A subexponential upper bound for van der Waerden numbers W(3, k)

Tomasz Schoen

Faculty of Mathematics and Computer Science Adam Mickiewicz University Uniwersytetu Poznańskiego 4 61-614 Poznań, Poland

schoen@amu.edu.pl

Submitted: Jul 9, 2020; Accepted: May 23, 2021; Published: Jun 4, 2021 © The author. Released under the CC BY license (International 4.0).

Abstract

We show an improved upper estimate for van der Waerden number W(3,k): there is an absolute constant c > 0 such that if $\{1, \ldots, N\} = X \cup Y$ is a partition such that X does not contain any arithmetic progression of length 3 and Y does not contain any arithmetic progression of length k then

$$N\leqslant \exp(O(k^{1-c}))\,.$$

Mathematics Subject Classifications: 05D10, 11B25

1 Introduction

Let k and l be positive integers. The van der Waerden number W(k,l) is the smallest positive integer N such that in any partition $\{1,\ldots,N\}=X\cup Y$ there is an arithmetic progression of length k in X or an arithmetic progression of length l in Y. The existence of such numbers was established by van der Waerden [22], however the order of magnitude of W(k,l) is unknown for $k,l\geqslant 3$. Clearly, W(k,l) is related to Szemerédi's theorem on arithmetic progressions [20] and any effective estimate in this theorem leads to an upper bound on the van der Waerden numbers. Currently the best known bounds in the most important diagonal case are

$$(1 - o(1))\frac{2^{k-1}}{e^k} \le W(k, k) \le 2^{2^{2^{2^{2^{k+9}}}}}$$
.

The upper bound follows from the famous work of Gowers [12] and the lower bound was proved by Szabó [19] using a probabilistic argument. Furthermore, Berlekamp [3] showed

that if k-1 is a prime number then

$$W(k,k) \geqslant (k-1)2^{k-1}$$
.

Another very intriguing instance of the problem is the estimation of the numbers W(3,k), as these are related to Roth's theorem [15] concerning estimates for sets avoiding three-term arithmetic progressions. Let us denote by r(N) the size of the largest progression-free subset of $\{1,\ldots,N\}$. We know that

$$r(N) \ll \frac{N}{\log N^{1-o(1)}},\tag{1}$$

see [4, 5, 17, 18], which implies $W(3, k) \leq \exp(O(k^{1+o(1)}))$.

Green [13] proposed a very clever argument based on arithmetic properties of sumsets to bound W(3, k). Building on this method and applying results from [10] it was shown in [11] that

$$W(3, k) \leqslant \exp(O(k \log k))$$
.

The best known lower bound was obtained by Li and Shu [14] (see also [8]), who showed that

$$W(3,k) \gg \left(\frac{k}{\log k}\right)^2.$$

The purpose of this paper is to prove a subexponential bound on W(3, k).

Theorem 1. There are absolute constants C, c > 0 such that for every k we have

$$W(3,k) \leqslant \exp(Ck^{1-c}).$$

Our argument is based on the method of [18], which explores in details the structure of a large spectrum. This method can be partly applied (see Lemma 5) in our approach and it deals only with a progression-free partition class. The second part of the proof exploits the structure of both partition classes and in this case the argument of [18] has to be significantly modified.

Let us remark that during the review process a preprint of Bloom and Sisask [6], which improves an upper bound in Roth's theorem to $N/(\log N)^{1+c}$ for $c \approx 2^{-2^{2^{1000}}}$, has appeared. That result implies directly that $W(3,k) \leq \exp(Ck^{1-c})$ with $c \approx 2^{-2^{2^{1000}}}$.

2 Notation

Given functions $f, g: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$, the convolution of f and g is defined by

$$(f * g)(x) = \sum_{t \in \mathbb{Z}/N\mathbb{Z}} f(t)g(x - t).$$

The Fourier coefficients of a function $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$ are defined by

$$\widehat{f}(r) = \sum_{r=0}^{N-1} f(x)e^{-2\pi i x r/N},$$

where $r \in \mathbb{Z}/N\mathbb{Z}$. The inversion formula states that

$$f(x) = \frac{1}{N} \sum_{r=0}^{N-1} \widehat{f}(r) e^{2\pi i x r/N}.$$

We denote by $1_A(x)$ the indicator function of set A. Thus using the inversion formula and the fact that $\widehat{(f*g)}(r) = \widehat{f}(r)\widehat{g}(r)$ one can express the number of three–term arithmetic progressions (including trivial ones) in a set $A \subseteq \mathbb{Z}/N\mathbb{Z}$ by

$$\frac{1}{N} \sum_{r=0}^{N-1} \widehat{1_A}(r)^2 \widehat{1_A}(-2r)$$
.

Parseval's identity asserts in particular that

$$\sum_{r=0}^{N-1} |\widehat{1}_A(r)|^2 = |A|N.$$

Let $\theta \ge 0$ be a real number. The θ -spectrum of A is defined by

$$\Delta_{\theta}(A) = \{ r \in \mathbb{Z}/N\mathbb{Z} : |\widehat{1}_{A}(r)| \geqslant \theta|A| \}.$$

If A is specified then we write Δ_{θ} instead of $\Delta_{\theta}(A)$.

By the span of a finite set S we mean

$$\operatorname{Span}(S) = \left\{ \sum_{s \in S} \varepsilon_s s : \varepsilon_s \in \{-1, 0, 1\} \text{ for all } s \in S \right\}$$

and the dimension of A is defined by

$$\dim(A) = \min\{|S| : A \subseteq \operatorname{Span}(S)\}.$$

Chang's Spectral Lemma provides an upper bound for the dimension of a spectrum.

Lemma 2. [9] Let $A \subseteq \mathbb{Z}/N\mathbb{Z}$ be a set of size $|A| = \delta N$ and let $\theta > 0$. Then

$$\dim(\Delta_{\theta}(A)) \ll \theta^{-2} \log(1/\delta)$$
.

We are going to use Bohr sets [7] to prove the main result. Let $\Gamma \subseteq \widehat{G}$ and $\gamma \in (0, \frac{1}{2}]$ then the Bohr set generated by Γ with radius γ is

$$B(\Gamma, \gamma) = \{x \in \mathbb{Z}/N\mathbb{Z} : ||tx/N|| \leqslant \gamma \text{ for all } t \in \Gamma \},$$

where $||x|| = \min_{y \in \mathbb{Z}} |x - y|$. The rank of B is the size of Γ and we denote it by $\mathrm{rk}(B)$. Given $\eta > 0$ and a Bohr set $B = B(\Gamma, \gamma)$, by B_{η} we mean the Bohr set $B(\Gamma, \eta\gamma)$. We will also use the notation $\beta = \frac{1}{|B|} 1_B$. We will use two basic properties of Bohr sets concerning their size and regularity, see [21].

Lemma 3. [7] For every $\gamma \in (0, \frac{1}{2}]$ we have

$$\gamma^{|\Gamma|}N \leqslant |B(\Gamma,\gamma)| \leqslant 8^{|\Gamma|+1}|B(\Gamma,\gamma/2)|$$
.

We call a Bohr set $B(\Gamma, \gamma)$ regular if for every η , where $|\eta| \leq 1/(100|\Gamma|)$ we have

$$(1 - 100|\Gamma||\eta|)|B| \le |B_{1+\eta}| \le (1 + 100|\Gamma||\eta|)|B|.$$

Bourgain [7] showed that regular Bohr sets are ubiquitous.

Lemma 4. [7] For every Bohr set $B(\Gamma, \gamma)$, there exists γ' such that $\frac{1}{2}\gamma \leqslant \gamma' \leqslant \gamma$ and $B(\Gamma, \gamma')$ is regular.

3 Proof of Theorem 1

Our main tool is the next lemma, which can be extracted from [18], by conjugation of results concerning the case of 'small' Fourier coefficients (see Lemmas 7 and 9 of [18]) and the case of 'middle' Fourier coefficients (Lemmas 12 and 13 of [18]). Its proof makes use of the deep result by Bateman and Katz in [1, 2] describing the structure of the large spectrum. The case of 'large' Fourier coefficients is treated similarly as in [18], however using partition properties we will be able to obtain much better estimate.

Lemma 5. [18] There exists an absolute constant c > 0 such that the following holds. Let $A \subseteq \mathbb{Z}/N\mathbb{Z}$, $|A| = \delta N$ be a set such that

$$\sum_{r:\,\delta^{1+c}|A|\leqslant |\widehat{1_A}(r)|\leqslant \delta^{1/10}|A|} |\widehat{1_A}(r)|^3 \geqslant \frac{1}{10} \delta^{c/5} |A|^3.$$
 (2)

Then there is a regular Bohr set B with $\operatorname{rk}(B) \ll \delta^{-1+c}$ and radius $\Omega(\delta^{1-c})$ such that for some t

$$|(A+t)\cap B|\gg \delta^{1-c}|B|.$$

Furthermore, we apply Bloom's iterative lemma, that provides a density increment by a constant factor greater than 1 for progression-free sets and Sanders' lemma on a containment of long arithmetic progressions in dense subsets of regular Bohr sets.

Lemma 6. [4] There exists an absolute constant $c_1 > 0$ such that the following holds. Let $B \subseteq \mathbb{Z}/N\mathbb{Z}$ be a regular Bohr set of rank d. Let $A_1 \subseteq B$ and $A_2 \subseteq B_{\varepsilon}$, each with relative densities α_i . Let $\alpha = \min(c_1, \alpha_1, \alpha_2)$ and assume that $d \leqslant \exp(c_1(\log^2(1/\alpha)))$. Suppose that B_{ε} is also regular and $c_1\alpha/(4d) \leqslant \varepsilon \leqslant c_1\alpha/d$. Then either

(i) there is a regular Bohr set B' of rank $\operatorname{rk}(B') \leqslant d + O(\alpha^{-1}\log(1/\alpha))$ and size

$$|B'| \geqslant \exp\left(-O(\log^2(1/\alpha)(d+\alpha^{-1}\log(1/\alpha)))\right)|B|$$

such that

$$|(A_1+t)\cap B'|\gg (1+c_1)\alpha_1|B'|$$

for some $t \in \mathbb{Z}/N\mathbb{Z}$;

(ii) or there are $\Omega(\alpha_1^2 \alpha_2 |B| |B_{\varepsilon}|)$ three-term arithmetic progressions x + y = 2z with $x, y \in A_1, z \in A_2$;

Lemma 7. [16] Let $B(\Gamma, \gamma) \subseteq \mathbb{Z}/N\mathbb{Z}$ be a regular Bohr set of rank d and let ε be a positive number satisfying $\varepsilon^{-1} \ll \gamma d^{-1}N^{1/d}$. Suppose that $A \subseteq B$ contains at least a proportion $1 - \varepsilon$ of $B(\Gamma, \gamma)$. Then A contains an arithmetic progression of length at least $1/(4\varepsilon)$.

Furthermore, to apply Bloom's result we will need to prove a standard fact on Bohr sets. Let us also remark that it follows from the proof of Bloom's lemma that we can take $c_1 < 1/1000$. We will use the following basic property of Bohr sets.

Lemma 8. [11] Let B be a regular Bohr set of rank d and radius γ and let A be a set with $|A| = \alpha |B|$. Suppose that $\varepsilon < \kappa \alpha / (100d)$ for some $\kappa \in (0,1)$. Then

$$\sum_{x \in B} (1_A * 1_{B_{\varepsilon}})(x) \geqslant (1 - \kappa)\alpha |B| |B_{\varepsilon}|.$$

Lemma 9. Let B be a regular Bohr set of rank d and suppose that $A \subseteq B$ and $|A| = \alpha |B|$. Then there is ε with $c_1\alpha/(4d) \le \varepsilon \le c_1\alpha/d$ (c_1 is a constant given by Lemma 6), and regular Bohr sets B' and B'_{\varepsilon} of rank d and size

$$|B'| \geqslant \exp(-O(d\log(1/\alpha)\log(d/\alpha)))|B|$$

such that

$$|(A+t)\cap B'|\geqslant \frac{1}{2}\alpha|B'|$$
 and $|(A+t)\cap B'_{\varepsilon}|\geqslant \frac{1}{2}\alpha|B'_{\varepsilon}|$

for some t.

Proof. Let ε_1 and ε_2 be any numbers satisfying $c_1\alpha/(4d) \leqslant \varepsilon_1, \varepsilon_2 \leqslant c_1\alpha/d$ and such that the Bohr sets $B^1 = B_{\varepsilon_1}$ and $B^2 = B_{\varepsilon_1\varepsilon_2}$ are regular. Put $\beta_1 = \frac{1}{|B_1|} 1_{B_1}$ and $\beta_2 = \frac{1}{|B_2|} 1_{B_2}$ then by Lemma 8 we have

$$\sum_{x} ((\beta_1 * 1_A)(x) + (\beta_2 * 1_A)(x)) \geqslant \frac{9}{5} \alpha |B|,$$

hence for some x we have

$$(\beta_1 * 1_A)(x) + (\beta_2 * 1_A)(x) \geqslant \frac{9}{5}\alpha.$$

If

$$(\beta_1 * 1_A)(x) \geqslant \frac{1}{2}\alpha$$
 and $(\beta_2 * 1_A)(x) \geqslant \frac{1}{2}\alpha$ (3)

then we can put $B' = B^1$. Otherwise, for some $i \in \{1, 2\}$ we have $(\beta_i * 1_A)(x) \ge (6/5)\alpha$ and we put $B = B^i$ and apply the same procedure again. Clearly, we can iterate this procedure $O(\log(1/\alpha))$ times, as the density of a set can not exceed 1. Thus after $O(\log(1/\alpha))$ iterative steps we obtain a pair of Bohr sets B', B'_{ε} satisfying (3). From Lemma 3 it follows that

$$|B'| \geqslant \exp(-O(d\log(1/\alpha)\log(d/\alpha)))|B|$$
,

which concludes the proof.

Proof of Theorem 1. Put M = W(3, k) - 1 and let $\{1, ..., M\} = X \cup Y$ be a partition such that X and Y avoid 3 and k-term arithmetic progressions respectively. Clearly, we may assume that $M \ge 100k$ hence

$$|Y| \leqslant M - |M/k| \leqslant M - M/(2k),$$

as no block of k consecutive numbers is contained in Y and therefore $|X| \geqslant M/(2k)$. Let N be any prime number satisfying $2M < N \leqslant 4M$. We embed $\{1,\ldots,M\} = X \cup Y$ in $\mathbb{Z}/N\mathbb{Z}$ in a natural way and observe that $\{1,\ldots,M\}$ considered as a subset of $\mathbb{Z}/N\mathbb{Z}$ is 2-Freiman isomorphic to $\{1,\ldots,M\}$ considered as a subset of \mathbb{Z} and therefore any arithmetic progression in $\{1,\ldots,M\}\subseteq\mathbb{Z}/N\mathbb{Z}$ is a genuine progression in \mathbb{Z} . Put $|X|=\delta N$ and note that we can assume that $\delta\gg(\log N)^{-1.1}$. First let us assume that

$$\sum_{r: \delta^{1+c}|X| \leqslant |\widehat{1}_X(r)| \leqslant \delta^{1/10}|X|} |\widehat{1}_X(r)|^3 \geqslant \delta^{c/5}|X|^3, \tag{4}$$

where c>0 is the fixed absolute constant from Lemma 5. Then by Lemma 5 there is $t\in\mathbb{Z}/N\mathbb{Z}$ and a regular Bohr set B^0 with $\mathrm{rk}(B^0)=d\ll\delta^{-1+c}$ and radius $\Omega(\delta^{1-c})$ such that

$$|(X+t) \cap B^0| \gg \delta^{1-c}|B|$$

for some absolute constant c > 0. Writing $X_0 = (X + t) \cap B_0$ we have

$$|X_0 \cap B^0| \gg \alpha |B^0|$$
,

where

$$\alpha \gg \delta^{1-c}$$
.

and by Lemma 3

$$|B^0| \geqslant \exp\left(-O(\delta^{-1+c}\log(1/\delta))\right)N$$
.

By Lemma 9 there is $\varepsilon \gg \alpha^2$ and regular Bohr sets B' and B'_{ε} of rank d such that

$$|(A+t)\cap B'|\geqslant \frac{1}{2}\alpha|B'|\quad \text{and}\quad |(A+t)\cap B'_\varepsilon|\geqslant \frac{1}{2}\alpha|B'_\varepsilon|\,,$$

and

$$|B'| \ge \exp(-O(\alpha^{-1}\log^2(1/\alpha)))|B^0| \ge \exp(-O(\delta^{-1+c}\log^2(1/\delta)))N$$
.

Next, we iteratively apply Lemma 6 and Lemma 9. Since after each step the density increases by factor $1 + c_1$ it follows that after $l \ll \log(1/\alpha)$ steps case (ii) of Lemma 6 holds. Let B^i be Bohr sets obtained in the iterative procedure. Note that B^i has rank $\operatorname{rk}(B^i) = d_i \ll \alpha^{-1} \log^2(1/\alpha)$ for every $i \leqslant l$ and

$$|B^{i+1}| \geqslant \exp\left(-O(\log^2(1/\alpha)(d_i + \alpha^{-1}\log(1/\alpha)))\right)|B_i|$$

for every i < l. Therefore, there are

$$\Omega(\alpha^3|B^l||B^l_\varepsilon|)$$

three-term arithmetic progressions in X, where $\varepsilon \geqslant c_1 \alpha/(4\text{rk}(B^l)) \gg \alpha^2 \log^2(1/\alpha)$. By Lemma 6 and Lemma 3 we have

$$|B^l| \geqslant \exp\left(-O(\alpha^{-1}\log^4(1/\alpha))\right)N \geqslant \exp\left(-O(\delta^{-1+c}\log^4(1/\delta))\right)N$$

and

$$|B_{\varepsilon}^{l}| \geq \exp\left(-O(\alpha^{-1}\log^{3}(1/\alpha))\right) \exp\left(-O(\alpha^{-1}\log^{4}(1/\alpha))\right) N$$

$$\geq \exp\left(-O(\delta^{-1+c}\log^{4}(1/\delta))\right) N.$$

Thus, X contains

$$\Omega(\delta^{3-3c} \exp\left(-O(\delta^{-1+c}\log^4(1/\delta))\right)N^2)$$

arithmetic progressions of length three. Since there are only |X| trivial progressions in X it follows that

$$|X| \gg \delta^{3-3c} \exp\left(-O(\delta^{-1+c}\log^4(1/\delta))\right) N^2$$
,

SO

$$W(3,k) \ll N \ll \exp\left(O(\delta^{-1+c}\log^4(1/\delta))\right) \leqslant \exp\left(O(k^{1-c}\log^4k)\right).$$

Next let us assume that (4) does not hold. Let us define $\Delta' = \Delta_{\delta^{1/10}} \cup 2^{-1} \cdot \Delta_{\delta^{1/10}}$ and observe that $r \notin \Delta'$ is equivalent to $r \notin \Delta_{\delta^{1/10}}$ and $2r \notin \Delta_{\delta^{1/10}}$. By Chang's lemma

$$\dim(\Delta') \leqslant 2\dim(\Delta_{\delta^{1/10}}) \ll \delta^{-1/5}\log(1/\delta)$$
,

and let Λ be any set such that $1 \in \Lambda$, $|\Lambda| \ll \delta^{-1/5} \log(1/\delta)$ and $\Delta' \subseteq \operatorname{Span}(\Lambda)$. Let $B = B(\Lambda, \gamma)$ be a regular Bohr set with radius $\delta^3 \ll \gamma \leqslant \delta^3$. Since $1 \in \Lambda$ it follows that for every $b \in B$ we

$$||b/N|| \leqslant \gamma N \leqslant 4\gamma M$$
.

Recall that $\beta = \frac{1}{|B|} 1_B$ then for every $r \in \Delta'$ we have

$$\left|\widehat{\beta}(r) - 1\right| \leqslant \frac{1}{|B|} \sum_{b \in B} \left| e^{-2\pi i r b/N} - 1 \right| \leqslant \frac{2\pi}{|B|} \sum_{b \in B} \sum_{\lambda \in \Lambda} \|rb/N\| \leqslant 2\pi \delta^2, \tag{5}$$

and similarly $|\widehat{\beta}(2r) - 1| \leq 4\pi\delta^2$. For $t \in \mathbb{Z}/N\mathbb{Z}$ put

$$f(t) = \beta * 1_X(t)$$

and note that if for some $t \in [4\gamma M, (1-4\gamma)M]$ we have $f(t) = \frac{1}{|B|}|X \cap (B+t)| \leq \delta^{1+c'}$, where c' = c/20, then since $B + t \subseteq [1, M]$ it follows that

$$|Y \cap (B+t)| \geqslant (1-\delta^{1+c'})|B|$$
.

Therefore, by Lemma 7 either $\delta^{-1-c'} \gg \gamma d^{-1} N^{1/d}$ or Y contains an arithmetic progression of length $\frac{1}{4}\delta^{-1-c'}$. The former inequality implies that

$$k^{1+c'} \gg \gamma d^{-1} N^{1/d} \gg \delta^4 N^{O(\delta^{1/5} \log^{-1}(1/\delta))} \gg k^{-4} N^{O(k^{-1/5} \log^{-1} k)}$$

$$W(3,k) \ll N \ll \exp\left(O(k^{1/5}\log^2 k)\right).$$

If the second alternative holds then

$$\frac{1}{4}\delta^{-1-c'} < k$$

hence by (1)

$$k^{-1/(1+c')} \ll \delta \ll (\log N)^{-1+o(1)}$$

SO

$$W(3,k) \leqslant N \ll \exp\left(O(k^{\frac{1}{1+c'}+o(1)})\right)$$
.

Finally we can assume that for every $t \in [4\gamma M, (1-4\gamma)M]$ we have $f(t) \ge \delta^{1+c'}$. Let T(X) denote the number of three-term arithmetic progressions in X and let

$$T(f) = \sum_{x+y=2z} f(x)f(y)f(z).$$

Then clearly

$$T(f) \gg \delta^{3+3c'} M^2 \gg \delta^{3+c/6} N^2 \tag{6}$$

and we will show that T(X) does not differ much from T(f)

$$|T(X) - T(f)| = \frac{1}{N} |\sum_{r=0}^{N-1} \widehat{1_X}(r)^2 \widehat{1_X}(-2r) - \sum_{r=0}^{N-1} \widehat{f}(r)^2 \widehat{f}(-2r)|$$

$$\leqslant \frac{1}{N} \sum_{r=0}^{N-1} |\widehat{1_X}(r)^2 \widehat{1_X}(-2r) (1 - \widehat{\beta}(r)^2 \widehat{\beta}(-2r))|$$

$$= S_1 + S_2,$$
(7)

where S_1 and S_2 are summations of (7) respectively over Δ' and $\mathbb{Z}/N\mathbb{Z} \setminus \Delta'$. By (5), the negation of (4), Parseval's formula and Hölder's inequality we have

$$S_{1} \ll \delta^{2} \frac{1}{N} \sum_{r \in \Delta'} |\widehat{1}_{X}(r)|^{3} \leqslant \delta^{3} \sum_{r=0}^{N-1} |\widehat{1}_{X}(r)|^{2} = \delta^{2} |X|^{2},$$

$$S_{2} \leqslant \frac{2}{N} \sum_{r \notin \Delta'} |\widehat{1}_{X}(r)^{2} \widehat{1}_{X}(-2r)|$$

$$\leqslant \frac{2}{N} (\sum_{r \notin \Delta'} |\widehat{1}_{X}(r)|^{3})^{2/3} (\sum_{r \notin \Delta'} |\widehat{1}_{X}(2r)|^{3})^{1/3}$$

$$\leqslant \frac{2}{N} \sum_{r \notin \Delta_{\delta^{1/10}}} |\widehat{1}_{X}(r)|^{3}$$

$$\leqslant \frac{2}{N} \sum_{r \in \Delta_{\delta^{1+c}} \setminus \Delta_{\delta^{1/10}}} |\widehat{1}_{X}(r)|^{3} + \frac{2}{N} \sum_{r \notin \Delta_{\delta^{1+c}}} |\widehat{1}_{X}(r)|^{3}$$

$$\ll \delta^{2} |X|^{2} + \delta^{1+c/5} |X|^{2} + \delta^{1+c} |X|^{2} \ll \delta^{1+c/5} |X|^{2}$$

Thus,

$$|T(X) - T(f)| \ll \delta^{3+c/5} N^2,$$

so by (6) and the fact that X avoids non-trivial three-term arithmetic progression we have

$$|X| = T(X) \gg \delta^{3+c/6} N^2,$$

hence

$$W(3,k) \leqslant N \ll \delta^{-2-c/6} \ll k^3$$

which concludes the proof.

References

- [1] M. Bateman, N. Katz, New bounds on cap sets, Journal of AMS 2 (2012), 585–613.
- [2] M. BATEMAN, N. KATZ, Structure in additively nonsmoothing sets, arXiv:1104.2862v1.
- [3] E. Berlekamp, A construction for partitions which avoid long arithmetic progressions, Canad. Math. Bull. 11 (1968) 409–414.
- [4] T. Bloom, A quantitative improvement for Roth's theorem on arithmetic progressions, J. Lond. Math. Soc. 93 (2016), 643–663.
- [5] T. Bloom, O. Sisask, Logarithmic bounds for Roth's theorem via almost-periodicity, Discrete Analysis 4 (2019), 20 pp.
- [6] T. Bloom, O. Sisask, Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions, arXiv:2007.03528.
- [7] J. BOURGAIN, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), 968–984.
- [8] T. Brown, B. Landman, A. Robertson, Bounds on some van der Waerden numbers, J. Combin. Theory Ser. A 115 (2008), 1304–1309.
- [9] M.-C. Chang, A polynomial bound in Freiman's theorem, Duke Math. J. 3 (2002), 399–419.
- [10] E. CROOT, I. RUZSA, T. SCHOEN, Arithmetic progressions in sparse sumsets, Combinatorial number theory, de Gruyter, Berlin, 2007, 157–164.
- [11] K. CWALINA, T. SCHOEN, Tight bounds on additive Ramsey-type numbers, J. Lond. Math. Soc. 96 (2017), 601–620.
- [12] W. T. GOWERS, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), 465–588.
- [13] B. Green, Arithmetic progressions in sumsets, Geom. Funct. Anal. 12 (2002), 584–597.
- [14] Y. Li, J. Shu, A lower bound for off-diagonal van der Waerden numbers, Adv. in Appl. Math. 44 (2010), 243–247.

- [15] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.
- [16] T. Sanders, Additive structures in sumsets, Math. Proc. Cambridge Philos. Soc. 144 (2008), 289–316.
- [17] T. SANDERS, On Roth's Theorem on Progressions, Ann. of Math. 174 (2011), 619–636.
- [18] T. SCHOEN, Improved bound in Roth's theorem on arithmetic progressions, Adv. Math. (2021), https://doi.org/10.1016/j.aim.2021.107801 (arXiv:2005.01145).
- [19] Z. Szabó, An application of Lovász' local lemma-A new lower bound for the van der Waerden numbers, Random Structures Algorithms 1 (1990), 343–360.
- [20] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–245.
- [21] T. TAO, V. Vu, Additive combinatorics, Cambridge University Press 2006.
- [22] B. L. VAN DER WAERDEN, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskd. 15 (1927), 257–271.