Tomaszewski's problem on randomly signed sums, revisited

Ravi B. Boppana
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts, U.S.A.
rboppana@mit.edu
Harrie Hendriks Martien C.A. van Zuijlen
Department of Mathematics
Radboud University Nijmegen
Nijmegen, The Netherlands
\{H.Hendriks, M. vanZuijlen\}@science.ru.nl

Submitted: Apr 5, 2020; Accepted: Apr 12, 2021; Published: Jun 4, 2021
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let $v_{1}, v_{2}, \ldots, v_{n}$ be real numbers whose squares add up to 1 . Consider the 2^{n} signed sums of the form $S=\sum \pm v_{i}$. Boppana and Holzman (2017) proved that at least $\frac{13}{32}$ of these sums satisfy $|S| \leqslant 1$. Here we improve their bound to 0.427685 . Mathematics Subject Classifications: 60E15, 60G50, 60C05, 05A20

1 Introduction

Let $v_{1}, v_{2}, \ldots, v_{n}$ be real numbers such that the sum of their squares is at most 1 . Consider the 2^{n} signed sums of the form $S= \pm v_{1} \pm v_{2} \pm \cdots \pm v_{n}$. In 1986, B. Tomaszewski (see Guy [4]) asked the following question: is it always true that at least $\frac{1}{2}$ of these sums satisfy $|S| \leqslant 1$?

Boppana and Holzman [2] proved that at least $\frac{13}{32}=0.40625$ of the sums satisfy $|S| \leqslant 1$. Actually, they proved a slightly better bound of 0.406259 . See their paper for a discussion of earlier work on Tomaszewski's problem.

In this note, we will improve the lower bound to 0.427685 . We will sharpen the Boppana-Holzman argument by using a Gaussian bound due to Bentkus and Dzindzalieta [1].

After we wrote this note, two further improvements appeared. Dvořák, van Hintum, and Tiba [3] strengthened the lower bound to 0.46 . Keller and Klein [5] completely solved Tomaszewski's problem by proving a lower bound of $\frac{1}{2}$.

We will use the language of probability. Let $\operatorname{Pr}[A]$ be the probability of an event A. A random sign is a random variable whose probability distribution is the uniform distribution on the set $\{-1,+1\}$. With this language, we can state our main result.

Main Theorem. Let $v_{1}, v_{2}, \ldots, v_{n}$ be real numbers such that $\sum_{i=1}^{n} v_{i}^{2} \leqslant 1$. Let a_{1}, a_{2}, \ldots, a_{n} be independent random signs. Let S be $\sum_{i=1}^{n} a_{i} v_{i}$. Then $\operatorname{Pr}[|S| \leqslant 1]>0.427685$.

2 Proof of the improved bound

In this section, we will prove the bound of 0.427685 . We will follow the approach of Boppana and Holzman [2], replacing their fourth-moment method with a Gaussian bound.

Let Q be the upper tail function of the standard normal (Gaussian) distribution:

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2} / 2} d t
$$

Note that Q is a decreasing, positive function.
Bentkus and Dzindzalieta [1] proved the following Gaussian bound on randomly-signed sums. See their paper for a discussion of earlier work on such bounds.

Theorem 1 (Bentkus and Dzindzalieta). Let x be a real number. Let $v_{1}, v_{2}, \ldots, v_{n}$ be real numbers such that $\sum_{i=1}^{n} v_{i}^{2} \leqslant 1$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be independent random signs. Let S be $\sum_{i=1}^{n} a_{i} v_{i}$. Then

$$
\operatorname{Pr}[S \geqslant x] \leqslant \frac{Q(x)}{4 Q(\sqrt{2})}
$$

Given a positive number c, define $F(c)$ by

$$
F(c):=\frac{1}{2}-\frac{Q(1 / \sqrt{c})}{4 Q(\sqrt{2})} .
$$

Note that F is a decreasing function bounded above by $\frac{1}{2}$. A calculation shows that $F\left(\frac{1}{4}\right)>0.427685$.

We will need the following lemma, which quantitatively improves Lemma 3 of Boppana and Holzman [2]. Roughly speaking, this lemma is used to show that if a partial sum is a little less than 1 in absolute value, then the final sum has a decent chance of remaining less than 1 in absolute value.

Lemma 2. Let c be a positive number. Let x be a real number such that $|x| \leqslant 1$. Let v_{1}, v_{2}, \ldots, v_{n} be real numbers such that

$$
\sum_{i=1}^{n} v_{i}^{2} \leqslant c(1+|x|)^{2} .
$$

Let $a_{1}, a_{2}, \ldots, a_{n}$ be independent random signs. Let Y be $\sum_{i=1}^{n} a_{i} v_{i}$. Then

$$
\operatorname{Pr}[|x+Y| \leqslant 1] \geqslant F(c)
$$

Proof. By symmetry, we may assume that $x \geqslant 0$. Let w_{i} be $\frac{-v_{i}}{\sqrt{c}(1+x)}$. Then $\sum_{i=1}^{n} w_{i}^{2} \leqslant 1$. Let S be $\sum_{i=1}^{n} a_{i} w_{i}$. Then $Y=-\sqrt{c}(1+x) S$. Because Y has a symmetric distribution, we have

$$
\operatorname{Pr}[Y>1-x] \leqslant \operatorname{Pr}[Y>0] \leqslant \frac{1}{2}
$$

By the Bentkus-Dzindzalieta inequality (Theorem 1), we have

$$
\operatorname{Pr}[Y<-(1+x)]=\operatorname{Pr}\left[S>\frac{1}{\sqrt{c}}\right] \leqslant \frac{Q(1 / \sqrt{c})}{4 Q(\sqrt{2})} .
$$

Therefore

$$
\operatorname{Pr}[|x+Y|>1]=\operatorname{Pr}[Y>1-x]+\operatorname{Pr}[Y<-(1+x)] \leqslant \frac{1}{2}+\frac{Q(1 / \sqrt{c})}{4 Q(\sqrt{2})}
$$

Taking the complement, we obtain

$$
\operatorname{Pr}[|x+Y| \leqslant 1]=1-\operatorname{Pr}[|x+Y|>1] \geqslant \frac{1}{2}-\frac{Q(1 / \sqrt{c})}{4 Q(\sqrt{2})}=F(c) .
$$

We will also need the following lemma, which says that F satisfies a certain weightedaverage inequality. This lemma is used to show that a weighted average of lower bounds from Lemma 2 is still a good lower bound.

Lemma 3. Let K be an integer such that $K \geqslant 2$. Then

$$
\frac{1}{2^{K-1}} F\left(\frac{(K+1)^{2}-K}{(2 K+1)^{2}}\right)+\left(1-\frac{1}{2^{K-1}}\right) F\left(\frac{(K+1)^{2}-(K+2)}{(2 K+1)^{2}}\right) \geqslant F\left(\frac{1}{4}\right) .
$$

Proof. Let

$$
c_{1}=\frac{(K+1)^{2}-K}{(2 K+1)^{2}}=\frac{1}{4}+\frac{3}{4} \frac{1}{(2 K+1)^{2}} ; c_{2}=\frac{(K+1)^{2}-(K+2)}{(2 K+1)^{2}}=\frac{1}{4}-\frac{5}{4} \frac{1}{(2 K+1)^{2}} .
$$

Since $c_{1} \geqslant c_{2}$ and F is a decreasing function, we see that for $K \geqslant 2$ we have

$$
\frac{1}{2^{K-1}} F\left(c_{1}\right)+\left(1-\frac{1}{2^{K-1}}\right) F\left(c_{2}\right) \geqslant \frac{1}{2} F\left(c_{1}\right)+\frac{1}{2} F\left(c_{2}\right) .
$$

Therefore it is sufficient to show that the following inequality holds for $0 \leqslant \xi \leqslant 1 / 25$:

$$
\begin{equation*}
\frac{1}{2} F\left(\frac{1}{4}+\frac{3}{4} \xi\right)+\frac{1}{2} F\left(\frac{1}{4}-\frac{5}{4} \xi\right) \geqslant F\left(\frac{1}{4}\right) . \tag{1}
\end{equation*}
$$

Once we show that $F(x)$ is a concave function in the region $0<x \leqslant 1 / 4+3 / 100$, we conclude that the left hand side of the inequality is also concave in ξ in the region $0 \leqslant \xi \leqslant 1 / 25$ and we need only check the inequality for $\xi=0$ and for $\xi=1 / 25$. We will show that $Q(1 / \sqrt{x})$ is convex in x in the region $0<x \leqslant 1 / 3$. Recall that Q satisfies the ordinary differential equation $Q^{\prime \prime}(x)=-x Q^{\prime}(x)$ and that $Q^{\prime}(x)<0$ for all x. Thus, for $x>0$

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} Q\left(x^{-1 / 2}\right) & =Q^{\prime \prime}\left(x^{-1 / 2}\right)\left(-\frac{1}{2} x^{-3 / 2}\right)^{2}+Q^{\prime}\left(x^{-1 / 2}\right)\left(\frac{3}{4} x^{-5 / 2}\right) \\
& =-\frac{1}{4} Q^{\prime}\left(x^{-1 / 2}\right) x^{-7 / 2}(1-3 x),
\end{aligned}
$$

which is positive if $1-3 x>0$. It follows that $Q\left(x^{-1 / 2}\right)$ is convex in the region $0<x \leqslant 1 / 3$. Therefore $F(x)$ is concave in the region $0<x \leqslant 1 / 3$. Inequality (1) holds trivially for $\xi=0$, and one can check by calculation that it also holds for $\xi=1 / 25$ (and even for $\xi=1 / 9)$.

Finally, we will use these two lemmas to prove our main theorem.
Proof of Main Theorem. We will follow the proof of Theorem 4 of Boppana and Holzman [2] nearly line for line. Their proof uses a different function F. Closely examining their proof, we see that they use four properties of F : it is bounded above by $\frac{1}{2}$, satisfies their Lemma 3 (our Lemma 2), is a nonincreasing function (on the set of positive numbers), and satisfies the weighted-average inequality of Lemma 3. Our function F has those same four properties. Hence we reach the same conclusion: $\operatorname{Pr}[|S| \leqslant 1] \geqslant F\left(\frac{1}{4}\right)$. A calculation shows that $F\left(\frac{1}{4}\right)>0.427685$.

Acknowledgment

The first author would like to thank Ron Holzman for fruitful discussions. This paper is the result of two independent discoveries of the same improved bound: one by the first author and one by the second and third authors.

References

[1] V. K. Bentkus and D. Dzindzalieta. A tight Gaussian bound for weighted sums of Rademacher random variables. Bernoulli, 21(2):1231-1237, 2015.
[2] R. B. Boppana and R. Holzman. Tomaszewski's problem on randomly signed sums: breaking the $3 / 8$ barrier. Electronic Journal of Combinatorics, 24(3):\#P3.40, 2017.
[3] V. Dvořák, P. van Hintum, and M. Tiba. Improved bound for Tomaszewski's problem. SIAM Journal on Discrete Mathematics, 34(4):2239-2249, 2020.
[4] R. K. Guy. Any answers anent these analytical enigmas? American Mathematical Monthly, 93(4):279-281, 1986.
[5] N. Keller and O. Klein. Proof of Tomaszewski's conjecture on randomly signed sums. arXiv:2006.16834v3, 2021.

