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Abstract

Let I(G)[k] denote the kth squarefree power of the edge ideal of G. When G
is a forest, we provide a sharp upper bound for the regularity of I(G)[k] in terms
of the k-admissable matching number of G. For any positive integer k, we classify
all forests G such that I(G)[k] has linear resolution. We also give a combinatorial
formula for the regularity of I(G)[2] for any forest G.

Mathematics Subject Classifications: 05E40, 13D02, 05C05

1 Introduction

Let G be a finite simple graph with the vertex set V (G) = {x1, . . . , xn} and the edge set
E(G). Let k be a field and let S = k[x1, . . . , xn] be the polynomial ring in n variables over
k. The edge ideal of G, denoted by I(G), is the monomial ideal generated by xixj such
that {xi, xj} ∈ E(G). Computation of Castelnuovo-Mumford regularity of edge ideals and
their powers is a challenging problem in commutative algebra which has led to extensive
literature.

Matchings in graphs appeared in the context of bounding or computing regularity.
For example, it is well known that the regularity reg(I(G)) of edge ideal of G is bounded
below by indm(G)+1 [13] and above by mat(G)+1 [8] where indm(G) and mat(G) denote
respectively the induced matching number and the matching number of the graph G. It
is also known that such lower bound is attained when G is a chordal graph [8]. These
bounds were generalized to powers of edge ideals in [2, 3]. In particular, for any positive
integer k, the following inequalities hold:

2k + indm(G)− 1 6 reg(I(G)k) 6 2k + mat(G)− 1.
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The authors of [3] proved that the lower bound is attained when G is a forest and it was
conjectured in [1] that such lower bound should be also attained by chordal graphs.

In this article, we investigate squarefree powers of edge ideals. The kth squarefree
power I(G)[k] of edge ideal of a graph G is generated by the squarefree monomials in the
kth ordinary power I(G)k. If k > mat(G), then I(G)[k] = (0). The study of squarefree
powers was initiated in [4] and continued in [5]. Our motivation to study such powers is
twofold. Firstly, thanks to the Restriction Lemma (Lemma 8) the regularity of I(G)[k] is
bounded above by that of I(G)k. This suggests that squarefree powers might be useful in
the study of ordinary powers. For instance, if the kth squarefree power does not have linear
resolution, then the kth ordinary power cannot have linear resolution either. The second
part of our motivation comes from the fact that the generators of I(G)[k] correspond to
the matchings in G of size k. This makes a close connection between squarefree powers
of edge ideals and the theory of matchings in graphs.

In this article, we introduce the concept of k-admissable matching of a graph. A match-
ing M is called k-admissable if there exists a partition of M that satisfy certain conditions,
see Definition 12. A 1-admissable matching is the same as an induced matching. There-
fore, k-admissable matchings can be seen as generalization of induced matchings. The
k-admissable matching number of G, denoted by aim(G, k), is the maximum size of a
k-admissable matching. Our first main result (Theorem 25) gives an upper bound for the
regularity of squarefree powers of edge ideals of forests:

Theorem 1. If G is a forest, then reg(I(G)[k]) 6 aim(G, k)+k for every 1 6 k 6 mat(G).

In Theorem 28 we show that the upper bound above is attained when k = 2:

Theorem 2. If G is a forest with mat(G) > 2, then reg(I(G)[2]) = aim(G, 2) + 2.

Our second main result (Theorem 41) gives a complete classification of forests G for
which I(G)[k] has linear resolution:

Theorem 3. Let k be a positive integer and let G be a forest with mat(G) > k. Then
reg(I(G)[k]) = 2k if and only if aim(G, k) = k.

As a consequence of the above theorem, we show that for any forest G and 1 6 k <
mat(G), if I(G)[k] has linear resolution, then I(G)[k+1] has linear resolution as well.

2 Preliminaries

2.1 Definitions and notations

Let G be a finite simple graph with the vertex set V (G) and the edge set E(G). Given
a vertex x in G, we say y is a neighbor of x if {x, y} ∈ E(G). We denote the set of all
neighbors of x by NG(x). We set NG[x] = NG(x) ∪ {x}. We say the degree of x in G is d
if x has exactly d neighbors. A vertex of degree 0 is called an isolated vertex. A vertex of
degree 1 is called a leaf. A complete graph on n vertices is denoted by Kn.
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We say H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H of
G is called an induced subgraph if for any two vertices x, y in H, {x, y} ∈ E(H) if and
only if {x, y} ∈ E(G). For any U ⊆ V (G), the induced subgraph of G on U is the graph
with the vertex set U and the edge set {{x, y} : x, y ∈ U and {x, y} ∈ E(G)}. For any
U ⊆ V (G), we denote by G− U the induced subgraph of G on V (G) \ U .

A graph G is called connected if any two vertices of G are connected by a path in G.
A maximal connected subgraph of G is called a connected component of G. We say G is
a forest if G has no cycle subgraphs. A connected forest is called a tree.

A matching of G is a collection of edges which are pairwise disjoint. The matching
number of G, denoted by mat(G), is defined by

mat(G) = max{|M | : M is a matching of G}.

A matching M = {e1, . . . , ek} of G is called an induced matching of G if the induced
subgraph of G on ∪ki=1ei consists of the edges e1, . . . , ek. The induced matching number
of G, denoted by indm(G), is defined by

indm(G) = max{|M | : M is an induced matching of G}.

Clearly, indm(G) 6 mat(G) for any graph G. An induced matching of size 2 is called a
gap. If {e1, e2} is a gap in G, we say the edges e1 and e2 form a gap in G. A matching M
of G is called a perfect matching if for every vertex x of G, there is an edge e ∈ M such
that x ∈ e.

For any positive integer n, we denote {1, . . . , n} by [n].
Let G be a graph with the vertex set V (G) = {x1, . . . , xn}. Let k be a field and let

S = k[x1, . . . , xn] be the polynomial ring in n variables over k. The edge ideal of G,
denoted by I(G), is the monomial ideal defined by

I(G) = (xixj : {xi, xj} is an edge of G).

By abuse of notation, we will use an edge e = {xi, xj} of G interchangeably with the
monomial xixj. For any 1 6 k 6 mat(G), we define the kth squarefree power of the edge
ideal of G by

I(G)[k] = (e1 . . . ek : {e1, . . . , ek} is a matching of G).

We set I(G)[k] = (0) when k > mat(G). For any homogeneous ideal I ⊂ S, the
(Castelnuovo-Mumford) regularity of I is defined by

reg(I) = max{j − i : bi,j(I) 6= 0}

where bi,j(I) denote the graded Betti numbers in the minimal graded free resolution of I.
An ideal I generated in degree d is said to have a linear resolution if bi,i+j(I) = 0 for all
j 6= d.
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Figure 1: A graph G with indm(G) = mat(G) = 2.

2.2 Background

In this section, we collect some results that will be useful to prove our results. The
following lemma shows the existence of a certain kind of leaf in forests.

Lemma 4. ([12, Proposition 4.1]) Let T be a forest containing a vertex of degree at least
two. Then there exists a vertex v with neighbors v1, . . . , vn where n > 2 and v1, . . . , vn−1
have degree one.

Remark 5. ([3, Remark 2.6]) Let R = k[x1, . . . , xn] and let I 6= R be a homogeneous ideal
in R. Let y be a new indeterminate and let S = R[y]. Then reg(I) = reg(I + (y)).

Theorem 6. ([3, Theorem 4.7]) If G is a forest, then reg(I(G)k) = 2k + indm(G)− 1.

The authors of [4] proved the surprising result that the highest non-vanishing square-
free power of an edge ideal has linear resolution. This result will be crucial in the proof
of Theorem 25.

Theorem 7. ([4, Theorem 5.1]) Let G be a graph with matching number at least one.
Then I(G)[mat(G)] has linear quotients and thus it has linear resolution.

Lemma 8 (Restriction Lemma). ([9, Lemma 4.4]) Let I ⊂ S be a monomial ideal, and
let F be its minimal multigraded free S-resolution. Let G(I) denote the minimal set of
monomial generators of I. Furthermore, let m be a monomial. We set

I6m = (u ∈ G(I) u|m).

Let Fi =
⊕

j S(−aij) be the ith free module in F. Then F6m with

F6m
i =

⊕
j, xaij |m

S(−aij)

is a subcomplex of F and the minimal multigraded free resolution of I6m.

We will use the following consequence of Lemma 8:

Corollary 9. ([5, Corollary 1.3]) Let H be an induced subgraph of G. Then bi,a(I(H)[k]) 6
bi,a(I(G)[k]) for all i and a ∈ Zn. In particular, reg(I(H)[k]) 6 reg(I(G)[k]).

The following result is well-known, see for example Lemma 3.1 in the survey article [7].
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Lemma 10. For any homogeneous ideal I ⊂ S and any homogeneous element m ∈ S of
degree d the short exact sequence

0→ S

I : m
(−d)→ S

I
→ S

I + (m)
→ 0

yields the following regularity bound for I:

reg(I) 6 max{reg(I : m) + d, reg(I + (m))}.

3 k-admissable matchings

In this section, we define k-admissable matching of a graph, and we make some observa-
tions about their properties.

Definition 11. For any positive integers k and n, we call a sequence (a1, . . . , an) of
integers a k-admissable sequence if the following conditions are satisfied:

1. ai > 1 for each i = 1, . . . , n

2. a1 + · · ·+ an 6 n+ k − 1.

Definition 12. Let G be a graph with matching number mat(G). Let M be a matching
of G. For any 1 6 k 6 mat(G) we say M is k-admissable matching if there exists a
sequence M1, . . . ,Mr of non-empty subsets of M such that

1. M = M1 ∪ · · · ∪Mr,

2. Mi ∩Mj = ∅ for all i 6= j,

3. for all i 6= j, if ei ∈Mi and ej ∈Mj, then {ei, ej} is a gap in G,

4. the sequence (|M1|, . . . , |Mr|) is k-admissable, and

5. the induced subgraph of G on ∪e∈Mi
e is a forest for all i ∈ [r].

In such case, we say M = M1 ∪ · · · ∪Mr is a k-admissable partition of M for G.

Definition 13. The k-admissable matching number of a graph G, denoted by aim(G, k),
is defined by

aim(G, k) = max{|M | : M is a k-admissable matching of G}

for 1 6 k 6 mat(G). We define aim(G, k) = 0 if G has no k-admissable matching.

Remark 14. For any graph G, one can deduce the following properties of k-admissable
matchings from the definition.

the electronic journal of combinatorics 28(2) (2021), #P2.32 5



1. A matching M of G is 1-admissable if and only if M is an induced matching of G.
In particular, indm(G) = aim(G, 1).

2. Let G be a forest. If M is a non-empty matching of G, then M is an |M |-admissable
matching of G. Therefore, aim(G, k) > k for every 1 6 k 6 mat(G).

3. If 1 6 k < mat(G) and M is a k-admissable matching, then M is (k+1)-admissable
matching. In particular,

indm(G) = aim(G, 1) 6 aim(G, 2) 6 . . . 6 aim(G,mat(G)) 6 mat(G).

Moreover, if G is a forest, then aim(G,mat(G)) = mat(G).

4. If H is an induced subgraph of G, then aim(H, k) 6 aim(G, k) for all k ∈ [mat(H)].

Lemma 15. Let 2 6 k 6 mat(G). If M is k-admissable matching, then either M is
(k− 1)-admissable matching, or there exists an edge e ∈M such that M \ {e} is (k− 1)-
admissable matching. Therefore, aim(G, k) 6 aim(G, k − 1) + 1.

Proof. Let M = M1∪ · · ·∪Mr be a k-admissable partition of M for G. Then |M1|+ · · ·+
|Mr| 6 r+k−1. If |M1|+ · · ·+ |Mr| 6 r+k−2, then M is a (k−1)-admissable matching.
Otherwise, |M1| + · · · + |Mr| = r + k − 1. Since k > 2, we must have |Mi| > 2 for some
i ∈ [r]. Let e ∈Mi. Then M \{e} = M1∪ · · · ∪Mi \{e}∪ · · · ∪Mr is a (k− 1)-admissable
partition of M \ {e} for G.

Example 16. Let G be the graph in Figure 2. Since G has 13 vertices, mat(G) 6 6.
Let M1 = {{a, b}, {c, d}}, M2 = {{f, g}, {h, i}} and M3 = {{j, k}, {l,m}}. Then M =
M1 ∪M2 ∪M3 is a matching of size 6 and thus mat(G) = 6. In fact, one can show that
M = M1 ∪M2 ∪M3 is a 4-admissable partition of M for G. From Remark 14 it follows
that aim(G, 4) = aim(G, 5) = aim(G, 6) = mat(G) = 6. It is not hard to see that the
induced matching number of G is 3. Therefore aim(G, 1) = 3.

Let N1 = {{a, b}, {c, d}}, N2 = {{f, g}} and N3 = {{j, k}}. Then N = N1 ∪N2 ∪N3

is a 2-admissable partition of N for G. Therefore, aim(G, 2) > 4. On the other hand, by
Lemma 15 we know that aim(G, 2) 6 aim(G, 1) + 1. Hence aim(G, 2) = 4.

Similarly, U = M1 ∪ M2 ∪ N3 is a 3-admissable partition of U for G. Therefore,
aim(G, 3) > 5. On the other hand, by Lemma 15 we know that aim(G, 3) 6 aim(G, 2)+1.
Hence aim(G, 3) = 5.

Remark 17. If the sequence (a1, . . . , an) is k-admissable, then so is (a1, . . . , an, 1).

Lemma 18. Let M be a k-admissable matching of a graph G. Then any non-empty subset
of M is also a k-admissable matching of G.

Proof. Let M = M1∪· · ·∪Mr be a k-admissable partition of M for G. Then the sequence
(|M1|, . . . , |Mr|) is k-admissable. Therefore |M | 6 r+ k− 1. Let us assume that |M | > 1
since otherwise M is the only non-empty subset of itself. It suffices to show that for any
N ⊆M with |N | = |M | − 1, the matching N is k-admissable. Without loss of generality,
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assume that N = M \ {e} for some e ∈ M1. If M1 = {e}, then N = M2 ∪ · · · ∪Mr is
a k-admissable partition of N for G since |N | = |M | − 1 6 (r − 1) + k − 1. Otherwise
N = M1\{e}∪M2∪· · ·∪Mr is a k-admissable partition of N for G since |N | 6 r+k−1.

a b

c

d e

fg h i

j k

l m

Figure 2: A graph G with aim(G, 1) = 3, aim(G, 2) = 4, aim(G, 3) = 5 and aim(G, 4) =
aim(G, 5) = aim(G, 6) = mat(G) = 6.

4 Upper bounds for squarefree powers of edge ideals of forests

In this section, we provide a sharp upper bound for reg(I(G)[k]) where G is a forest, in
terms of k-admissable matching number of G. A key idea of our method is to work with
a special type of vertex in a forest, which we define below.

Definition 19. Let G be a forest with a leaf x and its unique neighbor y. We say x is
a distant leaf if y has at most one neighbor whose degree is greater than 1. In this case,
we say {x, y} is a distant edge.

Lemma 20. Let G be a forest with at least one edge. Then G has a distant leaf.

Proof. If G has no vertex of degree at least 2, then G consists of union of some isolated
vertices and K2’s. In such case, every edge is a distant edge. Otherwise, the result follows
from Lemma 4.

x2x1

x3

x5

x4

x6

Figure 3: A tree G with distant leaves x4 and x6.

Lemma 21. Let G be a forest with a leaf x. Then mat(G) = mat(G− {x, y}) + 1 where
y is the unique neighbor of x.
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Proof. Any matching of G − {x, y} can be extended to a matching of G by adding the
edge {x, y}. Therefore, mat(G) > mat(G − {x, y}) + 1. On the other hand, let M =
{e1, . . . , emat(G)} be a matching of G of maximum size. If no edge of M contains the vertex
y, then M is also a matching of G − {x, y} and we get mat(G) 6 mat(G − {x, y}) as
desired. Otherwise, since M is a matching, there is only one edge ei ∈M such that y ∈ ei.
In such case, M \{ei} is a matching of G−{x, y} and mat(G)−1 6 mat(G−{x, y}).

Lemma 22. Let G be a graph with a leaf x. If y is the neighbor of x, then for all k > 2,

I(G)[k] : (xy) = I(G− {x, y})[k−1].

Proof. If mat(G) < k, then mat(G− {x, y}) < k − 1 by Lemma 21. Then the equality is
immediate as both ideals are equal to the zero ideal.

Therefore, let us assume that 2 6 k 6 mat(G). It is clear that I(G − {x, y})[k−1] is
contained in I(G)[k] : (xy). To see the reverse, let u be a monomial in I(G)[k] : (xy).
Then there exists a matching {e1, . . . , ek} of G such that uxy is divisible by e1 . . . ek. If x
divides e1 . . . ek, then we may assume that e1 = {x, y} since y is the only neighbor of x.
Then u is divisible by e2 . . . ek and u ∈ I(G− {x, y})[k−1] as {e2, . . . , ek} is a matching of
G− {x, y}.

Suppose that x does not divide e1 . . . ek. Then uy is divisible by e1 . . . ek. Since
{e1, . . . , ek} is a matching, we may assume that y does not divide e2 . . . ek. Hence u is
divisible by e2 . . . ek and the result follows as in the previous case.

Lemma 23. Let G be a forest with matching number mat(G) > 2. Let x be a distant leaf
of G with the neighbor y. Then for any 2 6 k 6 mat(G),

aim(G− {x, y}, k − 1) + 1 6 aim(G, k).

Proof. By Lemma 21 we know that the matching number of G− {x, y} is at least k − 1.
Then by Remark 14, the forest G − {x, y} has a (k − 1)-admissable matching. Let M
be a (k − 1)-admissable matching of G − {x, y} of maximum cardinality. We will show
that M ′ = M ∪ {{x, y}} is a k-admissable matching of G. Let M = M1 ∪ · · · ∪Mr be a
(k − 1)-admissable partition of M for G− {x, y}.

If for every e ∈M the edges e and {x, y} form a gap in G, then M ′ = M1 ∪ · · · ∪Mr ∪
{{x, y}} is a k-admissable partition of M ′ for G by Remark 17. So, suppose that there
exists an edge e ∈M such that e and {x, y} do not form a gap in G. Since x is a distant
leaf of G, it follows that {{x, y}, f} is a gap in G for every f ∈M \ {e}. Without loss of
generality, suppose that e ∈M1. Let M ′

1 = M1∪{{x, y}}. Then M ′ = M ′
1∪M2∪· · ·∪Mr

is a k-admissable partition of M ′ for G.

Remark 24. The lemma above is incorrect for an arbitrary leaf x. For example, consider
the tree G in Figure 3 and let k = 2. Then aim(G−{x1, x2}, 1) = indm(G−{x1, x2}) = 2
but aim(G, 2) = 2.

Theorem 25. If G is a forest, then reg(I(G)[k]) 6 aim(G, k) + k for every 1 6 k 6
mat(G).
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Proof. We use induction on |V (G)|+k. First note that if k = 1, then the statement follows
from Theorem 6 as aim(G, 1) = indm(G). Also, if k = mat(G), then by Remark 14 we
have aim(G,mat(G)) = mat(G) and the result follows from Theorem 7. Therefore, let us
assume that 2 6 k < mat(G).

Then by Lemma 20, the forest G has a distant leaf x1 and a unique neighbor y. Let
x1, . . . , xr be the neighbors of y of degree 1. We set Ii = I(G)[k] + (x1y, . . . , xiy) and
Gi = G − {x1, . . . , xi} for each 1 6 i 6 r. Moreover, we set G0 = G and I0 = I(G)[k].
Observe that for each 0 6 i 6 r − 1

Ii : (xi+1y) = (I(Gi)
[k] : (xi+1y)) + (x1, . . . , xi)

and {xi+1, y} is a distant edge of Gi. We claim that

reg(Ii : (xi+1y)) 6 aim(G, k) + k − 2 for all 0 6 i 6 r − 1. (1)

Indeed, for each 0 6 i 6 r− 1, since mat(Gi) = mat(G) and mat(Gi−{xi+1, y}) > k− 1,
we obtain

reg(Ii : (xi+1y)) = reg(I(Gi)
[k] : (xi+1y)) (Remark 5)

= reg(I(Gi − {xi+1, y})[k−1]) (Lemma 22)
6 aim(Gi − {xi+1, y}, k − 1) + k − 1 (induction assumption)
6 aim(Gi, k) + k − 2 (Lemma 23)
6 aim(G, k) + k − 2 ((4) of Remark 14)

which proves Eq. (1). We can apply Eq. (1) and Lemma 10 successively to eliminate x1
and its duplicates as follows.

reg(I(G)[k]) 6 max{reg(I(G)[k] : (x1y)) + 2, reg(I1)}
6 max{aim(G, k) + k, reg(I1 : (x2y)) + 2, reg(I2)}
6 max{aim(G, k) + k, reg(I2 : (x3y)) + 2, reg(I3)}

6
...

6 max{aim(G, k) + k, reg(Ir)}.

Therefore, it suffices to show that reg(Ir) 6 aim(G, k) + k. By Lemma 10 we have

reg(Ir) 6 max{reg(Ir : (y)) + 1, reg(Ir + (y))}.

Then it suffices to show that the maximum in the above inequality is at most aim(G, k)+k.
Note that by Lemma 21 we have

mat(G− {y}) = mat(G− {x1, y}) = mat(G)− 1 > k.

Remark 5, induction assumption and (4) of Remark 14 imply

reg(Ir + (y)) = reg(I(G− {y})[k]) 6 aim(G− {y}, k) + k 6 aim(G, k) + k.
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Since x1 is a distant leaf of G, either NG(y) = {x1, . . . , xr} or NG(y) = {x1, . . . , xr, z} for
some vertex z of degree greater than 1. We will consider these cases separately.

Case 1: Suppose that NG(y) = {x1, . . . , xr}. Then the induced subgraph of G on
NG[y] is a connected component of G and aim(G, k) > aim(Gr, k) + 1 by Remark 17.
Since Ir : (y) = I(Gr)

[k] + (x1, . . . , xr), by Remark 5 and induction assumption we get

reg(Ir : (y)) = reg(I(Gr)
[k]) 6 aim(Gr, k) + k 6 aim(G, k) + k − 1.

Case 2: Suppose that NG(y) = {x1, . . . , xr, z} for some vertex z of degree greater
than 1. Observe that Ir : (y) = zI(G − {y, z})[k−1] + I(G − {y, z})[k] + (x1, . . . , xr). By
Lemma 10

reg(Ir : (y)) 6 max{reg((Ir : (y)) : (z)) + 1, reg((Ir : (y)) + (z))}. (2)

We will now show that the maximum in (2) is at most aim(G, k) + k − 1 which will
complete the proof. Observe that by Remark 5 we have

reg((Ir : (y)) : (z)) = reg(I(G− {y, z})[k−1]) = reg(I(G− {x1, y, z})[k−1]).

Applying respectively Remark 5, Corollary 9, induction assumption on G − {x1, y} and
Lemma 23, we obtain

reg((Ir : (y)) : (z)) 6 reg(I(G− {x1, y})[k−1])
6 aim(G− {x1, y}, k − 1) + k − 1

6 aim(G, k) + k − 2.

Observe that Remark 5 implies reg((Ir : (y)) + (z)) = reg(I(G − {y, z})[k]). We may
assume that the matching number of G− {y, z} is at least k since otherwise the proof is
immediate. By induction, we have

reg(I(G− {y, z})[k]) 6 aim(G− {y, z}, k) + k.

Therefore, it remains to show that aim(G − {y, z}, k) + 1 6 aim(G, k). Indeed, keeping
Remark 17 in mind, any k-admissable matching of G − {y, z} can be extended to a k-
admissable matching of G by adding the edge {x1, y}.

4.1 Second squarefree powers

The goal of this section is to show that the upper bound in Theroem 25 is attained when
k = 2. To this end, we will show that Betti numbers do not vanish in certain degrees.
The following fact was established in the proof of [5, Theorem 2.1].

Lemma 26. If M is a 1-admissable matching of G which is also a perfect matching, then
for all 1 6 k 6 |M |

b|M |−k+1,2|M |(S/I(G)[k]) 6= 0.

the electronic journal of combinatorics 28(2) (2021), #P2.32 10



We now extend Lemma 26 to 2-admissable matchings as follows:

Lemma 27. If M is a 2-admissable perfect matching of G, then for all 2 6 k 6 |M |

b|M |−k+1,2|M |(S/I(G)[k]) 6= 0.

Proof. We may assume that mat(G) > 2 as the statement is vacuously true otherwise. If
M is 1-admissable matching, then the result follows from Lemma 26.

So, let us assume that M is not 1-admissable. Let

M = {{x1, x2}, {x3, x4}, . . . , {x2r−1, x2r}}

so that |M | = r. Since M is not an induced matching of G, without loss of generality, we
may assume that {x2, x3} is an edge of G.

Claim: G has exactly r + 1 edges.
Proof of the claim: Let M = M1∪· · ·∪Mq be a 2-admissable partition of M for G. By

condition (3) of Definition 12 we may assume that both {x1, x2} and {x3, x4} are in M1.
Since the sequence (|M1|, . . . , |Mq|) is 2-admissable, we have |M1| + · · · + |Mq| 6 q + 1.
On the other hand, since |M1| > 2 and |Mi| > 1 for all i > 2, we obtain |M1| = 2
and |Mi| = 1 for each i > 2. The claim then follows from conditions (3) and (5) of
Definition 12 together with the fact that M is a perfect matching of G.

Having proved our claim, we can now write

I(G) = (x1x2, x2x3, x3x4, x5x6, . . . , x2r−1x2r).

By Lemma 22 we set J := I(G)[k] : (x1x2) = I(G − {x1, x2})[k−1]. Also we set K =
I(G)[k] + (x1x2). The short exact sequence

0→ S

J
(−2)→ S

I(G)[k]
→ S

K
→ 0

yields the long exact sequence

· · · → Torr−k+2(S/K, k)2r → Torr−k+1((S/J)(−2), k)2r → Torr−k+1(S/I(G)[k],k)2r → · · ·

Since M \ {{x1, x2}} is perfect induced matching of G− {x1, x2}, by Lemma 26 we have
Torr−k+1((S/J)(−2),k)2r 6= 0. Therefore, it suffices to show that Torr−k+2(S/K, k)2r = 0.
The short exact sequence

0→ S

K : (x2)
(−1)→ S

K
→ S

K + (x2)
→ 0

yields the long exact sequence

· · · → Torr−k+2((S/(K : (x2)))(−1),k)2r →
Torr−k+2(S/K, k)2r → Torr−k+2(S/(K + (x2)),k)2r → · · ·
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We will now use the fact that all non-zero Betti numbers of a squarefree monomial ideal
lie in squarefree multidegrees. Observe that the squarefree monomial ideal K + (x2) lies
in a polynomial ring with less than 2r variables, more precisely, K+(x2) ⊆ k[x2, . . . , x2r].
Then Tori((S/(K + (x2))),k)2r = 0 for every i. On the other hand, observe that

K : (x2) = (I(G)[k] + (x1x2)) : (x2) = x3I(G− {x2, x3})[k−1] + I(G− {x2, x3})[k] + (x1).

Then the squarefree monomial ideal K : (x2) lies in a polynomial ring with 2r − 2 vari-
ables because the variables x2 and x4 have disappeared. Therefore Torr−k+2(S/(K :
(x2)),k)2r−1 = 0 or, equivalently Torr−k+2((S/(K : (x2)))(−1),k)2r = 0.

We now give a formula for the regularity of I(G)[2] when G is a forest.

Theorem 28. If G is a forest with mat(G) > 2, then reg(I(G)[2]) = aim(G, 2) + 2.

Proof. By Theorem 25 and Corollary 9 it suffices to show that for every 2-admissable
matching M of G, the inequality reg(I(H)[2]) > |M | + 2 holds where H is the induced
subgraph of G on ∪e∈Me. Note that M is a perfect matching and 2-admissable matching
of H. Then by Lemma 27 we get

b|M |−2,2|M |(I(H)[2]) = b|M |−1,2|M |(S/I(H)[2]) 6= 0

and thus reg(I(H)[2]) > |M |+ 2 as desired.

In particular, Theorem 28 gives a lower bound for the regularity of second squarefree
power of edge ideal of any graph.

Corollary 29. If G is a graph with mat(G) > 2, then reg(I(G)[2]) > aim(G, 2) + 2.

Proof. Follows from Corollary 9.

A graph G that satisfies indm(G) = mat(G) is called a Cameron-Walker graph. Such
graphs were studied from a commutative algebra point of view in [11]. The following
proposition shows that the upper bound in Theorem 25 is sharp.

Proposition 30. If G is a Cameron-Walker forest, then for all 1 6 k 6 mat(G),
reg(I(G)[k]) = aim(G, k) + k.

Proof. By Remark 14 it follows that aim(G, k) = indm(G) for all 1 6 k 6 mat(G).
By Theorem 25 we only need to show that reg(I(G)[k]) > indm(G) + k. Let M be an
induced matching of G of maximum cardinality. Let H be the induced subgraph of G on
∪e∈Me. Then M is a perfect matching of H. The result then follows from Lemma 26 and
Corollary 9.

Using the structural classification of Cameron-Walker graphs [11], for any given posi-
tive integer m, one can construct a Cameron-Walker tree G with indm(G) = mat(G) = m.
Figure 1 illustrates an example with m = 2.

Based on the results of this section and Macaulay2 [6] computations, we expect that the
upper bound in Theorem 25 would give the exact formula for the regularity of squarefree
powers of edge ideals of forests. Thus, we propose the following conjecture.

Conjecture 31. If G is a forest, then reg(I(G)[k]) = aim(G, k) + k for every 1 6 k 6
mat(G).
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5 Characterization of squarefree powers with linear resolutions

In this section, we will classify forests G such that I(G)[k] has linear resolution. From
Theorem 6 it follows that I(G)k has linear resolution if and only if indm(G) = 1 when G
is a forest. So, for ordinary powers, such characterization does not depend on k, and the
class of forests with induced matching number equal to one is rather small. On the other
hand, we will see that linearity of resolution of I(G)[k] depends on both the forest G and
the integer k.

Let us briefly recall some definitions about simplicial complexes. A simplicial complex
∆ on a finite vertex set V (∆) is a collection of subsets of V (∆) such that if F ∈ ∆,
then every subset of F is also in ∆. Each element of ∆ is called a face of ∆. If F is a
maximal face of ∆ with respect to inclusion, then we say F is a facet of ∆. We write
∆ = 〈F1, . . . , Fr〉 if F1, . . . , Fr are all the facets of ∆. We say ∆ is connected if for every
pair of vertices u and v there exists a sequence F1, . . . , Fs of facets of ∆ such that u ∈ F1,
v ∈ Fs and Fi ∩ Fi+1 6= ∅ for each i = 1, . . . , s− 1.

Definition 32. Let I ⊆ S = k[x1, . . . , xn] be a monomial ideal and let α = (α1, . . . , αn) ∈
Nn be a multidegree. The upper-Koszul simplicial complex associated with I at degree α,
denoted by Kα(I), is the simplicial complex over V = {x1, . . . , xn} whose faces are:{

W ⊆ V | x
α1
1 . . . xαn

n∏
u∈W u

∈ I

}

Hochster’s formula ([14, Theorem 1.34]) describe multigraded Betti numbers of a
monomial ideal I in terms of reduced homology groups of upper-Koszul simplicial com-
plexes as follows:

bi,α(I) = dimk H̃i−1(K
α(I);k) for i > 0 and α ∈ Nn.

Notation 33. Let m = xα1
1 . . . xαn

n be a monomial in k[x1, . . . , xn]. To ease the notation,
the monomial m and the multidegree (α1, . . . , αn) will be used interchangeably. Moreover,
if m = xi1 . . . xik is squarefree, we will denote the set {xi1 , . . . , xik} by m.

Lemma 34. Let I be a squarefree monomial ideal minimally generated by m1, . . . ,mt.
Let m = lcm(m1, . . . ,mt). Then Km(I) = 〈m/m1, . . . ,m/mt〉.

Proof. By definition of the upper-Koszul simplicial complex, it is clear that each m/mi

corresponds to a face of Km(I). Moreover, m/mi corresponds to a maximal face since mi

is a minimal monomial generator. Lastly, if u is a monomial that corresponds to a face of
Km(I), then m/u ∈ I. Then there is a monomial v such that m/u = vmi for some i ∈ [t].
This implies that the face u is contained in the facet m/mi.

The following lemma is well-known in graph theory.

Lemma 35. Let G be a graph with connected components G1, . . . , Gr. Then G has a
perfect matching if and only if Gi has a perfect matching for each i ∈ [r].
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Lemma 36. Let G be a graph which has a perfect matching. Then for any vertex x of G,
the graph G− {x} has no perfect matching.

Proof. If a graph has perfect matching, then it has even number of vertices.

Lemma 37. Let G be a graph with connected components G1, . . . , Gr where r > 2. Sup-
pose that G has a perfect matching. If x ∈ V (G1) and y ∈ V (G2), then G−{x, y} has no
perfect matching.

Proof. By Lemma 35 each Gi has a perfect matching. Let U1, . . . , Ut be the connected
components of G1−{x} and V1, . . . , Vs be the connected components of G2−{y}. Then the
connected components of G− {x, y} are U1, . . . , Ut, V1, . . . , Vs, G3, . . . , Gr. By Lemma 36
the graph G1 − {x} has no perfect matching. Then by Lemma 35 there exists Uj which
has no perfect matching. Since Uj is also a connected component of G−{x, y}, it follows
that G− {x, y} has no perfect matching.

Notation 38. If M = {e1, . . . , ek} is a matching of G, then we will write uM for the

squarefree monomial e1 . . . ek =
∏
xi∈e,
e∈M

xi.

Lemma 39. Let G be a graph with a k-admissable perfect matching M . Let M = M1 ∪
· · · ∪Mr be a k-admissable partition of M for G. Using Notation 38 let x|uMi

and y|uMj

for some vertices x and y with i 6= j. Then x and y are in different connected components
of G.

Proof. If {a, b} is an edge of G, then since M is a perfect matching, a|uMp and b|uMq for
some p and q. Since M is k-admissable, we get p = q. Therefore there is no path in G
that connects x and y.

We use Notation 38 again to state the next lemma:

Lemma 40. Let H be a graph with a k-admissable perfect matching M of cardinality
k + 1. Then the simplicial complex KuM (I(H)[k]) is disconnected.

Proof. Let V (H) = {x1, . . . , x2k+2}. Then uM = x1 . . . x2k+2 and uM is the least common
multiple of minimal monomial generators of I(H)[k]. By Lemma 34, observe that every
facet of KuM (I(H)[k]) consists of 2 vertices. In fact, {xi, xj} is a facet of KuM (I(H)[k]) if
and only if H − {xi, xj} has a perfect matching. To see this, let F be the set of facets of
KuM (I(H)[k]). Then by Lemma 34

{xi, xj} ∈ F ⇐⇒ xixj =
uM
uN

for some matching N of H of size k

⇐⇒ xixj =
uM
uN

for some matching N of H − {xi, xj} of size k

⇐⇒ uN = V (H) \ {xi, xj} for some matching N of H − {xi, xj} of size k

⇐⇒ H − {xi, xj} has a perfect matching.
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Let M = M1 ∪M2 ∪ · · · ∪Mr be a k-admissable partition of M for H. Then by definition
of k-admissable sequence, we must have r > 2. Let e1 ∈ M1 and e2 ∈ M2. Then both
e1 and e2 are facets of KuM (I(H)[k]). We claim that there is no sequence of faces that
connects a vertex of e1 to a vertex of e2. To this end, we will show that if {xi, xj} is a
facet of KuM (I(H)[k]), then xixj|uMq for some q ∈ [r]. Assume for a contradiction there
is a facet {xi, xj} such that xi|uMi′

and xj|uMj′
for some i′ 6= j′. Then by Lemma 39 the

vertices xi and xj belong to different connected components of H. Then by Lemma 37,
H − {xi, xj} has no perfect matching, which is a contradiction.

The authors of [5] classified all forests G such that I(G)[2] has linear resolution, see
[5, Theorem 5.3]. Our next theorem solves this classification problem for any squarefree
power.

Theorem 41. Let k > 1 be an integer and let G be a forest with mat(G) > k. Then
reg(I(G)[k]) = 2k if and only if aim(G, k) = k.

Proof. If aim(G, k) = k, then by Theorem 25 it follows that reg(I(G)[k]) = 2k. Suppose
that aim(G, k) 6= k. Then aim(G, k) > k by Remark 14. Let N be a k-admissable
matching of G of cardinality aim(G, k). Then by Lemma 18 there exists a k-admissable
matching M of G which has k + 1 elements. Let H be the induced subgraph of G on
∪e∈Me. Then M is a perfect matching of H. By Corollary 9 we get reg(I(G)[k]) >
reg(I(H)[k]). By Lemma 40, the simplicial complex KuM (I(H)[k]) is disconnected. Then
dimk H̃0(K

uM (I(H)[k]);k) > 0. From the Hochster’s formula, we get b1,2k+2(I(H)[k]) 6= 0
and thus reg(I(H)[k]) > 2k + 1.

Herzog, Hibi and Zheng [10] proved that if an edge ideal I(G) has linear resolution,
then I(G)k has linear resolution for all k > 1. It is an open problem to determine for
a given integer k, whether linearity of resolution of I(G)k implies the same property
for I(G)k+1. Relevantly, Theorem 41 has an interesting consequence regarding linear
resolutions of consecutive squarefree powers:

Corollary 42. Let G be a forest and 1 6 k < mat(G). If I(G)[k] has linear resolution,
then I(G)[k+1] has linear resolution.

Proof. Suppose that reg(I(G)[k]) = 2k. Then by Theorem 41 we get aim(G, k) = k. Now,
observe that

reg(I(G)[k+1]) 6 aim(G, k + 1) + k + 1 (Theorem 25)
6 aim(G, k) + 1 + k + 1 (Lemma 15)
= 2k + 2

and thus I(G)[k+1] has linear resolution.
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