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Abstract

We show an improved upper estimate for van der Waerden number W (3, k) :
there is an absolute constant ¢ > 0 such that if {1,..., N} = X UY is a partition
such that X does not contain any arithmetic progression of length 3 and Y does
not contain any arithmetic progression of length k£ then

N < exp(O(k'79)).

Mathematics Subject Classifications: 05D10, 11B25

1 Introduction

Let k£ and [ be positive integers. The van der Waerden number W (k,!) is the smallest
positive integer N such that in any partition {1,..., N} = X UY there is an arithmetic
progression of length k£ in X or an arithmetic progression of length [ in Y. The existence
of such numbers was established by van der Waerden [22], however the order of magnitude
of W(k,l) is unknown for k,l > 3. Clearly, W (k,1) is related to Szemerédi’s theorem on
arithmetic progressions [20] and any effective estimate in this theorem leads to an upper
bound on the van der Waerden numbers. Currently the best known bounds in the most
important diagonal case are

2]671 222’“"9
1- o2t < Wik <2
e

The upper bound follows from the famous work of Gowers [12] and the lower bound was
proved by Szabé [19] using a probabilistic argument. Furthermore, Berlekamp [3] showed
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that if £ — 1 is a prime number then
Wik, k) > (k—1)2"1.

Another very intriguing instance of the problem is the estimation of the numbers
W (3, k), as these are related to Roth’s theorem [15] concerning estimates for sets avoid-
ing three-term arithmetic progressions. Let us denote by r(N) the size of the largest
progression-free subset of {1,..., N}. We know that

N

T(N) <<l()g]\fT(l)7

(1)

see [4, 5, 17, 18], which implies W (3, k) < exp(O(k'*T°M)).

Green [13] proposed a very clever argument based on arithmetic properties of sumsets
to bound W (3, k). Building on this method and applying results from [10] it was shown
n [11] that

W(3,k) < exp(O(klogk)).

The best known lower bound was obtained by Li and Shu [14] (see also [8]), who showed
that

W(3, k) > <1og/<;>2'

The purpose of this paper is to prove a subexponential bound on W (3, k).

Theorem 1. There are absolute constants C,c > 0 such that for every k we have
W(3,k) < exp(Ck' ™).

Our argument is based on the method of [18], which explores in details the structure
of a large spectrum. This method can be partly applied (see Lemma 5) in our approach
and it deals only with a progression-free partition class. The second part of the proof
exploits the structure of both partition classes and in this case the argument of [18] has
to be significantly modified.

Let us remark that during the review process a preprint of Bloom and Sisask [6],

which improves an upper bound in Roth’s theorem to N/(log N)'*¢ for ¢ ~ 2_221000, has
1000
appeared. That result implies directly that W (3,k) < exp(Ck'~¢) with ¢~ 272 .

2 Notation

Given functions f,g: Z/NZ — C, the convolution of f and ¢ is defined by

(fxg)(x)= Y flt)glz—1).

teZ/NZ
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The Fourier coefficients of a function f : Z/NZ — C are defined by

=

fr) =" flaye /N,

T

Il
o

where r € Z/NZ. The inversion formula states that

1 N-1

flw) = 5 3 Fryemo
e

We denote by 14(z) the indicator function of set A. Thus using the inversion formula and

—

the fact that (f x g)(r) = f(r)/g\(r) one can express the number of three-term arithmetic
progressions (including trivial ones) in a set A C Z/NZ by

1 N-1
~ > Ta(r)’La(-2r).
r=0

Parseval’s identity asserts in particular that

N-1
> [Ta(r)]? = JAIN .
r=0

Let 0 > 0 be a real number. The #—spectrum of A is defined by
Ag(A) = {r € Z/NZ: [Ta(r)| > 0]Al}.

If A is specified then we write Ay instead of Ay(A).
By the span of a finite set S we mean

Span (S5) = {Zsss res € {—1,0,1} for all s € S}
seS

and the dimension of A is defined by
dim(A) = min {|S| : A C Span(9)}.
Chang’s Spectral Lemma provides an upper bound for the dimension of a spectrum.
Lemma 2. [9] Let ACZ/NZ be a set of size |A| = 0N and let @ > 0. Then
dim(Ag(A)) < 62 log(1/0).

We are going to use Bohr sets [7] to prove the main result. Let I' C G and v € (0, %]
then the Bohr set generated by I' with radius -y is

B(l,y)={zx € Z/NZ: |tz/N| <~y forallt €I},

where ||z|| = minyez |z — y|. The rank of B is the size of I' and we denote it by rk(B).
Given 1 > 0 and a Bohr set B = B(I',v), by B, we mean the Bohr set B(I', ). We will
also use the notation § = ﬁl - We will use two basic properties of Bohr sets concerning
their size and regularity, see [21].
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Lemma 3. [7] For every v € (0, 3] we have
YWIN <[B(T, ) < 8T BT, 4/2)].
We call a Bohr set B(T',~y) regular if for every n, where |n| < 1/(100|T'|) we have
(1 =100[T'f[n)|B] < [Bisy| < (14 100[T'[[n])| B].
Bourgain [7] showed that regular Bohr sets are ubiquitous.

Lemma 4. [7] For every Bohr set B(T,v), there exists v such that 1y < 7' < v and
B(T',v") is regular.

3 Proof of Theorem 1

Our main tool is the next lemma, which can be extracted from [18], by conjugation of
results concerning the case of ’small’ Fourier coefficients (see Lemmas 7 and 9 of [18])
and the case of 'middle’ Fourier coefficients (Lemmas 12 and 13 of [18]). Its proof makes
use of the deep result by Bateman and Katz in [1, 2] describing the structure of the large
spectrum. The case of 'large’ Fourier coefficients is treated similarly as in [18], however
using partition properties we will be able to obtain much better estimate.

Lemma 5. [18] There ezists an absolute constant ¢ > 0 such that the following holds. Let
ACZ/NZ, |A| = 6N be a set such that

— 1 .
2 L > 5077 AP 2)

ri 81| AJ<| T2 (r)|<61/19] A]

Then there is a regular Bohr set B with rk(B) < 6~'*¢ and radius Q(6'~¢) such that for
some t
[(A+t)N B> 6'"|B|.

Furthermore, we apply Bloom’s iterative lemma, that provides a density increment
by a constant factor greater than 1 for progression-free sets and Sanders’ lemma on a
containment of long arithmetic progressions in dense subsets of regular Bohr sets.

Lemma 6. [4] There exists an absolute constant ¢; > 0 such that the following holds. Let
B CZ/NZ be a regular Bohr set of rank d. Let Ay C B and Ay C B, each with relative
densities ;. Let a = min(cy, o, ) and assume that d < exp(ci(log?(1/a)). Suppose
that B. is also reqular and cya/(4d) < € < cya/d. Then either

(i) there is a reqular Bohr set B' of rank tk(B') < d + O(a tlog(1/a)) and size
|B'| > exp (— O(log®(1/a)(d + a~"log(1/a)))) | B|

such that
(A1 +t)N B> (1+c1)aq| B

for some t € Z/NZ;
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(11) or there are Q(aias|Bl||B.|) three-term arithmetic progressions x + vy = 2z with
T,y € A,z € Ay;

Lemma 7. [16] Let B(I',) C Z/NZ be a regular Bohr set of rank d and let € be a positive
number satisfying e < yd~'NY¢. Suppose that A C B contains at least a proportion
1—¢ of B(I',7). Then A contains an arithmetic progression of length at least 1/(4e).

Furthermore, to apply Bloom’s result we will need to prove a standard fact on Bohr
sets. Let us also remark that it follows from the proof of Bloom’s lemma that we can take
¢1 < 1/1000. We will use the following basic property of Bohr sets.

Lemma 8. [11] Let B be a regular Bohr set of rank d and radius v and let A be a set
with |A| = «|B|. Suppose that € < ka/(100d) for some r € (0,1). Then

Y (Laxlp)(@) > (1 - r)a|BlB].

Lemma 9. Let B be a reqular Bohr set of rank d and suppose that A C B and |A| = «|B].
Then there is ¢ with cia/(4d) < e < cia/d (¢q is a constant given by Lemma 6), and
reqular Bohr sets B and BL of rank d and size

|B'| > exp(—O(dlog(1/a)log(d/a)))|B|
such that ) .
[(A+t)NnB'| > §a|B'| and |(A+t)NBL > §oz|B;|
for some t.

Proof. Let €1 and €5 be any numbers satisfying c;a/(4d) < €1,e2 < c1/d and such that
the Bohr sets B! = B., and B*> = B.,., are regular. Put 8, = -lp, and B = 51,
then by Lemma 8 we have

S (6% 1)) + (B % 14)(a)) > 2ol B,

T

hence for some x we have

ol ©

(B1# 1a)(z) + (B2 1a)(z) 2

Q.

If
a (3)

NO| —

(B L)) > ga and (B % La)(x) >

then we can put B’ = B'. Otherwise, for some i € {1,2} we have (8;x14)(z) > (6/5)c and
we put B = B? and apply the same procedure again. Clearly, we can iterate this procedure
O(log(1/a)) times, as the density of a set can not exceed 1. Thus after O(log(1/«))
iterative steps we obtain a pair of Bohr sets B’, B, satisfying (3). From Lemma 3 it
follows that

|B'| Z exp(—O(dlog(1/a)log(d/a)))| B,

which concludes the proof. O
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Proof of Theorem 1. Put M = W (3,k) —1 and let {1,..., M} = X UY be a partition
such that X and Y avoid 3 and k-term arithmetic progressions respectively. Clearly, we
may assume that M > 100k hence

Y| <M~ [M/k] < M~ M/(2k),

as no block of k consecutive numbers is contained in Y and therefore | X| > M/(2k). Let
N be any prime number satisfying 2M < N < 4M. We embed {1,..., M} = X UY in
Z/NZ in a natural way and observe that {1,..., M} considered as a subset of Z/NZ is 2-
Freiman isomorphic to {1, ..., M} considered as a subset of Z and therefore any arithmetic
progression in {1,..., M} C Z/NZ is a genuine progression in Z. Put |X| = N and note
that we can assume that ¢ > (log N)~!'1. First let us assume that

> Ty (r)]? > 67| X2, (4)
r:61e| X |<|Tx (r)|<61/10] X |

where ¢ > 0 is the fixed absolute constant from Lemma 5. Then by Lemma 5 there is
t € Z/NZ and a regular Bohr set B® with rk(B°) = d < §7'7¢ and radius €(6'7¢) such
that

(X +t)N B°| > 6" B|

for some absolute constant ¢ > 0. Writing Xy = (X + ) N By we have
| XoN B°| > a|BY|,

where
a > (51_6,

and by Lemma 3
|B°| > exp (— O(6*“log(1/8))) N .

By Lemma 9 there is € > a? and regular Bohr sets B’ and B’ of rank d such that
1 1
(A+t)NB'| > §a|B’| and |(A+t)N Bl > §a|B;|,

and
|B'| > exp(—O(a " log?(1/a)))|B°| = exp ( — O(6“log*(1/6))) N .

Next, we iteratively apply Lemma 6 and Lemma 9. Since after each step the density
increases by factor 1 4 ¢ it follows that after | < log(1/«) steps case (ii) of Lemma 6
holds. Let B? be Bohr sets obtained in the iterative procedure. Note that B’ has rank
rk(BY) = d; < a~'log?(1/a) for every i < [ and

B > exp (= O(log*(1/a)(d; + o™ log(1/a)))) | Bi|
for every ¢ < [. Therefore, there are

Q(o”|B'[| B)
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three-term arithmetic progressions in X, where ¢ > c;a/(4rk(B')) > o?log®(1/a). B
Lemma 6 and Lemma 3 we have

|B'| > exp (— O(a 'log*(1/a)))N > exp (— O(5 " log*(1/6))) N
and

B (- O(a~"10g*(1/a))) exp ( — O(a~" log*(1/a))) N

(=06 " log*(1/6))) N

ex

VoWV

p
exp

Thus, X contains
9(53—30 exp ( _ 0(5_1+C 10g4(1/6)))N2)

arithmetic progressions of length three. Since there are only | X| trivial progressions in X
it follows that
| X| > 6> exp (— O(6 " log*(1/6))) N?

S0
W(3,k) < N < exp (O(6 "*log*(1/6)) < exp (O(k' “log*k)) .

Next let us assume that (4) does not hold. Let us define A’ = Agi/10 U271+ Agi/10 and
observe that r ¢ A’ is equivalent to r & Agi/10 and 2r &€ Agi10. By Chang’s lemma

dlm(A/) < 2dim(A51/10) <K 571/5 log(1/5) y

and let A be any set such that 1 € A, |A] < 67%°log(1/d) and A’ C Span (A). Let
B = B(A,~) be a regular Bohr set with radius 6% < v < §2. Since 1 € A it follows that

for every b € B we
|b/N|| <N < 4yM .

Recall that 8 = = 1p then for every r € A’ we have

\B\

B —1] < |Z|-2““’/N 1|<|B|ZZ||rb/NH < 2mé?, (5)

beB beB AeA
and similarly |3(2r) — 1| < 476 For t € Z/NZ put
f(t) =B 1x(t)

and note that if for some t € [4yM, (1 — 4v)M] we have f(t) = ﬁ]X N(B+1t)] <8,
where ¢ = ¢/20, then since B 4+t C [1, M] it follows that

Y N (B+1t)]>(1-6")B|.

Therefore, by Lemma 7 either §'=¢ > vd~' N4 or Y contains an arithmetic progression
of length 261, The former inequality implies that

B s Ad INV > SANOEYP 10571 (1/0)) 5, f.—4 NOk™1/ > log™" k) ,
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SO

W(3,k) < N < exp (O(k'/*log” k)) .
If the second alternative holds then
1 /
_6—1—0 I{Z
1 <
hence by (1)
Y0+ « 5 < (log N)~tHoW

SO
W(37 k) < N < exp (O(kﬁ-‘ro(l))) .

Finally we can assume that for every ¢t € [4yM, (1 — 4y)M] we have f(t) > 6'*¢. Let
T(X) denote the number of three-term arithmetic progressions in X and let

T(f)= Y. f@)fw)f(z).

TH+y=2z

Then clearly
T(f) > 53+3CIM2 > (53+c/6N2 (6)

and we will show that 7'(X) does not differ much from T'(f)

700 - T(P] = | X HOPIx(-20) - 3 flr)*Fl-2n)

< & Y I TR-2n( - BrB(-2n) g
- S+

where S; and Sy are summations of (7) respectively over A" and Z/NZ\ A’. By (5), the
negation of (4), Parseval’s formula and Holder’s inequality we have

N—-1
1 — —
S < P SR )P < 603 Tk ()P = X
r=0

reA’

2 —~ —
S < o S0 Tx(-20)

N

2 ~ ~
< N(Z [Tx ()2 x(2r)*)"?

rg A’ rg A’

2 —
< = > GOP

T¢A51/10
- SRR O S ]

T€A61+C\A51/10 T€A61+c

< 52|X|2+51+C/S|X|2+51+C|X|2 <<51+C/5|X|2
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Thus,

T(X) = T(f)] < 8*7°N?,

so by (6) and the fact that X avoids non-trivial three-term arithmetic progression we have

1X| =T(X) > §*+/°N?

hence
W(3,k) <N <620 « k3
which concludes the proof. O
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