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Abstract

We study here the so called subsequence pattern matching also known as hidden
pattern matching in which one searches for a given pattern w of length m as a
subsequence in a random text of length n. The quantity of interest is the number of
occurrences of w as a subsequence (i.e., occurring in not necessarily consecutive text
locations). This problem finds many applications from intrusion detection, to trace
reconstruction, to deletion channel, and to DNA-based storage systems. In all of
these applications, the pattern w is of variable length. To the best of our knowledge
this problem was only tackled for a fixed length m = O(1). In our main result
we prove that for m = o(n1/3) the number of subsequence occurrences is normally
distributed. In addition, we show that under some constraints on the structure of
w the asymptotic normality can be extended to m = o(

√
n). For a special pattern

w consisting of the same symbol, we indicate that for m = o(n) the distribution
of number of subsequences is either asymptotically normal or asymptotically log
normal. After studying some special patterns (e.g., alternating) we conjecture that
this dichotomy is true for all patterns. We use Hoeffding’s projection method for
U -statistics to prove our findings.

Mathematics Subject Classifications: 60C05, 68W40, 68R05, 68R15

1 Introduction and Motivation

One of the most interesting and least studied problem in pattern matching is known as
the subsequence string matching or the hidden pattern matching [12]. In this case, we
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search for a pattern w = w1w2 · · ·wm of length m in the text Ξn = ξ1 . . . ξn of length
n as subsequence, that is, we are looking for indices 1 6 i1 < i2 < · · · < im 6 n such
that ξi1 = w1, ξi2 = w2, . . . , ξim = wm. We say that w is hidden in the text Ξn. We do
not put any constraints on the gaps ij+1 − ij, so in language of [8] this is known as the
unconstrained hidden pattern matching. The most interesting quantity of such a problem
is the number of subsequence occurrences in the text generated by a random source. In
this paper, we study the limiting distribution of this quantity when m, the length of the
pattern, grows with n.

Hereafter, we assume that a memoryless source generates the text Ξ, that is, all
symbols are generated independently with probability pa for symbol a ∈ A, where the
alphabet A is assumed to be finite. We denote by pw =

∏
j pwj the probability of the

pattern w. Our goal is to understand the probabilistic behavior, in particular, the limiting
distribution of the number of subsequence occurrences that we denote by Z := ZΞ(w). It
is known that the behavior of Z depends on the order of magnitude of the pattern length
m. For example, for the exact pattern matching (i.e., the pattern w must occur as a string
in consecutive positions of the text), the limiting distribution is normal for m = O(1)
(more precisely, when npw → ∞, hence up to m = O(log n)), but it becomes a Pólya–
Aeppli distribution when npw → λ > 0 for some constant λ, and finally (conditioned on
being non-zero) it turns into a geometric distribution when npw → 0 [12] (see also [2]).
We might expect a similar behaviour for the subsequence pattern matching. In [8] it was
proved by analytic combinatoric methods that the number of subsequence occurrences,
ZΞ(w), is asymptotically normal when m = O(1), and not much is known beyond this
regime. (See also [3]). Asymptotic normality for fixed m follows also by general results
for U -statistics [10]. However, in many applications – as discussed below – we need to
consider patterns w whose lengths grow with n.

In this paper, we prove two main results. In Theorem 6 we establish that for m =
o(n1/3) the number of subsequence occurrences is normally distributed. Furthermore, in
Theorem 7 we show that under some constrains on the structure of w, the asymptotic
normality can be extended to m = o(

√
n). Moreover, for the special pattern w = am

consisting of the same symbol repeated, we show in Theorem 4 that for m = o(
√
n), the

distribution of number of occurrences is asymptotically normal, while for larger m (up to
cn for some c > 0) it is asymptotically log-normal. We study more special patterns in
Section 4 and conjecture that this dichotomy is true for a large class of patterns. Finally,
for typical random w we establish in Corollary 20 that Z is asymptotically normal for
m = o(n2/5).

Regarding methodology, unlike [8] we use here probabilistic tools. We first observe
that Z can be represented as a U -statistic (see (2.3) and Section 3.2). This suggests
to apply the Hoeffding projection method [10] to prove asymptotic normality of Z for
some large patterns. Indeed, we first decompose Z into a sum of orthogonal random
variables with variances of decreasing order in n (for m not too large), and show that
the variable of the largest variance converges to a normal distribution, proving our main
results Theorems 6 and 7.

The hidden pattern matching problem, especially for large patterns, finds many ap-
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plications from intrusion detection, to trace reconstruction, to deletion channel, to DNA-
based storage systems [1, 4, 5, 6, 12, 17]. Here we discuss below in some detail two of
them, namely the deletion channel and the trace reconstruction problem.

A deletion channel [5, 6, 7, 14, 17, 20] with parameter d takes a binary sequence Ξn =
ξ1 · · · ξn where ξi ∈ A as input and deletes each symbol in the sequence independently with
probability d. The output of such a channel is then a subsequence ζ = ζ(x) = ξi1 . . . ξiM of
Ξ, where M follows the binomial distribution Binom(n, (1−d)), and the indices i1, . . . , iM
correspond to the bits that are not deleted. Despite significant effort [6, 14, 15, 17, 20] the
mutual information between the input and output of the deletion channel and its capacity
are still unknown. However, it turns out that the mutual information I(Ξn; ζ(Ξn)) can
be exactly formulated as the problem of the subsequence pattern matching. In [5] it was
proved that

I(Ξn;ζ(Ξn))=
∑
w

dn−|w|(1− d)|w|
(
E[ZΞn(w)logZΞn(w)]

− E[ZΞn(w)] logE[ZΞn(w)]
)
, (1.1)

where the sum is over all binary sequences of length smaller than n and ZΞn(w) is the
number of subsequence occurrences of w in the text Ξn. As one can see, to find precise
asymptotics of the mutual information we need to understand the probabilistic behavior
of Z for m 6 n and typical w. The trace reconstruction problem [4, 11, 16, 18] is related to
the deletion channel problem since we are asking how many copies of the output deletion
channel we need to see until we can reconstruct the input sequence with high probability.

The rest of the paper is structured as follows. Section 2 contains detailed definitions
and some other preliminaries, followed by first (Theorem 4) detailed results for the simple
example of a pattern w = am, which can be treated by elementary methods. Then we
present our main results (Theorems 6 and 7). The proofs of the main results are given
in Section 3. Section 4 discusses some special cases; in particular, we consider a random
pattern w (Theorem 19 and Corollary 20). In the concluding section we comment on the
sharpness of our results and conditions, and state a conjecture for a possible extension to
larger m.

2 Main Results

In this section we formulate precisely our problem and present our main results. Proofs
are delayed till the next section.

2.1 Problem formulation and notation

We consider a random string Ξn = ξ1 . . . ξn of length n. We assume that ξ1, ξ2, . . . are
i.i.d. random letters from a finite alphabet A; each letter ξi has the distribution

P(ξi = a) = pa, a ∈ A, (2.1)
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for some given vector p = (pa)a∈A; we assume pa > 0 for each a. We may also use ξ for a
random letter with this distribution.

Let w = w1 · · ·wm be a fixed string of length m over the same alphabet A. We assume
n > m. Let

pw :=
m∏
j=1

pwj , (2.2)

which is the probability that ξ1 · · · ξm equals w.
Let Z = Zn,w(ξ1 · · · ξn) be the number of occurrences of w as a subsequence of ξ1 · · · ξn.

For a set S (in our case [n] or [m]) and k > 0, let
(S
k

)
be the collection of sets α ⊆ S with

|α| = k. Thus,
∣∣(S
k

)∣∣ =
(|S|
k

)
. For k = 0,

(S
0

)
contains just the empty set ∅. For k = 1,

we identify
(S

1

)
and S in the obvious way. We write α ∈

(
[n]
k

)
as {α1, . . . , αk}, where we

assume that α1 < · · · < αk. Then

Z =
∑

α∈([n]
m)

Iα, (2.3)

where

Iα =
m∏
j=1

1{ξαj = wj}. (2.4)

Remark 1. In the limit theorems, we are studying the asymptotic distribution of Z. We
then assume that n→∞ and (usually) m→∞; we thus implicitly consider a sequence of
words w(n) of lengths mn = |w(n)|. But for simplicity we do not show this in the notation.

We have E Iα = pw for every α. Hence,

EZ =
∑

α∈([n]
m)

E Iα =

(
n

m

)
pw. (2.5)

Further, let
Yα := p−1

w Iα, (2.6)

so EYα = 1, and

Z∗ := p−1
w Z =

∑
α∈([n]

m)

Yα, (2.7)

so EZ∗ =
(
n
m

)
and

Z∗ − EZ∗ = p−1
w Z −

(
n

m

)
=
∑

α∈([n]
m)

(
Yα − 1

)
. (2.8)

We also write ‖Y ‖p :=
(
E |Y |p

)1/p
for the Lp norm of a random variable Y , while

‖x‖ is the usual Euclidean norm of a vector x in some Rm. Also,
d−→ and

p−→ mean
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convergence in distribution and probability, respectively. Finally, C denotes constants
that may be different at different occurrences; they may depend on the alphabet A and
(pa)a∈A, but not on n, m or w.

We are now ready to present our main results regarding the limiting distribution of
Z, the number of subsequence w = a1, . . . am occurrences when m→∞. We start with a
simple example, namely, w = am = a · · · a for some a ∈ A, and show that depending on
whether m = o(

√
n) or not the number of subsequences will follow asymptotically either

the normal distribution or the log-normal distribution.
Before we present our results we consider asymptotically normal and log-normal dis-

tributions in general, and discuss their relation.

2.2 Asymptotic normality and log-normality

If Xn is a sequence of random variables and an and bn are sequences of real numbers, with
bn > 0, then

Xn ∼ AsN(an, bn) (2.9)

means that

Xn − an√
bn

d−→ N(0, 1). (2.10)

We say that Xn is asymptotically normal if Xn ∼ AsN(an, bn) for some an and bn, and
asymptotically log-normal if lnXn ∼ AsN(an, bn) for some an and bn (this assumes Xn >
0). Note that these notions are equivalent when the asymptotic variance bn is small, as
made precise by the following lemma.

Lemma 2. If bn → 0, and an are arbitrary, then

lnXn ∼ AsN(an, bn) ⇐⇒ Xn ∼ AsN(ean , bne
2an). (2.11)

Proof. By replacing Xn by Xn/e
an , we may assume that an = 0. If lnXn ∼ AsN(0, bn)

with bn → 0, then lnXn
p−→ 0, and thus Xn

p−→ 1. It follows that lnXn/(Xn − 1)
p−→ 1

(with 0/0 := 1), and thus

Xn − 1

b
1/2
n

=
Xn − 1

lnXn

lnXn

b
1/2
n

d−→ N(0, 1), (2.12)

and thus Xn ∼ AsN(1, bn).
The converse is proved by the same argument.

Remark 3. Lemma 2 is best possible. Suppose that lnXn ∼ AsN(an, bn). If bn → b > 0,

then ln
(
Xn/e

an
)

= lnXn − an
d−→ N(0, b), and thus

Xn/e
an d−→ eζb , ζb ∼ N(0, b). (2.13)

In this case (and only in this case), Xn thus converges in distribution, after scaling, to
a log-normal distribution. If bn → ∞, then no linear scaling of Xn can converge in
distribution to a non-degenerate limit, as is easily seen.
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2.3 A simple example

We consider first a simple example where the asymptotic distribution can be found easily
by explicit calculations. Fix a ∈ A and let w = am = a · · · a, a string with m identical
letters. Then, if N = Na is the number of occurrences of a in ξ1 · · · ξn, then

Z =

(
Na

m

)
. (2.14)

We will show that Z is asymptotically normal if m is small, and log-normal for larger m.

Theorem 4. Let w = am. Suppose that m < npa, with npa −m� n1/2.

(i) Then

lnZ ∼ AsN
(

ln

(
npa
m

)
, n
∣∣∣ln(1− m

npa

)∣∣∣2pa(1− pa)). (2.15)

(ii) In particular, if m = o(n), then

lnZ ∼ AsN
(

ln

(
npa
m

)
,
(
p−1
a − 1

)m2

n

)
. (2.16)

(iii) If m = o
(
n1/2

)
, then this implies

Z/EZ ∼ AsN
(

1,
(
p−1
a − 1

)m2

n

)
, (2.17)

and thus

Z ∼ AsN
(
EZ,

(
p−1
a − 1

)m2

n
(EZ)2

)
. (2.18)

Proof. (i): We have Na ∼ Bin(n, pa). Define Y := Na − npa. Then, by the Central Limit
Theorem,

Y ∼ AsN
(
0, npa(1− pa)

)
. (2.19)

By (2.14), we have

lnZ − ln

(
npa
m

)
= ln

(
npa + Y

m

)
− ln

(
npa
m

)
= ln Γ(npa + Y + 1)− ln Γ(npa + Y −m+ 1)− lnm!

−
(
ln Γ(npa + 1)− ln Γ(npa −m+ 1)− lnm!

)
=

∫ Y

y=0

∫ 0

x=−m
(ln Γ)′′(npa + x+ y + 1) dx dy (2.20)
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where Γ(x) is the Euler gamma function. We fix a sequence ωn →∞ such that npa−m�
ωn � n1/2; this is possible by the assumption. Note that (2.19) implies that Y/ωn

p−→ 0,
and thus P(|Y | 6 ωn)→ 1. We may thus in the sequel assume |Y | 6 ωn. We assume also
that n is so large that npa −m > 2ωn > 0.

Stirling’s formula implies, by taking the logarithm and differentiating twice (in the
complex half-plane Re z > 1

2
, say)

(ln Γ)′′(x) =
1

x
+O

( 1

x2

)
=

1

x

(
1 +O

(1

x

))
, x > 1. (2.21)

Consequently, (2.20) yields, noting the assumptions just made imply |Y | 6 ωn 6 1
2
(npa−

m),

lnZ − ln

(
npa
m

)
=

∫ Y

y=0

∫ 0

x=−m

1

npa + x+ y + 1

(
1 +O

( 1

npa −m

))
dx dy

=

∫ Y

y=0

∫ 0

x=−m

1

npa + x

(
1 +O

( ωn
npa −m

))
dx dy

=
(

1 +O
( ωn
npa −m

))
Y

∫ 0

x=−m

1

npa + x
dx

=
(
1 + o(1)

)
Y ln

npa
npa −m

. (2.22)

Consequently, using also (2.19), we obtain

lnZ − ln
(
npa
m

)
n1/2

∣∣ln(1− m
npa

)∣∣ =
(
1 + op(1)

) Y

n1/2

d−→ N
(
0, pa(1− pa)

)
, (2.23)

which is equivalent to (2.15).
(ii): If m = o(n), then

∣∣ln(1− m
npa

)∣∣ ∼ m
npa

, and (2.16) follows.

(iii): If m = o(n1/2), then (ii) applies, so (2.16) holds; hence Lemma 2 implies

Z
/ (npa

m

)
∼ AsN

(
1,
(
p−1
a − 1

)m2

n

)
. (2.24)

Furthermore,

EZ =

(
n

m

)
pma =

nmeO(m2/n)

m!
pma ∼

nm

m!
pma (2.25)

and, similarly,
(
npa
m

)
∼ nmpma

m!
. Hence, EZ ∼

(
npa
m

)
and (2.17) follows from (2.24); (2.18) is

an immediate consequence.

Example 5. Let w = am as in Theorem 4, and let m ∼ c
√
n for some c > 0. Then, as

n→∞, by Theorem 4(ii), with Z = Zn, zn :=
(
npa
m

)
and σ2 := c2(pa − 1),

lnZn ∼ AsN
(
ln zn, σ

2
)

(2.26)
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and thus

ln
Zn
zn

d−→ N
(
0, σ2

)
. (2.27)

Hence, Zn/zn converges in distribution to a log-normal distribution, so Zn is asymptoti-
cally log-normal but not asymptotically normal. See also Remark 3.

2.4 General results

We now present our main results. However, first we discuss the road map of our approach.
First, we observe that the representation (2.3) shows that Z can be viewed as a U -statistic.
For convenience, we consider Z∗ in (2.7), which differs from Z by a constant factor only,
and show in (3.18) that Z∗ − EZ∗ can be decomposed into a sum

∑m
`=1 V` of orthogonal

random variables V` such that, when m is not too large, Var
(∑m

`=2 V`
)

= o(VarV1). Next,
in Lemma 14 we prove that V1 appropriately normalized converges to the standard normal
distribution. This will allow us to conclude the asymptotic normality of Z.

Here, we only consider the region m = o
(
n1/2

)
. First, for m = o

(
n1/3

)
we claim that

the number of subsequence occurrences always is asymptotically normal.

Theorem 6. If m = o
(
n1/3

)
, then

Z ∼ AsN
((n

m

)
pw, σ

2
1p

2
w

)
, (2.28)

where

σ2
1 =

n∑
i=1

∑
a∈A

p−1
a

 ∑
j: wj=a

(
i− 1

j − 1

)(
n− i
m− j

)2

− n
(
n− 1

m− 1

)2

. (2.29)

Furthermore, EZ =
(
n
m

)
pw and VarZ ∼ p2

wσ
2
1.

In the second main result, we restrict the patterns w to such that are not typical for
the random text; however, we will allow m = o

(
n1/2

)
.

Theorem 7. Let q = (qa)a∈A be the proportions of the letters in w, i.e.,

qa :=
1

m

m∑
j=1

1{wj = a}.

Suppose that lim infn→∞ ‖q−p‖ > 0. If further m = o
(
n1/2

)
, then we have the asymptotic

normality

Z ∼ AsN
((n

m

)
pw, σ

2
1p

2
w

)
, (2.30)

where σ2
1 is given by (2.29). Furthermore, EZ =

(
n
m

)
pw and VarZ ∼ p2

wσ
2
1.

We prove both theorems in Section 3.5 after some preliminary results as presented in
the next section.

the electronic journal of combinatorics 28(2) (2021), #P2.36 8



3 Analysis and Proofs

In this section we will prove our main results. We start with some preliminaries.

3.1 Preliminaries and more notation

Let, for a ∈ A,
ϕa(x) := p−1

a 1{x = a} − 1. (3.1)

Thus, letting ξ be any random variable with the distribution of ξi,

Eϕa(ξ) = 0, a ∈ A. (3.2)

Let p∗ := mina pa and
B := p−1

∗ − 1. (3.3)

Lemma 8. Let ϕa and B be as above.

(i) For every a ∈ A,

E
[
ϕa(ξ)

2
]

= p−1
a − 1 6 B. (3.4)

(ii) For some c1 > 0 and every a ∈ A,

‖ϕa(ξ)‖2 =
(
p−1
a − 1

)1/2
> c1. (3.5)

(iii) For any vector r = (ra)a∈A with
∑

a ra = 1,∥∥∥∑
a∈A

raϕa(ξ)
∥∥∥

2
> ‖r− p‖ :=

(∑
a∈A

|ra − pa|2
)1/2

. (3.6)

Proof. The definition (3.1) yields

E
[
ϕa(ξ)

2
]

= p−2
a Var

[
1{ξ = a}

]
= p−2

a pa(1− pa) = p−1
a − 1. (3.7)

Hence, (3.4) and (3.5) follow, with B given by (3.3).
Finally, for every x ∈ A, by (3.1) again,∑

a∈A

raϕa(x) = rxp
−1
x −

∑
a∈A

ra = rx/px − 1 (3.8)

and thus

E
(∑
a∈A

raϕa(ξ)
)2

=
∑
a∈A

pa
(
ra/pa − 1

)2
=
∑
a∈A

p−1
a

(
ra − pa

)2
(3.9)

and (3.6) follows.
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3.2 A decomposition

The representation (2.3) shows that Z is a special case of a U -statistic. (Recall that, in
general, a U -statistic is a sum over subsets α as in (2.3) of f

(
ξα1 , . . . , ξαk

)
for some function

f .) For fixed m, the general theory of [10] applies and yields asymptotic normality. (Cf.
[13, Section 4] for a related problem.) For m → ∞ (our main interest), we can still use
the orthogonal decomposition of [10], which in our case takes the following form.

By the definitions in Section 2.1 and (3.1),

Yα =
m∏
j=1

(
p−1
wj

1{ξαj = wj}
)

=
m∏
j=1

(
ϕwj(ξαj) + 1

)
. (3.10)

By multiplying out this product, we obtain

Yα =
∑
γ⊆[m]

∏
j∈γ

ϕwj(ξαj). (3.11)

Hence,

Z∗ =
∑

α∈([n]
m)

Yα =
∑

α∈([n]
m)

∑
γ⊆[m]

∏
j∈γ

ϕwj(ξαj) =
∑

α∈([n]
m)

∑
γ⊆[m]

|γ|∏
k=1

ϕwγk (ξαγk ). (3.12)

We rearrange this sum. First, let ` := |γ| ∈ [m], and consider all terms with a given `.
For each α and γ, with |γ| = `, let

αγ := {αγ1 , . . . , αγ`} ∈
(

[n]

`

)
. (3.13)

For given γ ∈
(

[m]
`

)
and β ∈

(
[n]
`

)
, the number of α ∈

(
[n]
m

)
such that αγ = β equals the

number of ways to choose, for each k ∈ [` + 1], γk − γk−1 − 1 elements of α in a gap of
length βk − βk−1 − 1, where we define β0 = γ0 = 0 and β`+1 = n + 1, γ`+1 = m + 1; this
number is

c(β, γ) :=
`+1∏
k=1

(
βk − βk−1 − 1

γk − γk−1 − 1

)
. (3.14)

Consequently, combining the terms in (3.12) with the same αγ,

Z∗ =
m∑
`=0

∑
γ∈([m]

` )

∑
β∈([n]

` )

c(β, γ)
∏̀
k=1

ϕwγk (ξβk). (3.15)

We define, for 0 6 ` 6 m and β ∈
(

[n]
`

)
,

V`,β :=
∑

γ∈([m]
` )

c(β, γ)
∏̀
k=1

ϕwγk (ξβk) (3.16)
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and
V` :=

∑
β∈([n]

` )

V`,β. (3.17)

Thus (3.15) yields the decomposition

Z∗ =
m∑
`=0

V`. (3.18)

For ` = 0,
(

[n]
0

)
contains only the empty set ∅, and

V0 = V0,∅ =

(
n

m

)
= EZ∗. (3.19)

Furthermore, note that two summands in (3.15) with different β are orthogonal, as a
consequence of (3.2) and independence of different ξi. Consequently, the variables V`,β (` ∈
[m], β ∈

(
[n]
`

)
) are orthogonal, and hence the variables V` (` = 0, . . . ,m) are orthogonal.

Let
σ2
` := Var(V`) = EV 2

` =
∑

β∈([n]
` )

EV 2
`,β, 1 6 ` 6 m. (3.20)

Note also that by the combinatorial definition of c(β, γ) given before (3.14), we see
that ∑

β∈([n]
` )

c(β, γ) =

(
n

m

)
, (3.21)

since this is just the number of α ∈
(

[n]
m

)
, and∑

γ∈([m]
` )

c(β, γ) =

(
n− `
m− `

)
, (3.22)

since this sum is the total number of ways to choose m− ` elements of the n− ` elements
of α in the gaps.

3.3 The projection method

We use the projection method used by [10] to prove asymptotic normality for U -statistics.
Translated to the present setting, the idea of the projection method is to approximate
Z∗ − EZ∗ = Z∗ − V0 by V1, thus ignoring all terms with ` > 2 in the sum in (3.18). In
order to do this, we estimate variances.

First, by (3.4) and the independence of the ξi,∥∥∥∏̀
k=1

ϕwγk (ξβk)
∥∥∥

2
=
(∏̀
k=1

E
∣∣ϕwγk (ξβk)

∣∣2)1/2

6 B`/2. (3.23)
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By Minkowski’s inequality, (3.16), (3.23) and (3.22),∥∥V`,β∥∥2
6

∑
γ∈([m]

` )

c(β, γ)B`/2 = B`/2

(
n− `
m− `

)
(3.24)

or, equivalently,

EV 2
`,β 6 B`

(
n− `
m− `

)2

. (3.25)

This leads to the following estimates.

Lemma 9. For 1 6 ` 6 m,

σ2
` := EV 2

` 6 σ̂2
` := B`

(
n

`

)(
n− `
m− `

)2

. (3.26)

Proof. The definition of V` in (3.17) and (3.25) yield, since the summands V`,β are orthog-
onal,

σ2
` := EV 2

` =
∑

β∈([n]
` )

EV 2
`,β 6

(
n

`

)
B`

(
n− `
m− `

)2

, (3.27)

as needed.

Note that, for 1 6 ` < m,

σ̂2
`+1

σ̂2
`

= B

(
n
`+1

)(
n−`−1
m−`−1

)2(
n
`

)(
n−`
m−`

)2 = B
n− `
`+ 1

(m− `
n− `

)2

6 B
m2

(`+ 1)n
. (3.28)

Lemma 10. If m 6 B−1/2n1/2, then

Var
(
Z∗ − V1

)
6 B2m2

(
n− 1

m− 1

)2

. (3.29)

Proof. By (3.28) and the assumption, for 1 6 ` < m,

σ̂2
`+1

σ̂2
`

6
1

`+ 1
6

1

2
, (3.30)

and thus, summing a geometric series,

Var
(
Z∗ − V1

)
=

m∑
`=2

Var
(
V`
)
6

m∑
`=2

σ̂2
` 6

m∑
`=2

22−`σ̂2
2 6 2σ̂2

2

= B2n(n− 1)

(
n− 2

m− 2

)2

6 B2m2

(
n− 1

m− 1

)2

. (3.31)
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3.4 The first term V1

For ` = 1, we identify
(

[n]
`

)
and [n], and we write V1,i := V1,{i}. Note that, by (3.14),

c(i, j) := c
(
{i}, {j}

)
=

(
i− 1

j − 1

)(
n− i
m− j

)
. (3.32)

Remark 11. For later use, we define also

π(i, j) :=
c(i, j)

c(1, 1)
=
c(i, j)(
n−1
m−1

) . (3.33)

Then, for fixed i, (π(i, j))j is a (shifted) hypergeometric distribution denoted as HGe:

π(i, j) = P(X = j − 1) =

(
i−1
j−1

)(
n−i
m−j

)(
n−1
m−1

) (3.34)

which we write as
X ∼ HGe

(
n− 1,m− 1, i− 1

)
. (3.35)

For ` = 1, (3.17) and (3.16) become

V1 =
n∑
i=1

V1,i (3.36)

with, using (3.32),

V1,i =
m∑
j=1

c(i, j)ϕwj(ξi) =
m∑
j=1

(
i− 1

j − 1

)(
n− i
m− j

)
ϕwj(ξi). (3.37)

Note that V1,i is a function of ξi, and thus the random variables V1,i are independent.
Furthermore, (3.2) implies EV1,i = 0. Let

τ 2
i := VarV1,i = EV 2

1,i. (3.38)

Then, see (3.20),

σ2
1 = VarV1 =

n∑
i=1

VarV1,i =
n∑
i=1

τ 2
i . (3.39)

Observe that it follows from (3.37) and (3.1) that

τ 2
i =

∑
a∈A

p−1
a

 ∑
j: wj=a

(
i− 1

j − 1

)(
n− i
m− j

)2

−
(
n− 1

m− 1

)2

. (3.40)
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Taking ` = 1 in (3.25) yields the upper bound

τ 2
i = EV 2

1,i 6 B

(
n− 1

m− 1

)2

, i ∈ [n]. (3.41)

Summing over i, or using (3.26), we obtain

σ2
1 := EV 2

1 6 σ̂2
1 := Bn

(
n− 1

m− 1

)2

. (3.42)

Remark 12. The upper bound (3.42), which is the case ` = 1 of Lemma 9, is achievable.
Indeed, for w = a · · · a, by (3.40),

τ 2
i = (p−1

a − 1)

(
n− 1

m− 1

)2

, (3.43)

and thus by (3.39),

σ2
1 = n(p−1

a − 1)

(
n− 1

m− 1

)2

. (3.44)

Now choose a to minimize pa and recall (3.3).
We will see in Lemma 16 that the bound (3.42) is sharp within a constant factor much

more generally.

We show also a general lower bound. This too is sharp, see Section 4.1.

Lemma 13. There exists c, c′ > 0 such that

σ2
1 >

c

m
σ̂2

1 = c′
n

m

(
n− 1

m− 1

)2

. (3.45)

Proof. We consider the first term in the sum in (3.37) separately, and write

V1,i = c(i, 1)ϕw1(ξi) + V ′1,i, (3.46)

where

V ′1,i :=
m∑
j=2

c(i, j)ϕwj(ξi). (3.47)

We have, by (3.32), c(i, 1) =
(
n−i
m−1

)
. Consequently, for any i ∈ [n],

c(i, 1)

c(1, 1)
=

(
n−i
m−1

)(
n−1
m−1

) =

∏m−2
k=0 (n− i− k)∏m−2
k=0 (n− 1− k)

=
m−2∏
k=0

(
1− i− 1

n− 1− k

)

the electronic journal of combinatorics 28(2) (2021), #P2.36 14



> 1−
m−2∑
k=0

i− 1

n− 1− k
> 1− m(i− 1)

n−m+ 1
. (3.48)

Let δ 6 1/4 be a fixed small positive number, chosen later. Assume that i 6 1+δn/m.
In particular, either i = 1 or m 6 m(i− 1) 6 δn < n/2, and thus (3.48) implies

c(i, 1)

c(1, 1)
> 1− m(i− 1)

n−m
> 1− δn

n/2
= 1− 2δ. (3.49)

By (3.22), (3.49) implies

m∑
j=2

c(i, j) =

(
n− 1

m− 1

)
− c(i, 1) = c(1, 1)− c(i, 1) 6 2δc(1, 1). (3.50)

Hence, by (3.47), Minkowski’s inequality and (3.4), cf. (3.24),

∥∥V ′1,i∥∥2
6

m∑
j=2

c(i, j)
∥∥ϕwj(ξi)∥∥2

6
m∑
j=2

c(i, j)B1/2 6 2δB1/2c(1, 1). (3.51)

Furthermore, (3.5) and (3.49) yield∥∥c(i, 1)ϕw1(ξi)
∥∥

2
> c(i, 1)c1 > c1(1− 2δ)c(1, 1) > 1

2
c1c(1, 1). (3.52)

Finally, (3.46) and the triangle inequality yield, using (3.52) and (3.51),∥∥V1,i

∥∥
2
>
∥∥c(i, 1)ϕw1(ξi)

∥∥
2
−
∥∥V ′1,i∥∥2

>
(

1
2
c1 − 2δB1/2

)
c(1, 1). (3.53)

We now choose δ := c1/(8B
1/2), and find that for some c2 > 0,

τ 2
i :=

∥∥V1,i

∥∥2

2
> c2c(1, 1)2, i 6 1 + δn/m. (3.54)

Consequently, by (3.39),

σ2
1 =

n∑
i=1

τ 2
i >

δn

m
c2c(1, 1)2 = c3

n

m

(
n− 1

m− 1

)2

. (3.55)

This proves (3.45), with c′ := c3 and c = c′/B.

Lemma 14. Suppose that m = o(n). Then V1 is asymptotically normal:

V1/σ1
d−→ N(0, 1). (3.56)

Proof. We show that the central limit theorem applies to the sum V1 =
∑

i V1,i in (3.36).
The terms V1,i are independent and have means EV1,i = 0. We verify Lyapunov’s condi-
tion.
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The random variable ξ is defined on some probability space (Ω,F , P ) and takes values
in the finite set A. Thus the linear space V of functions Ω→ R of the form f(ξ) has finite
dimension |A|. Moreover, every function in V is bounded. The L2 and L3 norms ‖ · ‖2

and ‖ · ‖3 are thus finite on V , and are thus both norms on the finite-dimensional vector
space V ; hence there exists a constant C such that for any function f ,

‖f(ξ)‖3 6 C‖f(ξ)‖2. (3.57)

In particular, since the definition (3.37) shows that V1,i is a function of ξi
d
= ξ,

‖V1,i‖3 6 C‖V1,i‖2 = Cτi, 1 6 i 6 n. (3.58)

Furthermore, by (3.41) and (3.45),

maxi τ
2
i

σ2
1

6
B
(
n−1
m−1

)2

c′ n
m

(
n−1
m−1

)2 = C
m

n
= o(1). (3.59)

Consequently, using (3.58), (3.39) and (3.59),∑n
i=1 E |V1,i|3

σ3
1

=

∑n
i=1 ‖V1,i‖3

3

σ3
1

6
C
∑n

i=1 τ
3
i

σ3
1

6 C
maxi τi

∑n
i=1 τ

2
i

σ3
1

= C
maxi τi
σ1

= o(1). (3.60)

This shows the Lyapunov condition, and thus a standard form of the central limit theorem,
[9, Theorem 7.2.4 or 7.6.2], yields (3.56).

3.5 Proofs of Theorem 6 and 7

We next prove a general theorem showing asymptotic normality under some conditions.

Theorem 15. Suppose that n→∞ and that

m2

(
n− 1

m− 1

)2

= o
(
σ2

1

)
. (3.61)

Then

VarZ = p2
w VarZ∗ ∼ p2

wσ
2
1 (3.62)

and

Z∗ − EZ∗

σ1

d−→ N(0, 1), (3.63)

Z − EZ
(VarZ)1/2

=
Z∗ − EZ∗

(VarZ∗)1/2

d−→ N(0, 1). (3.64)
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Proof. By Lemma 10 and (3.61),

Var
(Z∗ − V1

σ1

)
=

Var(Z∗ − V1)

σ2
1

6 B2
m2
(
n−1
m−1

)2

σ2
1

= o(1). (3.65)

Hence, recalling EV1 = 0,

Z∗ − EZ∗ − V1

σ1

p−→ 0. (3.66)

Combining (3.56) and (3.66), we obtain (3.63).
Furthermore, by (3.65), and since the terms in (3.18) are orthogonal,

VarZ∗ = VarV1 + Var
(
Z∗ − V1

)
= σ2

1 + o(σ2
1) ∼ σ2

1, (3.67)

which yields (3.62), and also shows that we may replace σ1 by (VarZ∗)1/2 in (3.63), which
yields (3.64); the equality in (3.64) is a trivial consequence of (2.7).

Now we are ready to prove our main results.

Proof of Theorem 6. By Lemma 13,

m2
(
n−1
m−1

)2

σ2
1

6 C
m3

n
= o(1). (3.68)

Thus (3.61) holds, and the result follows by Theorem 15 together with (2.5) and (2.7).

Recall that in Theorem 7, the range of m is improved, assuming that w is not typical
for the random source with probabilities p = (pa)a∈A that we consider.

Proof of Theorem 7. By Theorem 15, with (3.61) verified by Lemma 16 below.

Lemma 16. Let q = (qa)a∈A be the proportions of the letters in w. Then

σ2
1 >

m2

n

(
n

m

)2

‖q− p‖2 = n

(
n− 1

m− 1

)2

‖q− p‖2. (3.69)

Proof. Let

ψi(x) :=
m∑
j=1

c(i, j)ϕwj(x). (3.70)

Thus (3.37) is V1,i = ψi(ξi), and (3.39) is, since Eψi(ξ) = 0,

σ2
1 = VarV1 =

n∑
i=1

E
[
ψi(ξi)

2
]

= E
n∑
i=1

ψi(ξ)
2. (3.71)
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Hence, by the Cauchy–Schwarz inequality,

nσ2
1 = nE

n∑
i=1

ψi(ξ)
2 > E

( n∑
i=1

ψi(ξ)
)2

. (3.72)

Furthermore, by (3.70) and (3.21)

n∑
i=1

ψi(x) =
n∑
i=1

m∑
j=1

c(i, j)ϕwj(x) =
m∑
j=1

(
n

m

)
ϕwj(x) =

(
n

m

)∑
a∈A

mqaϕa(x). (3.73)

Hence, (3.6) yields∥∥∥ n∑
i=1

ψi(ξ)
∥∥∥

2
= m

(
n

m

)∥∥∥∑
a∈A

qaϕa(ξ)
∥∥∥

2
> m

(
n

m

)
‖q− p‖. (3.74)

Combining (3.72) and (3.74) yields (3.69).

4 Some Special Cases

In this section we consider two interesting cases. In the first we assume that the pattern
w is alternating and in the second case we consider random w.

4.1 Alternating w

As an extreme example, we consider alternating w, that is, w = 010101 . . . for A = {0, 1}.
We prove that this case matches the general lower bound (3.45) in Lemma 13.

Theorem 17. Consider the unbiased binary case A = {0, 1} and p0 = p1 = 1
2
, and let w

be an alternating string 010101 . . . Then, for any m 6 n/2,

σ2
1 6 10

n

m

(
n− 1

m− 1

)2

. (4.1)

Proof. It is slightly more convenient to let A = {±1}; thus we consider w = w1 · · ·wm
with

wj = (−1)j (4.2)

in the unbiased case p1 = p−1 = 1
2
. Then, by (3.1), for x ∈ A,

ϕ1(x) = 2 · 1{x = 1} − 1 = x (4.3)

ϕ−1(x) = 2 · 1{x = −1} − 1 = −x, (4.4)

and thus, for a, x ∈ A,

ϕa(x) = ax. (4.5)
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By (3.37), (4.5) and (4.2),

V1,i =
m∑
j=1

c(i, j)wjξi =
m∑
j=1

(−1)jc(i, j)ξi =: τiξi, (4.6)

where we thus define

τi :=
m∑
j=1

(−1)jc(i, j) =
m∑
j=1

(−1)j
(
i− 1

j − 1

)(
n− i
m− j

)
. (4.7)

Note that (4.6) gives EV 2
1,i = τ 2

i , so (4.7) is consistent with our earlier definition (3.38).
(The sign of τi is irrelevant for our purposes.) By (4.7) and (3.33)–(3.34), we have, with
π(i, j) and X ∼ HGe(n− 1,m− 1, i− 1), as defined in Remark 11,

−τi(
n−1
m−1

) =
m∑
j=1

(−1)j−1π(i, j) =
m∑
j=1

(−1)j−1 P(X = j − 1) = E(−1)X . (4.8)

By Lemma 18 below, this implies, for 2 6 m 6 n/2 and 1 6 i 6 (n+ 1)/2,

|τi|(
n−1
m−1

) 6 exp
(
−(i− 1)(n− i)(m− 1)(n−m)

(n− 1)2(n− 2)

)
6 exp

(
−(i− 1)m

8n

)
. (4.9)

This enables us to conclude, using the symmetry |τi| = |τn+1−i| and still assuming 2 6
m 6 n/2, that

σ2
1 =

n∑
i=1

τ 2
i 6 2

dn/2e∑
i=1

τ 2
i 6 2

(
n− 1

m− 1

)2 ∞∑
i=1

e−(i−1)m/4n

=
2

1− e−m/4n

(
n− 1

m− 1

)2

6
10n

m

(
n− 1

m− 1

)2

, (4.10)

as claimed in (4.1). The case m = 1 is trivial by (3.42), with B = 1 by (3.3).

Lemma 18. Suppose that X is a hypergeometric random variable X ∼ HGe(n, k, `).
Then ∣∣E(−1)X

∣∣ 6 exp
(
−2 VarX

)
= exp

(
−2

k(n− k)`(n− `)
n2(n− 1)

)
. (4.11)

Note that the expectation in (4.11) is the difference of the probabilities that X is even
or odd.

Proof. By (a special case of) a theorem by [19], the probability generating function of X
has only negative real zeroes, and thus there exist probabilities ri ∈ [0, 1], i = 1, . . . , k,
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such that if Ii ∼ Be(ri) are independent indicator variables, then
∑

i Ii has the same
distribution as X, i.e.,

X
d
=
∑
i

Ii. (4.12)

Hence, with si := 1− ri,

E(−1)X = E(−1)
∑
i Ii =

∏
i

E(−1)Ii =
∏
i

(si − ri) (4.13)

and thus, using also VarX =
∑

i Var Ii by (4.12),∣∣E(−1)X
∣∣ =

∏
i

|si − ri| =
∏
i

(1− 2 min{ri, si}) 6
∏
i

(1− 2risi)

6 exp
(
−2
∑
i

risi

)
= exp

(
−2
∑
i

Var Ii

)
= exp

(
−2 VarX

)
. (4.14)

This yields (4.11) by the standard formula

VarX =
k(n− k)`(n− `)

n2(n− 1)
. (4.15)

This completes the proof.

4.2 A random w

Theorem 7 applies when w is far from a typical string Ξm from our random source. In
this subsection we consider the opposite case, i.e., when w is like Ξm. More precisely, we
consider the case when w = W is a random string, of a given length m, drawn from the

same source; thus W
d
= Ξm, but W is independent of Ξn. (We use capital W to emphasize

that the string is random.) We think of this as a two-stage random experiment. First we
sample W ; then we sample Ξ. Conditioned on W = w, we thus have the same situation
as before.

We write, for example, σ2
1(w) to indicate the dependence on w; thus σ2

1(W ) is a
random variable. The next theorem shows that σ2

1(W ) is concentrated about a value that
is roughly the geometric mean of the upper and lower bounds in (3.42) and (3.45).

Theorem 19. Let W
d
= Ξm. Then, for n > 1 and 1 6 m 6 n/2,

E[σ2
1(W )] = Θ

(
n√
m

(
n− 1

m− 1

)2)
. (4.16)

Furthermore, if also m,n→∞, then

σ2
1(W )

E[σ2
1(W )]

→ 1 (4.17)

in probability.
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Corollary 20. For random w = W
d
= Ξm, (3.61) holds for m = o

(
n2/5

)
with high proba-

bility, and hence for a typical pattern w the number of w occurrences Z is asymptotically
normal as long as m = o

(
n2/5

)
. More precisely, in this case

Z/EZ ∼ AsN
(

1,
E[σ2

1(W )]

E2[Z]

)
(4.18)

with E[Z] =
(
n
m

)
2−mh+Op(m1/2) where h = −

∑
a∈A pa log pa is the source entropy.

Proof of Theorem 19. Define the covariance matrix

ρ(a, b) := Cov
(
ϕa(ξ), ϕb(ξ)

)
, a, b ∈ A. (4.19)

We have already computed ρ(a, a) = p−1
a −1 in (3.7). Similarly, in general, recalling (3.1),

ρ(a, b) = p−1
a p−1

b Cov
(
1{ξ = a},1{ξ = b}

)
= p−1

a 1{a = b} − 1. (4.20)

By (3.37), for a given string w,

τ 2
i (w) = VarV1,i =

m∑
j=1

m∑
k=1

c(i, j)c(i, k) Cov
(
ϕwj(ξi), ϕwk(ξi)

)
=

m∑
j=1

m∑
k=1

c(i, j)c(i, k)ρ
(
wj, wk

)
, (4.21)

where ρ
(
wj, wk

)
= Cov

(
ϕwj(ξi), ϕwk(ξi)

)
. Thus, by (3.39),

σ2
1(w) =

n∑
i=1

τ 2
i (w) =

n∑
i=1

m∑
j=1

m∑
k=1

c(i, j)c(i, k)ρ
(
wj, wk

)
. (4.22)

Now let w = W be random, with W
d
= Ξm. Then, the letters Wj are i.i.d. with Wj

d
= ξ.

In particular, it follows from (4.20) that for any fixed a,

E ρ(Wj, a) = E ρ(a,Wj) = 0, (4.23)

and thus E ρ(Wj,Wk) = 0 when j 6= k, while

E ρ(Wj,Wj) =
∑
a∈A

pa
(
p−1
a − 1

)
= |A| − 1 =: A1. (4.24)

Consequently, taking the expectation in (4.22) and recalling (3.33),

E[σ2
1(W )] =

n∑
i=1

m∑
j=1

m∑
k=1

c(i, j)c(i, k)E ρ
(
Wj,Wk

)
= A1

n∑
i=1

m∑
j=1

c(i, j)2
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= A1

(
n− 1

m− 1

)2 n∑
i=1

m∑
j=1

π(i, j)2. (4.25)

where π(i, j) is defined in Remark 11. We thus want to estimate the final double sum.
First, fix i and recall from (3.34) that (π(i, j))j is the probability distribution of X+1

with X ∼ HGe(n− 1,m− 1, i− 1). Let µ := EX + 1 and γ2 := VarX. By Chebyshev’s
inequality, ∑

|j−µ|>2γ

π(i, j) = P
(
|X + 1− µ| > 2γ

)
6

1

4
, (4.26)

and thus by the Cauchy–Schwarz inequality,

9

16
6
( ∑
|j−µ|62γ

π(i, j)
)2

6 (4γ + 1)
∑

|j−µ|62γ

π(i, j)2. (4.27)

Furthermore, see (4.15), γ2 = VarX 6 im/n. Hence,

m∑
j=1

π(i, j)2 >
C

γ + 1
> C min

(
γ−1, 1

)
> C min

(( n

mi

)1/2

, 1
)
. (4.28)

Summing over n/2 6 i 6 n, say, yields

n∑
i=1

m∑
j=1

π(i, j)2 > C
n

m1/2
. (4.29)

In the opposite direction, we again fix i and note that

m∑
j=1

π(i, j)2 6 max
j
π(i, j)

m∑
j=1

π(i, j) = max
j
π(i, j). (4.30)

It follows from (3.32) that

π(i, j + 1)

π(i, j)
=
c(i, j + 1)

c(i, j)
=

(i− j)(m− j)
j(n− i−m+ j + 1)

, (4.31)

and it follows easily that the maximum in (4.30) is attained at

j = j0 :=

⌈
im

n+ 1

⌉
=
im

n
+O(1). (4.32)

It is then easy to see, by Stirling’s formula and some calculations, that for i 6 dn/2e,

max
j
π(i, j) 6 C

( n

mi

)1/2

. (4.33)
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Hence, by (4.30) and (4.33),

n∑
i=1

m∑
j=1

π(i, j)2 6 2

dn/2e∑
i=1

max
j
π(i, j) 6 C

n∑
i=1

n1/2

m1/2i1/2
6 C

n

m1/2
. (4.34)

The result (4.16) for the expectation follows by (4.25), (4.29) and (4.34).
Next, we estimate the variance of σ2

1(W ). Let

Y := σ2
1(W )

/ (n− 1

m− 1

)2

=
m∑
j=1

n∑
k=1

n∑
i=1

π(i, j)π(i, k)ρ(Wj,Wk) (4.35)

and note that, by (4.16),

EY = Θ
( n

m1/2

)
. (4.36)

Since the random letters Wj are independent, it follows from (4.23) that the random
variables ρ(Wj,Wk), j 6 k, have covariances 0; furthermore, these variables are bounded.
Hence, (4.35) implies

VarY 6 C
m∑
j=1

m∑
k=1

( n∑
i=1

π(i, j)π(i, k)
)2

. (4.37)

To estimate (4.37), we split the inner sum into the ranges i 6 dn/2e and i > dn/2e, using
(x + y)2 6 2(x2 + y2); by symmetry it suffices to consider the case i 6 dn/2e. It follows
from (4.31) after some calculations that then

π(i, j) 6 Ce−C(j−j0)2/(j+j0)π(i, j0) 6 Cj
−1/2
0 e−C(j−j0)2/(j+j0)

6 Cj−1/2e−C(j−j0)2/(j+j0) (4.38)

where j0 is defined in (4.32). It follows, omitting the details, that for 1 6 j 6 k 6 m,

dn/2e∑
i=1

π(i, j)π(i, k) 6 C
n

mk1/2
e−C(j−k)2/m (4.39)

and thus (4.37) yields, using (4.36),

VarY 6 C

m∑
k=1

m∑
j=1

n2

m2k
e−C(j−k)2/m 6 C

m∑
k=1

n2

m3/2k
6 C

n2

m3/2
logm

6 C
logm

m1/2
(EY )2. (4.40)

Consequently, as m→∞,

Var
( σ2

1(W )

E[σ2
1(W )]

)
= Var

( Y

EY

)
6 C

logm

m1/2
→ 0, (4.41)

and (4.17) follows.
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5 Concluding Remarks

Finally, we collect here some further comments, examples and conjectures, in the hope of
stimulating further research.

Example 21. Consider again the case when w = am = a · · · a is a constant string, treated
by a direct method in Section 2.3 and Theorem 4. Let us see what Theorem 15 yields. In
this case, by (3.44), with ca := p−1

a − 1 > 0,

σ2
1 =

n∑
i=1

τ 2
i = nca

(
n− 1

m− 1

)2

, (5.1)

and thus (3.61) reduces to m2 = o(n). (This also follows by Lemma 16.)
Consequently, Theorem 15 applies and shows asymptotic normality when m = o

(
n1/2

)
,

which we already knew, see Theorems 4(iii) and 7. This example shows that Theorems
15 and 7 are sharp, in the sense that the range of m for which they yield asymptotic
normality cannot be extended; see Example 5.

Remark 22. The argument in the proof of Theorem 7 applies also in other cases where σ2
1

is of the same order as the upper bound in (3.42). Then Theorem 15 applies and shows
asymptotic normality for m = o

(
n1/2

)
. A simple example is when w = 0 · · · 01 · · · 1, or

more generally, when, say, the first and second half of w have different distributions of
the letters, even if the average proportions in the entire string q = p. (This can be seen
by a modification of the argument in the proof of Lemma 16.)

Based on these examples we conjecture the following.

Conjecture 23. If σ2
1 = o

((
n
m

)2)
, or equivalently σ2

1 = o
(
n2

m2

(
n−1
m−1

)2)
, then

Z/EZ ∼ AsN
(

1,
σ2

1(
n
m

)2

)
. (5.2)

Moreover, at least as long as m = o(n),

lnZ ∼ AsN
(
an,

σ2
1(

n
m

)2

)
(5.3)

for some sequence an.

In particular, by (4.1), if Conjecture 23 holds, then for an alternating string w =
0101 · · · , Z is asymptotically normal for any m = o(n). Moreover, for random w as
discussed in Section 4.2, by Theorem 19, Conjecture 23 suggests that asymptotic normality
holds for m = o

(
n2/3

)
, and log-normality beyond that.

Note that this conjecture implies that if σ2
1 is of a smaller order than the upper bound

in (3.42) (for n1/3 6 m 6 n, say), then asymptotic normality holds for a larger range of m
than o

(
n1/2

)
, while our proof above, on the contrary, verifies this only in a range smaller

than m = o
(
n1/2

)
.
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