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Abstract

A majority coloring of a directed graph is a vertex-coloring in which every vertex
has the same color as at most half of its out-neighbors. Kreutzer, Oum, Seymour,
van der Zypen and Wood proved that every digraph has a majority 4-coloring and
conjectured that every digraph admits a majority 3-coloring. They observed that
the Local Lemma implies the conjecture for digraphs of large enough minimum out-
degree if, crucially, the maximum in-degree is bounded by a(n exponential) function
of the minimum out-degree.

Our goal in this paper is to develop alternative methods that allow the verifica-
tion of the conjecture for natural, broad digraph classes, without any restriction on
the in-degrees. Among others, we prove the conjecture 1) for digraphs with chro-
matic number at most 6 or dichromatic number at most 3, and thus for all planar
digraphs; and 2) for digraphs with maximum out-degree at most 4. The benchmark
case of r-regular digraphs remains open for r ∈ [5, 143]. Our inductive proofs depend
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on loaded inductive statements about precoloring extensions of list-colorings. This
approach also gives rise to stronger conclusions, involving the choosability version
of majority coloring.

We also give further evidence towards the existence of majority-3-colorings by
showing that every digraph has a fractional majority 3.9602-coloring. Moreover we
show that every digraph with large enough minimum out-degree has a fractional
majority (2 + ε)-coloring.

Mathematics Subject Classifications: 05C15, 05C20

1 Introduction

Preliminiaries. Digraphs considered in this paper are loopless, have no parallel edges,
but are allowed to have anti-parallel pairs of edges (digons). A directed edge with tail u
and head v is denoted by (u, v). For a digraph D and a vertex v ∈ V (D), we let N+(v)
and N−(v) denote the out- and in-neighborhood of v in D and d+(v), d−(v) the respective
sizes. We denote by δ+(D), δ−(D), ∆+(D), ∆−(D) the minimum or maximum out- or
in-degree of D, respectively, and let ∆(D) = max{d+(v) + d−(v)|v ∈ V (D)} denote the
maximum degree in D. The underlying graph of a digraph D, denoted by U(D), is the
simple undirected graph with vertex set V (D) in which two vertices x 6= y are adjacent
iff (x, y) ∈ E(D) or (y, x) ∈ E(D). We say that D is r-regular for an integer r > 1 if
d+(x) = d−(x) = r for every x ∈ V (D).

A majority coloring of a digraph D with k colors is an assignment c : V (D) →
{1, . . . , k} such that for every v ∈ V (D), we have c(w) = c(v) for at most half of all out-
neighbors w ∈ N+(v). This notion of coloring was first introduced and investigated by
Kreutzer, Oum, Seymour, van der Zypen, and Wood [12]. Related questions concerning
splittings of digraphs with degree restrictions have been well studied, see for instance [1,
2, 3]. The main result obtained by Kreutzer et al. shows that every digraph has a majority
4-coloring. Their elegant argument is based on the observation that every acyclic digraph
can be majority 2-colored. The relevant property of an acyclic digraph is that there
is an ordering of its vertices, in which every vertex is preceded by its complete out-
neighborhood. Then coloring vertices along this ordering with two colors such that each
vertex is assigned the color that appears least frequently in the (already colored) out-
neighborhood will produce a majority 2-coloring.

It is easy to construct digraphs which require three colors for a majority coloring.
The canonical examples are the odd directed cycles ~C2k+1, k > 1, which are not majority
2-colorable since for digraphs with maximum out-degree 1 majority-coloring and proper
graph coloring of the underlying graph are equivalent. However, no example of a digraph
is known that requires the use of four colors. Kreutzer et al. conjectured that there are
none.

Conjecture 1 ([12]). Every digraph is majority 3-colorable.

Kreutzer et al. [12] also provide ample evidence for their conjecture by establishing
that it holds for “most” digraphs. They show, using the Lovász Local Lemma, that the
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uniform random 3-coloring is a majority 3-coloring with non-zero probability if certain
local density conditions hold, namely if

• δ+(D) > 72 ln(3|V (D)|), or

• δ+(D) > 1200 and ∆−(D) 6 exp(δ+(D)/72)
12δ+(D)

.

In [12] it is also mentioned at the end that a more careful analysis of the Local Lemma ap-
proach works for r-regular digraphs provided r > 144. Subsequently Girão, Kittipassorn,
and Popielarz [10] studied tournaments in particular, and showed, also using the proba-
bilistic method, that every tournament with minimum out-degree at least 55 is majority
3-colorable.

These are all the results we are aware of about Conjecture 1. All the proofs use the
Local Lemma for a random coloring and hence require some upper bound on the maximum
in-degree in terms of the minimum out-degree (in order to control the number of ”bad”
events that are adjacent to any fixed bad event in some dependency graph of the events).
As it is the case in many related open problems on splitting/coloring digraphs with large
minimum out-degree [2, 16, 4, 9], large maximum in-degrees seem to be outside the realm
of any such probabilistic approach and it looks like it constitutes the main difficulty of the
problem. This is also illustrated by the fact that it was not even known whether planar
digraphs are majority 3-colorable.

In this paper our main motivation is to complement the existing results on digraphs
with balanced in- and out-degrees, and provide approaches for natural, broad families of
digraphs, without any restriction on the maximum in-degree.

1.1 Our results

1.1.1 Majority 3-Colorability

Since a proper coloring is also a majority coloring, Conjecture 1 is immediately true for
digraphs with chromatic number at most three. For 4-chromatic digraphs this is already
not obvious. Our first result resolves the conjecture for digraphs with low chromatic num-
ber, including planar digraphs (the chromatic number of a digraph here simply denotes
the chromatic number of its underlying undirected graph).

Theorem 2. Let D be a digraph such that χ(D) 6 6. Then D is majority 3-colorable.

The most commonly used digraph coloring concept which captures also the orientation
of edges, is the dichromatic number. For a digraph D, its dichromatic number ~χ(D) is
defined as the smallest integer k such that there exists a k-coloring f : V (D) → [k]
such that there is no monochromatic cycle, that is, each color class f−1(i) is acyclic.1

This parameter was first introduced in 1982 by Victor Neumann-Lara [13]2 and grew in
importance ever since.

1A coloring with no monochromatic cycle is called acyclic coloring.
2Some authors simply refer to ~χ(D) as the chromatic number of the digraph D.
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In the introduction above we mentioned how to give a majority 2-coloring of acyclic
digraphs, i.e. digraphs with dichromatic number 1. In our second main result we prove
Conjecture 1 for digraphs with dichromatic number at most three.

Theorem 3. Let D be a digraph such that ~χ(D) 6 3. Then D is majority 3-colorable.

1.1.2 The Proofs and Majority List Coloring

For our proofs it will be crucial to work in a more general framework, involving the list
coloring version of majority coloring. This allows us to formulate appropriately loaded
inductive statements from which our theorems follow.

The notion of majority choosability of digraphs was first proposed in [12]. For an
assignment L : V (D) → 2N of subsets L(v) ⊆ N of colors to each vertex v ∈ V (D),
we call a coloring f : V (D) → N an L-coloring if f(v) ∈ L(v) for every v ∈ V (D).
When L(v) = [k], then L-coloring and k-coloring coincide. We call a digraph majority
k-choosable if for every k-list assignment (i.e., assignment L with |L(v)| = k for every
v ∈ V (D)) there is a majority L-coloring.

It was noted in [12] that all the results about dense digraphs using the Local Lemma
remain valid for majority 3-choosability (instead of majority 3-colorability). Moreover,
Anholcer, Bosek, and Grytczuk [5] gave a beautiful proof to show that every digraph is
majority 4-choosable (not only majority 4-colorable).

The following theorem is at the heart of our proofs and is interesting in its own right.

Theorem 4. Let D be a digraph and for each v ∈ V (D) let L(v) be a list of two colors.
Suppose that there exists no odd directed cycle in D all whose vertices are assigned the
same list. Then there is a majority-coloring c of D such that c(v) ∈ L(v) for all v ∈ V (D).

This statement has several nice consequences, some immediate, some less so. We
collect these in the next subsection.

1.1.3 Consequences for majority 3- and 2-colorings

We start by stating choosability analogues of our first two theorems. The analogue of
Theorem 2 connects the choosability of the underlying graph to majority choosability.

Theorem 5. Let D be a digraph whose underlying undirected graph is 6-choosable. Then
D is majority 3-choosable. In particular any digraph with a 5-degenerate underlying graph
is majority 3-choosable.

The list dichromatic number ~χ`(D) of a digraph D was introduced by Bensmail, Haru-
tyunyan, and Le [8]. It is defined as the minimum integer k > 1 such that for any k-list as-
signment, we can choose colors from the respective lists without producing monochromatic
directed cycles. We have the following analogue of Theorem 3 involving this parameter.

Theorem 6. Let D be a digraph with ~χ`(D) 6 3. Then D is majority 3-choosable.
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The results of [12] and [10] cited in the introduction indicate that the case of r-regular
digraphs for constant r constitute an important benchmark in the study of Conjecture 1.
Recall in particular that the Local Lemma approach works for r-regular digraphs provided
r > 144. Next we obtain conditions at the other end of the local density spectrum, which
imply that r-regular digraphs are majority 3-colorable for r 6 4.

Note first the crucial non-monotonicity in the problem: even though we do not know
whether Conjecture 1 is true for r = 143, it does hold (quite easily) for r = 1 and 2.
Indeed, a 1-regular digraph is the disjoint union of directed cycles, and hence we can
3-color it properly to obtain a majority-coloring. Then Conjecture 1 also follows for 2-
regular digraphs. Even more generally, the validity of the conjecture for any odd regularity
r − 1 implies it for the next even regularity r. This is the consequence of the fact3 that
for even r any r-regular digraph D contains a 1-regular spanning subgraph F and any
3-majority coloring of the (r− 1)-regular digraph D−F is also a majority coloring of D.
Most generally, if a digraph D′ is obtained from a digraph D by adding an edge (u, v)
whose tail has odd out-degree d+D(u) then a majority coloring of D is also a majority
coloring of D′.

From our next result it follows that 3- and 4-regular digraphs are majority 3-choosable
and hence Conjecture 1 holds for them as well.

Theorem 7. If ∆+(D) 6 4 or ∆(U(D)) 6 6 or ∆(D) 6 7, then D is majority 3-
choosable.

An open question posed in [12] asked whether there is a characterisation of digraphs
that have a majority 2-coloring (or a polynomial time algorithm to recognise such di-
graphs). This was answered (most likely) in the negative by Bang-Jensen, Bessy, Havet,
and Yeo [7] who showed that deciding whether a 3-out-regular digraph is majority 2-
colorable is NP-complete. With no hope for an efficient characterization of majority
2-colorability, any simple sufficient condition comes in handy.

For a condition, it is natural to exclude odd directed cycles, as they are canonical
examples of graphs with no majority 2-coloring. It turns out that excluding them already
implies 2-choosability.

Theorem 8. If D is a digraph without odd directed cycles, then D is majority 2-choosable.

1.1.4 Fractional Majority Colorings

The concept of fractional majority coloring emerges as the natural LP-relaxation of the
problem of majority coloring, much in the same way as the usual fractional colorings of
graphs. This notion was first introduced in [12]. The definition is somewhat technical
and we postpone it to Section 4. To appreciate our results here, it is sufficient to keep
in mind that the minimum total weight of a fractional majority coloring is at most the
majority chromatic number.

3To see this, consider the undirected bipartite graph obtained from D by splitting every vertex v into
two vertices v+, v− and adding an edge u+v− for every arc (u, v) ∈ A(D). Then this bipartite graph is
r-regular and hence has a perfect matching, which yields a 1-regular spanning subdigraph of D.
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Kreutzer et al [12] ask what is the smallest constant K such that every digraph admits
a fractional majority coloring with total weight at most K. This is yet another direction
to approach Conjecture 1 from. Proving that there is a fractional majority coloring with
total weight 3 for every digraph would certainly be an easier task. Here we take the first
step in this direction and show that the upper bound of 4, which follows from the fact
that every digraph is majority 4-colorable, can be slightly improved.

Theorem 9. Every digraph D admits a fractional majority coloring with total weight at
most 3.9602.

Our proof is the combination of an intricate probabilistic coloring with some deter-
ministic alteration.

In the second theorem of the section we show that digraphs with sufficiently large
minimum out-degree have fractional majority colorings with total weight arbitrarily close
to 2. This improves the corresponding result in [12] obtained using the Local Lemma, as
the upper bound on the maximum in-degree is not necessary here.

Theorem 10. There exists a constant C > 0 such that for every ε > 0 and every digraph
D with δ+(D) > C(1/ε)2 ln(2/ε), there exists a fractional majority coloring of D with
total weight at most 2 + ε.

Organization of the paper. In Section 2 we obtain Theorem 8 as a consequence
of a more general result (Theorem 4). This result is crucial for the proofs of Theo-
rems 2, 3, 7, 5, 6, which are presented in Section 3. In Section 4 we treat fractional
majority colorings and prove Theorems 9 and 10. We conclude with final remarks and
some open problems in Section 5.

2 Digraphs without Odd Directed Cycles

We have seen that acyclic digraphs as well as bipartite digraphs are majority 2-colorable.
We have also seen that odd directed cycles are canonical examples of digraphs having no
majority 2-coloring. It is therefore natural to try unifying these results and ask whether
every digraph without an odd directed cycle is majority 2-colorable. In this section, we
answer this question positively. We start with a simple observation:

Lemma 11. A digraph D contains no odd directed cycles if and only if all its strong
components are bipartite.

Proof Sketch. The sufficiency of this condition is obvious, as a directed cycle is always
contained in a single strong component. For the reverse direction, it suffices to observe
that if D is strongly connected and all directed cycles have even length, then D is bipartite.
This statement can be easily verified by considering an ear decomposition of D.

Proposition 12. Let D be a digraph which contains no odd directed cycles. Then D is
majority 2-colorable. Moreover, any given pre-coloring of the sinks of D can be extended
to a majority 2-coloring of D.
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Proof. We prove the statement by induction on the number s > 1 of strong components
of D. Suppose first that s = 1, i.e. D is strongly connected. Then by Lemma 11 D is
bipartite and therefore majority 2-colorable. Since D is either a single vertex or contains
no sinks, the claim follows.

Now let s > 2 and suppose that the statement holds true for all digraphs with at most
s− 1 strong components. We now distinguish two cases: Either, D is an independent set
of s vertices, and therefore, the claim holds trivially true. If there exists at least one arc
in D, there has to be a strong component of D containing no sinks such that there are no
arcs entering the component. Let X be the vertex set of this component.

Now let a pre-coloring of the sinks of D with 1, 2 be given. By the choice of X, D−X
has the same set of sinks as D and s−1 strong components. By the inductive assumption,
there exists a majority 2-coloring c : V (D) \ X → {1, 2} of D − X which extends the
pre-coloring of the sinks. By Lemma 11, there exists a bipartition {A,B} of D[X].

For any subset W ⊆ X equipped with a vertex-coloring cW : V (D) \ W → {1, 2}
of D −W , any vertex x ∈ W , and any i ∈ {1, 2}, denote by d(cW , i, x) the number of
out-neighbors of x which lie in V (D) \W and have color i under cW .

We now claim that there exists a subset U ⊆ X and a 1, 2-coloring cU of D−U which
extends c, such that

• Every vertex x ∈ V (D)\U has at least d+(x)
2

out-neighbors in V (D)\U with a color
different from cU(x).

• Every vertex x ∈ U fulfills max{d(cU , 1, x), d(cU , 2, x)} < 1
2
d+(x).

In order to find such a set, we apply the following procedure:
We keep track of a pair (W, cW ), consisting of a subset W ⊆ X and a vertex-coloring

cW : V (D) \ W → {1, 2} extending c. As an invariant we will keep the first of the

two above properties, i.e. we assert that every vertex x ∈ V (D) \W has at least d+(x)
2

out-neighbors with a different color according to cW .
We initialize W := X, cW := c. It is clear that this assignment satifies the invariant

(remember that c is a majority coloring of D −X, and that no edges enter X).
As long as a vertex x0 ∈ W with max{d(cU , 1, x0), d(cU , 2, x0)} > 1

2
d+(x0) exists, we

choose such a vertex. We put W ′ := W \ {x0}, and define a coloring cW ′ of D − W ′

according to

cW ′(x) :=


cW (x), if x 6= x0

1, if x = x0, d(cW , 1, x0) < d(cW , 2, x0)

2, if x = x0, d(cW , 1, x0) > d(cW , 2, x0)

.

It is easily verified that the coloring cW ′ also fulfills the invariant, since by definition x0
has at least max{d(cU , 1, x0), d(cU , 2, x0)} > 1

2
d+(x0) out-neighbors in D−W ′ of different

color.
Finally we update according to (W, cW ) := (W ′, cW ′).
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In the moment the procedure terminates, we have found a subset U := W ⊆ X and a
1, 2-coloring cU of D − U extending c with the property that every vertex x ∈ V (D) \ U
has at least d+(x)

2
out-neighbors with different color according to cU . Since the procedure

terminated, we furthermore have max{d(cU , 1, x), d(cU , 2, x)} < 1
2
d+(x) for every vertex

x ∈ U . This shows that U satisfies both of the conditions stated above.
We now finally extend the coloring cU of V (D) \ U to a 1, 2-coloring of D by giving

color 1 to each vertex in A∩U and color 2 to every vertex in B∩U . This coloring extends
c and therefore the initial pre-coloring of the sinks, and is a majority coloring: By the

first of the two conditions, every vertex x ∈ V (D) \ U has at least d+(x)
2

out-neighbors
with a different color. For each vertex x ∈ U , since {A,B} is a bipartition of D[X], all
out-neighbors in U have a different color, and among the out-neighbors in D−U , at most
max{d(cU , 1, x), d(cU , 2, x)} < 1

2
d+(x) can share its color. Therefore every vertex satifies

the condition for a majority-coloring, and this concludes the proof of the claim.

We are now ready for the proof of Theorem 4.

Proof of Theorem 4. We may assume w.l.o.g. that color lists of adjacent vertices always
intersect: Otherwise, we remove all edges between vertices with disjoint color lists to
obtain a digraph D′. Any majority-coloring of D′ with colors chosen from the lists will
also be a majority-coloring of D.

Now consider an arbitrary pair {a, b} of colors and let X{a,b} := {x ∈ V (D)|L(x) =
{a, b}}. By assumption D[X{a,b}] contains no odd directed cycles. Let D′{a,b} be the

digraph obtained from D[X{a,b}] by adding all arcs (x, y) ∈ E(D) with x ∈ X{a,b} and
y /∈ X{a,b} and their endpoints. Since we only add sinks to D[X{a,b}], also D′{a,b} contains

no odd directed cycles. For each vertex y ∈ N+(X{a,b}) \ X{a,b}, there is a unique color
p{a,b}(y) in L(y) ∩ {a, b}. Pre-color the sinks of D′{a,b} in such a way that every vertex

y ∈ N+(X{a,b}) \ X{a,b} receives color p{a,b}(y). By Proposition 12 we can now find a
majority-coloring c{a,b} of D′{a,b} extending this pre-coloring with colors a and b.

Now define a coloring c of all vertices in D by setting c(x) := c{a,b}(x) if L(x) = {a, b}.
Clearly, we have c(x) ∈ L(x) for all x ∈ V (D). We claim that c is a majority-coloring of
D. Indeed, for any vertex x ∈ V (D), if L(x) = {a, b}, then we have N+(x) = N+

D′
{a,b}

(x),

and {y ∈ N+(x) | c(y) = c(x)} ⊆ {y ∈ N+
D′

{a,b}
(x) | c{a,b}(x) = c{a,b}(y)}. Hence, at most

half of the out-neighbors of x share its color, and the claim follows.

Theorem 8 is now obtained from Theorem 4 as a direct consequence.

3 Majority 3-Colorings of Sparse Digraphs

As a consequence of Theorem 4, we obtain our main result:

Theorem 13. Let D be a digraph. Suppose there is a partition {X1, X2, X3} of the vertex
set such that for every i ∈ {1, 2, 3}, D[Xi] contains no odd directed cycles. Then D is
majority 3-colorable.
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Proof. We assign lists of size two to the vertices of D, namely, we assign the list {2, 3} to
all vertices in X1, the list {1, 3} to all vertices in X2, and the list {1, 2} to all vertices in
X3. Because D[Xi], i = 1, 2, 3 contains no odd directed cycle, we can apply Theorem 4
to conclude that there exists a majority-coloring of D which uses only colors 1, 2 and 3.
This proves the claim.

From this we now directly derive Theorems 2 and 3.

Proof of Theorem 2. If χ(D) 6 6, then D admits a partition Y1, . . . , Y6 into independent
sets. Using the partition {Y1 ∪ Y2, Y3 ∪ Y4, Y5 ∪ Y6} of the vertex set to apply Theorem 13
now shows that D is indeed majority 3-colorable.

Proof of Theorem 3. If ~χ(D) 6 3, then there exists a partition {X1, X2, X3} of the vertex
set such that D[Xi] contains no directed cycles, for i = 1, 2, 3. The claim now follows by
Theorem 13.

The fact that Theorem 4 deals with an assignment of lists can be further exploited to
show analogues of Theorem 13, Theorems 2 and 3 for list colorings.

For this purpose we need the following notion: Call a digraph D OD-3-choosable if
for any assignment of color lists L(x), x ∈ V (D) of size 3 to the vertices, there exists a
choice function c (i.e. c(x) ∈ L(x) for all x ∈ V (D)) such that no odd directed cycle in
(D, c) is monochromatic.

Theorem 14. Let D be a digraph. If D is OD-3-choosable, then D is majority 3-
choosable.

Proof. Let L(v) for all v ∈ V (D) be a given color list of size three. We have to show that
there is a majority-coloring c of D such that c(v) ∈ L(v) for all v ∈ V (D). For every
v ∈ V (D), let L∗(v) := {{C1, C2}|C1 6= C2 ∈ L(v)} contain all three unordered color-pairs
in L(v). Since D is OD-3-choosable, there exists a choice function c∗ on V (D) such that
c∗(v) ∈ L∗(v) for each vertex v ∈ V (D) is a subset of L(v) of size two and such that there
exists no odd directed cycle in D which is monochromatic with respect to c∗. If we now
consider c∗(v), v ∈ V (D) as a 2-list assignment of D, we can apply Theorem 4 to conclude
that there is a majority-coloring c of D such that c(v) ∈ c∗(v) ⊆ L(v) for every vertex
v ∈ V (D). As L(·) was arbitrary, we conclude that D is majority 3-choosable.

We are now ready to prove Theorems 5 and 6.

Proof of Theorem 5. We show that D is OD-3-choosable, the claim then follows by The-
orem 14. Let L(v) for each vertex v ∈ V (D) be an assigned list of three colors. For each
color C used in one of the lists, let C ′ be a distinct copy of this color. We now consider the
assignment L6(·) of lists of size 6 to the vertices of D, where for each vertex v ∈ V (D),
L6(v) := {C1, C

′
1, C2, C

′
2, C3, C

′
3} if C1, C2, C3 denote the colors contained in L(v). Be-

cause the underlying graph of D is 6-choosable, there is a proper coloring c6 of D such
that c6(v) ∈ L6(v) for all v ∈ V (D). Now consider the coloring c of D obtained from c6 by
identifying each copy C ′ of an original color C with C again. We then have c(v) ∈ L(v)
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for every v ∈ V (D). Since c6 was a proper coloring of the undirected underlying graph of
D, each color class with respect to c induces a bipartite subdigraph of D, and hence there
are no monochromatic odd directed cycles in (D, c). Hence, D is OD-3-choosable.

Proof of Theorem 6. This follows directly since any digraph with ~χ`(D) 6 3 is clearly
OD-3-choosable.

The rest of this section is devoted to proving Theorem 7. The proof uses the following
Lemma, which in turn uses Theorems 5 and 6.

Lemma 15. Let D be a digraph such that min{d+(x), d−(x)+1} 6 3 for every x ∈ V (D).
Then D is OD-3-choosable.

Proof. Suppose the claim was false and consider a counterexample D minimizing |V (D)|+
|E(D)|. We have |V (D)| > 4, D is connected and every proper subdigraph of D must be
OD-3-choosable.

We first consider the case that there is a vertex v with d−(v) 6 2. Since D − v is
OD-3-choosable, given any assignment L(v), v ∈ V (D) of lists of size at least 3 to the
vertices, we can choose colors c(w) ∈ L(w) from the lists for every w ∈ V (D) \ {v} such
that in D − v, there exists no monochromatic odd directed cycle. Now assign to v a
color c(v) ∈ L(v) \ {c(w) | w ∈ N−(v)}. We claim that c is a coloring of D without
monochromatic odd directed cycles. In fact, such a cycle would have to pass v, however
no edge entering v is monochromatic. Therefore D is OD-3-choosable, a contradiction.

Hence we know for every x ∈ V (D) that d−(x) > 3. Since min{d+(x), d−(x) + 1} 6 3,
we also must have d+(x) 6 3. We conclude

3|V (D)| 6
∑

v∈V (D)

d−(x) =
∑

v∈V (D)

d+(x) 6 3|V (D)|

and thus we have d+(x) = d−(x) = 3 for all x ∈ V (D). Consequently, the underlying
simple graph U(D) has maximum degree ∆(U(D)) 6 6. If U(D) is 6-choosable, then it
follows as in the proof of Theorem 5 that D is OD-3-choosable, a contradiction.

Therefore, by the list coloring version of Brooks’ Theorem [15], we must have U(D) =
K7. Since D is 3-out- and 3-in-regular, it follows that D is a tournament on 7 vertices.
However, every tournament on 7 vertices has list dichromatic number at most 3 and is
therefore OD-3-choosable according to Theorem 6. This can be seen using two results from
[8]. Clearly, we have ~χ(D) 6 3. Now if ~χ(D) = 3, then we have |V (D)| = 7 6 2~χ(D) + 1
and by Theorem 2.2 in [8], we conclude that ~χ`(D) = ~χ(D) = 3. Otherwise, we have
~χ(D) 6 2. In this case, we can apply Theorem 3.3 in [8] to conclude ~χ`(D) 6 2 ln(7) < 4.
Therefore we have ~χ`(D) 6 3 in each case.

Finally, since we obtained thatD is OD-3-choosable in each case, the initial assumption
was wrong, which concludes the proof by contradiction.

Corollary 16. Let D be a digraph with min{d+(x), d−(x) + 2} 6 4 for every x ∈ V (D).
Then D is majority 3-choosable.
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Proof. For a proof by contradiction, suppose the claim was false and consider a coun-
terexample D minimizing the number of edges.

Consider first the case that there is a v ∈ V (D) with d+(v) = 4. Let e be an edge
leaving v and put D′ := D − e. By the minimality of D, D′ is majority 3-choosable. We
now claim that any majority-coloring of D′ also defines a majority-coloring of D. Clearly,
such a coloring satisfies the condition for a majority-coloring at any vertex distinct from
v. Since v has out-degree 3 in D′, it has at most one out-neighbor in D′ of the same
color. Thus there are at most two out-neighbors of v in D which share its color, and
so the majority condition is fulfilled at v. We conclude that also D must be majority
3-choosable, which gives the desired contradiction.

Now for the second case, assume that no vertex has out-degree 4. This means that
for every x ∈ V (D), we either have d+(x) 6 3 or d+(x) > 5 and therefore d−(x) 6 2.
We can therefore apply Lemma 15 to D, which shows that D is OD-3-choosable. From
Theorem 14 we get that D is majority 3-choosable. This again is a contradiction to D
being a counterexample to the claim.

Therefore the initial assumption was wrong, and this concludes the proof.

Proof of Theorem 7. If ∆+(D) 6 4 or ∆(D) 6 7, then the claim follows by applying
Corollary 16. If ∆(U(D)) 6 6, then by the list coloring version of Brook’s Theorem either
U(D) is 6-choosable, and then the claim follows from Theorem 5, or U(D) = K7.

Now let L(v1), . . . , L(v7) be lists of size three assigned to the vertices {v1, . . . , v7} of D.
We first consider the case that all lists are equal, i.e., show that D is majority 3-colorable.

If there exists a vertex v ∈ V (D) which is contained in at most 3 digons, then there
are vertices u1 6= u2 ∈ V (D) \ {v} such that u1, u2, v do not form a directed triangle.
Therefore, any partition {X1, X2, X3} of V (D) where X1 = {v, u1, u2} and |X2| = |X3|
shows, by Theorem 13, that D is majority 3-colorable. Otherwise, every vertex in D is
contained in at least 4 digons and thus has out-degree at least 4. Now any 3-coloring of
D with color classes of sizes 2, 2, 3 defines a majority-coloring of D.

Now suppose that not all lists are equal. In this case we can choose for each vertex vi a
sublist L2(vi) ⊆ L(vi) of size two such that no three vertices are assigned the same sublist
(minimize the number of edges whose ends are assigned the same sublist). By Theorem 4
we obtain a majority-coloring c of D where c(vi) is contained in L2(vi) ⊆ L(vi). Hence,
D is majority 3-choosable in each case, which concludes the proof.

4 Fractional Majority Colorings

Another concept introduced in [12] is that of a fractional majority coloring. Given a
subset S ⊆ V (D), a vertex v is popular in S if v ∈ S and more than half of its out-
neighbors are in S. A subset S ⊆ V (D) is stable if it contains no popular vertices. Let
S(D) be the set of all stable sets of D, and S(D, v) the set of all stable sets containing
v. A fractional majority coloring is a function that assigns a weight wT > 0 to every
set T ∈ S(D), satisfying

∑
T∈S(D,v)wT > 1 for every v ∈ V (D). The total weight of a

fractional majority coloring is simply
∑

T∈S(D)wT . Kreutzer et al. asked for the minimum

the electronic journal of combinatorics 28(2) (2021), #P2.31 11



constant K such that every digraph admits a fractional majority coloring with total weight
at most K.

We will show two results related to this question, namely Theorem 9 and Theorem 10.
The proof of these two theorems will be based on the dual of the linear program defined
by the restrictions on a fractional majority coloring:

Observation 17. For a digraph D, the minimum possible total weight of a fractional
majority coloring equals the maximum total weight

∑
v∈V (D)wv in a non-negative weight

assignment of V (D) in which every stable set T satisfies
∑

v∈T wv 6 1.

The main idea of the proof of both theorems is that, given any choice of weights on
V (D), we can construct a stable set in which the weight is at least a given fraction of the
total weight, using the probabilistic method.

Lemma 18. Let D be a digraph and let 0 < p < 1. Suppose that one can take a random
subset X ⊆ V (D) with the property that, for every v ∈ V (D), the probability that v is in
X but not popular in X is at least p. Then D admits a fractional majority coloring with
total weight at most 1

p
.

Proof. Suppose that D is a counterexample to our statement, and we will reach a con-
tradiction. By Observation 17, we can assign weights to V (D) so that the total weight is
w > 1

p
, and every stable set in D has a sum of weights at most one. Let Y be the set of

popular vertices in X. By linearity of expectation, the expected total weight of X \ Y is
at least pw > 1.

Take an instance of X \ Y with weight greater than 1. Every vertex in X \ Y has
at least half of its out-neighbors outside of X, which implies that it is not popular in
X \ Y . Hence X \ Y is stable in D and has total weight greater than 1, producing a
contradiction.

The proof of Theorem 10 is a straightforward application of this lemma:

Proof of Theorem 10. Let ε > 0, let C > 0 be a sufficiently large absolute constant and
let N > C(1/ε)2 ln(2/ε) be an integer. Let D be a digraph with δ+(D) > N . Our
goal is to show that D admits a fractional coloring with total weight at most 2 + ε.
We may w.l.o.g. assume that ε < 1.9602, as otherwise the claim follows by applying
Theorem 9, which is given below. This ensures that ln(2/ε) is lower-bounded by a positive

constant. Set p = 1
2
−
√

lnN
N

. Let X be a random subset of V (D) in which every element

is included independently with probability p. Hoeffding’s inequality states that for a
binomial random variable B(n, p) with n trials and success probability p, and for any
ε > 0, it holds that Pr(B(n, p) > (p + ε)n) 6 exp(−2ε2n). For every fixed vertex
v ∈ V (D), the random variable |X ∩ N+(v)| counting the number of out-neighbors of
v contained in X is distributed binomially with n = d+(v) and probability p. Hence,

putting ε = 1
2
− p =

√
lnN
N

we find that for any vertex v the probability that at least half
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of its out-neighbors are in X is at most

Pr

(
|X ∩N+(v)| > 1

2
d+(v)

)
6 e−2(

1
2
−p)

2
d+(v) 6 e−2 lnN = N−2

Setting q = N−2, from Lemma 18 we find a fractional majority coloring of total weight

at most 1
p−q 6 2 + 2

√
lnN
N

. For C chosen sufficiently large, we now obtain:

2

√
lnN

N
6 2

√
ln(C(1/ε)2 ln(2/ε))

C(1/ε)2 ln(2/ε)
= ε

2√
C

√
2 ln(2/ε) + ln(C

4
ln(2/ε))

ln(2/ε)

= ε · 2√
C

√
2 +

ln(C
4

ln(2/ε))

ln(2/ε)︸ ︷︷ ︸
�1

< ε.

This shows that D admits a fractional majority coloring with weight at most 2 + ε, as
required.

For Theorem 9, we need to be more careful. Consider again the set X containing each
vertex independently with probability p, where p is slightly lower than 1

2
. If the out-degree

of v is not 1, one can show that the probability that v is popular in X is upper-bounded
by a constant, strictly smaller than p− 1

4
. However, if v has out-degree 1, the probability

that v is popular in X is p2 > p − 1
4
. For this reason, the vertices with out-degree 1

deserve extra consideration.
Observe that, in the graph induced by the vertices of out-degree 1, all cycles are

directed, pairwise disjoint and act as sinks. Consequently, removing one vertex from each
directed cycle produces an acyclic graph, where the vertices can be given an ordering in
which every edge goes from a larger vertex to a smaller one.

Proof of Theorem 9. Set p1 = 0.4594 and p2 = 0.4503. Assign independently to each
vertex v a random indicating variable Xv, which takes the value 1 with probability p1 if
d+(v) = 1 and with probability p2 otherwise. Now construct the random subset X as
follows:

• Add to X all vertices v with d+(v) 6= 1 and Xv = 1.

• For every cycle C formed by vertices with d+(v) = 1 and Xv = 1, select a vertex
v ∈ C uniformly at random and set Xv = 0.

• Take an ordering of the vertices v with d+(v) = 1 and Xv = 1, in which if we have
an edge (v, w) then v comes after w (this is possible because these vertices form an
acyclic digraph). Following this order, add v to X if its out-neighbor is not in X.
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v v

v v

Figure 1: The four possible out-neighborhoods of a red vertex. The black vertex here can
be either red or blue.

We will show that, for every vertex v, the probability that v is in X but not popular
in X is at least 1

4
+ ε, for a fixed value of ε > 0. Suppose first that d+(v) = 1. If we draw

the vertices with out-degree 1 in red and those with other out-degrees in blue, then the
successive out-neighborhoods of v must have one of these forms:

We label the cases as Case 1 through Case 4, left to right and top to bottom in
Figure 1. We denote v = v0, and vi+1 as the out-neighbor of vi, if it is unique. We go
through each case:

• If v is in Case 1, then whenever Xv = 1 and Xv1 = 0 we have v ∈ X. This happens
with probability p1(1− p2).

• If v is in Case 2, then whenever Xv = 1 and Xv1 = 0, or whenever Xv, Xv1 and Xv2

all equal 1, we have v ∈ X. This happens with probability p1(1− p1) + p21p2.

• If v is in Case 3, then whenever Xv = 1 and Xv1 = 0, or whenever Xv = 1, Xv1 = 1,
Xv2 = 1 and Xv3 = 0 we have v ∈ X. This happens with probability at least
p1(1− p1) + p31(1− p1).

• If v is in Case 4, if Xv = 1 and Xv1 = 0, or if Xv, Xv1 and Xv2 all initially equal
1 and Xv1 is selected to be modified, then we have v ∈ X. This happens with
probability p1(1− p1) + 1

3
p31.

Suppose now that d+(v) 6= 1. The probability that v ∈ X is p2. If v is popular in
X, then over half of its out-neighbors w have Xw = 1 (this is necessary for w ∈ X).
Since the Xw are independent, and each of them takes the value 1 with probability at
most p1, the probability that v is popular on X, conditioned on v ∈ X, is at most

Pr
(
B(d+(v), p1) >

d+(v)
2

)
. For d+(v) = 3, this probability is 3p21 − 2p31. We claim that

this is the worst case:

Proposition 19. For every k 6= 1,

Pr

(
B(k, p1) >

k

2

)
6 Pr(B(3, p1) > 2).

the electronic journal of combinatorics 28(2) (2021), #P2.31 14



Proof. Consider an infinite sequence X1, X2, . . . of indicating random variables, each tak-
ing value 1 independently with probability p1. Let Ii be the event “among the first
i variables more than half take value 1”. Then Pr(Ik) = Pr

(
B(k, p1) >

k
2

)
. Clearly

Pr(I0) = 0. Moreover, if k is even then Ik implies Ik+1, so we can restrict ourselves to
odd k.

We will prove our statement by induction, by showing that Pr(I2k+1) < Pr(I2k−1)
for k > 2. Indeed, the event I2k−1 \ I2k+1 is precisely the case in which exactly k of
the first 2k − 1 variables take value 1, and X2k = X2k+1 = 0. Therefore Pr(I2k−1 \
I2k+1) =

(
2k−1
k

)
pk1(1 − p1)

k+1. Similarly, the event I2k+1 \ I2k−1 is precisely the case in
which exactly k− 1 of the first 2k− 1 variables take value 1, and X2k = X2k+1 = 1. Thus
Pr(I2k+1 \ I2k−1) =

(
2k−1
k−1

)
pk+1
1 (1 − p1)k. Now P (I2k−1) − P (I2k+1) = Pr(I2k−1 \ I2k+1) −

Pr(I2k+1 \ I2k−1) =
(
2k−1
k

)
pk1(1− p1)k(1− 2p1) > 0.

With this, we know that for every vertex v the probability that v is in X and not
popular in X is at least

min{p1(1−p2), p1(1−p1)+p21p2, p1(1−p1)+p31(1−p1), p1(1−p1)+
1

3
p31, p2(1−3p21 +2p31)}

= p2(1− 3p21 + 2p31) = 0.252513 =: p.

Applying Lemma 18, there is a fractional majority coloring of D with total weight at
most 1

p
< 3.9602.

5 Concluding Remarks and Discussion

Girão et al. [10] and independently Knox and Šámal [11] investigated a natural generaliza-
tion of majority colorings: For any α ∈ [0, 1], define an α-majority coloring of a digraph
D to be a vertex-coloring in which for every vertex v, at most α · d+(v) vertices in N+(v)
have the same color as v. If such a coloring can be found for any `-list-assignment, we
call the digraph α-majority `-choosable.

Generalizing the result by Anholcer et al. it was proved both in [10] and [11] that for
every integer k > 1, every digraph is 1

k
-majority 2k-choosable. Girão et al. proposed the

following generalization of Conjecture 1:

Conjecture 20. For every integer k > 1, every digraph D has a 1
k
-majority (2k − 1)-

coloring. In fact, every digraph is 1
k
-majority (2k − 1)-choosable.

It is natural to try and generalize the results presented in this paper for majority
colorings with α = 1

2
to arbitrary values α ∈ [0, 1]. Among our results, we can only

generalize a special case of Theorem 3, namely for digraphs of dichromatic number 2, we
verify the first part of Conjecture 20 for all k > 1.

Proposition 21. Let D be a digraph with ~χ(D) 6 2. Then for every k ∈ N, k > 2, D
admits a 1

k
-majority coloring using 2k − 1 colors.
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Proof. Consider first an acyclic digraph F with a pre-coloring of its sinks using colors from
{1, . . . , k}. We claim that such a coloring can always be extended to a 1

k
-majority coloring

of F also using colors from {1, . . . , k}. To find such a coloring, we take a topological
ordering x1, . . . , xn of the vertices (i.e. (xi, xj) /∈ E(D) for all i 6 j) such that {x1, . . . , xt}
are the pre-colored sinks. Now we color the vertices one by one, starting with xt+1, then
xt+2 etc. When coloring the vertex xi with i > t, we assign to it a color from {1, . . . , k}
appearing least frequently among its (already colored) out-neighbors. This procedure
eventually yields a k-coloring of F where any vertex has at most a 1

k
-fraction of its out-

neighbors with the same color.
Now let {X1, X2} be a partition of V (D) such that D[X1], D[X2] are acyclic. For

i = 1, 2 let D′i be the digraph obtained from D[Xi] by adding all arcs in D leaving
Xi together with their endpoints. Clearly, also D′1 and D′2 are acyclic. By the above
observation, D′i for i = 1, 2 has a majority 1

k
-coloring ci with k colors in which all sinks

receive color 1. After renaming we may suppose that c1 uses colors from {1, 2, . . . , k},
while c2 uses colors from {1, k + 1, k + 2, . . . , 2k − 1}. We now define a (2k − 1)-coloring
of all vertices in D by putting c(x) := ci(x) for x ∈ Xi. For any vertex x ∈ Xi, we have
that N+(x) = N+

D′
i
(x), and, since all vertices in V (D′i) \ Xi received color 1 under ci, it

follows that {y ∈ N+(x)|c(y) = c(x)} ⊆ {y ∈ N+
D′

i
(x)|ci(y) = ci(x)}. Therefore, and since

ci is a majority 1
k
-coloring of D′i, at most a 1

k
-fraction of vertices in N+(x) have the same

color as x. This shows that c is a coloring as requested and concludes the proof.

It is worth noting that the above bound is tight. Consider for example the circulant
digraph ~C(2k − 1, k) which has as vertex set Z2k−1, and where we have an edge (i, j)
if and only if j − i ∈ {1, 2, 3 . . . , k − 1}. It is easy to see that in any majority 1

k
-

coloring of D, the 2k − 1 vertices must receive pairwise distinct colors, however, the
partition X1 = {0, 1, . . . , k − 1}, X2 = {k, k + 1, . . . , 2k − 2} of the vertex set shows that

~χ(~C(2k − 1, k)) = 2.
The methods used in this paper are unlikely to resolve Conjecture 1 for the open

cases of 5- and 6-regular digraphs. One possible approach could be via an extension to
hypergraphs: Given a 5-regular digraph D, consider the hypergraph H(D) with vertex set
V (D) and whose edges are {v} ∪N+(v), v ∈ V (D). This hypergraph is 6-regular and 6-
uniform. If we could now find a vertex-3-coloring ofH(D) such that no hyperedge contains
four vertices of the same color, this coloring would certainly be a majority coloring of D.
We are therefore interested in deciding the following question.

Problem 22. Let H be a 6-regular 6-uniform hypergraph. Is there a 3-coloring of V (H)
such that no hyperedge contains four vertices of the same color?

The setting of k-regular k-uniform hypergraphs could be fruitful, as it is known that
these hypergraphs have property B for all k > 4 (as noted in [14]). We conclude with a
small selection of open questions.

• Is every 5-regular digraph 1
3
-majority 5-colorable? We can show that it is possible

to color with 5 colors such that in each connected component, at most one vertex
violates the majority condition.
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• Does every digraph with χ(D) 6 6 have a 1
3
-majority 5-coloring?

• Does every digraph D with ~χ(D) 6 3 have a 1
k
-majority (2k − 1)-coloring for every

k > 1?
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