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Abstract

We show an improved upper estimate for van der Waerden number W (3, k) :
there is an absolute constant c > 0 such that if {1, . . . , N} = X ∪ Y is a partition
such that X does not contain any arithmetic progression of length 3 and Y does
not contain any arithmetic progression of length k then

N 6 exp(O(k1−c)) .

Mathematics Subject Classifications: 05D10, 11B25

1 Introduction

Let k and l be positive integers. The van der Waerden number W (k, l) is the smallest
positive integer N such that in any partition {1, . . . , N} = X ∪ Y there is an arithmetic
progression of length k in X or an arithmetic progression of length l in Y . The existence
of such numbers was established by van der Waerden [22], however the order of magnitude
of W (k, l) is unknown for k, l > 3. Clearly, W (k, l) is related to Szemerédi’s theorem on
arithmetic progressions [20] and any effective estimate in this theorem leads to an upper
bound on the van der Waerden numbers. Currently the best known bounds in the most
important diagonal case are

(1− o(1))
2k−1

ek
6 W (k, k) 6 222

22
k+9

.

The upper bound follows from the famous work of Gowers [12] and the lower bound was
proved by Szabó [19] using a probabilistic argument. Furthermore, Berlekamp [3] showed
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that if k − 1 is a prime number then

W (k, k) > (k − 1)2k−1 .

Another very intriguing instance of the problem is the estimation of the numbers
W (3, k), as these are related to Roth’s theorem [15] concerning estimates for sets avoid-
ing three-term arithmetic progressions. Let us denote by r(N) the size of the largest
progression-free subset of {1, . . . , N}. We know that

r(N)� N

logN1−o(1)
, (1)

see [4, 5, 17, 18], which implies W (3, k) 6 exp(O(k1+o(1))).
Green [13] proposed a very clever argument based on arithmetic properties of sumsets

to bound W (3, k). Building on this method and applying results from [10] it was shown
in [11] that

W (3, k) 6 exp(O(k log k)) .

The best known lower bound was obtained by Li and Shu [14] (see also [8]), who showed
that

W (3, k)�
( k

log k

)2

.

The purpose of this paper is to prove a subexponential bound on W (3, k).

Theorem 1. There are absolute constants C, c > 0 such that for every k we have

W (3, k) 6 exp(Ck1−c) .

Our argument is based on the method of [18], which explores in details the structure
of a large spectrum. This method can be partly applied (see Lemma 5) in our approach
and it deals only with a progression-free partition class. The second part of the proof
exploits the structure of both partition classes and in this case the argument of [18] has
to be significantly modified.

Let us remark that during the review process a preprint of Bloom and Sisask [6],

which improves an upper bound in Roth’s theorem to N/(logN)1+c for c ≈ 2−22
1000

, has

appeared. That result implies directly that W (3, k) 6 exp(Ck1−c) with c ≈ 2−22
1000

.

2 Notation

Given functions f, g : Z/NZ→ C, the convolution of f and g is defined by

(f ∗ g)(x) =
∑

t∈Z/NZ

f(t)g(x− t).
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The Fourier coefficients of a function f : Z/NZ→ C are defined by

f̂(r) =
N−1∑
x=0

f(x)e−2πixr/N ,

where r ∈ Z/NZ. The inversion formula states that

f(x) =
1

N

N−1∑
x=0

f̂(r)e2πixr/N .

We denote by 1A(x) the indicator function of set A. Thus using the inversion formula and

the fact that (̂f ∗ g)(r) = f̂(r)ĝ(r) one can express the number of three–term arithmetic
progressions (including trivial ones) in a set A ⊆ Z/NZ by

1

N

N−1∑
r=0

1̂A(r)21̂A(−2r) .

Parseval’s identity asserts in particular that

N−1∑
r=0

|1̂A(r)|2 = |A|N .

Let θ > 0 be a real number. The θ−spectrum of A is defined by

∆θ(A) =
{
r ∈ Z/NZ : |1̂A(r)| > θ|A|

}
.

If A is specified then we write ∆θ instead of ∆θ(A).
By the span of a finite set S we mean

Span (S) =
{∑
s∈S

εss : εs ∈ {−1, 0, 1} for all s ∈ S
}

and the dimension of A is defined by

dim(A) = min
{
|S| : A ⊆ Span (S)

}
.

Chang’s Spectral Lemma provides an upper bound for the dimension of a spectrum.

Lemma 2. [9] Let A ⊆ Z/NZ be a set of size |A| = δN and let θ > 0. Then

dim(∆θ(A))� θ−2 log(1/δ) .

We are going to use Bohr sets [7] to prove the main result. Let Γ ⊆ Ĝ and γ ∈ (0, 1
2
]

then the Bohr set generated by Γ with radius γ is

B(Γ, γ) =
{
x ∈ Z/NZ : ‖tx/N‖ 6 γ for all t ∈ Γ

}
,

where ‖x‖ = miny∈Z |x − y|. The rank of B is the size of Γ and we denote it by rk(B).
Given η > 0 and a Bohr set B = B(Γ, γ), by Bη we mean the Bohr set B(Γ, ηγ). We will
also use the notation β = 1

|B|1B. We will use two basic properties of Bohr sets concerning

their size and regularity, see [21].
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Lemma 3. [7] For every γ ∈ (0, 1
2
] we have

γ|Γ|N 6 |B(Γ, γ)| 6 8|Γ|+1|B(Γ, γ/2)| .

We call a Bohr set B(Γ, γ) regular if for every η, where |η| 6 1/(100|Γ|) we have

(1− 100|Γ||η|)|B| 6 |B1+η| 6 (1 + 100|Γ||η|)|B|.

Bourgain [7] showed that regular Bohr sets are ubiquitous.

Lemma 4. [7] For every Bohr set B(Γ, γ), there exists γ′ such that 1
2
γ 6 γ′ 6 γ and

B(Γ, γ′) is regular.

3 Proof of Theorem 1

Our main tool is the next lemma, which can be extracted from [18], by conjugation of
results concerning the case of ’small’ Fourier coefficients (see Lemmas 7 and 9 of [18])
and the case of ’middle’ Fourier coefficients (Lemmas 12 and 13 of [18]). Its proof makes
use of the deep result by Bateman and Katz in [1, 2] describing the structure of the large
spectrum. The case of ’large’ Fourier coefficients is treated similarly as in [18], however
using partition properties we will be able to obtain much better estimate.

Lemma 5. [18] There exists an absolute constant c > 0 such that the following holds. Let
A ⊆ Z/NZ, |A| = δN be a set such that∑

r: δ1+c|A|6|1̂A(r)|6δ1/10|A|

|1̂A(r)|3 > 1

10
δc/5|A|3 . (2)

Then there is a regular Bohr set B with rk(B)� δ−1+c and radius Ω(δ1−c) such that for
some t

|(A+ t) ∩B| � δ1−c|B|.

Furthermore, we apply Bloom’s iterative lemma, that provides a density increment
by a constant factor greater than 1 for progression-free sets and Sanders’ lemma on a
containment of long arithmetic progressions in dense subsets of regular Bohr sets.

Lemma 6. [4] There exists an absolute constant c1 > 0 such that the following holds. Let
B ⊆ Z/NZ be a regular Bohr set of rank d. Let A1 ⊆ B and A2 ⊆ Bε, each with relative
densities αi. Let α = min(c1, α1, α2) and assume that d 6 exp(c1(log2(1/α)). Suppose
that Bε is also regular and c1α/(4d) 6 ε 6 c1α/d. Then either

(i) there is a regular Bohr set B′ of rank rk(B′) 6 d+O(α−1 log(1/α)) and size

|B′| > exp
(
−O(log2(1/α)(d+ α−1 log(1/α)))

)
|B|

such that
|(A1 + t) ∩B′| � (1 + c1)α1|B′|

for some t ∈ Z/NZ;
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(ii) or there are Ω(α2
1α2|B||Bε|) three-term arithmetic progressions x + y = 2z with

x, y ∈ A1, z ∈ A2;

Lemma 7. [16] Let B(Γ, γ) ⊆ Z/NZ be a regular Bohr set of rank d and let ε be a positive
number satisfying ε−1 � γd−1N1/d. Suppose that A ⊆ B contains at least a proportion
1− ε of B(Γ, γ). Then A contains an arithmetic progression of length at least 1/(4ε).

Furthermore, to apply Bloom’s result we will need to prove a standard fact on Bohr
sets. Let us also remark that it follows from the proof of Bloom’s lemma that we can take
c1 < 1/1000. We will use the following basic property of Bohr sets.

Lemma 8. [11] Let B be a regular Bohr set of rank d and radius γ and let A be a set
with |A| = α|B|. Suppose that ε < κα/(100d) for some κ ∈ (0, 1). Then∑

x∈B

(1A ∗ 1Bε)(x) > (1− κ)α|B||Bε| .

Lemma 9. Let B be a regular Bohr set of rank d and suppose that A ⊆ B and |A| = α|B|.
Then there is ε with c1α/(4d) 6 ε 6 c1α/d (c1 is a constant given by Lemma 6), and
regular Bohr sets B′ and B′ε of rank d and size

|B′| > exp(−O(d log(1/α) log(d/α)))|B|

such that

|(A+ t) ∩B′| > 1

2
α|B′| and |(A+ t) ∩B′ε| >

1

2
α|B′ε|

for some t.

Proof. Let ε1 and ε2 be any numbers satisfying c1α/(4d) 6 ε1, ε2 6 c1α/d and such that
the Bohr sets B1 = Bε1 and B2 = Bε1ε2 are regular. Put β1 = 1

|B1|1B1 and β2 = 1
|B2|1B2

then by Lemma 8 we have∑
x

(
(β1 ∗ 1A)(x) + (β2 ∗ 1A)(x)

)
>

9

5
α|B| ,

hence for some x we have

(β1 ∗ 1A)(x) + (β2 ∗ 1A)(x) >
9

5
α.

If

(β1 ∗ 1A)(x) >
1

2
α and (β2 ∗ 1A)(x) >

1

2
α (3)

then we can put B′ = B1. Otherwise, for some i ∈ {1, 2} we have (βi∗1A)(x) > (6/5)α and
we put B = Bi and apply the same procedure again. Clearly, we can iterate this procedure
O(log(1/α)) times, as the density of a set can not exceed 1. Thus after O(log(1/α))
iterative steps we obtain a pair of Bohr sets B′, B′ε satisfying (3). From Lemma 3 it
follows that

|B′| > exp(−O(d log(1/α) log(d/α)))|B| ,
which concludes the proof.
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Proof of Theorem 1. Put M = W (3, k)− 1 and let {1, . . . ,M} = X ∪Y be a partition
such that X and Y avoid 3 and k-term arithmetic progressions respectively. Clearly, we
may assume that M > 100k hence

|Y | 6M − bM/kc 6M −M/(2k),

as no block of k consecutive numbers is contained in Y and therefore |X| >M/(2k). Let
N be any prime number satisfying 2M < N 6 4M. We embed {1, . . . ,M} = X ∪ Y in
Z/NZ in a natural way and observe that {1, . . . ,M} considered as a subset of Z/NZ is 2-
Freiman isomorphic to {1, . . . ,M} considered as a subset of Z and therefore any arithmetic
progression in {1, . . . ,M} ⊆ Z/NZ is a genuine progression in Z. Put |X| = δN and note
that we can assume that δ � (logN)−1.1. First let us assume that∑

r: δ1+c|X|6|1̂X(r)|6δ1/10|X|

|1̂X(r)|3 > δc/5|X|3 , (4)

where c > 0 is the fixed absolute constant from Lemma 5. Then by Lemma 5 there is
t ∈ Z/NZ and a regular Bohr set B0 with rk(B0) = d � δ−1+c and radius Ω(δ1−c) such
that

|(X + t) ∩B0| � δ1−c|B|
for some absolute constant c > 0. Writing X0 = (X + t) ∩B0 we have

|X0 ∩B0| � α|B0| ,

where
α� δ1−c ,

and by Lemma 3
|B0| > exp

(
−O(δ−1+c log(1/δ))

)
N .

By Lemma 9 there is ε� α2 and regular Bohr sets B′ and B′ε of rank d such that

|(A+ t) ∩B′| > 1

2
α|B′| and |(A+ t) ∩B′ε| >

1

2
α|B′ε| ,

and
|B′| > exp(−O(α−1 log2(1/α)))|B0| > exp

(
−O(δ−1+c log2(1/δ))

)
N .

Next, we iteratively apply Lemma 6 and Lemma 9. Since after each step the density
increases by factor 1 + c1 it follows that after l � log(1/α) steps case (ii) of Lemma 6
holds. Let Bi be Bohr sets obtained in the iterative procedure. Note that Bi has rank
rk(Bi) = di � α−1 log2(1/α) for every i 6 l and

|Bi+1| > exp
(
−O(log2(1/α)(di + α−1 log(1/α)))

)
|Bi|

for every i < l. Therefore, there are

Ω(α3|Bl||Bl
ε|)
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three-term arithmetic progressions in X, where ε > c1α/(4rk(Bl)) � α2 log2(1/α). By
Lemma 6 and Lemma 3 we have

|Bl| > exp
(
−O(α−1 log4(1/α))

)
N > exp

(
−O(δ−1+c log4(1/δ))

)
N ,

and

|Bl
ε| > exp

(
−O(α−1 log3(1/α))

)
exp

(
−O(α−1 log4(1/α))

)
N

> exp
(
−O(δ−1+c log4(1/δ))

)
N .

Thus, X contains
Ω(δ3−3c exp

(
−O(δ−1+c log4(1/δ))

)
N2)

arithmetic progressions of length three. Since there are only |X| trivial progressions in X
it follows that

|X| � δ3−3c exp
(
−O(δ−1+c log4(1/δ))

)
N2 ,

so
W (3, k)� N � exp

(
O(δ−1+c log4(1/δ)

)
6 exp

(
O(k1−c log4 k)

)
.

Next let us assume that (4) does not hold. Let us define ∆′ = ∆δ1/10 ∪ 2−1 ·∆δ1/10 and
observe that r 6∈ ∆′ is equivalent to r 6∈ ∆δ1/10 and 2r 6∈ ∆δ1/10 . By Chang’s lemma

dim(∆′) 6 2dim(∆δ1/10)� δ−1/5 log(1/δ) ,

and let Λ be any set such that 1 ∈ Λ, |Λ| � δ−1/5 log(1/δ) and ∆′ ⊆ Span (Λ). Let
B = B(Λ, γ) be a regular Bohr set with radius δ3 � γ 6 δ3. Since 1 ∈ Λ it follows that
for every b ∈ B we

‖b/N‖ 6 γN 6 4γM .

Recall that β = 1
|B|1B then for every r ∈ ∆′ we have

∣∣β̂(r)− 1
∣∣ 6 1

|B|
∑
b∈B

|e−2πirb/N − 1| 6 2π

|B|
∑
b∈B

∑
λ∈Λ

‖rb/N‖ 6 2πδ2 , (5)

and similarly |β̂(2r)− 1| 6 4πδ2. For t ∈ Z/NZ put

f(t) = β ∗ 1X(t)

and note that if for some t ∈ [4γM, (1− 4γ)M ] we have f(t) = 1
|B| |X ∩ (B + t)| 6 δ1+c′ ,

where c′ = c/20, then since B + t ⊆ [1,M ] it follows that

|Y ∩ (B + t)| > (1− δ1+c′)|B| .

Therefore, by Lemma 7 either δ−1−c′ � γd−1N1/d or Y contains an arithmetic progression
of length 1

4
δ−1−c′ . The former inequality implies that

k1+c′ � γd−1N1/d � δ4NO(δ1/5 log−1(1/δ)) � k−4NO(k−1/5 log−1 k) ,
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so
W (3, k)� N � exp

(
O(k1/5 log2 k)

)
.

If the second alternative holds then

1

4
δ−1−c′ < k

hence by (1)
k−1/(1+c′) � δ � (logN)−1+o(1)

so
W (3, k) 6 N � exp

(
O(k

1
1+c′+o(1))

)
.

Finally we can assume that for every t ∈ [4γM, (1 − 4γ)M ] we have f(t) > δ1+c′ . Let
T (X) denote the number of three-term arithmetic progressions in X and let

T (f) =
∑

x+y=2z

f(x)f(y)f(z) .

Then clearly
T (f)� δ3+3c′M2 � δ3+c/6N2 (6)

and we will show that T (X) does not differ much from T (f)∣∣T (X)− T (f)
∣∣ =

1

N

∣∣N−1∑
r=0

1̂X(r)21̂X(−2r)−
N−1∑
r=0

f̂(r)2f̂(−2r)
∣∣

6
1

N

N−1∑
r=0

|1̂X(r)21̂X(−2r)(1− β̂(r)2β̂(−2r))| (7)

= S1 + S2,

where S1 and S2 are summations of (7) respectively over ∆′ and Z/NZ \∆′. By (5), the
negation of (4), Parseval’s formula and Hölder’s inequality we have

S1 � δ2 1

N

∑
r∈∆′

|1̂X(r)|3 6 δ3

N−1∑
r=0

|1̂X(r)|2 = δ2|X|2 ,

S2 6
2

N

∑
r 6∈∆′

|1̂X(r)21̂X(−2r)|

6
2

N
(
∑
r 6∈∆′

|1̂X(r)|3)2/3(
∑
r 6∈∆′

|1̂X(2r)|3)1/3

6
2

N

∑
r 6∈∆

δ1/10

|1̂X(r)|3

6
2

N

∑
r∈∆δ1+c\∆δ1/10

|1̂X(r)|3 +
2

N

∑
r 6∈∆δ1+c

|1̂X(r)|3

� δ2|X|2 + δ1+c/5|X|2 + δ1+c|X|2 � δ1+c/5|X|2
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Thus, ∣∣T (X)− T (f)
∣∣� δ3+c/5N2,

so by (6) and the fact that X avoids non-trivial three-term arithmetic progression we have

|X| = T (X)� δ3+c/6N2 ,

hence
W (3, k) 6 N � δ−2−c/6 � k3

which concludes the proof. 2
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