. For
a given binary operation ∗ on a set Z, let C∗,m be the number of distinct results obtained
by inserting parentheses into the expression z0 ∗ z1 ∗ · · · ∗ zm, where z0, z1, . . . , zm are
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Z-valued indeterminates. It is well known that C∗,m is bounded above by the ubiquitous
Catalan number Cm := 1

m+1

(
2m
m

)
. We have C∗,m = 1 for all m > 0 if and only if ∗

is associative, and we say ∗ is totally nonassociative if C∗,m = Cm for all m > 0. In
general, C∗,m measures how far the operation ∗ is from being associative. The sequence
(C∗,m)m>0 was called the associative spectrum of the binary operation ∗ by Csákány and
Waldhauser [7]. Braitt and Silberger [2] studied this sequence for a groupoid (G, ∗) and
called it the subassociativity type of (G, ∗). Independently, Hein and the author [13]
also proposed the study of C∗,m for a binary operation ∗. For further investigations of
this nonassociativity measurement, see, e.g., Hein and the author [14] and Liebscher and
Waldhauser [19].

We show that the Norton product ? on each eigenspace Vi is totally nonassociative
except for some special cases in which it is either associative for trivial reasons or equally
as nonassociative as the double minus operation 	 defined by a 	 b := −a − b for all
a, b ∈ C, in the sense that any two ways to parenthesize z0	z1	· · ·	zm produce distinct
results if and only if so do the same two ways to parenthesize of z0 ?z1 ? · · ·?zm. Therefore
in the last case we have C?,m = C	,m given by the sequence A000975 [28] in OEIS [26],
according to Csákány and Waldhauser [7] and work of the author, Mickey, and Xu [16].

Below is a summary of our results on the Norton algebra of the Hamming graphs.

Theorem 1. For i = 0, 1, . . . , n, the (complex) Norton algebra Vi of the Hamming graph
H(n, e) satisfies the following.

• It has a basis {χu : u ∈ Xi}, where Xi is the set of elements in X = Zne with exactly
i nonzero entries, such that if u, v ∈ Xi then

χu ? χv =

{
χu+v if u+ v ∈ Xi

0 otherwise.

• For e > 3, its automorphism group is trivial if i = 0, is isomorphic to Se o Sn

if i = 1 or S3 o S2n−1 if i = n and e = 3, and admits a subgroup isomorphic to
(Ze o Z×e ) oSn if i > 1.

• Its product ? is associative if i = 0, equally as nonassociative as the double minus
operation 	 if e = 3 and i ∈ {1, n}, or totally nonassociative if e = 3 and 1 < i < n
or if e > 4 and 1 6 i 6 n.

The nonassociativity measurement in Theorem 1 is very similar to what we obtained
in previous work [15] on the Norton product on the eigenspace V1 of the Johnson graphs,
Grassmann graphs and dual polar graphs based on the formulas by Levstein, Maldonado
and Penazzi [18, 22]. The results on the automorphism group and nonassociativity in
Theorem 1 do not include the case e = 2 as it is somewhat different from the case e > 3.

In fact, the Hamming graph H(n, 2) is the well-known hypercube Qn, and the linear
characters of its vertex set X = Zn2 are all real (actually over {0, 1,−1}). Furthermore, as
the hypercube Qn is both bipartite and antipodal, it can be halved and folded [3, §9.2.D].
The halved cube or half-cube 1

2
Qn can be obtained from the hypercube Qn by selecting
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vertices with an even number of ones and drawing edges between pairs of vertices differing
in exactly two positions. The folded cube �n can be obtained from the hypercube graph
Qn by identifying each pair of vertices at distance n from each other. Applying both
constructions above to the hypercube Qn gives the folded half-cube 1

2
�n. These graphs

are all distance regular and their eigenvalues are known [3, §9.2.D].
Since these graph are also Cayley graphs of finite abelian groups, we can study their

Norton algebras using the same method as for the Hamming graphs, with the linear char-
acters naturally indexed by certain sets and the Norton product of two linear characters
χS and χT determined by the symmetric difference S4T := (S − T ) ∪ (T − S) of the
indexing sets S and T . The automorphism groups of their Norton algebras are related to
the hyperoctahedral group SB

n
∼= Z2 oSn (the Coxeter group of type Bn) consisting of all

bijections f on the set {±1, . . . ,±n} satisfying f(−j) = −f(j) for all j ∈ [n], its center
{±1} consisting of the constant functions f = ±1, and its subgroup SD

n (the Coxeter
group of type Dn) consisting of all f ∈ SB

n with |{j ∈ [n] : f(j) < 0}| even. Our results
are summarized below, where Vi(Γ) denotes the ith eigenspace and the corresponding
Norton algebra of a distance regular graph Γ.

Theorem 2. For i = 0, 1, . . . , n, the (real) Norton algebra Vi(Qn) satisfies the following.

• It has a basis {χS : S ⊆ [n], |S| = i} such that for all S, T ⊆ [n] with |S| = |T | = i,

χS ? χT =

{
χS4T if |S4T | = i

0 otherwise.

• Its automorphism group is trivial if i = 0, equals the general linear group of the
underlying vector space if i > b2n/3c or i is odd, and admits SB

n /{±1} as a subgroup
if 1 6 i < n is even.

• Its product is associative if i = 0, i > b2n/3c or i is odd, but totally nonassociative
otherwise.

For i = 0, 1, . . . , bn/2c, there is an algebra isomorphism Vi(�n) ∼= V2i(Qn).

Theorem 3. For i = 0, 1, . . . , bn/2c, the (real) Norton algebra Vi(
1
2
Qn) satisfies the

following.

• It has a basis {χS : S ⊆ [n], |S| = i} if 0 6 i < n/2 or {χS : S ⊆ [n], |S| = i, 1 ∈ S}
if i = n/2 such that for all S, T ⊆ [n] with |S| = |T | = i we have

χS ? χT =


χS4T if |S4T | = i

χ(S4T )c if |S4T | = n− i
0 otherwise.

Hence Vi(
1
2
Qn) ∼= Vi(Qn) if i < dn/3e or n − i is odd, and V2(1

2
Q4) ∼= V2(Q3) ∼=

V1(1
2
Q3).
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• Its automorphism group admits a subgroup isomorphic to SD
n if i and n are not both

even and (i, n) 6= (1, 2), or SD
n /{±1} if i and n are both even and (i, n) 6= (2, 4).

• Its product ? is associative if i = 0, i < dn/3e is odd, i and n − i are both odd, or
n− i is odd and i > b2n/3c, but totally nonassociative otherwise.

For i = 0, 1, . . . , d = bn/4c, there is an algebra isomorphism Vi(
1
2
�n) ∼= V2i(

1
2
Qn).

Our method is also valid for the bilinear forms graph Hq(d, e), whose vertex set is
X = Matd,e(Fq) consisting of all d × e matrices over a finite field Fq and whose edge set
E consists of unordered pairs xy of vertices x, y ∈ X with rank(x − y) = 1. This is a
distance regular graph of diameter d (assuming d 6 e) and can be viewed as a q-analogue
of the Hamming graph H(d, e) [3, §9.5.A]. If d = 1 then Hq(d, e) is a complete graph
isomorphic to the Hamming graph H(1, qe). In general, Hq(d, e) is a Cayley graph of the
finite abelian group X, so the linear character approach applies.

Theorem 4. For i = 0, 1, . . . , d 6 e, the (complex) Norton algebra Vi(Hq(d, e)) satisfies
the following.

• It has a basis {χu : u ∈ X, rank(u) = i} such that

χu ? χv =

{
χu+v if rank(u+ v) = i

0 otherwise.

• Its automorphism group admits subgroups isomorphic to

Matd,e(Fq) o
(
GLd(Fq)×GLe(Fq)/{(cId, cIe) : c ∈ F×q }

)
.

• Its product is associative if i = 0 or totally associative if d > 2 and i = 1, . . . , d.

This paper is structured as follows. In Section 2 we review the linear character eigen-
basis for any Cayley graph of a finite abelian group and use this basis to establish a
formula for the Norton product on each eigenspace. Then we carefully examine the Nor-
ton algebras of the Hamming graphs in Section 3, investigate their automorphisms groups
in Section 4, and measure their nonassociativity in Section 5. We extend our results to
the halved and/or folded cubes in Section 6 and to the bilinear forms graphs in Section 7.
We conclude this paper with some remarks and questions in Section 8.

2 Cayley graphs of finite abelian groups

In this section we study the Norton algebras of a Cayley graph of a finite abelian group
using the linear characters of the group. First recall that a distance regular graph is a
graph with distance d(−,−) such that the number of vertices z with d(x, z) = i and
d(y, z) = j depends only on i, j, and k = d(x, y), but not on the choices of the vertices
x and y. Such a graph satisfies many nice properties and has been an important topic
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in algebraic combinatorics; see, for example, Brouwer–Cohen–A. Neumaier [3] and van
Dam–Koolen–Tanaka [8].

In particular, if Γ is a distance regular graph of diameter d, then there are exactly
d + 1 (real) eigenvalues θ0 > θ1 > · · · > θd and the corresponding (real) eigenspaces
V0, V1, . . . , Vd form a direct sum decomposition of RX := {f : X → R} ∼= R|X|. Using
the orthogonal projection πi : RX → Vi one can define the Norton product ? on each
eigenspace Vi by τ ? τ ′ := πi(τ · τ ′) for all τ, τ ′ ∈ Vi, where τ · τ ′ is the entry-wise product,
i.e., (τ ? τ ′)(x) := τ(x)τ ′(x) for all x ∈ X. This gives a commutative but not necessarily
associative algebra known as the Norton algebra.

For some important families of distance regular graphs (the Johnson graphs, Grass-
mann graphs, dual polar graphs, and hypercube graphs), Levstein, Maldonado and Pe-
nazzi [18, 22] used a graded lattice to construct a filtration of vector spaces and obtained a
formula for the Norton product on the eigenspace of the second largest eigenvalue. Based
on this formula we [15] studied the nonassociativity of the Norton product, with the result
on the hypercube graphs extended to the Hamming graphs. For the other eigenspaces of
these graphs and for the eigenspaces of other distance regular graphs, the Norton algebra
structure has not been determined yet.

Now we use linear characters to give a complete description of all Norton algebras of a
distance regular graph if it is also a Cayley graph of a finite abelian group, with the ground
field R extended to the complex field C. Note that there is a classification of distance
regular Cayley graphs of finite abelian groups given by Miklavič and P. Šparl [23].

We first review some basic properties of linear characters. Let G be a group and let
R× denote the multiplicative group of all units in a ring R. A linear character of G is a
group homomorphism χ : G→ C×. The linear characters of G form an abelian group G∗

under the entry-wise product defined by

(χ · χ′)(g) := χ(g)χ′(g) for all χ, χ′ ∈ G∗ and g ∈ G.

The following result is well known and we include a short proof here for completeness.

Theorem 5. The group G∗ of all linear characters of a finite abelian group G is isomor-
phic to G and is an orthonormal basis for the space CG := {φ : G→ C} ∼= C|G| endowed
with the inner product

〈φ, ψ〉 :=
1

|G|
∑
g∈G

φ(g)ψ(g) for all φ, ψ ∈ CG.

Proof. For any χ ∈ G∗ and any g ∈ G with order n, we have χ(g)n = 1 which implies
|χ(g)| = 1 and χ(g) = χ(g)−1. Thus a finite cyclic group Ze has e distinct linear characters
given by χa(b) := ωab for all a, b ∈ Ze, where ω := exp(2πi/e) is a primitive eth root of
unity. Moreover, if G1 and G2 are finite abelian groups then χ is a linear character of
G1 × G2 if and only if χ = χ1 · χ2 for some linear characters χ1 ∈ G∗1 and χ2 ∈ G∗2.
Therefore G∗ ∼= G for any finite abelian group G; in particular, |G∗| = |G| = dim(CG). If
χ ∈ G∗ then 〈χ, χ〉 = 1 since χ(g)χ(g) = |χ(g)| = 1 for all g ∈ G. For distinct χ, χ′ ∈ G∗,
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we have χ(h) 6= χ′(h) for some h ∈ G and thus

〈χ, χ′〉 =
1

|G|
∑
g∈G

χ(g)χ′(g)−1 =
1

|G|
∑
g∈G

χ(gh)χ′(gh)−1 = χ(h)χ′(h)−1〈χ, χ′〉

which implies that 〈χ, χ′〉 = 0. Therefore G∗ is an orthonormal basis for CG.

Let G be a finite abelian group expressed additively, and let S be a subset of G−{0}
such that s ∈ S ⇒ −s ∈ S. The Cayley graph Γ = Γ(G,S) of G with respect to S has
vertex set X = G and edge set E = {xy : y − x ∈ S}. The eigenvalues and eigenvectors
of Γ are those of its adjacency matrix A = [axy]x,y∈X , where axy is one if xy ∈ E or zero
otherwise. An eigenbasis of Γ is a basis for the vector space CX consisting of eigenvectors
of Γ. An explicit construction of such a basis is well known in the abelian case [20,
Exercise 11.8]; for the nonabelian case, see, for example, Babai [1], Brouwer–Haemers [4,
Proposition 6.3.1], and Lovász [21].

Theorem 6. For any Cayley graph Γ = Γ(X,S) of a finite abelian group X, the linear
characters of X form an eigenbasis of Γ with each linear character χ corresponding to the
eigenvalue χ(S) :=

∑
s∈S χ(s).

Proof. By Theorem 5, the linear characters of X form a basis for the space CX . Each
linear character χ of X is an eigenvector of Γ corresponding to the eigenvalue χ(S) since

(Aχ)(x) =
∑
y−x∈S

χ(y) =
∑
s∈S

χ(s)χ(x) = χ(S)χ(x) for all x ∈ X.

Since any Cayley graph Γ(X,S) of a finite abelian group X has an eigenbasis X∗

consisting of all linear characters of X, we can define the Norton product χ ? χ′ of two
linear characters χ and χ′ in the same eigenspace of Γ by projecting the entry-wise product
χ · χ′ back to this eigenspace. We provide a formula for this product below.

Theorem 7. For any Cayley graph Γ(X,S) of a finite abelian group X, if two linear
characters χ and χ′ of X correspond to the same eigenvalue χ(S) = χ′(S) then

χ ? χ′ =

{
χ · χ′ if (χ · χ′)(S) = χ(S)

0, otherwise.

Proof. Given linear characters χ and χ′ of X with χ(S) = χ′(S), the entry-wise product
χ · χ′ is still a linear character of X with the corresponding eigenvalue (χ · χ′)(S). The
projection onto the eigenspace containing χ and χ′ fixes χ · χ′ if (χ · χ′)(S) = χ(S) or
annihilates it otherwise.

In the remainder of this paper we elaborate the aforementioned linear character ap-
proach to the Norton algebras in the context of the Hamming graphs, halved/folded cubes,
and bilinear forms graphs, as these graphs are simultaneously distance regular graphs and
Cayley graphs of finite abelian groups. Even though their eigenspaces can be realized over
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R, we allow extension of scalars to the complex field C so that we can apply Theorem 6
and Theorem 7 to obtain linear character bases and explicit formulas of the Norton prod-
uct for all eigenspaces. When there are multiple graphs involved, we let Vi(Γ) denote the
ith eigenspace of Γ and the corresponding Norton algebra.

3 Hamming graphs

In this section we study the Norton algebras of the Hamming graphs. Given integers
n > 1 and e > 2, the finite abelian group X = Zne consists of all words of length n on
the alphabet Ze = {0, 1, . . . , e−1} with addition performed entry-wise modulo e. We can
write an element x ∈ X as either a word x = x1 · · · xn or a function x : [n] → Ze, where
[n] := {1, 2, . . . , n}. If x(1) = · · · = x(n) = c for some constant c ∈ C then we write
x = c. The support of x is supp(x) := {j ∈ [n] : x(j) 6= 0}. Let Xi denote the set of all
x ∈ X with |supp(x)| = i.

The Hamming graph H(n, e) is the Cayley graph Γ(Zne , X1), which is a distance regular
graph of diameter d = n. For i = 0, 1, . . . , n, the ith eigenvalue of H(n, e) and its
multiplicity are [3, §9.2]

θi = (n− i)e− n and dim(Vi) =

(
n

i

)
(e− 1)i.

Maldonado and Penazzi [22] showed that the Norton product on the eigenspace V1

of the Hamming graph H(n, 2) is constantly zero. For e > 3, we showed in previous
work [15] that the Norton algebra V1(H(1, e)) has a spanning set {v̄1, . . . , v̄e} such that

v̄i ? v̄i = v̄i and v̄i ? v̄j = −(v̄i + v̄j)/(e− 2), 1 6 i 6= j 6 e (1)

and the direct product of n copies this algebra is isomorphic to the Norton algebra
V1(H(n, e)). Now using linear characters we can determine all Norton algebras of H(n, e).

3.1 Basis and Norton product

For every u ∈ X we define a linear character χu of X by

χu(x) :=
∏
j∈[n]

ωu(j)x(j) = ω
∑

j∈[n] u(j)x(j) for all x ∈ X. (2)

Here ω := exp(2πi/e) ∈ C is a primitive eth root of unity, which satisfies the following:

1 + ωj + ω2j + · · ·+ ω(e−1)j =

{
e if j = 0,

0 if j = 1, . . . , e− 1.
(3)

The proof of the above identity is an easy exercise. We are ready to provide our first main
result on the Hamming graphs.
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Theorem 8. For i = 0, 1, . . . , n, the (complex) eigenspace Vi of the Hamming graph
H(n, e) has a basis {χu : u ∈ Xi} such that for all u, v ∈ Xi,

χu ? χv =

{
χu+v if u+ v ∈ Xi

0 otherwise.

Proof. By Theorem 5 and its proof, {χu : u ∈ X} is a complete set of distinct linear
characters of the abelian group X = Zne and thus a basis for CX . For each u ∈ X, the
linear character χu is an eigenvector of H(n, e) corresponding to the eigenvalue χu(X1)
by Theorem 6.

To compute the eigenvalue χu(X1), suppose u ∈ Xi and let x ∈ X1. Then we have
x(j) 6= 0 for a unique j ∈ [n] and thus χu(x) = ωu(j)x(j). If j /∈ supp(u) then u(j) = 0
and χu(x) = 1. If j ∈ supp(u) then ωu(j) is a nontrivial eth root of unity and the sum
of χu(x) = ωu(j)x(j) as x(j) runs through {1, 2, . . . , e − 1} with j fixed is −1, thanks to
Equation (3). Thus

χu(X1) =
∑
j∈[n]

∑
k∈Ze−{0}

ωu(j)k = (n− i)(e− 1) + i(−1) = θi.

This implies that {χu : u ∈ Xi} is a basis for Vi. For any u, v ∈ Xi we have

(χu · χv)(x) =
∏
j∈[n]

ω(u(j)+v(j))x(j) for all x ∈ X.

Thus χu · χv = χu+v ∈ Vj where j = |supp(u+ v)|. The projection of χu+v to Vi is either
itself if j = i or zero otherwise.

Example 9. The complex eigenbasis for the Hamming graph H(2, 3) given in Theorem 8
consists of the rows of the matrix below, which are indexed by vertices (written as words).

X 00 10 01 20 11 02 21 12 22
χ00 1 1 1 1 1 1 1 1 1
χ10 1 ω 1 ω2 ω 1 ω2 ω ω2

χ20 1 ω2 1 ω ω2 1 ω ω2 ω
χ01 1 1 ω 1 ω ω2 ω ω2 ω2

χ02 1 1 ω2 1 ω2 ω ω2 ω ω
χ11 1 ω ω ω2 ω2 ω2 1 1 ω
χ21 1 ω2 ω ω 1 ω2 ω2 ω 1
χ12 1 ω ω2 ω2 1 ω ω ω2 1
χ22 1 ω2 ω2 ω ω ω 1 1 ω2

The first row spans V0 with χ00 ? χ00 = χ00, the next four rows span V1, and the last
four rows span V2. The Norton algebras V1 and V2 are isomorphic to each other by the
following charts (a coincidence between Corollary 12 and Proposition 14).
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? χ01 χ02 χ10 χ20

χ01 χ02 0 0 0
χ02 0 χ01 0 0
χ10 0 0 χ20 0
χ20 0 0 0 χ10

? χ11 χ12 χ21 χ22

χ11 χ22 0 0 0
χ12 0 χ21 0 0
χ21 0 0 χ12 0
χ22 0 0 0 χ11

Remark 10. Although the basis given in Theorem 8 consists of complex vectors, we can
obtain a real basis by taking real and imaginary parts of the vectors. Let X0

i := {u ∈ Xi :
2u = 0} and let X+

i and X−i be the sets of all u ∈ Xi−X0
i with u(j) > e/2 or u(j) < e/2,

respectively, where j is the smallest integer such that u(j) 6= e/2. For each u ∈ X, define
ξu : X → R by

ξu(x) :=

cos
(∑

j∈[n]
2πu(j)x(j)

e

)
if u ∈ X+

i ∪X0
i

sin
(∑

j∈[n]
2πu(j)x(j)

e

)
if u ∈ X−i

for all x ∈ X. One sees that for i = 0, 1, . . . , d = n, the eigenspace Vi of H(n, e) has a
real basis {ξu : u ∈ Xi}. Below is an example for the Hamming graph H(2, 3), which can
be further normalized to an eigenbasis over Z.

X 00 10 01 20 11 02 21 12 22
χ00 1 1 1 1 1 1 1 1 1

χ10 0
√

3/2 0 −
√

3/2
√

3/2 0 −
√

3/2
√

3/2 −
√

3/2
χ20 1 −1/2 1 −1/2 −1/2 1 −1/2 −1/2 −1/2

χ01 0 0
√

3/2 0
√

3/2 −
√

3/2
√

3/2 −
√

3/2 −
√

3/2
χ02 1 1 −1/2 1 −1/2 −1/2 −1/2 −1/2 −1/2

χ11 0
√

3/2
√

3/2 −
√

3/2 −
√

3/2 −
√

3/2 0 0
√

3/2
χ21 1 −1/2 −1/2 −1/2 1 −1/2 −1/2 −1/2 1

χ12 0
√

3/2 −
√

3/2 −
√

3/2 0
√

3/2
√

3/2 −
√

3/2 0
χ22 1 −1/2 −1/2 −1/2 −1/2 −1/2 1 1 −1/2

Recently, there has been work on the minimum cardinality of the support of eigenfunc-
tions of a Hamming graph; see for example, Valyuzhenich and Vorob’ev [31]. The linear
characters may provide another possible approach to such problems.

3.2 Algebra structure

Theorem 8 leads to the following result on the structure of the Norton algebras of H(n, e).

Corollary 11. For i = 0, 1, . . . , n, we have a direct sum decomposition of vector spaces

Vi(H(n, e)) =
⊕

S⊆[n]:|S|=i

VS

where VS := span{χu : u ∈ Xi, supp(u) = S} is isomorphic to Vi(H(i, e)) as an algebra.
This direct sum becomes a direct product of algebras if i = 0, 1, n or if e = 2 and either
i > b2n/3c or i is odd.
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Proof. Using the basis provided in Theorem 8, one sees that the eigenspace Vi(H(n, e))
is the direct sum of subspaces VS for all i-sets S ⊆ [n]. By the formula for the Norton
product on Vi(H(n, e)) in Theorem 8, each direct summand VS is a subalgebra isomorphic
to Vi(H(i, e)) by sending χu to χū for all u ∈ Xi with supp(u) = S, where ū is obtained
from u by deleting all zero entries. Finally, the above direct sum becomes a direct product
of algebras in the following cases.

• If i = 0 or i = n then this direct sum has only one summand.

• If i = 1 then χu ? χv = 0 whenever u, v ∈ X1 with supp(u) 6= supp(v).

• If e = 2 and either i > b2n/3c or i is odd then χu ? χv = 0 for all u, v ∈ Xi by
Proposition 20, which will be provided later.

The above corollary includes a previous result as a special case.

Corollary 12 ([15]). The Norton algebra V1(H(n, e)) is isomorphic to the direct product
of n copies of the Norton algebra V1(H(1, e)).

We have another similar result on the Norton algebra Vn(H(n, 3)).

Lemma 13. For any u ∈ Xi with supp(u) = S and u(S) ⊆ Z×e , the span Vu of {χku : k ∈
[e− 1]} is a subalgebra of the subalgebra VS of Vi(H(n, e)) satisfying Vu ∼= V1(H(1, e)).

Proof. We have supp(ku) = S for all k ∈ [e−1] since u(S) ⊆ Z×e . Thus Vu is a subalgebra
of VS and is isomorphic to the Norton algebra V1(H(1, e)) via χku 7→ χk.

Proposition 14. The Norton algebra Vn(H(n, 3)) is isomorphic to the direct product of
2n−1 copies of the Norton algebra V1(H(1, 3)).

Proof. By Lemma 13, there is a subalgebra Vu ∼= V1(H(1, 3)) spanned by χu and χ2u for
all u ∈ Xn. Let u and v be distinct elements in Xn. We have {u(j), v(j)} = {1, 2} for
some j ∈ [n] and thus u+ v = 0. This shows that Vu is orthogonal to Vv if u 6= 2v, and it
is clear that Vu = Vv if u = 2v. Thus Vn(H(n, 3)) is isomorphic to the direct product of
2n−1 copies of V1(H(1, 3)).

Example 15. The Norton algebra V2(H(2, 3)) has a basis {χ11, χ12, χ21, χ22}. The span
of χ11 and χ22 is isomorphic to V1(H(1, 3)), and so is the span of χ12 and χ21. These two
copies of V1(H(1, 3)) are orthogonal in V2(H(2, 3) and form a direct product. Similarly,
the Norton algebra V3(H(3, 3)) is the direct product of four subalgebras, each of which is
isomorphic to V1(H(1, 3)).

We also observe that there is no identity for the Norton product ? on Vi(H(n, e))
unless i = 0.

Proposition 16. The Norton algebra Vi(H(n, e)) is unital if and only if i = 0.

Proof. Any element of Vi(H(n, e)) can be written as
∑

u∈Xi
cuχu. For any v ∈ Xi we have∑

u∈Xi

cuχu ? χv =
∑

u∈Xi: u+v∈Xi

cuχu+v = χv

if and only if 0 ∈ Xi and c0 = 1. The result follows immediately.
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3.3 Hypercube

Finally, we focus on the case e = 2. In this case the Hamming graph H(n, 2) is known
as the hypercube Qn. The basis given in Theorem 8 for each eigenspace of Qn is real
and actually over {0, 1,−1} since ω = −1 when e = 2. Moreover, each element u ∈ Xi

is uniquely determined by its support S = supp(u), which is an i-subset of [n], and the
linear character χu = χS is given by

χS(x) :=
∏
j∈S

(−1)x(j) for all x ∈ X.

Using the symmetric difference S4T := (S − T ) ∪ (T − S) of two sets S and T we can
rephrase Theorem 8 for the hypercube Qn below.

Corollary 17. For i = 0, 1, . . . , n, there exists a basis {χS : S ⊆ [n], |S| = i} for the
eigenspace Vi of the hypercube graph Qn such that for all S, T ⊆ [n] with |S| = |T | = i,

χS ? χT =

{
χS4T if |S4T | = i

0 otherwise.

Proof. This follows immediately from Theorem 8 with e = 2.

Example 18. The Norton algebra V2(Q3) has a basis {χR, χS, χT}, where R = {1, 2},
S = {1, 3}, T = {2, 3}. We have χR ? χR = χS ? χS = χT ? χT = 0, χR ? χS = χT ,
χS ? χT = χR, and χT ? χR = χS. This agrees with the cross product on the three-
dimensional space, except for the anticommutativity.

Lemma 19. There exist i-sets S, T ⊆ [n] such that |S4T | = j if and only if 0 6 j 6
min{2i, 2(n− i)} and j is even.

Proof. Let S and T be i-subsets of [n] with |S4T | = j. We have

|S ∩ T | = (|S|+ |T | − |S4T |)/2 = (2i− j)/2 > 0 and

|S ∪ T | = |S4T |+ |S ∩ T | = (2i+ j)/2 6 n.

Thus we have 0 6 j 6 min{2i, 2(n− i)} and j must be even
Conversely, let j be an even integer satisfying 0 6 j 6 min{2i, 2(n − i)}. Then

S = {1, 2, . . . , i} and T = {1, 2, . . . , (2i − j)/2, i + 1, . . . , (2i + j)/2} are i-subsets of [n]
with |S4T | = j.

Proposition 20. If i > b2n/3c or i is odd then the Norton algebra Vi(Qn) has a zero
product.

Proof. By Lemma 19, there exist i-sets S, T ⊆ [n] such that |S4T | = i if and only if
i 6 b2n/3c and i is even. Thus if i > b2n/3c or i is odd then χS ? χT = 0 for all i-sets
S, T ⊆ [n].
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4 Automorphisms

Recall that an automorphism of an algebra (V, ?) is an automorphism φ of the underlying
vector space V such that φ(u ? v) = φ(u) ? φ(v) for all u, v ∈ V . Note that we do not
assume an algebra is associative or unital. In this section we study the automorphisms of
the Norton algebras of the Hamming graph H(n, e). We begin with some special cases.

Proposition 21. The automorphism group of the Norton algebra Vi(H(n, e)) is the trivial
group if i = 0 or the full general linear group of the underlying vector space if e = 2 and
either i > b2n/3c or i is odd.

Proof. The Norton algebra Vi(H(n, e)) is spanned by an idempotent χ0 if i = 0, or has
a zero product if e = 2 and either i > b2n/3c or i is odd by Proposition 20. The result
follows.

To deal with the remaining cases, we review some basic concepts from group theory.
If there is a homomorphism φ : H → Aut(N) from a group H to the automorphism
group of a group N , then the semidirect product N oH is the Cartesian product N ×H
endowed with the operation (n1, h1)(n2, h2) = (n1φ(h1)(n2), h1h2) for all n1, n2 ∈ N and
h1, h2 ∈ H. In particular, the semidirect product Ze o Z×e of the group Ze and its
multiplicative group Z×e is the Cartesian product Ze × Z×e equipped with an operation
defined by (a, b)(a′, b′) := (a + b−1a′, bb′) for all a, a′ ∈ Ze and b, b′ ∈ Z×e . The identity
element of this group is (0, 1), where 0 and 1 are the identity elements of Ze and Z×e ,
respectively.

Next, the symmetric group Sn consists of all permutations on the set [n], and we let
id denote its identity. The wreath product G oSn of a group G with Sn is the semidirect
product GnoSn, where Gn is the direct product of n copies of G and Sn permutes these
n copies. More precisely, the elements of G oSn are of the form (g, σ) with g ∈ Gn and
σ ∈ Sn, and with hj denoting the jth component of an n-tuple h ∈ Gn, the operation of
G oSn is defined by (g, σ)(g′, σ′) = (gσ(g′), σσ′) where σ(g′) = (g′σ(1), . . . , g

′
σ(n)).

The automorphism group of the Hamming graph H(n, e) is isomorphic to the wreath
product Se oSn [3, Theorem 9.2.1], which acts on X = Zne in a natural way. However, not
all automorphisms of H(n, e) induce automorphisms of the Norton algebra Vi(H(n, e))
nor can they give all automorphisms of Vi(H(n, e)). This can be seen in our next result,
which involves the group (Ze × Z×e ) o Sn. The elements in this group are of the form
(a, b, σ) with a ∈ Zne , b ∈ (Z×e )n, and σ ∈ Sn. If (a, b, σ) and (a′, b′, σ′) are in this group
then

(a, b, σ)(a′, b′, σ′) = (a+ b−1 · σ(a′), b · σ(b′), σσ′). (4)

Here the dot “·” denotes the entry-wise product on Zne , which makes Zne become a ring
with (Z×e )n as its group of units, and σσ′ is the composition of permutations.

Theorem 22. Each element φ = (a, b, σ) ∈ (Ze o Z×e ) oSn induces an automorphism of
the Norton algebra Vi(H(n, e)) by sending χu to χa(b · σ(u))χb·σ(u) for all u ∈ Xi. Such
automorphisms form a group isomorphic to (Ze oZ×e ) oSn if e > 3 and i > 1 or if e = 2
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and 1 6 i < n is odd, but isomorphic to (Z2 o Sn)/{(0, 1, id), (1, 1, id)} if e = 2 and
1 6 i < n is even.

Proof. Let φ = (a, b, σ) ∈ (Ze oZ×e ) oSn. Then u and b · σ(u) have the same support for
any u ∈ Xi since b ∈ (Z×e )n. If u, v ∈ Xi with u+v ∈ Xi then b ·σ(u+v) = b ·σ(u)+b ·σ(v)
and

φ(χu ?χv) = χa(b ·σ(u+ v))χb·σ(u+v) = χa(b ·σ(u))χa(b ·σ(v))χb·σ(u)+b·σ(v) = φ(χu)?φ(χv).

Similarly, if u, v ∈ Xi with u+ v /∈ Xi then

φ(χu ? χv) = φ(0) = 0 = χa(b · σ(u))χb·σ(u) ? χa(b · σ(v))χb·σ(v) = φ(χu) ? φ(χv).

Therefore φ induces an automorphism of the Norton algebra Vi(H(n, e)).
If φ′ = (a′, b′, σ′) ∈ (Ze o Z×e ) oSn then for any u ∈ Xi we have

φ(φ′(χu)) = φ(χa′(b
′ · σ′(u))χb′·σ′(u)) = χa(b · σ(b′) · σσ′(u))χa′(b

′ · σ′(u))χb·σ(b′)·σσ′(u).

On the other hand, we have φφ′ = (a+ b−1 · σ(a′), b · σ(b′), σσ′) by Equation (4) and thus

(φφ′)(χu) = χa(b · σ(b′) · σσ′(u))χb−1·σ(a′)(b · σ(b′) · σσ′(u))χb·σ(b′)·σσ′(u)

Then we obtain φ(φ′(χu)) = (φφ′)(u) as Equation (2) implies

χb−1·σ(a′)(b · σ(b′) · σσ′(u)) = χσ(a′)(σ(b′ · σ′(u)) = χa′(b
′ · σ′(u)).

It follows that we have a homomorphism from (Ze o Z×e ) o Sn to the automorphism
group of Vi(H(n, e)), and we need to show that its kernel is trivial if e > 3 and i > 1 or if
e = 2 and 1 6 i < n is odd, or equals {(0, 1, id), (1, 1, id)} if e = 2 and 1 6 i < n is even.
To this end, suppose that φ(χu) = χu, i.e., b · σ(u) = u and χa(b · σ(u)) = χa(u) = 1 for
all u ∈ Xi.

If 1 6 i < n then Sn acts faithfully on i-subsets of [n] and thus taking the support
of both sides of the equality b · σ(u) = u gives σ = id. If i = n and e > 3 then we also
have σ = id since if σ(j) = k 6= j for some j ∈ [n] then b · σ(u) 6= u for some u ∈ Xi with
u(j) = 1 and u(k) 6= bk.

Next, if σ = id then b · σ(u) = b · u = u for all u ∈ Xi and thus b = 1.
Finally, we consider the condition that χa(u) = 1 for all u ∈ Xi.

• If e > 3 then a = 0 as we can obtain v ∈ Xi from u by changing the jth entry to a
different nonzero number and then χa(u) = χa(v) implies a(j) = 0 for any j ∈ [n].

• Assume e = 2 and 1 6 i < n. For any distinct j, k ∈ [n], there exists u ∈ Xi such
that u(j) = 1 and u(k) = 0. We obtain v ∈ Xi from u by switching the jth and kth
entries. Then χa(u) = χa(v) implies a(j) = a(k). Thus a is either 0 or 1, and the
latter is possible if and only if i is even in order to have χ1(u) = 1 for all u ∈ Xi.
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When e = 2 the group in Theorem 22 becomes Z2 oSn. This group is often interpreted
as the hyperoctahedral group SB

n , which consists of bijections f on {±1, . . . ,±n} with
f(−j) = −f(j) for all j ∈ [n]. The group SB

n is the Coxeter group of type Bn and its
elements are called signed permutations of [n] as they are determined by their values on
[n]. We can write an element in SB

n as f = (σ, ε) for unique σ ∈ Sn and ε : [n] → {±1}
such that f(j) = ε(σ(j))σ(j) = (εσ)(j)σ(j) for all j ∈ [n], where εσ is the composition
of ε and σ. If f ′ = (σ′, ε′) ∈ SB

n then ff ′ = (ε · ε′σ−1, σσ′), where the dot “·” is the
entry-wise product, since

f(f ′(j)) = f(ε′σ′(j)σ′(j)) = εσσ′(j)ε′σ′(j)σσ′(j) for all j ∈ [n]. (5)

Comparing this with the operation in the group Z2 o Sn as a special case (b = b′ = 1)
of Equation (4), we have a group isomorphism Z2 o Sn

∼= SB
n by sending a ∈ Zn2 to

ε : [n]→ {±1} with ε(j) := (−1)a(j) for all j ∈ [n]. This isomorphism takes the subgroup
{(0, id), (1, id)} of Z2 oSn to the center {±1} of SB

n , where by abuse of notation we write
f = c if there exists a constant c such that f(j) = c for all j ∈ [n]. Then we can rephrase
Theorem 22 in the case e = 2 as follows.

Corollary 23. Every signed permutation in SB
n induces an automorphism of the Norton

algebra Vi(Qn) by sending χS to ε(σ(S))χσ(S), where ε(T ) :=
∏

j∈T ε(j) for all T ⊆ [n].

Such automorphisms form a group isomorphic to SB
n if 1 6 i < n is odd or SB

n /{±1} if
1 6 i < n is even.

In general, the automorphism group of the Norton algebra Vi(H(n, e)) does not equal
the subgroup given in Theorem 22, as shown in Example 24 below. To better understand
it, we try to construct all of the idempotents in Vi(H(n, e)), as any algebra automorphism
must permute the idempotents. Here an idempotent is an element η satisfying η2 = η?η =
η. We provide some small examples below.

Example 24. The Norton algebras V1(H(n, e)) and Vn(H(n, 3)) are isomorphic to di-
rect products of copies of V1(H(1, e)) by Corollary 12 and Proposition 14. We have a
basis {χ1, . . . , χe−1} for V1(H(1, e)). For e = 2, the automorphism group of V1(H(1, 2))
is given by Proposition 21. For e = 3, one can check that the nonzero idempotents of
the Norton algebra V1(H(1, 3)) are χ1 + χ2, ωχ1 + ω2χ2, and ω2χ1 + ωχ2. An auto-
morphism of V1(H(1, 3)) must permute the three nonzero idempotents. Combining this
with Theorem 22 one sees that that the automorphism group of V1(H(1, 3)) is isomorphic
S3
∼= Z3 o Z×3 . This does not hold for e = 4 though, as the Norton algebra V1(H(1, 4))

has four nonzero idempotents 1
2
χ2± 1

2
(χ1 +χ3) and −1

2
χ2± i

2
(χ1−χ3), but the symmetric

group S4 contains Z4 o Z×4 as a proper subgroup.

To generalize Example 24, we need to examine idempotents carefully. Let φ be any
automorphism of an algebra (V, ?). If two idempotents η1 and η2 in this algebra are
orthogonal, meaning that η1 ?η2 = 0, then so are φ(η1) and φ(η2). If an idempotent η ∈ V
is primitive in the sense that it cannot be written as the sum of two nonzero orthogonal
idempotents, then φ(η) must be a primitive idempotent as well, since otherwise there
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would exist two nonzero orthogonal idempotents η1 and η2 such that φ(η) = η1+η2, leading
to a contradiction that η = φ−1(η1)+φ−1(η2) with φ−1(η1)?φ−1(η2) = φ−1(η1?η2) = 0. We
will find all idempotents and classify the primitive ones in the Norton algebra V1(H(1, e))
in order to determine its automorphism group.

Proposition 25. For e > 3, the Norton algebra V1(H(1, e)) is spanned by distinct nonzero
idempotents

ηj :=
1

e− 2
(ωjχ1 + ω2jχ2 + · · ·+ ω(e−1)jχe−1) for j = 0, 1, . . . , e− 1 (6)

which satisfy ηj ? ηk = −ηj+ηk
e−2

whenever j 6= k and η0 + · · · + ηe−1 = 0, and any nonzero

idempotent in V1(H(1, e)) can be written uniquely as e−2
e−2`

(ηj1 + · · ·+ηj`) for some distinct
j1, . . . , j` ∈ [e− 1].

Proof. For any j, k, ` ∈ Ze with ` 6= 0, the coefficient of χ` in ηj ? ηk is

(ωjω(`−1)k + ω2jω(`−2)k + · · ·+ ω(e−1)jω(`+1)k − ω`jω(`−`)k)/(e− 2)2

=((ωj−k + ω2(j−k) + · · ·+ ω(e−1)(j−k))ω`k − ω`j)/(e− 2)2

=

{
((e− 1)ω`j − ω`j)/(e− 2)2 = ω`j/(e− 2) if j = k

−(ω`k + ω`j)/(e− 2)2 if j 6= k

where the second equality follows from Equation (3). Thus ηj is an idempotent for all
j ∈ Ze and ηj ? ηk = −(ηj + ηk)/(e − 2) whenever j 6= k. Moreover, the coefficients
of χ1, . . . , χe−1 in η0, . . . , ηe−1 form a matrix [ωjk]06j6e−1, 16k6e−1 which is a full rank
e× (e− 1)-submatrix of the e× e Vandermonde matrix [ωjk]ej,k=0. Thus η0, . . . , ηe−1 span
V1(H(1, e)) and their sum is zero thanks to Equation (3).

Now deleting any element, say η0, from the spanning set {η0, . . . , ηe−1} gives a basis
for the Norton algebra V1(H(1, e)) since its dimension is e − 1. Thus any element in
V1(H(1, e)) can be written uniquely as c1η1 + · · · + ce−1ηe−1 for some c1, . . . , ce−1 ∈ C.
This element is an idempotent if and only if

e−1∑
j=1

c2
jηj +

∑
16j 6=k6e−1

−cjck(ηj + ηk)

e− 2
=

e−1∑
j=1

cjηj.

For j = 1, . . . , e− 1, taking the coefficient of ηj in the above equation gives

c2
j −

∑
k 6=j

2cjck
e− 2

= cj. (7)

Suppose that there exist distinct j, j′ ∈ [e − 1] such that cj 6= 0 and cj′ 6= 0. Then we
have

cj −
∑
k 6=j

2ck
e− 2

= 1 = cj′ −
∑
k 6=j′

2ck
e− 2

.
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This implies cj − cj′ + 2(cj − cj′)/(e − 2) = 0, that is, cj = cj′ . Hence any nonzero
idempotent can be written uniquely as c(ηj1 + · · ·+ηj`) for some distinct j1, . . . , j` ∈ [e−1]
and some nonzero c ∈ C. Using Equation (7) we obtain c − 2(` − 1)c/(e − 2) = 1, so
c = (e− 2)/(e− 2`).

Remark 26. In our previous work [15] we found a real basis {v̄1, . . . , v̄e} for the Norton
algebra V1(H(1, e)); see also Equation (1). By Equation (3) and Equation (6), for all
j, k ∈ Ze we have

ηj(k) =
1

e− 2
(ωjωk + ω2jω2k + · · ·+ ω(e−1)jω(e−1)k) =


−1
e−2

if j + k 6= 0

e−1
e−2

if j + k = 0.

Comparing this with our previous work [15] we have ηj = v̄e−j ∈ RX for all j ∈ Ze. Fur-
thermore, a similar argument as in the proof of Proposition 25 shows that η ∈ V1(H(1, e))
is a nilpotent element of order 2, i.e., η 6= 0 and η2 = 0, if and only if e = c(ηj1 + · · ·+ ηj`)
with ` = e/2 for some nonzero scalar c ∈ C.

By Proposition 25, any nonzero idempotent η = e−2
e−2`

(ηj1 + · · · + ηj`) in V1(H(1, e))
is determined by its support supp(η) := {j1, . . . , j`} as the coefficient of ηj in η is the
nonzero constant e−2

e−2`
for all j ∈ supp(η) and zero for all j /∈ supp(η). In particular, if

|supp(η)| = e − 1 then we have η = −η1 − · · · − ηe−1 = η0. We want to show that any
automorphism of the Norton algebra V1(H(1, e)) must permute η0, η1, . . . , ηe−1. To this
end, we study the primitive and orthogonal idempotents in this algebra.

Proposition 27. In the Norton algebra V1(H(1, e)) with e > 3, the nonzero idempotents
are pairwise nonorthogonal and all primitive, and any two distinct nonzero idempotents
η, η′ give rise to a nonzero idempotent c(η + η′) if and only if

(i) supp(η) ∩ supp(η′) = ∅, ` = `′, and c = e−2`
e−4`

, or

(ii) supp(η) ⊇ supp(η′), `′ = e− `, and c = e−2`
3e−4`

.

Proof. Let η and η′ be distinct nonzero idempotents in V1(H(1, e)) with |supp(η)| = `
and |supp(η′)| = `′. We may assume that there exists k ∈ supp(η) − supp(η′), without
loss of generality. By Proposition 25, the coefficient of ηk in η ? η′ is

− `′

e− 2

e− 2

e− 2`

e− 2

e− 2`′
=

−`′(e− 2)

(e− 2`)(e− 2`′)
6= 0.

This shows that η and η′ are nonorthogonal. Thus every nonzero idempotent is primitive
since it cannot be written as the sum of two orthogonal nonzero idempotents.

Suppose that c(η+η′) is also a nonzero idempotent for some c ∈ C. For each j ∈ [e−1],
the coefficient of ηj in η + η′ is

e−2
e−2`

if j ∈ supp(η)− supp(η′)

e−2
e−2`′

if j ∈ supp(η′)− supp(η)

e−2
e−2`

+ e−2
e−2`′

if j ∈ supp(η) ∩ supp(η′)
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The first case occurs by our hypothesis on η and η′. Assume that the second case also
occurs. Since the coefficients in these two cases are nonzero, they must coincide, i.e., ` = `′

by Proposition 25. Then supp(η) ∩ supp(η′) = ∅ since the coefficient in the third case is
nonzero but distinct from the coefficient in the first two cases. It follows that the support
of the idempotent c(η + η′) has cardinality 4` and Proposition 25 implies c(e−2)

e−2`
= e−2

e−4`
,

i.e., c = e−2`
e−4`

.
Now assume that the second case does not occur. Then the third case must occur

since supp(η′) 6= ∅. As the coefficient in the third case differs from the first, we have
e−2
e−2`

+ e−2
e−2`′

= 0, i.e., `′ = e − ` by Proposition 25. Then the support of c(η + η′) has

`− `′ = 2`− e elements and thus c(e−2)
e−2`

= e−2
e−2(2`−e) , i.e., c = e−2`

3e−4`
.

Proposition 28. For e > 3, the automorphism group of the Norton algebra V1(H(1, e))
is isomorphic to the symmetric group Se.

Proof. By Proposition 25, any permutation of the idempotents η0, . . . , ηe−1 gives an auto-
morphism of the Norton algebra V1(H(1, e)). It remains to show that any automorphism
φ of the Norton algebra V1(H(1, e)) permutes η0, . . . , ηe−1.

For any distinct j, j′ ∈ [e − 1], we have two nonzero idempotents η := φ(ηj) and
η′ := φ(ηj′) with |supp(η)| = ` and |supp(η′)| = `′. First assume e 6= 4, so c(ηj + ηj′) is a
nonzero idempotent, where c := e−2

e−4
. Then φ takes it to c(η+ η′), which is also a nonzero

idempotent. By Proposition 27, we have ` = `′ = 1 or {`, `′} = {1, e − 1}. Note that an
idempotent with support of cardinality e− 1 is −(η1 + · · ·+ ηe−1) = η0 by Proposition 25.
Thus η = ηk and η′ = ηk′ for some distinct k, k′ ∈ Ze. This implies that φ permutes
η0, . . . , ηe−1.

Now assume e = 4. By Remark 26, the nilpotent elements of order 2 in V1(H(1, 4))
are all nonzero scalar multiple of ηj + ηj′ for distinct j, j′ ∈ {1, 2, 3}. Then η+ η′ is also a
nilpotent element of order 2. Similarly to Proposition 27, we can show that |supp(η)| =
|supp(η′)| = 1 or {|supp(η)|, |supp(η′)|} = {1, 3}. Thus φ permutes η0, η1, η2, η3.

Remark 29. Given positive integers n and k with n > 2k, the Johnson graph J(n, k) is
a distance regular graph of diameter n with vertex set X consisting of all k-subsets of
[n] and edge set E = {xy : x, y ∈ X, |x ∩ y| = 1}. By Maldonado and Penazzi [22] (see
also our work [15]), the Norton algebra V1(J(n, k)) has a basis {v̄1, . . . , v̄n−1} satisfying
v̄i ? v̄j = 0 for all i, j ∈ [n− 1] when n = 2k or v̄i ? v̄i = v̄i and v̄i ? v̄j = −(v̄i + v̄j)/(n− 2)
for all distinct i, j ∈ [n − 1] when n > 2k. Thus the automorphism group of the algebra
V1(J(n, k)) is the general linear group GLn−1 when n = 2k or the symmetric group Sn

since V1(J(n, k)) ∼= V1(H(1, n)) when n > 2k. Also note that H(1, n) is a complete graph
with n vertices, whose automorphism group is Sn.

Theorem 30. The automorphism group of the Norton algebra Vi(H(n, e)) is isomorphic
to Se oSn if i = 1 and e > 3, or S3 oS2n−1 if i = n and e = 3.

Proof. By Corollary 11, the Norton algebra V1(H(n, e)) is isomorphic to the direct product
of its subalgebras VS for all 1-sets S = {k} ⊆ [n], i.e., V1(H(n, e)) ∼= V{1}×· · ·×V{n}. Thus
any idempotent in V1(H(n, e)) can be expressed as η = η(1) + · · · + η(n) with η(j) being
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an idempotent in V{j} for all j ∈ [n]. By Proposition 27, the idempotent η is primitive
if and only if all but one of η(1), . . . , η(n) are zero. Moreover, two primitive idempotents
in V1(H(n, e)) are orthogonal if and only if they are from V{j} and V{k} for some distinct
j, k ∈ [n] by Proposition 27. Thus any automorphism φ of the Norton algebra V1(H(n, e))
must permute the subalgebras V{1}, . . . , V{n}. It follows from this and Proposition 28 that
the automorphism group of V1(H(n, e)) is the wreath product Se o Sn. The result on
Vn(H(n, 3)) is similar, thanks to Proposition 14.

Remark 31. The above theorem shows that the automorphism group of a Norton algebra
may agree with the automorphism group of the underlying graph in some cases but could
be much larger in some other cases. It is also possible to have the former smaller than the
latter. In fact, one can check that the nonzero idempotents in the Norton algebra V2(Q3)
(see Example 18) are χ12+χ13+χ23, χ12−χ13−χ23, −χ12+χ13−χ23, and −χ12−χ13+χ23.
Thus its automorphism group is a subgroup of S4, and it actually equals S4 since it has
a subgroup isomorphic to SB

3 /{±1} by Corollary 23, whose order is 23 · 3!/2 = 24 = |S4|.
This is smaller than the automorphism group S2 o S3 of the graph Q3, whose order is
23 · 3! = 48. It would be nice to generalize this example to the Norton algebra Vi(H(n, e))
with i > 2.

5 Nonassociativity

In this section we study the nonassociativity of the Norton product ? on each eigenspace
Vi the Hamming graph H(n, e) based on the results in Section 3.

Given a binary operation ∗ defined on a set Z, define C∗,m to be the number of distinct
results that one can obtain from the expression z0 ∗z1 ∗· · ·∗zm by inserting parentheses in
all possible ways, where z0, z1, . . . , zm are indeterminates taking values from Z. We have
C∗,m > 1 and the equality holds for all m > 0 if and only if ∗ is associative. On the other
hand, it is well known that the number of ways to insert parentheses into the expression
z0 ∗ z1 ∗ · · · ∗ zm is the ubiquitous Catalan number Cm := 1

m+1

(
2m
m

)
, giving an upper bound

for C∗,m. If C∗,m = Cm for all m > 0 then ∗ is said to be totally nonassociative. In general,
the number C∗,m is between 1 and Cm and can be viewed as a quantitative measure for
how far the operation ∗ is from being associative or totally nonassociative [7, 13]

There is a natural bijection between the ways to insert parentheses into z0∗z1∗· · ·∗zm
and binary trees with m+1 leaves. Here a binary tree is a rooted plane tree in which every
node has exactly two children except the leaves. Let Tm be the set of all binary trees with
m+ 1 leaves. Any t ∈ Tm naturally corresponds to a parenthesization of z0 ∗ z1 ∗ · · · ∗ zm,
and we let (z0 ∗ z1 ∗ · · · ∗ zm)t to denote the result. With the leaves of t labeled 0, 1, . . . ,m
from left to right, the depth sequence of t is d(t) := (d0(t), d1(t), . . . , dm(t)), where the
depth dj(t) of a leaf j in T is the number of steps in the unique path from the root of t
to the leaf j. See Figure 1 for some examples.

Two binary trees s, t ∈ Tm are ∗-equvalent if (z0∗z1∗· · ·∗zm)s = (z0∗z1∗· · ·∗zm)t. The
number of equivalence classes in Tm is exactly the nonassociativity measure C∗,m. Two
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d = (3, 3, 2, 1) d = (2, 3, 3, 1) d = (2, 2, 2, 2) d = (1, 3, 3, 2) d = (1, 2, 3, 3)

Figure 1: Parenthesizations, binary trees, and leaf depths

binary operations are said to be equally nonassociative if their corresponding equivalence
relations agree on Tm for all m > 0.

Previously, the author, Mickey, and Xu [16] defined the double minus operation a	b :=
−a− b for all a, b ∈ C and discovered that the nonassociativity measure C	,m agrees with
an interesting sequence A000975 [28] in OEIS [26]; see also Csákány and Waldhauser [7].

Theorem 32 ([16]). For any s, t ∈ Tm, we have (z0	z1	· · ·	zm)s = (z0	z1	· · ·	zm)t
if and only if d(s) ≡ d(t) (mod 2), i.e., dj(s) ≡ dj(t) (mod 2) for all j = 0, 1, . . . ,m.
Moreover, the nonassociativity measure C	,m is given by the the sequence A000975 in
OEIS except for m = 0.

Now we turn to the Norton algebras of the Hamming graph H(n, e), which are related
to the double minus operation in certain cases. The Norton algebra V0(H(n, e)) is one
dimensional and must be associative. In recent work [15] we obtained the following result
on the nonassociativity of the Norton algebra V1(H(n, e)).

Proposition 33 ([15]). The Norton product ? on V1(H(n, e)) is associative if e = 2,
equally as nonassociative as the double minus operation 	 if e = 3, and totally nonasso-
ciative if e > 4.

We extend this result to the Norton algebras Vi(H(n, e)) for i > 2 in the next few
subsections.

5.1 The case e = 3

Assume e = 3 in this subsection. We begin with the subcase i = n.

Proposition 34. The Norton product ? on Vn(H(n, 3)) is equally as nonassociative as
the double minus operation 	.

Proof. By Proposition 14, the Norton algebra Vn(H(n, 3)) is isomorphic to the direct
product of 2n−1 copies of V1(H(1, 3)). Thus the result holds by Proposition 33.

Now assume 1 < i < n. We need to recall some terminology for binary trees. Given a
vertex x in a binary tree t, the (maximal) subtree of t rooted at x consists of all vertices
and edges weakly below x. In particular, the left/right subtree of t is the subtree rooted
at the left/right child of the root of t.
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Lemma 35. For any m > 0, t ∈ Tm, j ∈ [m], and u ∈ Xi, there exist z0, z1, . . . , zm ∈
{χu, χ2u} such that zj = χu and that (z0 ? z1 ? · · · ? zm)t equals χu if dj(t) is even or χ2u

if dj(t) is odd.

Proof. We induct on m. For m = 0, the result is trivial. Assume m > 1 below.
Let t1 ∈ Tm1 and t2 ∈ Tm2 be the left and right subtrees of t. Then

(z0 ? · · · ? zm)t = (z0 ? · · · ? zm1)t1 ? (zm1+1 ? · · · ? zm)t2 .

Assume j ∈ [m1], without loss of generality. Consider the case when dj(t) is even; the odd
case is similar. We have dj(t1) is odd as dj(t) = dj(t1) + 1. We can obtain z0, . . . , zm ∈
{χu, χ2u} such that (z0 ? · · · ? zm1)t1 = (zm1+1 ? · · · ? zm)t2 = χ2u by applying the inductive
hypothesis to t1 (with zj = χu) and t2 (with zm = χu if dm(t2) is odd or zm = χ2u if dm(t2)
is even). Then we have (z0 ? · · · ? zm)t = χ2u ? χ2u = χu as desired.

Theorem 36. For i = 2, 3, . . . , n−1, the Norton product on Vi(H(n, 3)) is totally nonas-
sociative.

Proof. Let s and t be any two distinct binary trees in Tm. We need to show that

(z0 ? · · · ? zm)s 6= (z0 ? · · · ? zm)t for some z0, z1, . . . , zm ∈ Vi(H(n, 3)). (8)

We may assume that ds(j) ≡ dj(t) (mod 2) for all j = 0, 1, . . . ,m; if not, then there exist
z0, z1, . . . , zm in the subalgebra Vu ∼= V1(H(1, 3)) of Vi(H(n, 3)) (see Lemma 13) for any
u ∈ Xi such that (z0 ? · · · ? zm)s 6= (z0 ? · · · ? zm)t by Theorem 32 and Proposition 33.

We proceed by induction on m. For m = 2, Equation (8) holds since any u ∈ Xi

satisfies
(χu ? χu) ? χ−u = χ2u ? χ−u = χu 6= 0 = χu ? (χu ? χ−u).

Now assume m > 3. Let j be the leftmost leaf with the largest depth among all leaves
in s. Then j is a left leaf, j + 1 is a right leaf, and they share a common parent in s. We
distinguish some cases below for the positions of j and j + 1 in t.

Case 1. Suppose that j is a left leaf and j + 1 is a right leaf, so they share a common
parent in t. Then deleting j and j+1 from s and t gives two distinct trees s′ and t′ in Tm−1.
Applying the inductive hypothesis to s′ and t′ gives (z′0? · · ·?z′m−1)s′ 6= (z′0? · · ·?z′m−1)t′ for
some z′0, . . . , z

′
m−1 in {χu : u ∈ Xi}. We have z′j = χv for some v ∈ Xi and we can define

zj = zj+1 := χ2v. Also let zk := z′k for k = 0, . . . , j− 1 and z` := z′`−1 for ` = j+ 2, . . . ,m.
Since zj ? zj+1 = χv = z′j, we have

(z0 ? · · · ? zm)s = (z′0 ? · · · ? z′m−1)s′ 6= (z′0 ? · · · ? z′m−1)t′ = (z0 ? · · · ? zm)t.

Case 2. Suppose that j and j + 1 are both left leaves in t. Then j + 1 is contained in
the subtree r of t rooted at the right sibling of j. Since dj(t) ≡ dj(s) = dj+1(s) ≡ dj+1(t)
(mod 2), the depth of j+ 1 in r must be even. Thus the left subtree of r has two left and
right subtrees r1 and r2 and j + 1 is in r1 with an even depth. Define u, v, w ∈ Xi below
such that u+ v /∈ Xi, u+ w ∈ Xi, and v + w ∈ Xi.
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j 1 2 3 · · · i i+ 1 · · · n− 1 n
u(j) 1 1 1 · · · 1 0 · · · 0 0
v(j) 0 1 1 · · · 1 0 · · · 0 1
w(j) 2 0 1 · · · 1 0 · · · 0 2

By Lemma 35, the subtree r1 can produce χv with zj+1 = χv, the subtree r2 can produce
χw, and the right subtree of r can product χ2v. Combining these with zj = χu gives

χu ? ((χv ? χw) ? χ2v) = χu ? (χv+w ? χ2v) = χu ? χw = χu+w.

See the left picture in Figure 2, where j and j + 1 are in red. Then applying Lemma 35
to the tree obtained from t by contracting j and r to their parent gives (z0 ? · · · ? zm)t =
χc(u+w) 6= 0, where c ∈ {1, 2}. On the other hand, we have (z0 ? · · · ? zm)s = 0 since
zj ? zj+1 = χu ? χv = 0. Thus we are done with this case.

u+ w

u w

v + w

v

...

v · · ·

...

w

2v

u+ w

u

... 2u

w

2v

...

2v · · ·

...

v + w

Figure 2: Case 2 and Case 3 in the proof of Theorem 36

Case 3. Suppose that j is a right leaf in t. Then j is contained in the subtree r1 of t
rooted at the parent of j, and j + 1 is contained in the subtree r2 of t rooted at the right
sibling of the parent of j. Since dj(t) ≡ dj(s) = dj+1(s) ≡ dj+1(t) (mod 2), the depth of
j+1 in r2 must be odd. Thus j+1 must be a left leaf in the left subtree of r2 with an even
depth. By Lemma 35, we can obtain χu from r1 with zj = χ2u, obtain χ2v from the left
subtree of r2 with zj+1 = χ2v, and obtain χv+w from the right subtree of r2. Combining
r1 and r2 gives

χu ? (χ2v ? χv+w) = χu ? χw = χu+w.

See the right picture in Figure 2, where j and j+ 1 are in red. Contracting r1 and r2 and
applying Lemma 35 again gives (z0 ? · · · ? zm)t = χc(u+w) 6= 0, where c ∈ {1, 2}. On the
other hand, we have (z0 ? · · · ? zm)s = 0 since zj ? zj+1 = χ2u ? χ2v = 0.

5.2 The case e > 4

We study case e > 4 similarly as the case e = 3. We may assume i > 1.
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Lemma 37. For any m > 1, t ∈ Tm, j ∈ [m], u ∈ Xi, and c ∈ {2, . . . , e− 1}, there exist
z0, z1, . . . , zm in {χv : v ∈ Xi} such that zj = χu and (z0 ? z1 ? · · · ? zm)t = χcu.

Proof. We induct on m. For m = 1, we have (c−1)u ∈ Xi and χu?χ(c−1)u = χ(c−1)u?χu =
χcu. Assume m > 2 below. Let t1 ∈ Tm1 and t2 ∈ Tm2 be the left and right subtrees
of t. Assume j ∈ [m1], without loss of generality. By the inductive hypothesis, for
all c1 = 2, . . . , e − 1, there exist z0, . . . , zm1 ∈ {χv : v ∈ Xi} such that zj = χu and
(z0 ? · · · ? zm1)t1 = χc1u.

If m2 = 0 then we have (z0 ? · · ·?zm)t = χc1u ?zm = χcu, where c1 = c−1 and zm = χu
when c > 2, or c1 = e− 1 and zm = χ3u when c = 2.

If m2 > 1 then we can apply inductive hypothesis to t2 and get (z0 ? · · · ? zm)t =
χc1u ? χw = χcu, where c1 = c− 1 and w = (e− 1)(−u) = u when c > 2, or c1 = e− 1 and
w = 3u when c = 2.

Theorem 38. For e > 4 and i = 1, . . . , n, the Norton product on Vi(H(n, e))) is totally
nonassociative.

Proof. The proof is similar to Theorem 36 but less technical. Let s and t be two distinct
binary trees in Tm. Define u ∈ Xi by u(1) = · · · = u(i) = 1 and u(i+1) = · · · = u(n) = 0.
Then cu ∈ Xi for all c = 1, . . . , e− 1. We show that (z0 ? · · · ? zm)s 6= (z0 ? · · · ? zm)t for
some z0, z1, . . . , zm in {χcu : c = 1, . . . , e− 1} by induction on m. For m = 2 we have

(χu ? χu) ? χ−u = χ2u ? χ−u = χu 6= 0 = χu ? (χu ? χ−u).

Assume m > 3 below. Let j be the leftmost leaf of s with the largest depth. Then j
is a left leaf, j + 1 is a right leaf, and they share a common parent in s. We distinguish
some cases below for the positions of j and j + 1 in t.

Case 1. Suppose that j is a left leaf and j + 1 is a right leaf, so they share a common
parent in t. Then deleting j and j + 1 from s and t gives two distinct trees s′ and t′ in
Tm−1. Applying the inductive hypothesis to s′ and t′ we obtain the desired result.

Case 2. Suppose that j and j+ 1 are both left leaves in t. Then j+ 1 is contained in the
subtree of t rooted at the right sibling of j. By Lemma 37, this subtree can produce χ2u

with zj+1 = χu. With zj = χ−u, the subtree of t rooted at the parent of j gives χ−u?χ2u =
χu. Applying Lemma 37 again gives (z0 ? · · · ? zm)t = χcu 6= 0, where c ∈ {2, . . . , e− 1}.
On the other hand, we have (z0 ? · · · ? zm)t = 0 since zj ? zj+1 = χ−u ? χu = 0. So we are
done with this case.

Case 3. Suppose that j is a right leaf in t. Then j is contained in the subtree of t rooted
at the parent of j, and j + 1 is contained in the subtree of t rooted at the right sibling of
the parent of j. These two subtrees can produce χ−2u and χ3u, respectively, with zj = −u
and zj+1 = u, thanks to Lemma 37. Thus we can make sure (z0 ? · · · ? zm)t = χcu for any
c ∈ {2, . . . , e− 1}, while (z0 ? · · · ? zm)s = 0. This completes the proof.

5.3 The case e = 2

Finally, we study the nonassociativity of the Norton algebras of the hypercube Qn =
H(n, 2).
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Lemma 39. Let S and T be i-subsets of [n] with |S4T | = i. Then for any m > 0, t ∈ Tm,
j ∈ [m], and distinct R,R′ ∈ {S, T, S4T}, there exist z0, . . . , zm ∈ {χS, χT , χS4T} such
that (z0 ? · · · ? zm)t = χR and unless m = 0, this can be done in such a way that zj = χR′.

Proof. We induct on m. The result is trivial when m = 0, and it holds when m = 1 since
χS ? χT = χS4T , χS ? χS4T = χT , χT ? χS4T = χS, and ? is commutative.

Assume m > 2 below. Let t1 ∈ Tm1 and t2 ∈ Tm2 be the left and right subtrees
of t. For the same reason as mentioned in the case m = 1, we may assume j ∈ [m1],
R = S, and R′ = T , without loss of generality. If m1 = 0 then j = 0 and there
exist z0, . . . , zm ∈ {χS, χT , χS4T} such that z0 = χT , (z1 ? · · · ? zm)t2 = χS4T , and thus
(z0? · · ·?zm)t = χT ?χS4T = χS by the inductive hypothesis. If m1 > 1 then the inductive
hypothesis gives z0, . . . , zm ∈ {χS, χT , χS4T} such that zj = χT , (z0 ? · · · ? zm1)t1 = χS4T ,
(zm1+1 ? · · ·?zm)t2 = χT , and (z0 ? · · ·?zm)t = χS4T ?χT = χS. The proof is complete.

Theorem 40. The Norton product ? on Vi(Qn) is associative if i = 0, i is odd, or
i > b2n/3c, and totally nonassociative if i is even and 1 6 i 6 b2n/3c.

Proof. The Norton algebra V0(Qn) is one-dimensional and must be associative. If i is odd
or i > b2n/3c then the algebra Vi(Qn) is also associative since χS ? χT = 0 for all i-sets
S, T ⊆ [n], thanks to Corollary 17 and Lemma 19.

Assume i is even and 1 6 i 6 b2n/3c below. There exist i-subsets S and T of [n] such
that |S4T | = i by Lemma 19. Let s and t be two distinct binary trees in Tm. We show
that (z0 ? · · · ? zm)s 6= (z0 ? · · · ? zm)t for some z0, z1, . . . , zm ∈ {χS, χT , χS∆T} by induction
on m. For m = 2 we have

(χS ? χS) ? χT = 0 6= χT = χS ? (χS ? χT ).

Assume m > 3. Let j be the leftmost leaf of s with the largest depth. Then j is a left
leaf, j+1 is a right leaf, and they share a common parent in s. We distinguish some cases
for j and j + 1 in t.

Case 1. Suppose that j is a left leaf and j + 1 is a right leaf, so they share a common
parent in t. Then deleting j and j + 1 from s and t gives two distinct trees s′ and t′ in
Tm−1. Applying the inductive hypothesis gives the desired result.

Case 2. Suppose that j and j+ 1 are both left leaves in t. Then j+ 1 is contained in the
subtree of t rooted at the right sibling of j. By Lemma 39, this subtree can produce χT
with zj+1 = χS. Then the subtree of t rooted at the parent of j gives χS ?χT = χS4T with
zj = χS. Hence we can make sure (z0 ? · · · ? zm)t ∈ {χS, χT , χS4T} by using Lemma 39
again. On other hand, we have (z0 ? · · · ? zm)s = 0 as zj ? zj+1 = χS ? χS = 0. So we are
done with this case.

Case 3. Suppose that j is a right leaf in t. Then j is contained in the subtree r1 of
t rooted at the parent of j, and j + 1 is contained in the subtree r2 of t rooted at the
right sibling of the parent of j. With zj = zj+1 = χS, Lemma 39 implies that r1 can
produce χT and r2 can produce either χS if r2 ∈ T0 or χS4T otherwise. Combining r1

and r2 gives either χT ? χS = χS4T or χT ? χS4T = χS. Applying Lemma 39 again gives
(z0? · · ·?zm)t ∈ {χS, χT , χS4T}, whereas (z0? · · ·?zm)s = 0. This completes the proof.

the electronic journal of combinatorics 28(2) (2021), #P2.30 24



Remark 41. The above proof replies on the fact that χA ? χB = χC for any permutation
χA, χB, χC of the triple χS, χT , χS∆T . Thus one can use the same proof to show that
the cross product on the n-dimensional space is totally nonassociative for all n > 3
(see also Csákány and Waldhauser [7, §3.5]), and that the octonions (hence all higher
dimensional Cayley–Dickson constructions) have a totally nonassociative multiplication
as well, thanks to the existence of a triple that behaves in the same way as above, except
for the anticommutativity which does not affect the proof.

6 Halved and/or folded cubes

In this section we study the Norton algebras of the halved and/or folded cubes via the
same linear character approach used for the hypercube.

6.1 Halved cube

Let Γ be a distance regular graph of diameter d. For i = 0, 1, . . . , d, let Γi be the graph
with the same vertex set as Γ but with edge set consisting of all unordered pairs of
vertices at distance i from each other in Γ. If the graph Γ is bipartite then Γ2 has two
connected components, giving two distance regular graphs known as the halved graphs of
Γ [8, Proposition 2.13].

In particular, the halved cube or half-cube 1
2
Qn has vertex set X consisting of all binary

strings of length n with even weight and edge set E consisting of all unordered pairs of
vertices differing in exactly two positions. This is a distance regular graph of diameter
d = bn/2c. For i = 0, 1, . . . , d, the ith eigenvalue and its multiplicity are [3, §9.2D]

θi =
(n− 2i)2 − n

2
and dim(Vi) =

{(
n
i

)
if i < n/2

1
2

(
n
i

)
if i = n/2.

With the vertex set X viewed as a subgroup of Zn2 , the halved cube 1
2
Qn becomes the

Cayley graph Γ(X,X2) of X with respect to X2, where Xi := {x ∈ X : |supp(x)| = i}.
For every S ⊆ [n] we define a linear character χS of X by

χS(x) :=
∏
j∈S

(−1)x(j) for all x ∈ X.

Lemma 42. Let S, T ⊆ [n]. Then χS = χT if and only if S = T or Sc = T , where
Sc := [n]− S.

Proof. For each x ∈ X, since |supp(x)| is even, we have

χS(x) = (−1)
∑

j∈S x(j) = (−1)
∑

j∈Sc x(j) = χSc(x).

Thus χS = χSc . Conversely, suppose that χS = χT for two distinct sets S, T ⊆ [n]. Then
there exists j ∈ S − T . If there exists k ∈ [n] − S4T then we have a contradiction
that χS(x) 6= χT (x) for x ∈ X with x(j) = x(k) = 1 and all other entries zero. Thus
S4T = [n], which implies Sc = T .
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Theorem 43. The Norton algebra Vi(
1
2
Qn) has a basis {χS : S ⊆ [n], |S| = i} if

0 6 i < n/2 or {χS : S ⊆ [n], |S| = i, 1 ∈ S} if i = n/2. For any S, T ⊆ [n] with
|S| = |T | = i we have

χS ? χT =

{
χS4T = χ(S4T )c if |S4T | ∈ {i, n− i}
0 otherwise.

Proof. By Lemma 42, the set {χS : S ⊆ [n]} has cardinality 2n−1 = |X| and must contain
all linear characters of X, thanks to Theorem 5. By Theorem 6, if |S| = i then the linear
character χS is an eigenvector corresponding the the eigenvalue

χS(X2) =

(
i

2

)
− i(n− i) +

(
n− i

2

)
=

(n− 2i)2 − n
2

.

This proves the desired basis of Vi(
1
2
Qn) for i = 0, 1, . . . , bn/2c. Let S, T be i-subsets of

[n] with |S4T | = j. We have χS · χT = χS4T = χ(S4T )c , which belongs to Vj(
1
2
Qn) if

j 6 n/2 or Vn−j(
1
2
Qn) otherwise. Thus the projection onto Vi fixes χS ·χT if j ∈ {i, n− i}

or annihilates it otherwise.

Remark 44. There is a bijection from binary strings of length n with even weight to
binary strings of length n− 1 by deleting the nth entry. This gives another way to realize
the halved cube 1

2
Qn as a Cayley graph of a finite abelian group and leads to a slightly

different (but equivalent) description of its Norton algebras.

Corollary 45. There is an algebra isomorphism Vi(
1
2
Qn) ∼= Vi(Qn) if i < dn/3e or n− i

is odd.

Proof. Comparing Theorem 8 with Theorem 43, we see an obvious vector space isomor-
phism Vi(

1
2
Qn) ∼= Vi(Qn) for all i < n/2, which becomes an algebra isomorphism if

i < dn/3e or n − i is odd, since there exist i-sets S, T ⊆ [n] such that |S4T | = n − i if
and only if n− i 6 2i and n− i is even by Lemma 19.

We next examine some examples of the Norton algebra Vn/2(1
2
Qn), which can be

obtained from Vn/2(Qn) by identifying χS and χSc for all S ⊆ [n] with |S| = n/2.

Example 46. The Norton algebra V1(1
2
Q2) has a basis {χ1 = χ2} with χ1 ? χ1 = 0,

and thus is isomorphic to V1(Q1). The Norton algebra V2(1
2
Q4) has a basis {χ12, χ13, χ14}

consisting of nilpotent elements of order 2 satisfying

χ12 ? χ13 = χ23 = χ14, χ12 ? χ14 = χ24 = χ13, and χ13 ? χ14 = χ34 = χ12.

Comparing this with Example 18 one sees an algebra isomorphism V2(1
2
Q4) ∼= V2(Q3).

Incidentally, V1(1
2
Q3) has a basis {χ1, χ2, χ3} with χj?χj = 0 for j = 1, 2, 3 and χj?χk = χ`

for distinct j, k, ` ∈ {1, 2, 3}, and thus is isomorphic to V2(Q3) as well.
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Now we study the automorphism group of the Norton algebra Vi(
1
2
Qn) using the

Coxeter group SD
n of type Dn consisting of all signed permutations f = (ε, σ) ∈ SB

n

with ε([n]) = 1, where ε(T ) :=
∏

j∈T ε(j) for all T ⊆ [n]. We may assume i > 1 and
(i, n) 6= {(1, 2), (2, 4)}, thanks to Proposition 21, Corollary 45, and Example 46.

Theorem 47. For i = 1, . . . , bn/2c, every signed permutation f = (σ, ε) ∈ SD
n induces

an automorphism of the Norton algebra Vi(
1
2
Qn) by sending χS to ε(σ(S))χσ(S) for all

i-sets S ⊆ [n]. Such automorphisms form a group isomorphic to SD
n if i and n are not

both even and (i, n) 6= (1, 2), or SD
n /{±1} if i and n are both even and (i, n) 6= (2, 4).

Proof. Every signed permutation f = (σ, ε) ∈ SD
n induces an automorphism of Vi(

1
2
Qn)

since the following holds for all i-sets S, T ⊆ [n].

• If |S4T | = i then observing that εσ(S)εσ(T ) = εσ(S4T ) one can verify that
f(χS) ? f(χT ) = εσ(S)εσ(T )χσ(S)4σ(T ) = εσ(S4T )χσ(S4T ) = f(χS ? χT ).

• If |S4T | = n− i then using ε([n]) = 1 we have f(χS ? χT ) = εσ((S4T )c)χσ((S4T )c)

and f(χS) ? f(χT ) = εσ(S)εσ(T )χ((σ(S)4σ(T ))c = εσ(S4T )χσ((S4T )c) equal.

• If |S4T | /∈ {i, n−i} then χS ?χT = 0 and f(χS)?f(χT ) = εσ(S)χσ(S)?εσ(T )χσ(T ) =
0.

For any f ′ = (σ′, ε′) ∈ SD
n we have ff ′ = (ε · ε′σ−1, σσ′) by Equation (5) and thus

f(f ′(χS)) = f(ε′σ′(S)χσ′(S)) = εσσ′(S)ε′σ′(S)χσσ′(S) = (ff ′)(χS).

Therefore we have a homomorphism from SD
n to the automorphism group of Vi(

1
2
Qn). To

find its kernel, suppose f = (σ, ε) ∈ SD
n fixes χS, i.e., σ(S) ∈ {S, Sc} and εσ(S) = 1 for

any i-set S ⊆ [n].
If 1 6 i < n/2 then we have σ(S) = S since |σ(S)| = i < n− i. If 3 6 i = n/2 then we

also have σ(S) = S since σ(S) = Sc implies σ(T ) /∈ {T, T c} for the i-set T ⊆ [n] obtained
from S by replacing any j ∈ S with k ∈ Sc−{σ−1(j)}. Thus σ = id as Sn acts faithfully
on i-subsets of [n].

For any distinct j, k ∈ [n], there exists an i-set S ⊆ [n] such that j ∈ S and k /∈ S.
Replacing j with k in S gives an i-set T ⊆ [n], and ε(S) = ε(T ) = 1 implies ε(j) = ε(k).
It follows that ε = 1 or ε = −1, and the latter implies that n is even as ε([n]) = 1.
Conversely, if ε = −1 then ε(S) = 1 for all i-sets S ⊆ [n] if and only if i is even. The
result follows.

Example 48. The signed permutation f ∈ SB
6 given by f(1) = −1 and f(j) = j for

j = 2, 3, 4, 5, 6 does not induce an automorphism of the Norton algebra V2(1
2
Q6), since f

fixes χ56 = χ12 ? χ34 but f(χ12) ? f(χ34) = −χ12 ? χ34 = −χ56.

Next, we measure the nonassociativity of the Norton algebras of the halved cube 1
2
Qn.

Theorem 49. For i = 0, 1, . . . , bn/2c, the Norton product on Vi(
1
2
Qn) is associative if

i = 0, i is odd and i < dn/3e, i and n − i are both odd, or n − i is odd and i > b2n/3c,
or totally nonassociative otherwise.
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Proof. If i = 0 then Vi(
1
2
Qn) is one-dimensional and must be associative. Assume i > 1

below. By Lemma 19 and Theorem 43, there exist i-sets S, T ⊆ [n] such that χS ?χT 6= 0
if and only if either i 6 2n/3 and i is even or i > n/3 and n− i is even. If this condition
fails then ? is zero and must be associative. Otherwise there exist i-sets S, T ⊆ [n] such
that χS ? χT = χS4T = χ(S4T )c belongs to the basis for Vi(

1
2
Qn) provided in Theorem 43.

The rest of the proof goes in the same way as the proof of Theorem 40 for the hypercube
Qn.

6.2 Folded cube

The folded cube �n can be obtained from the hypercube graph Qn by identifying each
pair of vertices at distance n from each other. This is a distance regular graph of diameter
d = bn/2c whose eigenvalues and multiplicities are [3, §9.2]

θi = n− 4i and dim(Vi) =

(
n

2i

)
for i = 0, 1, . . . , d = bn/2c.

Equivalently, we can define the vertex set of the folded cube �n to be X := Zn−1
2 ×{0},

and let two vertices be adjacent in �n if they differ either in exactly one position or in
all but the last position. In other words, �n is the Cayley graph Γ(X,X1 ∪Xn−1), where
Xi is the set of all elements in X with exactly i ones. This allows us to determine the
Norton algebra structure on each eigenspace of �n. For every S ⊆ [n] we define a linear
character χS of X by

χS(x) :=
∏
j∈S

(−1)x(j) for all x ∈ X.

Theorem 50. For i = 0, 1, . . . , d = bn/2c, the set {χS : S ⊆ [n], |S| = 2i} is a basis for
the eigenspace Vi of the folded cube �n such that for all S, T ⊆ [n] with |S| = |T | = 2i we
have

χS ? χT =

{
χS4T if |S4T | = 2i

0 otherwise.

Proof. For any S, T ⊆ [n], we have χS = χT if and only if S − {n} = T − {n}. Thus
the set {χS : S ⊆ [n]} has cardinality 2n−1 = |X| and must equal the set X∗ of all
linear characters of X, thanks to Theorem 5. By Theorem 6, this gives an eigenbasis of
�n. Any element of X∗ can be written as χS for some S ⊆ [n] with an even cardinality
|S| = 2i since adding or deleting n from S does not alter the corresponding character.
The eigenvalue associated with this eigenvector is

χS(X1 ∪Xn−1) =
∑

j∈S−[n]

(−1) +
∑

j∈[n−1]−S

1 +
∏

j∈S−{n}

(−1)

=

{
−(2i− 1) + n− 2i− 1 = n− 4i if n ∈ S
−2i+ n− 1− 2i+ 1 = n− 4i if n /∈ S.
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Thus {χS : S ⊆ [n], |S| = 2i} is a basis for the eigenspace Vi. If S and T are 2i-subsets
of [n] then |S4T | = |S|+ |T |− 2|S ∩T | = 2j for some integer j and χS ·χT = χS4T ∈ Vj.
Thus the projection of χS · χT to Vi is either itself if j = i or zero otherwise.

Remark 51. Every element u ∈ X = Zn−1
2 × {0} is uniquely determined by its support,

and the linear character χu given in the proof of Theorem 5 equals χS, where S := supp(u)
if |supp(u)| is even or S := supp(x) ∪ {n} if |supp(u)| is odd.

Corollary 52. For i = 0, 1, . . . , bn/2c, the Norton algebra Vi(�n) is isomorphic to
V2i(Qn).

Proof. This follows immediately from Corollary 17 and Theorem 50.

6.3 Folded half-cube

For any even integer n > 6, the folded half-cube 1
2
�n has vertex set X consisting of all

even weighted elements of Zn−1
2 × {0} and edge set E consisting of all unordered pairs

of vertices differing in exactly 2 or n − 2 positions. This is a distance regular graph of
diameter d = bn/4c. For i = 0, 1, . . . , d, the ith eigenvalue and its multiplicity are [3,
§9.2D]

θi =
(n− 4i)2 − n

2
and dim(Vi) =

{(
n
2i

)
if i < n/4

1
2

(
n
2i

)
if i = n/4.

The folded half-cube 1
2
�n is the Cayley graph Γ(X,X2 ∪ Xn−2) of the finite abelian

group X with respect to X2 ∪Xn−2, where Xi is the set of all elements in X with exactly
i ones. For every S ⊆ [n] we define a linear character χS of X by

χS(x) :=
∏
j∈S

(−1)x(j) for all x ∈ X.

Theorem 53. The Norton algebra Vi(
1
2
�n) has a basis {χS : S ⊆ [n], |S| = 2i} if

0 6 i < n/4 or {χS : S ⊆ [n], |S| = 2i, 1 ∈ S} if i = n/4. For any S, T ⊆ [n] with
|S| = |T | = 2i we have

χS ? χT =

{
χS4T = χ(S4T )c if |S4T | ∈ {2i, n− 2i}
0 otherwise.

Proof. One can check that χS = χT if and only if S − [n] = T − [n] or Sc− [n] = T − [n].
Thus the set {χS : S ⊆ [n]} has cardinality 2n−2 = |X|. By Theorem 5 and Theorem 6,
this set consists of all linear characters of X and is an eigenbasis of 1

2
�n. An element

in this basis can be written as χS for some 2i-set S ⊆ [n] with i 6 n/4, and it is an
eigenvector of 1

2
�n corresponding to the eigenvalue χS(X2 ∪Xn−2) which equals{(

2i−1
2

)
− (2i− 1)(n− 2i) +

(
n−2i

2

)
+ 2i− 1− (n− 2i) = (n−4i)2−n

2
if n ∈ S(

2i
2

)
− 2i(n− 1− 2i) +

(
n−2i−1

2

)
− 2i+ (n− 1− 2i) = (n−4i)2−n

2
if n /∈ S.
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The desired basis for Vi(
1
2
�n) follows.

Let S, T be 2i-subsets of [n]. Then |S4T | = |S| + |T | − 2|S ∩ T | = 2j for some
integer j > 0. We have χS · χT = χS4T = χ(S4T )c , which belongs to Vj(

1
2
�n) if j 6 n

4

or Vn
2
−j(

1
2
�n) if f > n

4
. Thus the projection onto Vi(

1
2
�n) takes χS · χT to itself if

2j ∈ {2i, n− 2i} or zero otherwise.

Corollary 54. For i = 0, 1, . . . , bn/4c, there is an algebra isomorphism Vi(
1
2
�n) ∼=

V2i(
1
2
Qn).

Proof. This follows immediately from Theorem 43 and Theorem 53.

7 Bilinear forms graphs

As a q-analogue of the Hamming graph H(d, e), the bilinear forms graph Hq(d, e) has
vertex set X = Matd,e(Fq) consisting of all d × e matrices over a finite field Fq and edge
set E consisting of all unordered pairs of vertices whose difference is of rank one. Assume
d 6 e, without loss of generality. The graph Hq(d, e) is distance regular and has diameter
d [3, §9.5.A] whose eigenvalues were computed by Delsarte [9] using a recursive relation.
One can also use a method for distance regular graphs with classical parameters [3, §8.4]
to show that for i = 0, 1, . . . , d, the ith eigenvalue of Hq(d, e) and its multiplicity are

θi =
qd+e−i − qd − qe + 1

q − 1
and dim(Vi) =

[
d
i

]
q

(qe − 1) · · · (qe − qi−1).

Here we use the q-binomial coefficient[
d
i

]
q

:=
(1− qd)(1− qd−1) · · · (1− qd−i+1)

(1− qi)(1− qi−1) · · · (1− q)

which counts i-dimensional subspaces in the vector space Fdq .
Note that dim(Vi) is exactly the number of d × e matrices over Fq with rank i since

the column space of such a matrix is a subspace of Fdq with dimension i, and after fixing
any basis for this space, the columns are determined by an i × e matrix over Fq of rank
i. This is essentially the rank decomposition of a d× e matrix M of rank i into a product
M = CF of a d× i matrix C and a i× e matrix F ; this decomposition is unique up to a
right multiplication of C by some invertible i× i matrix R and a left multiplication of F
by R−1.

We study the eigenspaces of the bilinear forms graph Hq(d, e) using the fact that
Hq(d, e) is the Cayley graph Γ(X,X1) of the finite abelian group X = Matd,e(Fq) ∼= Fdeq
with respect to X1, where Xi denotes the set of d × e matrices over Fq with rank i. Let
ω := exp(2πi/q) ∈ C be a primitive qth root of unity. For each u ∈ X, we have a linear
character χu defined by

χu(x) :=
d∏
j=1

e∏
k=1

ωujkxjk = ωtr(utx) for all x ∈ X. (9)
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Theorem 55. For i = 0, 1, . . . , d, the (complex) eigenspace Vi of the bilinear forms graph
Hq(d, e) has a basis {χu : u ∈ Xi} such that for all u, v ∈ Xi,

χu ? χv =

{
χu+v if u+ v ∈ Xi

0 otherwise.

Proof. By Theorem 5 and Theorem 6, we have an eigenbasis {χu : u ∈ X} with χu
being an eigenvector of the bilinear forms graph Hq(d, e) corresponding to the eigenvalue
χu(X1) for all u ∈ X. To compute the eigenvalue, we apply the rank decomposition to
each x ∈ X1 and write it as x = ytz for some nonzero vectors y = (y1, . . . , yd) ∈ Fdq and
z = (z1, . . . , ze) ∈ Feq with the understanding that rescaling y and z to cy and c−1z for
any c ∈ F×q does not alter x. Then for any u ∈ Xi we have

χu(X1) =
∑
x∈X1

d∏
j=1

e∏
k=1

ωujkxjk

=
1

q − 1

∑
y∈Fd

q

∑
z∈Fe

q

d∏
j=1

e∏
k=1

ωujkyjzk − qd − qe + 1


=

1

q − 1

∑
y∈Fd

q

e∏
k=1

∑
zk∈Fq

ω
∑d

j=1 ujkyjzk − qd − qe + 1


=

1

q − 1

 ∑
y∈Fd

q : yu=0

qe

− qd − qe + 1


=

1

q − 1

(
qd+e−i − qd − qe + 1

)
where the second last equality holds by Equation (3). Hence {χu : u ∈ Xi} is a basis of
Vi. If u, v ∈ Xi then χu · χv = χu+v ∈ Vj where j = rank(u+ v), and the projection onto
Vi either fixes χu+v if i = j or annihilates it otherwise.

Remark 56. The eigenvalue χu(X1) is a special case of the computation by Delsarte [9,
Theorem A.2] using recursion, but our calculation in the above proof is more direct.

Next, we study the automorphisms of the Norton algebra Vi(Hq(d, e)). If i = 0 then
this algebra is spanned by an idempotent χ0 and thus has a trivial automorphism group.
For i > 1 we have the following result, where In denotes the n× n identity matrix.

Theorem 57. The automorphism group of the Norton algebra Vi(Hq(d, e)) has a subgroup
isomorphic to Matd,e(Fq) o

(
(GLd(Fq)×GLe(Fq))/{(cId, cIe) : c ∈ F×q }

)
for i = 1, . . . , d.

Proof. First, every x ∈ X = Matd,e(Fq) induces an automorphism φx of Vi(Hq(d, e)) by
sending χu to χx(u)χu for all u ∈ Xi, as one can check the following for all u, v ∈ Xi.
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• If u+v ∈ Xi then φx(χu)?φx(χv) = χx(u)χx(v)χu?χv = χx(u+v)χu+v = φx(χu?χv).

• If u+ v /∈ Xi then φx(χu) ? φx(χv) = χx(u)χx(v)χu ? χv = 0 = φx(χu ? χv).

For any x, y ∈ X, we have φxφy = φx+y since if u ∈ Xi then

φx(φy(χu)) = φx(χy(u)(χu)) = χx(u)χy(u)χu = χx+y(u)χu = φx+y(χu).

Suppose that φx(χu) = χx(u)χu = χu, i.e., χx(u) = 1 for all u ∈ Xi. For any j ∈ [d]
and k ∈ [e], we can construct u ∈ Xi in such a way that changing its (j, k)-entry gives
another matrix u′ with the same rank, and χx(u) = χx(u

′) implies that the (j, k)-entry of
w is zero. Therefore x 7→ φx gives a monomorphism from X to the automorphism group
of Vi(Hq(d, e)).

Next, every a ∈ GLd(Fq) induces an automorphism λa of Vi(Hq(d, e)) by sending χu
to χau for all u ∈ Xi as the following holds for all u, v ∈ Xi.

• If u+ v ∈ Xi then λa(χu) ? λa(χv) = χau ? χav = χau+av = χa(u+v) = λa(χu ? χv).

• If u+ v /∈ Xi then λa(χu) ? λa(χv) = χau ? χav = 0 = λa(χu ? χv).

If a, a′ ∈ GLd(Fq) then λa ◦ λa′ = λaa′ . Suppose that λa(χu) = χau = χu, i.e., au = u for
all u ∈ Xi. For any j ∈ [d], there exists u ∈ Xi such that its (1, k)-entry is one if k = j or
zero if k 6= j, and au = u implies that the jth column of a coincides with the first column
of u. This shows that a = Id. Hence a 7→ λa gives a monomorphism from GLe(Fq) to the
automorphism group of Vi(Hq(d, e)).

Similarly, every b ∈ GLd(Fq) induces an automorphism ρb of Vi(Hq(d, e)) by sending
χu to χub−1 for all u ∈ Xi, and b 7→ ρb gives a monomorphism from GLe(Fq) to the
automorphism group of Vi(Hq(d, e)). It is clear that λa and ρb commute. Suppose that
λa = ρb, i.e., au = ub−1 for all u ∈ Xi. Below we distinguish two cases to show that
a = cId and b = cIe for some c ∈ F×q .

• Assume i = d = e. Taking u = Id gives a = b−1. Then au = ub−1 = ua for all
u ∈ Xi means that a is in the center of GLd(Fq), that is, a = cId for some c ∈ F×q .

• Assume i < d or d < e. For any j, j′ ∈ [d] and any k, k′ ∈ [e], let ajj′ and b−1
k,k′ denote

the (j, j′)-entry of a and (k, k′)-entry of b−1. If j 6= j′ and k 6= k′ then there exists
u ∈ Xi such that its (j, k)-entry is 1 and all other entries on the jth and j′th rows
and on the kth and k′th columns are zero, and taking the (j, k)-entry, (j, k′)-entry,
and (j′, k)-entry of au = ub−1 gives ajj = b−1

kk and aj′j = b−1
kk′ = 0. Thus a = cId and

b−1 = cIe for some c ∈ F×q .

It follows that the group G generated by {λa : a ∈ GLd(Fq)} and {ρb : b ∈ GLe(Fq)}
is isomorphic to (GLd(Fq) × GLe(Fq))/{(cId, cIe) : c ∈ F×q }. This group has a trivial
intersection with the group H := {φx : x ∈ X}, since if φx = λaρb then χx(u)χu = χaub−1

for all u ∈ Xi and φx must be the identity mapping. Moreover, we have ρ−1
b λ−1

a φxλaρb =
χatx(b−1)t since if u ∈ Xi then

ρ−1
b λ−1

a φxλaρb(u) = χx(aub
−1)χa−1aub−1b = χatx(b−1)t(u)χu
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where the last equality holds by Equation (9) and the fact that tr(xtaub−1) = tr(b−1xtau).
Hence HG contains H as a normal subgroup and must be isomorphic to H oG.

Now we measure the nonassociativity of the Norton product on Vi(Hq(d, e)). The case
d = 1 is already done as Hq(1, e) is a complete graph isomorphic to the Hamming graph
H(1, qe).

Theorem 58. Assume d > 2. Then the Norton product ? on the eigenspace Vi of Hq(d, e)
is associative if i = 0 or totally nonassociative if i = 1, . . . , d.

Proof. The Norton product on V0 is associative as V0 is one-dimensional. Assume i > 1.
For q > 4, the proof of Theorem 38 is still valid since any u ∈ Xi gives cu ∈ Xi if

c ∈ [q − 1].
For q = 3, the proof of Theorem 36 is still valid since one can find matrices u, v, w ∈ Xi

such that u+ v /∈ Xi, u+ w ∈ Xi, and v + w ∈ Xi.
For q = 2, the proof of Theorem 40 is still valid since there exist matrices u, v, w ∈ Xi

such that u+ v = w, which implies u+ w = v and v + w = u.
We leave the existence of u, v, w in the above cases as an exercise to the reader.

8 Remarks and questions

In this paper we construct a basis for each eigenspace Vi of the Hamming graph H(n, e)
using the linear characters of the vertex set X = Zne treated as a finite abelian group.
Our basis is complex and can be converted to a real basis, but the existence of a basis
over Z or even {0, 1,−1} needs further investigation.

We use our basis to provide a formula for the Norton product ? on Vi and obtain the
following result on the automorphism group of the Norton algebra (Vi, ?).

• It is the trivial group if i = 0.

• It is isomorphic to Se oSn if i = 1.

• It is isomorphic to S3 oS2n−1 if e = 3 and i = n.

• It is the general linear group of Vi if e = 2 and either i > b2n/3c or i is odd.

• It admits a subgroup is isomorphic to (Ze o Z×e ) oSn if e > 3 and i > 1.

• It admits a subgroup is isomorphic to SB
n /{±1} if e = 2 and 1 6 i < n is even.

The groups mentioned above are all different, although most of them are related to the
wreath product with symmetric groups. It will be interesting to see a complete description
of the automorphism groups of all Norton algebras of the Hamming graph H(n, e).

We also measure the nonassociativity of the Norton product on Vi(H(n, e)) and show
that this commutative product as nonassociative as possible, except for some special
cases in which it is either associative for trivial reasons (being zero or defined on a one-
dimensional vector space) or equally as nonassociative as the double minus operation
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a 	 b := −a − b. We are curious about whether the Norton algebras of other distance
regular graphs are totally nonassociative in most cases and whether they could be related
to the double minus operation or other elementary operations in some special cases.

Our results restrict to the hypercube Qn = H(n, 2) and extend to the halved and/or
folded cubes. We have algebra isomorphisms Vi(�n) ∼= V2i(Qn) and Vi(

1
2
�n) ∼= V2i(

1
2
Qn).

More generally, the folded graph Γ can be defined for any antipodal distance regular graph
Γ and is still distance regular [8, Proposition 2.14]. We would like to know if the Norton
algebras of Γ and Γ are related in the same way as above.

For other distance regular graphs, the linear character approach should be valid as
long as they are also Cayley graphs of finite abelian groups, such as the square graph of
the hypercube [24] which is related to the halved cube and the alternating forms graphs [3,
§9.5B], but a different method may be necessary otherwise. For instance, the Johnson
graphs are not Cayley graphs in general, but they have been heavily studied and their
spectra can be obtained by linear algebra (see Burcroff [5]) or representation theory (see
Krebs and Shaheen [17]). It would be interesting to see whether the existing constructions
of the eigenspaces of the Johnson graphs could be used to determine their Norton algebras.
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